LHC Physics Tilman Plehn LHC physics BNNs Generative AI Events

Modern ML for LHC Theory

Tilman Plehn

Universität Heidelberg

SMASH, Vipava, October 2024

LHC Physics Tilman Plehn LHC physics BNNs Generative Al Events Unfolding

Modern LHC physics

Classic motivation

- · dark matter?
- · matter vs antimatter?
- · origin of Higgs boson?

LHC Physics Tilman Plehn LHC physics BNNs Generative AI Events Unfolding

Modern LHC physics

Classic motivation

- · dark matter?
- · matter vs antimatter?
- · origin of Higgs boson?

LHC physics

- · fundamental questions
- · huge data set
- $\cdot\,$ first-principle, precision simulations
- · complete uncertainty control

Successful past

- measurements of total rates
- · analyses inspired by simulation
- model-driven Higgs discovery

LHC Physics Tilman Plehn LHC physics BNNs Generative AI Events Unfolding

Modern LHC physics

Classic motivation

- · dark matter?
- matter vs antimatter?
- · origin of Higgs boson?

LHC physics

- · fundamental questions
- huge data set
- · first-principle, precision simulations
- · complete uncertainty control

Successful past

- · measurements of total rates
- $\cdot\,$ analyses inspired by simulation
- model-driven Higgs discovery

First-principle, precision simulations

- · start with Lagrangian
- · calculate scattering using QFT
- simulate collisions
- simulate detectors
- → LHC collisions in virtual worlds

BSM searches

- $\cdot\,$ compare simulations and data
- · understand LHC data systematically
- · infer underlying theory [SM or BSM]
- · publish useable results
- → Lots of data science...

LHC Physics Tilman Plehn LHC physics BNNs Generative Al Events Unfolding

LHC Theory

Turning data into knowledge

- · QFT
- start with Lagrangian generate Feynman diagrams
- compute hard scattering compute decays compute jet radiation
- partons inside protons hadron-level QCD
- $\rightarrow\,$ First-principle simulations, not modeling

HL-LHC: optimal inference with 10 $\times more$ data

- $\cdot \,$ statistical improvement $\sqrt{10} > 3$
- $\cdot\,$ rate over phase space to <0.1%
- $\cdot \;$ SBI starts with Simulation \leftrightarrow theory
- · speed the key to precision
- → MadNIS & Co

Generative AI Events Unfolding

Regression with uncertainties

Calibration function for ATLAS calorimeter

- energy measurement for cluster/jet j $\langle E \rangle = \int dE \ E \ p(E)$
- · weighted by reproducing training data $p(\theta|T)$ $p(E) = \int d\theta \ p(E|\theta) \ p(\theta|T)$
- $\rightarrow \theta$ -distributions defining Bayesian NN

LHC Physics Tilman Plehn LHC physics BNNs Generative Al Events

Regression with uncertainties

Calibration function for ATLAS calorimeter

- energy measurement for cluster/jet j $\langle E \rangle = \int dE \ E \ p(E)$
- · weighted by reproducing training data $p(\theta|T)$ $p(E) = \int d\theta \ p(E|\theta) \ p(\theta|T)$
- $\rightarrow \theta$ -distributions defining Bayesian NN

Variational approximation

definition of training [think
$$q(\theta)$$
 as Gaussian with mean and width]
 $p(E) = \int d\theta \ p(E|\theta) \ p(\theta|T) \approx \int d\theta \ p(E|\theta) \ q(\theta)$

 $\begin{array}{ll} \cdot \mbox{ similarity through minimal KL-divergence } & \mbox{ [Bayes' theorem to remove unknown posterior]} \\ D_{\text{KL}}[q(\theta), p(\theta|T)] &= \int d\theta \ q(\theta) \ \log \frac{q(\theta)}{p(\theta|T)} \\ &= \int d\theta \ q(\theta) \ \log \frac{q(\theta)p(T)}{p(T|\theta)p(\theta)} \\ &= D_{\text{KL}}[q(\theta), p(\theta)] - \int d\theta \ q(\theta) \ \log p(T|\theta) + \log p(T) \int d\theta \ q(\theta) \end{array}$

LHC Physics Tilman Plehn LHC physics BNNs Generative AI Events

Regression with uncertainties

Calibration function for ATLAS calorimeter

- energy measurement for cluster/jet j $\langle E \rangle = \int dE \ E \ p(E)$
- · weighted by reproducing training data $p(\theta|T)$ $p(E) = \int d\theta \ p(E|\theta) \ p(\theta|T)$
- $\rightarrow \theta$ -distributions defining Bayesian NN

Variational approximation

definition of training [think
$$q(\theta)$$
 as Gaussian with mean and width]

$$p(E) = \int d\theta \ p(E|\theta) \ p(\theta|T) \approx \int d\theta \ p(E|\theta) \ q(\theta)$$

· similarity through minimal KL-divergence [Bayes' theorem to remove unknown posterior]

$$\begin{split} D_{\mathsf{KL}}[q(\theta), p(\theta|T)] &= \int d\theta \ q(\theta) \ \log \frac{q(\theta)}{p(\theta|T)} \\ &= \int d\theta \ q(\theta) \ \log \frac{q(\theta)p(T)}{p(T|\theta)p(\theta)} \\ &\approx D_{\mathsf{KL}}[q(\theta), p(\theta)] - \int d\theta \ q(\theta) \ \log p(T|\theta) \equiv \mathcal{L} \end{split}$$

→ Two-term loss: likelihood + prior

BNNs

Generative A Events Unfolding

Relation to deterministic networks

Regularization

· BNN loss

$$\mathcal{L} = -\int d\theta \ q(\theta) \ \log p(T|\theta) + D_{\mathsf{KL}}[q(\theta), p(\theta)]$$
$$= -\int d\theta \ q(\theta) \ \log p(T|\theta) + \frac{\sigma_q^2 - \sigma_\rho^2 + (\mu_q - \mu_\rho)^2}{2\sigma_\rho^2} + \dots$$

· deterministic network

$$q(heta) = \delta(heta - heta_0) \quad \Rightarrow \quad \mathcal{L} \approx -\log p(T| heta_0) + rac{(heta_0 - \mu_p)^2}{2\sigma_p^2}$$

 $\rightarrow\,$ Likelihood with L2-regularization

Generative A Events Unfolding

Relation to deterministic networks

Regularization

· BNN loss

$$\mathcal{L} = -\int d\theta \ q(\theta) \ \log p(T|\theta) + D_{\mathsf{KL}}[q(\theta), p(\theta)]$$
$$= -\int d\theta \ q(\theta) \ \log p(T|\theta) + \frac{\sigma_q^2 - \sigma_\rho^2 + (\mu_q - \mu_\rho)^2}{2\sigma_\rho^2} + \dots$$

deterministic network

$$q(\theta) = \delta(\theta - \theta_0) \quad \Rightarrow \quad \mathcal{L} \approx -\log p(T|\theta_0) + \frac{(\theta_0 - \mu_p)^2}{2\sigma_p^2}$$

 \rightarrow Likelihood with L2-regularization

Dropout

· Bernoulli weights

$$q(\theta) \rightarrow q(x) = \rho^{x} (1-\rho)^{1-x} \bigg|_{x=0,1}$$
 with $\theta = x \theta_{0}$

 $\rightarrow\,$ Regularized likelihood with dropout

LHC Physics Tilman Plehn

LHC physics

- BNNs
- Generative Al Events Unfolding

Statistics vs systematics

Network evaluation

· expectation value using trained network $q(\theta)$

$$E\rangle = \int dEd\theta \ E \ p(E|\theta) \ q(\theta)$$
$$\equiv \int d\theta \ q(\theta)\overline{E}(\theta) \quad \text{with} \quad \overline{E}(\theta) = \int dE \ E \ p(E|\theta)$$

· corresponding variance

$$\begin{aligned} \sigma_{\text{tot}}^{2} &= \int dE d\theta \ (E - \langle E \rangle)^{2} \ p(E|\theta) \ q(\theta) \\ &= \int d\theta \ q(\theta) \left[\overline{E^{2}}(\theta) - 2 \langle E \rangle \overline{E}(\theta) + \langle E \rangle^{2} \right] \\ &= \int d\theta \ q(\theta) \left[\overline{E^{2}}(\theta) - \overline{E}(\theta)^{2} + \left(\overline{E}(\theta) - \langle E \rangle \right)^{2} \right] \equiv \sigma_{\text{syst}}^{2} + \sigma_{\text{stat}}^{2} \end{aligned}$$

Two uncertainties

· statistical — vanishing for perfect training: $q(\theta) \rightarrow \delta(\theta - \theta_0)$

$$\sigma_{\text{stat}}^2 = \int d\theta \ q(\theta) \left[\overline{E}(\theta) - \langle E \rangle \right]^2 = \left[\overline{E}(\theta_0) - \langle E \rangle \right]^2$$

 \cdot systematic — vanishing for perfect data: $p(E| heta)
ightarrow \delta(E-E_0)$

$$\sigma_{\text{syst}}^{2} = \int d\theta \ q(\theta) \left[\overline{E^{2}}(\theta) - \overline{E}(\theta)^{2} \right]$$

LHC Physics Tilman Plehn LHC physics BNNs Generative Al Events

Generative AI

Forward simulations

- \cdot learn phase space density sample Gaussian \rightarrow phase space
- \cdot Variational Autoencoder \rightarrow low-dimensional physics
- \cdot Generative Adversarial Network \rightarrow generator trained by classifier
- · Normalizing Flow/Diffusion \rightarrow (bijective) mapping [INN]
- $\cdot\,$ JetGPT, ViT \rightarrow non-local structures
- Equivariant L-GATr
 → guarantee Lorentz symmetry
- → Combinations: equivariant transformer CFM...

Number of training samples

LHC Physics Tilman Plehn LHC physics BNNs Generative AI Events Unfolding

Generative Uncertainties

Unsupervised Bayesian networks

- data: event sample [points in 2D space] learn phase space density standard distribution in latent space [Gaussian] sample from latent space
- Bayesian version allow weight distributions learn uncertainty map
- · 2D wedge ramp

$$p(x) = ax + b = ax + \frac{1 - \frac{a}{2}(x_{\max}^2 - x_{\min}^2)}{x_{\max} - x_{\min}}$$
$$(\Delta p)^2 = \left(x - \frac{1}{2}\right)^2 (\Delta a)^2 + \left(1 + \frac{a}{2}\right)^2 (\Delta x_{\max})^2 + \left(1 - \frac{a}{2}\right)^2 (\Delta x_{\min})^2$$

explaining minimum in $\sigma(x)$

 \rightarrow INNs, diffusion just (non-parametric) fits

Generative A

Events

Unfolding

Events with uncertainties

Bayesian network generator

- network with weight distributions [Gal (2016)] sample weights [defining error bar] frequentist: efficient ensembling
- \Rightarrow Training-related error bars

LHC Physics Tilman Plehn LHC physics BNNs Generative AI Events

Events with uncertainties

Bayesian network generator

- network with weight distributions [Gal (2016)] sample weights [defining error bar] frequentist: efficient ensembling
- \Rightarrow Training-related error bars

Theory uncertainties

- · BNN regression/classification: systematics from data augmentation
- · systematic uncertainties in tails

$$w = 1 + a \left(\frac{p_{T,j_1} - 15 \text{ GeV}}{100 \text{ GeV}} \right)^2$$

- augment training data $[a = 0 \dots 30]$
- train conditionally on a error bar from sampling a
- ⇒ Systematic/theory error bars

LHC Physics Tilman Plehn LHC physics BNNs Generative AI

Events

Jnfolding

Transforming LHC physics

Number of searches

- · SBI: signal and background simulations
- · CPU-limitation for many signals?

Optimal analyses

- $\cdot\,$ theory limiting many analyses, but continuous progress
- · allow for analyses to be updated?

Public LHC data

- common lore: LHC data too complicated for amateurs
- · in truth:

hard scattering and decay simulations public BSM physics not in hadronization and detector

→ Unfold to suitable level [EFT?]

LHC Physics Tilman Plehn LHC physics BNNs Generative Al Events Unfolding

ML-Unfolding

Basic structure

· four phase space distributions

- · forward and inverse generation symmetric [stochastic]
- $\rightarrow\,$ ML for unbinned and high-dimensional unfolding?

LHC Physics Tilman Plehn LHC physics BNNs Generative AI Events

ML-Unfolding

Basic structure

· four phase space distributions

 $\begin{array}{ccc} \rho_{\rm sim}(x_{\rm part}) & \xleftarrow{\text{unfolding inference}} & \rho_{\rm unfold}(x_{\rm part}) \\ \\ \rho(x_{\rm reco} \mid x_{\rm part}) & & & & & & \\ \rho_{\rm sim}(x_{\rm reco}) & \xleftarrow{\text{forward inference}} & \rho_{\rm data}(x_{\rm reco}) \end{array}$

- · forward and inverse generation symmetric [stochastic]
- \rightarrow ML for unbinned and high-dimensional unfolding?

OmniFold [Andreassen, Komiske, Metodiev, Nachman, Thaler]

- $\cdot \;\; \mathsf{learn} \; \rho_{\mathsf{sim}}(x_{\mathsf{reco}}) \leftrightarrow \rho_{\mathsf{data}}(x_{\mathsf{reco}}) \quad {}_{\mathsf{[Neyman-Pearson lemma, CWoLa]}}$
- · reweight $p_{sim}(x_{part}) \rightarrow p_{unfold}(x_{part})$

 \rightarrow Driven by established ML-classification

Events

Unfolding

Unfolding by generation

Targeting conditional probability [Butter, TP, Winterhalder,...]

- · just like forward ML-generation
- · learn inverse conditional probability from (xpart, xreco)

Improvements crucial

- 1 likelihood loss to generate posterior \rightarrow cINN
- 2 make networks more precise \rightarrow TraCFM
- 3 remove training prior [Backes, Butter, Dunford, Malaescu]
- \rightarrow Driven by generative networks

LHC Physics Tilman Plehn

LHC physics BNNs Generative A Events

Unfolding

Unfolding top decays

Tough challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first measure m_t in unfolded data then unfold full kinematics
- · model dependence: simulation m_s vs data m_d

Unfolding top decays

LHC physics BNNs Generative AI Events

Unfolding

Tough challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first measure m_t in unfolded data then unfold full kinematics
- · model dependence: simulation m_s vs data m_d

- 1 weaken bias by training on ms-range
- 2 strengthen data by including batch-wise $\textit{m}_{d} \sim \textit{M}_{jjj} \in \textit{x}_{reco}$

Unfolding top decays

Tough challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- · first measure m_t in unfolded data then unfold full kinematics
- · model dependence: simulation m_s vs data m_d

1 weaken bias by training on ms-range

2 strengthen data by including batch-wise $\textit{m}_{\textit{d}} \sim \textit{M}_{jjj} \in \textit{x}_{\text{reco}}$

Preliminary unfolding results [TraCFM]

· 4D for calibrated mass measurement

Unfolding

Unfolding top decays

Tough challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- · first measure m_t in unfolded data then unfold full kinematics
- · model dependence: simulation m_s vs data m_d

1 weaken bias by training on m_s -range

2 strengthen data by including batch-wise $\textit{m}_{\textit{d}} \sim \textit{M}_{jjj} \in \textit{x}_{\text{reco}}$

Preliminary unfolding results [TraCFM]

· 4D for calibrated mass measurement

Unfolding top decays

Tough challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- · first measure m_t in unfolded data then unfold full kinematics
- · model dependence: simulation m_s vs data m_d

1 weaken bias by training on ms-range

2 strengthen data by including batch-wise $\textit{m}_{d} \sim \textit{M}_{jjj} \in \textit{x}_{reco}$

Preliminary unfolding results [TraCFM]

- 4D for calibrated mass measurement
- 12D published data
- → CMS data next

ML for LHC Theory

Developing ML for the best science

- · just another numerical tool for a numerical field
- · transformative new common language
- · driven by money from data science and medical research
- · be 10000 Einsteins,
 - ...improving established tools
 - ...developing new tools for established tasks
 - ...transforming through new ideas
- \rightarrow You are the golden generation!

Modern Machine Learning for LHC Physicists

Tilman Plehn^a, Anja Butter^{a,b}, Barry Dillon^a, Theo Heimel^a, Claudius Krause^c, and Ramon Winterhalder^d

^a Institut für Theoretische Physik, Universität Heidelberg, Germany ^b LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France ^c HEPHY, Austrian Academy of Sciences. Vienna, Austria ^d CP3, Université catholique de Louvain, Louvain-Ia-Neuve, Belgium

March 19, 2024

Abstract

Modern machine learning is transforming particle physics facts, bublying in way into our manufactor learning is transforming particle physics facts, bublying in way, into our manufactor and the start of the start

:2211.01421v2 [hep-ph] 17 Mar 2024