Regression

Generative A

MadNIS

Unfolding

Tilman Plehn

Universität Heidelberg

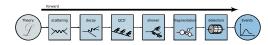
Munich, January 2025

- Regressio Generative
- MadNIS
- Unfolding

LHC Theory

Turning data to knowledge

- Quantum Field Theory start with Lagrangian
- compute hard scattering compute decays compute jet radiation
- parton densities [NNPDF] hadron-level QCD
- $\rightarrow\,$ First-principle simulations, with help from ML



- Regression Generative /
- Unfolding

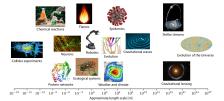
LHC Theory

Turning data to knowledge

- Quantum Field Theory start with Lagrangian
- compute hard scattering compute decays compute jet radiation
- parton densities [NNPDF] hadron-level QCD
- $\rightarrow\,$ First-principle simulations, with help from ML

HL-LHC: inference with 10 \times more data

- · SBI starts with Simulation...
- $\cdot \,$ statistical improvement $\sqrt{10}=3$
- $\cdot\,$ rate over phase space to <0.1%
- $\cdot \,$ theory to follow
- $\cdot \,$ precision = QFT \times Compute
- $\rightarrow\,$ Everything, faster and better...



ML introduction

Examples Regression Generative MadNIS

Shortest ML-intro ever

Fit-like approximation

- · approximate $f_{\theta}(x) \approx f(x)$
- $\cdot\,$ no parametrization, just very many θ
- · new representation/latent space θ

Applications

- · applications all over experiment
- · regression $x \to f_{\theta}(x)$
- \cdot classification $x o f_{ heta}(x) \in [0,1]$
- · generation $r \sim \mathcal{N} \rightarrow f_{\theta}(r)$
- · conditional generation $r \sim \mathcal{N} \rightarrow f_{\theta}(r|x)$

Architectures

- $\cdot\,$ physics-aware questions and data representation
- · symmetries, locality, etc
- · accuracy, control, error bars?
- · is LHC data images or language?
- \rightarrow Complexity a feature, not a problem

ML introduction

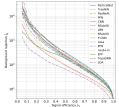
Examples

- Regression Generative A
- MadNIS
- Unfolding

ML in experiment

Top tagging [classification, 2016-today]

- · 'hello world' of LHC-ML
- · end of QCD-taggers
- · ever-improving [Huilin Qu]
- → Driving NN-architectures

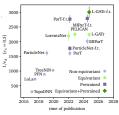


The Machine Learning Landscape of Top Taggers

G. Kasiscala (ed)¹, T. Fishn (ed)², A. Botter², K. Crazner³, D. Dobauth⁴, B. M. Dilso², M. Faithairi, D. A. Farogyly², W. Federio², C. Gay², L. Gestolov³, J. F. Kazmell³N, T. T. Karaini, S. Lislev⁴, A. Linter³, S. Masharo²¹, W. Modoli²⁴, J. Mosori⁴¹, B. Nochman, ^{12,21}, K. Southericu^{13,2}, J. Penko³, H. Qe³, Y. Kath⁵, M. Reger³, D. Shih⁴, J. M. Trampor, and S. Wurna⁴

 Institut für Experimentalphysik, Universität Hamburg, Germany 2 Institut für Theoretische Physik, Universität Heidelberg, Germany 8 Center für Consology and Particle Physics and Center for Dan Science, NYU, USA 4 NIECT, Dept. of Physics and Astroneurg, Itagers, The Stone University of NJ, USA 5 Josef Stofen Institute, 1, Julyane, Shownia

6 Theoretical Particle Physics and Cosmology, King's College Leadon, United Kingdom 7 Department of Physics and Astronomy, The University of Beiliah Columbia, Canada 9 Description and Astronomy, The University of Reliab Columbia, Canada 9 Description of College Sectors 1980



ML introduction

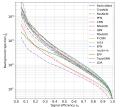
Examples

- Regression Generative A MadNIS
- Unfolding

ML in experiment

Top tagging [classification, 2016-today]

- · 'hello world' of LHC-ML
- · end of QCD-taggers
- · ever-improving [Huilin Qu]
- → Driving NN-architectures



The Machine Learning Landscape of Top Taggers

 Kasteczka (ed)¹, T. Fishu (ed)², A. Bortse², K. Crazzer³, D. Debasth⁴, B. M. Dilkas³, M. Falriatzin⁶, D. A. Farcaghy², W. Federlov², C. Gay², L. Goudos⁴, J. F. Kaszeth³, Y. T. Konish³, S. Labei, A. Laber³, S. Machana, ^{12,13}, K. Nordarzin^{14,15}, J. Posches³, H. Qu⁴, Y. Rath⁹, M. Rieger³⁰, D. Shith⁴, J. M. Thermisel⁴, and S. Vermas⁴

 Institut für Experimentalphysik, Universität Hamburg, Germany 2 Institut für Theoretische Physik, Universität Heidelberg, Germany 3 Center für Connologi and Particle Physics and Center for Dan Science, NYU, USA 4 NHECT, Dept. of Physics and Astroneurg, Eurgers, The State University of NJ, USA 5 Josef Stefan Institute, Lindhuma, Shovnia

Particle flow [2020-today]

- · mother of jet analyses
- · combining detectors with different resolution
- · optimality the key
- \rightarrow Modern jet analysis basics

Towards a Computer Vision Particle Flow *

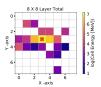
Francesco Armando Di Bello^{1,1}, Sanmay Gangaly^{1,1}, Ellam Gross¹, Marumi Kado^{1,4}, Michael Pitt², Lorenzo Santi ³, Jonathan Shlomi¹

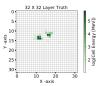
¹Weizmann Institute of Science, Rehevet 76100, Jamel ²CERN, CH 1211, Geneva 23, Switzerland ²Universit
³ di Roma, Sapiena, Piazza Aldo Moro, 2, 60185 Roma, Jady e INFN, Italy ⁴Universit
⁹ Paris-Saclay, CNISSIN129, JICLub, 91405, Ossay, France

Progress towards an improved particle flow algorithm at CMS with machine learning

Faronic Moldstar¹, Jonesep Patra², Javier Duarte¹, Eric Walff², Morrizko Perrel¹ and Jones-Roch Vinnest⁴ (or behalf of the CMS Collaboration) ¹¹/uirweisy of Galaxies Sin Eng. 1, a Mill, CM 2021, USA ²⁰OFG, Evolup H1, HILI Talian, Datasia ²⁰OFG, Evolup H1, HILI Talian, Datasia

E-mail: daubhtarband.edu, joursy.patabure.uk, jdaarteband.edu





ML introduction

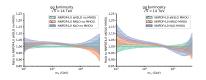
Examples

- Regression Generative A
- MadNIS
- Unfolding

ML in phenomenology

Parton densities [NNPDF, 2002-today]

- · pdfs without functional bias and full uncertainties
- · precision and calibrated uncertainties
- \rightarrow Drivers of ML-theory



The Path to N³LO Parton Distributions

The NNPDF Collaboration: Richard D. Ball¹, Andrea Baronik¹, Alemandro Condita^{1,3}, Steino Cernard², Jana Cenz-Martiner², Luigi Dei Dobbio¹, Steino Feren², Tennaso Gual^{1,4}, Patte Bichara^{2,4,2}, Zahari Kooshon⁴, Nemio Lazerati¹, Ganzon Magal^{1,5}, Banzande R. Norra¹, Tarjava R. Babenanatpat^{1,6}, Jana Bojd^{1,6} Christopher Steino², Bry Sonyma¹, and Maria Ukal¹, and Maria Ukal¹

 The Bigs Crack for Density of Human Standing (Education): The Bigs Crack for Density of Human Standing (Human Standing): The Annual Action (Human

> This paper is dedicated to the memory of Stefano Catani, Grand Master of QCD, great scientist and human being

ML introduction

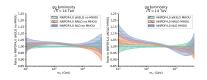
Examples

Regression Generative A MadNIS

ML in phenomenology

Parton densities [NNPDF, 2002-today]

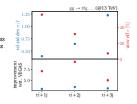
- · pdfs without functional bias and full uncertainties
- · precision and calibrated uncertainties
- \rightarrow Drivers of ML-theory



Ultra-fast event generators [Sherpa, MadNIS, MLHad]

- · event generation modular
- · improve and replace by ML-modules
- \rightarrow Beat state of the art

$u\bar{d} \rightarrow W^+W^+W^-$		
$uc \to W^+W^+ ds$		
$gg \to W^+ d \bar{u}$	$gg \to W^+ d\bar{u}g$	$gg \rightarrow W^+ d\bar{u}g$
$gg \to t\bar{t} + g$	$gg \to t \bar{t} + gg$	$gg \rightarrow t\bar{t} + ggg$
	$\label{eq:constraint} \begin{array}{l} uc \rightarrow W^+W^+ ds \\ gg \rightarrow W^+ d\tilde{u} \end{array}$	$\label{eq:wight} \begin{array}{ll} uc \rightarrow W^+W^+ds \\ gg \rightarrow W^+d\bar{u} & gg \rightarrow W^+d\bar{u}g \end{array}$



The Path to N³LO Parton Distributions

The NNPDF Collaboration: Richard D. Ball¹, Andres Baroutie², Alssandro Canida^{2,3}, Notano Carazza², Jana Cras-Martinez², Luigi Dui Dobbé¹, Shefma Fores³, Tenzano Gian², Shet Beherma^{2,4,4}, Zahari Konobe^{1,4}, Nerobi Larouti², Ganzom Magu^{4,5}, Enzande R. Norers³, Tarjona R. Rebennardge^{2,4}, Jana Roy^{1,4}, Christopher Kenders³, Rus Spougna, and Maria Ukal⁴

¹⁴ Ib gen track for Theorem Strength of Bandwick ¹⁴ Theorem Strength of Theorem Strength of Bandwick ¹⁴ Theorem Strength of Theorem Strength of Theorem Strength ¹⁴ Theorem Strength of Theorem Strength of Theorem Strength ¹⁴ Strength of Theorem Strength of Theorem Strength of Theorem Strength ¹⁴ Strength of Theorem Strength of Theorem Strength of Theorem Strength ¹⁴ Strength of Theorem Strength of Theorem Strength of Theorem Strength ¹⁴ Strength of Theorem Str

> This paper is dedicated to the memory of Stefano Catani Grand Master of QCD, grant scientist and human being

The MADNIS Reloaded

Theo Heimel¹, Nathan Haetsch¹, Jubio Maltoni^{2,3}, Olivier Mattelaer², Tilman Plehn¹, and Ramon Winterhalder²

Institut für Theoretische Physik, Universität Heidelberg, Germany
 CP3, Universit
 é atholique de Louvain, Louvain-la-Neuve, Belgiam
 Départimento di Fisica e Astronomia, Universit
 á Belogna, Italy

lecember 17, 2024

Abstract

In parault of precise and fast theory predictions for the LHC, we present an implementation of the MAANES method in the MAAGAAPH event generator. A series of improvements in MAANES further enhances in efficiency and pased. We validate this implementation for realistic partoeic processes and find significant gains from using modern machine learning in severi generators.

ML introduction

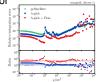
Examples

- Regression Generative A
- Maunio
- Unfolding

ML in theory

Optimizing integration paths [invertible networks]

- · find optimal integration paths
- · learn variable transformation
- \rightarrow Theory-integrator



SciPost Phys. 12, 129 (2022)

Targeting multi-loop integrals with neural networks

Ramon Winterhalder^{1,2,3}, Vitaly Magerya⁴, Emilio Villa⁴, Stephen R Jones³, Matthias Kerner^{4,6}, Anja Butter^{1,2}, Gudrun Heinrich^{2,4} and Tilman Plehn^{1,2}

I Instine für Theoretische Physik, Universität Heidelberg, Gernarge 1983A - Heidelberg Buchnels Scatzergl, Patrarschap, Heidelberg Utiverreit, Karleneke Institute of Fechnology (JAT), Gernarg 3 Certes for Gernandegs, Patrick Physics and Phenomenology (2021), Université ratholique de Leoronia, Belgium Huntur für Theoretische Physik, Karlsneche national für Fechnologis, Gernarge 3 Institute für Bernardshargels, Gernarge Statute für Bernardsonge, Gernarge

Abstract

Numerical evaluations of Pepnnan integrals often precede via a defermation of the integration context into the complex plane. While valid context are easy to construct, the numerical precision for a multi-loop integral can depend critically on the obsencentors: We prevent methods to optimize this context using a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision.

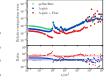
Examples

Regression Generative A MadNIS

ML in theory

Optimizing integration paths [invertible networks]

- · find optimal integration paths
- · learn variable transformation
- \rightarrow Theory-integrator



Targeting multi-loop integrals with neural networks

Ramon Winterhalder^{1,2,3}, Vitaly Magerya⁴, Emilio Villa⁴, Stephen R. Jones³, Matthias Kerner^{6,6}, Anja Butter^{1,2}, Gudrun Heinrich^{2,4} and Tilman Plehn^{1,2}

1 Instine für Thorentische Physik, Urdwenkit Heidelberg, Gernary 1983A: Heidelberg Euchenko Steangel, Detrancha, Heidelberg Usiwnity, Kachrache Institute ef Technology (MIT), Gernary 3 Certes for Gernandigs, Pariciel Physics and Phonemonelogy (703), Université ratholisque de Leonxin, Hogham Huntur für Theresenko-Physik, Kathenen Institut für Technologis, Gernary 3 Institute für Therescherhoppikk, Kachenen Institute für Technologis, Gernary 5 Institute für Therescherhoppikk, Kachenen Institute für Technologis, Gernary

Abstract

Numerical evaluations of Feynman integrals often precede via a deformation of the integration contacts into the complex phase. While valid contant are assay to construct, the numerical precision for a multi-loop integral can depend critically on the closent contoux: the present methods to optimize this control ung a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision.

Navigating string landscape [reinforcement learning]

- · searching for viable vacua
- · high dimensions, unknown global structure
- \rightarrow Model space sampling

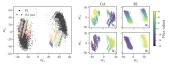


Figure 1: Left: Cluster structure in dimensionally reduced flux samples for RL and 25 GA runs (PCA on all samples of GA and RL). The colors indicate individual GA runs. Right: Dependence on flux (input) values (N₃ and N₅ respectively) in relation to principal components for a PCA fit of the individual output of GA and RL.

Probing the Structure of String Theory Vacua with Genetic Algorithms and Reinforcement Learning

Alex Cole University of Amsterdam a.e. cole@uva.nl	Sven Krippendorf Amold Sommerfeld Center for Theoretical Physics LMU Manich sven.krippendorf@physik.uni-menchen.de	
Andreas Schachner Centre for Mathematical Scin University of Cambridge au26738can.ac.uk	Gary Shin Laboratiy of Wisconsin-Madison shiu@physics.wisc.edu	

Abstract

Identifying uting theory wass with desired physical puppeds at low energies mappins sawshing freephysical advances and a source conclusion branches to as the string landscape. We highlight that this sourch problem is amenable to indeferential lansung and genetic algorithms. The de context of the vacues, we are able to reveal novel hanness (suggesting previously midstaffed symmetries) in the string theory solutions measured for generic such as the string topological topologic and to is believed by these features solutions (see the string theory solutions measured for space), we combine results from both search methods, which we sages in integrative for generic sampling bias.

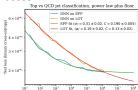
Examples

- Regression Generative
- MadNIS
- Unfolding

Theory for ML

Scaling laws for classification networks [statistical learning]

- · networks are complex systems
- · training as statistical process
- → Now solving problems



Training set size

SCALING LAWS IN JET CLASSIFICATION

Johna Batson' Independent Researcher Oskland, CA 94587 Joshua, batsontgaall.con Yonatan Kahn Comer for Artificial Insulfigence Innovation and Department of Physics University of Elinois Ubana-Champaign Uchana, E. 61801 y Tababet Li Linasia...edu

ABSTRACT

We determine the energines or calling larse is the herbitrarity tay versus (CD) is clustification by the structure of the the structure of the the structure of the structure of

Collective variables of neural networks: empirical time evolution and scaling laws

Samual Tovey Institute for Companional Physics University of Samgan Samgan, Germany, 70569 atoresythicp.umi-atuttgart.de

Svus Krippendorf Cavendish Laboratory and DAMITP University of Cambridge Cambridge, United Kingdom, CB3 0004 alk200can. sc. sik

Michael Spannewsky Institute for Particle Physics Phenomenology In Department of Physics Darham University Durham, DHI 31L, U.K.

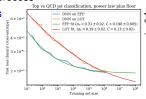
Konstantin Nikolaou Institute for Computational Physics University of Stattgart Stattgart, Germany, 70559

Christian Holm tinte for Computational Phy University of Stattgart Stattgart, Germany, 70569

Theory for ML

Scaling laws for classification networks [statistical learning]

- networks are complex systems
- · training as statistical process
- \rightarrow Now solving problems



SCALING LAWS IN JET CLASSIFICATION

nity of Elinois Urbana-Champeign Urbana, IL 61801

Collective variables of neural networks: empirical time evolution and scaling laws

Coundab Laboratory and DAMTE Institute for Computational Physic University of Stattgart Stattgart, Germany, 70569 Carendon Laboratory and DOMTP University of Cambridge Combridge United Kinedom (CB3 (BK)) stovev@icp.umi-stuttgagt.de Michael Spannewsk

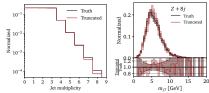
Durham, DH1 3LE, U.S.

alk206can.ac.uk Konstantin Nikolaou University of Statgart Statgart, Germany, 70569

tinue for Computational Phy University of Stattgart Stattgart, Germany, 70569

Extrapolating transformers

- train on QCD jet radiation
- · learn to generate universal patterns
- \rightarrow Extrapolation at work



Submission

Extrapolating Jet Radiation with Autoregressive Transformers

Ania Butter^{1,2}, Francois Charton³, Javier Mariño Villadamigo¹ Ayodele Ore1, Tilman Plehn1,4, and Jonas Spinner1

1 Institut für Theoretische Physik, Universität Heidelberg, Germany 2 LPNHE. Sorbonne Université. Université Paris Cité. CNRS/IN2P3. Paris. France 3 Meta FAIR, CERMICS - Ecole des Ponts 4 Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Germany

December 17, 2024

Abstract

Generative networks are an exciting tool for fast LHC event generation. Usually, they are used to generate configurations with a fixed number of narticles. Autoregressive transformers allow us to generate events with variable numbers of particles, very much in line with the physics of QCD jet radiation. We show how they can learn a factorized likelihood for jet radiation and extrapolate in terms of the number of generated jets. For this extrapolation, bootstrapping training data and training with modifications of the likelihood loss can be used

Examples

- Regression Generative A
- MadNIS
- Unfolding

Network training

Encoding a transtition amplitude-squared

· expectation value from probability

$$\langle A \rangle(x) = \int dA A p(A|x)$$

· internal representation θ

$$\langle A \rangle = \int dA \ A \ \int d\theta \ p(A|\theta) \ p(\theta|A_{\text{train}})$$

 $\cdot \,$ training a generalization of $\theta\mbox{-} probability$

$$\int d\theta \ p(A|\theta) \ p(\theta|A_{\text{train}}) \approx \int d\theta \ p(A|\theta) \ q(\theta)$$

Examples

- Regression Generative A
- MadNIS
- Unfolding

Network training

Encoding a transtition amplitude-squared

· expectation value from probability

$$\langle A \rangle(x) = \int dA \ A \ p(A|x)$$

 \cdot internal representation θ

$$\langle A \rangle = \int dA \ A \ \int d\theta \ p(A|\theta) \ p(\theta|A_{\text{train}})$$

- · training a generalization of θ -probability $\int d\theta \ p(A|\theta) \ p(\theta|A_{\text{train}}) \approx \int d\theta \ p(A|\theta) \ q(\theta)$
- · similarity from minimal KL-divergence

$$\begin{split} D_{\mathsf{KL}}[q(\theta), p(\theta|\mathcal{A}_{\mathsf{train}})] &\equiv \int d\theta \ q(\theta) \ \log \frac{q(\theta)}{p(\theta|\mathcal{A}_{\mathsf{train}})} \\ &= \int d\theta \ q(\theta) \ \log \frac{q(\theta)p(\mathcal{A}_{\mathsf{train}})}{p(\mathcal{A}_{\mathsf{train}}|\theta)p(\theta)} \\ &= -\int d\theta \ q(\theta) \ \log p(\mathcal{A}_{\mathsf{train}}|\theta) + \int d\theta \ q(\theta) \log \frac{q(\theta)}{p(\theta)} + \cdots \end{split}$$

 \rightarrow Simplification: likelihood + regularization + dropout

$$egin{aligned} \mathcal{L}_{\mathsf{BNN}} &= -\int d heta \; q(heta) \; \log p(A_{\mathsf{train}}| heta) + D_{\mathsf{KL}}[q(heta), p(heta)] \ & o (A_ heta - A_{\mathsf{train}})^2 + c(heta - heta_0)^2 \end{aligned}$$

Examples

Regression Generative A

Unfolding

Statistics vs systematics

Network evaluation

· expectation value using trained network $q(\theta)$

· corresponding variance

$$\sigma_{\text{tot}}^{2} = \int dAd\theta \ (A - \langle A \rangle)^{2} \ p(A|\theta) \ q(\theta)$$
$$= \int d\theta \ q(\theta) \left[\overline{A^{2}}(\theta) - 2\langle A \rangle \overline{A}(\theta) + \langle A \rangle^{2} \right]$$
$$= \int d\theta \ q(\theta) \left[\overline{A^{2}}(\theta) - \overline{A}(\theta)^{2} + \left(\overline{A}(\theta) - \langle A \rangle \right)^{2} \right] \equiv \sigma_{\text{syst}}^{2} + \sigma_{\text{stat}}^{2}$$

Two uncertainties

· statistical — vanishing for perfect training: $q(\theta) \rightarrow \delta(\theta - \theta_0)$

$$\sigma_{\text{stat}}^{2} = \int d\theta \ q(\theta) \left[\overline{A}(\theta) - \langle A \rangle \right]^{2} = \left[\overline{A}(\theta_{0}) - \langle A \rangle \right]^{2}$$

 \cdot systematic — vanishing for perfect data: $p(A|\theta) \rightarrow \delta(A - A_0)$

$$\sigma_{\text{syst}}^{2} = \int d\theta \ q(\theta) \left[\overline{A^{2}}(\theta) - \overline{A}(\theta)^{2} \right]$$

Generative

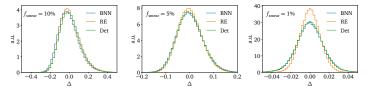
- MadNIS
- Unfolding

Amplitude regression

Loop amplitude $gg ightarrow \gamma \gamma g(g)$ [Bahl, Elmer, Favaro, Haussmann, TP, Winterhalder]

- · regression of exact scalar over phase space [Aylett-Bullock, Badger, Moodie]
- · accuracy control uncertainties
- · example systematics: artificial noise
- · accuracy over phase space

$$\Delta(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{A_{\rm true}(x)}$$



- Generative
- MadNIS
- Unfolding

Amplitude regression

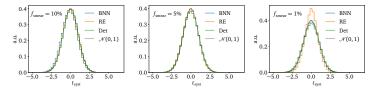
Loop amplitude $gg ightarrow \gamma \gamma g(g)$ [Bahl, Elmer, Favaro, Haussmann, TP, Winterhalder]

- · regression of exact scalar over phase space [Aylett-Bullock, Badger, Moodie]
- · accuracy control uncertainties
- · example systematics: artificial noise
- · accuracy over phase space

$$\Delta(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{A_{\rm true}(x)}$$

· systematic pull over phase space

$$t(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{\sigma(x)}$$



- MadNIS
- Unfolding

Amplitude regression

Loop amplitude $gg ightarrow \gamma \gamma g(g)$ [Bahl, Elmer, Favaro, Haussmann, TP, Winterhalder]

- · regression of exact scalar over phase space [Aylett-Bullock, Badger, Moodie]
- · accuracy control uncertainties
- · example systematics: artificial noise
- · accuracy over phase space

$$\Delta(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{A_{\rm true}(x)}$$

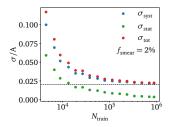
· systematic pull over phase space

$$t(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{\sigma(x)}$$

 \rightarrow calibrated uncertainty

From finite to zero noise

· assume statistics not the problem



- MadNIS
- Unfolding

Amplitude regression

Loop amplitude $gg ightarrow \gamma \gamma g(g)$ [Bahl, Elmer, Favaro, Haussmann, TP, Winterhalder]

- · regression of exact scalar over phase space [Aylett-Bullock, Badger, Moodie]
- \cdot accuracy control uncertainties
- · example systematics: artificial noise
- · accuracy over phase space

$$\Delta(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{A_{\rm true}(x)}$$

· systematic pull over phase space

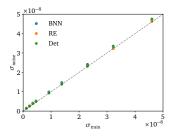
$$t(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{\sigma(x)}$$

 \rightarrow calibrated uncertainty

From finite to zero noise

- · assume statistics not the problem
- · extrapolate to zero noise

$$\sigma_{\rm noise}^2 = \sigma_{\rm syst}^2 - \sigma_{\rm syst,0}^2 \approx \sigma_{\rm train}$$



Amplitude regression

Loop amplitude $gg ightarrow \gamma \gamma g(g)$ [Bahl, Elmer, Favaro, Haussmann, TP, Winterhalder]

- · regression of exact scalar over phase space [Aylett-Bullock, Badger, Moodie]
- · accuracy control uncertainties
- · example systematics: artificial noise
- · accuracy over phase space

$$\Delta(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{A_{\rm true}(x)}$$

systematic pull over phase space

$$t(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{\sigma(x)}$$

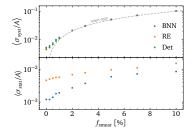
 \rightarrow calibrated uncertainty

From finite to zero noise

- · assume statistics not the problem
- · extrapolate to zero noise

$$\sigma_{\rm noise}^2 = \sigma_{\rm syst}^2 - \sigma_{\rm syst,0}^2 \approx \sigma_{\rm train}$$

- · systematics plateau $\sigma/A \sim 0.4\%$
- \rightarrow Limiting factor?



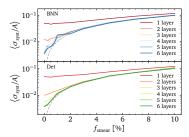
Generative A

- MadNIS
- Unfolding

Improved accuracy

Network expressivity

- · large range of amplitude values
- · resolution of (collinear) peaks
- · 3 hidden layers needed
- · 6 hidden layers challenge for BNN
- · activation function, machine precision...

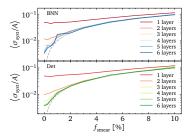


- MadNIS
- Unfolding

Improved accuracy

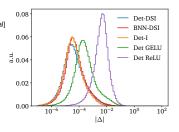
Network expressivity

- · large range of amplitude values
- · resolution of (collinear) peaks
- · 3 hidden layers needed
- · 6 hidden layers challenge for BNN
- · activation function, machine precision...



Data pre-processing

- · amplitude from invariants
- · learn Minkowski metric?
- Deep-sets-invariant architecture [Heinrich etal] L-GATr transformer

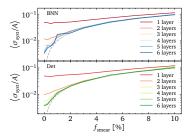


- MadNIS
- Unfolding

Improved accuracy

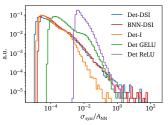
Network expressivity

- · large range of amplitude values
- · resolution of (collinear) peaks
- · 3 hidden layers needed
- · 6 hidden layers challenge for BNN
- · activation function, machine precision...



Data pre-processing

- · amplitude from invariants
- · learn Minkowski metric?
- Deep-sets-invariant architecture [Heinrich etal] L-GATr transformer
- $\cdot \,$ uncertainty scaling with accuracy



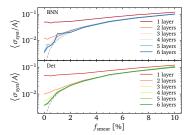
Generative

- MadNIS
- Unfolding

Improved accuracy

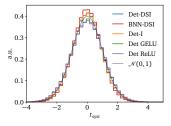
Network expressivity

- · large range of amplitude values
- · resolution of (collinear) peaks
- · 3 hidden layers needed
- · 6 hidden layers challenge for BNN
- · activation function, machine precision...



Data pre-processing

- · amplitude from invariants
- · learn Minkowski metric?
- Deep-sets-invariant architecture [Heinrich etal] L-GATr transformer
- · uncertainty scaling with accuracy
- \rightarrow pull showing calibration

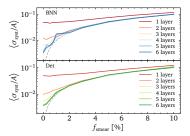


- MadNIS
- Unfolding

Improved accuracy

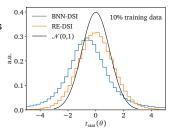
Network expressivity

- · large range of amplitude values
- · resolution of (collinear) peaks
- · 3 hidden layers needed
- · 6 hidden layers challenge for BNN
- · activation function, machine precision...



Statistical uncertainties

- heteroscedastic loss: systematics
- · BNN & repulsive ensembles: also statistics
- $\cdot \,$ only well-defined for $\sigma_{\rm stat} \ll \sigma_{\rm syst}$
- · calibrated statistics?

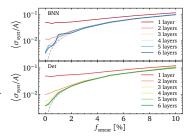


- MadNIS
- Unfolding

Improved accuracy

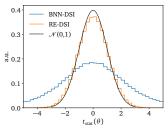
Network expressivity

- · large range of amplitude values
- · resolution of (collinear) peaks
- · 3 hidden layers needed
- · 6 hidden layers challenge for BNN
- · activation function, machine precision...



Statistical uncertainties

- · heteroscedastic loss: systematics
- · BNN & repulsive ensembles: also statistics
- $\cdot \,$ only well-defined for $\sigma_{\rm stat} \ll \sigma_{\rm syst}$
- · calibrated statistics?
- $\rightarrow\,$ Work to do for BNN and REs...



- MadNIS
- Unfolding

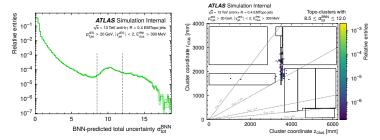
ATLAS calibration

Energy calibration with uncertainties [ATLAS + Vogel, 2412.04370]

- · interpretable calorimeter phase space x
- · learned calibration function

$$\mathcal{R}^{\mathsf{BNN}}(x) \pm \Delta \mathcal{R}^{\mathsf{BNN}}(x) pprox rac{E^{\mathsf{obs}}(x)}{E^{\mathsf{dep}}(x)}$$

- · uncertainties: noise in data ...
- \rightarrow Understand (simulated) detector



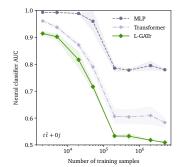
Regression

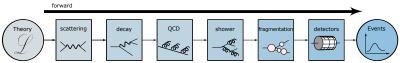
- Generative AI
- MadNIS
- Unfolding

Generative AI

Simulations, MadNIS, calorimeters,...

- \cdot learn phase space density fast sampling Gaussian \rightarrow phase space
- \cdot Variational Autoencoder \rightarrow low-dimensional physics
- \cdot Generative Adversarial Network \rightarrow generator trained by classifier
- · JetGPT, ViT
 - \rightarrow non-local structures
- \cdot Equivariant L-GATr \rightarrow Lorentz symmetry for efficiency
- → Equivariant transformer CFM...





Regression

Generative AI

MadNIS

Unfolding

Generative AI with uncertainties

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP]

- · network weight distributions for density
- sampling phase space events with error bars on weights
- · learned density & uncertainty reflecting network learning?
- \rightarrow Generative networks like fitted densities

- Madivio
- Unfolding

Generative AI with uncertainties

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP]

- · network weight distributions for density
- sampling phase space events with error bars on weights
- · learned density & uncertainty reflecting network learning?
- \rightarrow Generative networks like fitted densities

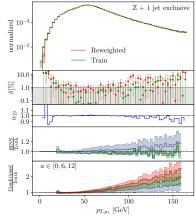
Z+jets events [Heimel, Vent...]

- · per-cent accuracy on density
- · statistical uncertainty from BNN
- · systematics in training data

$$w = 1 + a \left(\frac{p_{T,j_1} - 15 \text{ GeV}}{100 \text{ GeV}}\right)^2$$

sampling a conditionally

 $\rightarrow\,$ Precision and uncertainty control



MadNIS

Unfolding

Controlling generative AI

Compare generated with training data

- · regression accuracy $\Delta = (A_{data} A_{\theta})/A_{data}$
- harder for generation, unsupervised density classify training vs generated events D(x)learned density ratio [Neyman-Pearson]

$$w(x_i) = \frac{D(x_i)}{1 - D(x_i)} = \frac{p_{\text{data}}(x_i)}{p_{\text{model}}(x_i)}$$

 $\rightarrow\,$ Test ratio over phase space

Transforming Particle Physics Tilman Plehn ML introduction Examples Regression Generative Al MadNIS

Controlling generative AI

Compare generated with training data

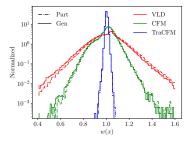
- $\cdot \ \mbox{regression} \ \ \Delta = (\mbox{\it A}_{data} \mbox{\it A}_{\theta})/\mbox{\it A}_{data}$
- harder for generation, unsupervised density classify training vs generated events D(x) learned density ratio [Neyman-Pearson]

$$w(x_i) = \frac{D(x_i)}{1 - D(x_i)} = \frac{p_{\text{data}}(x_i)}{p_{\text{model}}(x_i)}$$

 $\rightarrow\,$ Test ratio over phase space

Progress in NN-generators

- · any generative AI task
- · compare different architectures
- $\cdot\,$ accuracy from width of weight distribution
- · tails indicating failure mode
- \rightarrow Systematic performance test



Regression

Generative Al

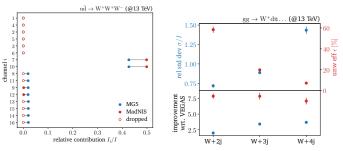
MadNIS

Unfolding

Neural importance sampling

ML-channel weights & ML-Vegas

- · simple goal 1: learn channel weights [regression]
- · simple goal 2: learn Vegas mapping [invertible generatation]
- · technically: online + buffered training
- · minimize integration variance
- $\rightarrow\,$ Beat MadGraph and its team...



Examples

- Regressio
- Generative
- MadNIS
- Unfolding

Transforming LHC physics

Number of searches

- $\cdot \,$ optimal inference: signal and background simulations
- · CPU-limitation for many signals?

Optimal analyses

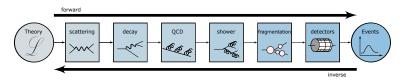
- · theory limiting many analyses
- · include predictions not in event generators

Public LHC data

- common lore: LHC data too complicated for amateurs
- · in truth:

hard scattering and decay simulations public BSM physics not in hadronization and detector

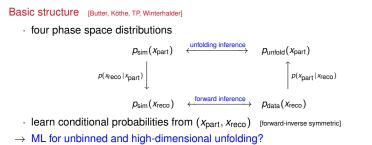
 \rightarrow Unfold to suitable level



Transforming Particle Physics Tilman Plehn ML introduction Examples Regression Generative AI MadNIS

Unfolding

ML-Unfolding



Transforming Particle Physics Tilman Plehn ML introduction Examples Regression Generative AI MadNIS

ML-Unfolding

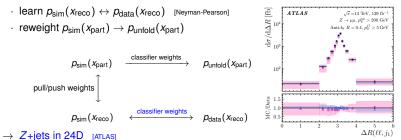
Basic structure [Butter, Köthe, TP, Winterhalder]

· four phase space distributions

 $\begin{array}{ccc} \rho_{\rm sim}(x_{\rm part}) & \xleftarrow{unfolding inference} & \rho_{\rm unfold}(x_{\rm part}) \\ \\ p(x_{\rm reco} \mid x_{\rm part}) & & & & & & \\ p(x_{\rm reco} \mid x_{\rm reco}) & & & & & \\ p_{\rm sim}(x_{\rm reco}) & \xleftarrow{forward inference} & \rho_{\rm data}(x_{\rm reco}) \end{array}$

- · learn conditional probabilities from (xpart, xreco) [forward-inverse symmetric]
- \rightarrow ML for unbinned and high-dimensional unfolding?

OmniFold [Andreassen, Komiske, Metodiev, Nachman, Thaler + ATLAS]



Transforming Particle Physics Unfold

ML introduction Examples Regression Generative AI MadNIS

Unfolding

Unfolding top decays

- · first measure m_t in unfolded data then unfold full kinematics
- · model dependence: simulation m_s vs data m_d

Particle Physics Unfolding top decays

- Examples Regression Generative
- Unfolding

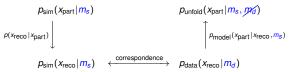
A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz] • first measure m_t in unfolded data then unfold full kinematics • complete training bias $m_d \rightarrow m_s$ [too bad to reweight] $p_{sim}(x_{part} | m_s)$ $p_{unfold}(x_{part} | m_s, p_d)$ $p(x_{reco} | x_{part})$ $p(x_{reco} | x_{part})$

 $p_{\text{sim}}(x_{\text{reco}}|m_s) \xleftarrow{\text{correspondence}} p_{\text{data}}(x_{\text{reco}}|m_d)$

- 1 weaken bias by training on m_s -range
- 2 strengthen data by including batch-wise $m_d \sim M_{jjj} \in x_{
 m reco}$

Unfolding top decays

- first measure m_t in unfolded data then unfold full kinematics
- · complete training bias $m_d \rightarrow m_s$ [too bad to reweight]

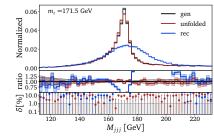


1 weaken bias by training on m_s-range

2 strengthen data by including batch-wise $m_d \sim M_{ijj} \in x_{reco}$

Preliminary unfolding results [TraCFM]

4D for calibrated mass measurement

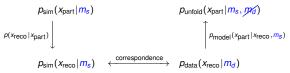


MadNIS

Unfolding

Unfolding top decays

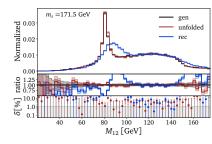
- first measure *m_t* in unfolded data then unfold full kinematics
- $\cdot \,\, {
 m complete training bias} \,\, m_d
 ightarrow m_s \,\,\,$ [too bad to reweight]



- 1 weaken bias by training on ms-range
- 2 strengthen data by including batch-wise $m_d \sim M_{jjj} \in x_{
 m reco}$

Preliminary unfolding results [TraCFM]

- · 4D for calibrated mass measurement
- · 12D published data
- → CMS data next



- Examples
- Regression
- Generative A
- MadNIS
- Unfolding

ML for LHC Theory

Developing ML for the best science

- 1 just another numerical tool for a numerical field
- 2 completely transformative new language
- $\cdot\,$ driven by money from data science and medical research
- · physics should be leading scientific AI
- · 1000 Einsteins...
 - ...improving established tools
 - ...developing new tools for established tasks
 - ...transforming through new ideas
- $\rightarrow\,$ You can be the golden generation!

Modern Machine Learning for LHC Physicists

Tilman Plehn^a^{*}, Anja Butter^{a,b}, Barry Dillon^a, Theo Heimel^a, Claudius Krause^c, and Ramon Winterhalder^d

^a Institut f
ür Theoretische Physik, Universit
üt Heidelberg, Germany ^b LPNHE, Sorbonne Universit
üt, Universit
üt Paris Cit
üt, CNRS/IN2P3, Paris, France ^c HEPHY, Austrian Academy of Sciences. Vienna, Austria ^d CP3, Universit
üt eatholique de Louvain, Louvain-La-Neuve, Belgium

March 19, 2024

Abstract

Moders mediate learning is transforming particle physics facts, bullying in way into our numerical tool box. For young researchers it is result too on you poil foils docubents, which means applying cutting-edge enclosed and holds to held remains the strain of the strain processing and the strain of the strain of the strain of the strain processing remains and for machine learning to exclusion applications. They start with an LHC -regular material strain module to the strain processing applications. They start with an LHC -regular matterial processing and the module of the strain processing applications. They start with an LHC -regular matterial processing and the probability of the strain processing applications. The strain of the strain processing and the strain processing applications and uncertainty as and applications and an exclusion of the last for years. It is applied to the strain processing application of the last for years.

:2211.01421v2 [hep-ph] 17 Mar 2024