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Abstract in deutscher Übersetzung

Die Polarisierung von W - und Z-Bosonen hängt fundamental mit dem Prozess der elek-
troschwachen Symmetriebrechung zusammen: Im Grenzfall von hohen Energien entspre-
chen longitudinale Vektorbosonen gerade den Goldstone-Bosonen. Eine Messung der
Polarisierung kann deshalb dazu beitragen, die Struktur der elektroschwachen Physik zu
verstehen. Bisher sind die longitudinalen und transversalen Moden vor allem im Kontext
von Eichboson-Streuung bei hohen Energien betrachtet worden, allerdings leiden solche
Messungen an geringen Wirkungsquerschnitten und hohen systematischen Unsicherhei-
ten.
In dieser Arbeit verfolgen wir zwei alternative Ansätze. Zum einen verwenden wir die

Verteilung von Zerfallswinkeln, um die Polarisierung der Eichbosonen im Endzustand
zu messen. Zum anderen entwickeln wir eine neue Strategie, um die Polarisierung der
Eichbosonen im Anfangszustand zu messen. Als Observablen verwenden wir dabei die
kinematischen Eigenschaften der Tagging-Jets an der Higgs-Resonanz. Beide Methoden
ermöglichen eine Überprüfung des Higgs-Eich-Sektors, und vor allem letztere Strategie
kann schon in den nächsten Jahren am LHC realisiert werden. Basierend auf einer Sta-
tistik von 300 fb−1 bei 13 TeV können damit die Kopplungen der longitudinalen und
transversalen Eichbosonen an das Higgs-Boson separat mit einer Genauigkeit von unge-
fähr 20% gemessen werden.
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Abstract

The polarisation of W and Z bosons is intimately linked to the nature of electroweak
symmetry breaking: in the limit of high energies, their longitudinal modes correspond
just to the Goldstone bosons. This distinct physical origin means that a polarisation
measurement can help us understand the structure of electroweak physics. Such a separa-
tion of longitudinal and transverse modes is well established in studies of the high-energy
behaviour of gauge boson scattering. However, this classical approach suffers from low
rates and large systematic uncertainties.
In this thesis we follow two alternative strategies. Angular distributions in gauge boson

decays are used to measure the polarisation of the final gauge boson pair. At the same
time, we develop a novel approach that probes the polarisation of the initial gauge boson
pair in the kinematics of the tagging jets. Instead of the high-energy regime, we focus on
the Higgs resonance. We find that both measurements are sensitive to the Higgs-gauge
sector, and that especially the latter approach is feasible during the upcoming LHC run.
After 300 fb−1 of data at 13 TeV, we will be able to separately test the longitudinal and
transverse gauge boson couplings to the Higgs boson at the 20% level.
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1. Introduction

Electroweak symmetry breaking is one of the core ingredients of modern particle physics,
offering an elegant way to reconcile local gauge invariance with the observed massive
W± and Z bosons. Its most straightforward realisation is the Higgs mechanism in
the Standard Model, where the electroweak SU(2) × U(1) symmetry is spontaneously
broken by a fundamental scalar doublet with non-zero vacuum expectation value. With
the discovery of a scalar Higgs boson [1, 2], the Standard Model is finally complete.
At the same time, the Standard Model leaves many experimental and theoretical

questions unanswered. It does not provide an explanation for the values of its many
parameters or its intricate gauge structure, nor does it solve the hierarchy problem: why
is the electroweak scale so small compared to the Planck scale in the presence of large
quantum corrections? Different theories have been proposed to tackle these problems,
including models where the Higgs boson is a composite object due to some higher-
scale symmetry [3–6]. Understanding whether the Standard Model with its fundamental
Higgs boson describes our world all the way up to a grand unification scale, or whether
the structure of electroweak symmetry breaking is more complex, is one of the most
important tasks for the experiments at the Large Hadron Collider (LHC) in the next
years.
In this thesis we analyse how measurements of the polarisation of the massive gauge

bosons W± and Z can contribute to these questions. There is a fundamental physical
difference between the longitudinal and transverse modes: the Goldstone boson equival-
ence theorem [7–9] links the longitudinal states to the Goldstone bosons of electroweak
symmetry breaking, while the transverse modes correspond to the original electroweak
gauge bosons. This separation is only exact in the limit of large momenta. But even at
finite energies, the polarisation of massive gauge bosons is closely linked to the structure
of electroweak symmetry breaking.
The classical approach to the Higgs-gauge sector is longitudinal gauge boson scattering

at high energies. Any deviation from the Standard Model Higgs-gauge coupling leads
to a non-cancellation between gauge amplitudes and Higgs amplitudes, visible as an
increase of the scattering rate at large energies [8, 10–12]. Much attention has been
spent on the development of analysis techniques to measure such a cross-section increase
at the LHC [13–23]. However, the observed Higgs boson at least dampens this effect
significantly, further reducing the already small rates of such signatures. It was pointed
out in [24] that these measurements also suffer from large scale uncertainties that can
reach O (100%). Such an analysis at the LHC therefore has to be considered challenging
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1. Introduction

at the very least.
These systematic uncertainties can be avoided by measuring the relative fractions of

longitudinal and transverse gauge bosons instead of absolute rates. One can choose
to probe either the initial or the final pair of gauge bosons in V V → V V scattering,
where V = W±, Z. The authors of [24] pioneered one such strategy by fitting angular
distributions to the gauge boson decay products in the semileptonicWW channel. These
observables are a model-independent probe of the polarisation of the final gauge boson
pair. As a first part of this thesis, we extend this approach to other gauge boson channels
and briefly discuss whether it can be realised in the coming years of LHC operation.
The main aim of this thesis, however, is the development of an entirely different

approach to polarised gauge boson scattering. Instead of the high-energy limit, we
focus on the phase-space region around the Higgs resonance, which is clearly sensitive to
the Higgs-gauge coupling structure and gives larger rates than the high-energy regime.
Instead of the decay products of the final pair of gauge bosons, we analyse the kinematics
of the tagging jets, which are sensitive to the polarisation of the initial pair of gauge
bosons. Our approach is motivated by the effective W approximation [25–27], which
predicts an analytical relation between the transverse momenta of the tagging jets and
the polarisation of the initial gauge bosons. We begin with an evaluation of its validity
and then leave this approximation behind and analyse the full process. Signatures in
different observables are discussed, including the transverse jet momenta and angular
correlations between the two jets. We calculate their significance and compare them to
alternative approaches. Our findings are submitted for publication [28].

This thesis begins with the theoretical and phenomenological foundations in chapter 2.
After a brief recapitulation of the mechanism of electroweak symmetry breaking in and
beyond the Standard Model, we discuss the role of longitudinal and transverse gauge
bosons and analyse the structure of gauge boson scattering. The chapter concludes
with an overview of possible approaches to the Higgs-gauge sector and a brief review
of existing studies. In chapter 3 we discuss the measurement of angular distributions
in the decays of final-state gauge bosons. Our strategy to measure the polarisation of
initial-state gauge bosons in the kinematics of the tagging jets at the Higgs resonance is
the topic of chapter 4. We give our conclusions in chapter 5.
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2. The physics of massive gauge bosons

In this chapter we introduce the theoretical and phenomenological framework for the
analysis strategies of this thesis. The foundations are laid in section 2.1. We recapitulate
the concept of electroweak symmetry breaking and the Standard Model as well as some
scenarios beyond the Standard Model. We then briefly review the current experimental
status and outline the open questions we try to answer. In section 2.2 we present the
tool we focus on during this thesis: the polarisation of W and Z bosons. In particular,
we explain why their longitudinal modes play a special role in particle physics and
formulate the Goldstone boson equivalence theorem. Finally, in section 2.3 we turn
to our laboratory, gauge boson scattering processes. From a theoretical point of view,
these amplitudes have an interesting high-energy behaviour, where deviations from the
Standard Model can lead to a violation of perturbative S-matrix unitarity. We also
approach gauge boson scattering from a phenomenological perspective and discuss the
different strategies it provides to measure the Higgs-gauge sector.

2.1. The bigger picture

2.1.1. Electroweak symmetry breaking

Quantum field theories that are invariant under local gauge symmetries are one of the
most successful ideas in modern physics. This concept predicts spin-1 gauge bosons,
which are necessarily massless. While the photon and the gluon fit in this picture easily,
the massive W and Z bosons do not. However, their masses can be accommodated in a
fully gauge-invariant theory by means of spontaneous symmetry breaking. We will now
give a brief review of this concept, for a detailed review see for instance [29].
It is worth stressing that the Higgs mechanism in the Standard Model is not the

only realisation of electroweak symmetry breaking. We will now discuss electroweak
symmetry breaking in rather general terms, i. e. we will not assume anything about the
nature of the field Σ that breaks the SU(2)L×U(1)Y gauge group. The Standard Model
on the other hand explicitly explains this object in terms of a fundamental scalar doublet
φ. This will be the topic of the next section.
Nearly all observed particles and interactions can be described by a quantum field

theory invariant under a local SU(3)C × SU(2)L × U(1)Y gauge symmetry. The corres-
ponding gauge bosons are Giµ, W i

µ, and Bµ, the coupling constants gS , g, and g′. The
fermions f of this theory and the representations of the gauge group they transform

3



2. The physics of massive gauge bosons

Fields Representation
SU(3)C SU(2)L U(1)Y

LH quarks
(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

3 2 1
6

RH u-type quarks uR cR tR 3 1 2
3

RH d-type quarks dR sR bR 3 1 −1
3

LH leptons
(
νe
e−

)
L

(
νµ
µ−

)
L

(
ντ
τ−

)
L

1 2 −1
2

RH leptons e−R µ−R τ−R 1 1 −1

Table 2.1.: Fermionic fields in the Standard Model and the representations of the gauge
group they transform under.

under are given in table 2.1. The kinetic terms in the Lagrangian read

Lkin = −1
4G

i
µνG

i µν − 1
4W

i
µνW

i µν − 1
4BµνB

µν +
∑

fermions
f̄ i /Df, (2.1)

with field strength tensors

Giµν = ∂µG
i
ν − ∂νGiµ + gsf

ijkGjµG
k
ν , (2.2)

W i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν , (2.3)

Bµν = ∂µBν − ∂νBµ . (2.4)

Here f ijk and εijk are the structure constants of SU(3)C and SU(2)L, respectively. The
covariant derivatives Dµ are chosen according to the gauge representations given in
table 2.1.
Under an SU(2)L transformation, the left-handed (LH) fermion fields transform as

fL(x)→ exp
(

iαi(x)τi2

)
fL(x) (2.5)

with Pauli matrices τi, while the right-handed (RH) fermion fields fR remain invariant.
Under U(1)Y transformations, the fermions transform as

f → exp (iβ(x)y) f , (2.6)

where y is the U(1)Y charge of the fermionic field. Note that there is a difference between
these charges for the left-handed and right-handed fields.
Plain mass terms for the gauge bosons or fermions à la 1

2m
2
WW

µWµ or f̄LmffR expli-
citly break the gauge symmetry. However, one can introduce a new field Σ and require
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2.1. The bigger picture

that it transforms as

Σ→ exp
(

iαi(x)τi2

)
Σ exp

(
−iβ(x)τ3

2

)
(2.7)

under a combined SU(2)L ×U(1)Y transformation. Then the term

LV = −v
2

4 Tr [V µVµ] (2.8)

with a constant v and Vµ = Σ(DµΣ)† is invariant under the gauge group. The same is
true for

LYukawa = −
∑

fermions
f̄mfΣf . (2.9)

Finally, one can add a potential for the Σ field:

LΣ = −µ
2v2

4 Tr
[
Σ†Σ

]
− λv4

16
(
Tr
[
Σ†Σ

])2
, (2.10)

where µ and λ are constants. Collecting all the pieces, the full theory is given by

L = Lkin + LV + LYukawa + LΣ , (2.11)

and is fully gauge invariant and renormalisable.
Now assume that the potential for Σ is chosen such that

µ2 < 0 , (2.12)

v =

√
−µ

2

λ
. (2.13)

Then the ground state or vacuum expectation value for Σ satisfies

〈Σ†(x)Σ(x)〉 = 1 . (2.14)

This condition suggests the parameterisation of this state of lowest energy as

〈Σ(x)〉 = exp
(
− i
v
wi(x)τ i

)
(2.15)

in terms of the Pauli matrices τ i and the so-called Goldstone bosons wi(x). The inter-
action between the gauge bosons and the Σ field turns into

LV ⊃ −
v2

4 Tr [V µVµ] (2.16)

= g2v2

4 W+
µ W

−µ + g2v2

8c2
W

ZµZ
µ (2.17)
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2. The physics of massive gauge bosons

with

W±µ = 1√
2

(
(W 1

µ −
1
gv
∂µw

1)± i(W 2
µ −

1
gv
∂µw

2)
)
, (2.18)

Zµ = cW (W 3
µ −

1
gv
∂µw

3)− sWBµ , (2.19)

cW = g√
g2 + g′2

, (2.20)

and

sW = g′√
g2 + g′2

. (2.21)

This reveals the mass-eigenstate bosons W± and Z with masses

mW = gv

2 , (2.22)

mZ = gv

2cW
. (2.23)

In a nutshell, the fact that the vacuum expectation value of Σ is not invariant under
the symmetry group leads to two remarkable transformations, which turn the original
gauge bosons W i, B into the mass eigenstates W±, Z given in (2.18) and (2.19):

1. Derivatives of the Goldstone fields and the original massless gauge fields are com-
bined into new, massive vector fields with three degrees of freedom each. This
‘Higgs-Kibble dinner’ (since the gauge bosons ‘eat’ the Goldstone modes) is a cru-
cial point for the physics of massive vector bosons. While these particles are usually
called ‘gauge bosons’, they are in fact a superposition of true gauge bosons and
Goldstone bosons. This is why their behaviour under gauge transformations differs
from that of ‘proper’ gauge bosons, and ultimately, why these vector bosons can
be massive.

2. These massive vector fields mix, giving rise to the charge and mass eigenstatesW±
and Z.

There are some loose ends which should be quickly summed up. The remaining parts
of W 3

µ and Bµ form the massless photon

Aµ = sWW
3
µ + cWBµ , (2.24)

the gauge boson of the unbroken U(1)Q symmetry of electromagnetism. With respect to
this remaining gauge group, the fermions carry the electromagnetic charge q = y + τ3

2 ,
where the second term should be replaced by its eigenvalue in the case of SU(2)L doublets
and zero for the singlets. Finally, the Yukawa terms (2.9) yield fermion masses, and, if
the mass terms mf are replaced by non-diagonal generation matrices, the CKM matrix.
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2.1. The bigger picture

2.1.2. The Standard Model

So far, Σ was just a field transforming in a specific way under the SU(2)L×U(1)Y gauge
transformations, and its fundamental nature was irrelevant for the generation of boson
and fermion masses. The simplest and most famous particular model of electroweak
symmetry breaking is the Higgs mechanism in the Standard Model (SM). It introduces a
complex scalar SU(2)L doublet φ, which is uncharged under SU(3)C and carries an U(1)Y
hypercharge of 1

2 . The potential of φ is a fourth-order polynomial with a minimum at
〈|φ|〉 = v/

√
2. Parameterised as fluctuations around this vacuum expectation value, the

field contains four real degrees of freedom:

φ = 1√
2

exp
(
− i
v
wiτ i

)( 0
v +H

)
(2.25)

= 1√
2

(
−w2 − iw1

v +H + iw3

)
+O(wiwj , wiH) . (2.26)

As in the general Σ model, three of them are the Goldstone fields wi, which combine with
the gauge bosons to form the massive vector bosons W± and Z according to (2.18) and
(2.19). The fourth degree of freedom in φ manifests itself as another real scalar field, the
Higgs boson H. Comparing the Standard Model to the Σ model of the previous section,
the Σ field corresponds to a complex 2 × 2 matrix, where one column is exactly φ and
the other column contains the same information:

Σ =
√

2
v

(
φ̃ φ
)

(2.27)

with φ̃ = iτ2φ
∗.

In this parameterisation, the Lagrangian takes on a much simpler form including
kinetic and potential terms for the φ field:1

LSM =− 1
4G

i
µνG

i µν − 1
4W

i
µνW

i µν − 1
4BµνB

µν

+
∑

fermions
f̄ i /Df + (Dµφ)†(Dµφ)

− µ2φ†φ− λ(φ†φ)2

−
∑

generations

√
2
v

(
mu

(
ū

d̄

)
L

φ̃ uR +md

(
ū

d̄

)
L

φdR +ml

(
ν̄e
ē−

)
L

φ eR

)
+ h. c. of some terms . (2.28)

1This is basically the expression found on numerous coffee mugs, T-shirts and post cards around CERN,
modulo a few errors in the merchandise version.
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2. The physics of massive gauge bosons

The third line of this Lagrangian is the famous Mexican-hat potential for the scalar
doublet φ.
The most distinctive feature of the Standard Model in comparison with other models

of electroweak symmetry breaking is the Higgs boson H. The potential for φ leads to a
mass

m2
H = −2µ2 = 2λv2 , (2.29)

and the fact that in φ it only appears together with v means that its couplings to both
fermions and gauge bosons are fully determined by their masses.

2.1.3. Beyond the Standard Model
At energies up to the TeV scale, the Standard Model has been extremely successful and
agrees with nearly all observations. But it does have its shortcomings, among them the
famous hierarchy problem: why is the electroweak scale so small compared to the Planck
scale despite huge quantum corrections? Also, the host of parameters of the Standard
Model and the complicated gauge structure are not very satisfying, surely there must be
some simpler theory to explain our world?
While the Higgs sector of the Standard Model might be the simplest realisation of

electroweak symmetry breaking, it is by no means the only such mechanism. Many
alternatives aim to answer the questions raised by the Standard Model. For instance,
Technicolor models [30–32] describe the symmetry-breaking object Σ not as a funda-
mental scalar, but as a quark condensate. These theories are constructed in analogy
to strong chiral symmetry breaking: when an asympotically free gauge group becomes
strongly interacting, expectation values of the type 〈ψ̄ψ〉 become non-zero, thus break-
ing the electroweak symmetry and providing masses to the W and Z bosons. Such a
generation of the weak scale by dimensional transmutation does not lead to a hierarchy
problem. The original Technicolor models do not predict the existence of a light scalar
resonance such as the Higgs boson.
Other theories of electroweak symmetry breaking predict a composite or strongly

interacting Higgs boson [3, 4]. Typically it arises from the breaking of some higher-
scale symmetry as a pseudo-Goldstone boson. This symmetry protects the weak scale
from quantum corrections and thus (at least partially) solves the hierarchy problem.
Such theories include Little Higgs [5] and Holographic Higgs models [6]. Finally, other
models describe the electroweak gauge bosons as composite particles of an emergent
gauge symmetry [33].

All in all, there are some reasons and plenty of room for new physics between the
electroweak scale and the Planck scale ΛPl ∼ 1019 GeV, where a new theory is necessary
to describe gravity as well. Any model of physics beyond the Standard Model has a
typical energy scale Λ, for instance the mass of new particles. If Λ is larger than the

8



2.1. The bigger picture

energy scale probed by current experiments (a few TeV at the LHC), this model cannot
be discovered directly, e. g. by searching for new resonances.
However, the theory might still leave an imprint in the interactions of the known

particles at accessible energies. This effect can be described in a model-independent way
in the framework of effective field theory: at energies E � Λ, any model of physics bey-
ond the Standard Model can be described by a number of higher-dimensional operators:

Leff = LSM +
∑
d>4

∑
i

cd,i
Λd−4Od,i , (2.30)

where Od,i is an operator of energy dimension d. Given a fundamental theory in the
ultraviolet regime, Wilsonian renormalisation allows the calculation of the constants cd,i.
Typically one assumes that new physics also satisfies the basic construction principles of
the Standard Model, Lorentz invariance and gauge invariance. This considerably reduces
the number of possible operators and follows naturally from the enormous success of
gauge theories in the description of our world. However it also poses a limitation: such
an approach is blind to any higher-scale physics that does not follow these assumptions.
If the coefficients cd,i are roughly of the same order of magnitude, the factor of Λ−(d−4)

means that the higher the dimension of an operator, the less significant it is at low
energies. There are no dimension-five operators relevant for the scattering of weak
bosons, so the dominant contributions beyond the Standard Model are expected to be
described by dimension-six operators. Two example operators that we will use later in
this thesis are

OW = (Dµφ)†Wµν (Dνφ) (2.31)

and

Oφ,2 = 1
2∂µ

(
φ†φ

)
∂µ
(
φ†φ

)
, (2.32)

following the conventions of [34]. For convenience, the field-strength tensors Wµν now
include the gauge constants and the SU(2)L and U(1)Y generators,

Wµν = i
2gτ

i
[
∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν

]
. (2.33)

Note that this convention is different from the definition used in section 2.1.1. The oper-
ators Oφ,2 and OW can be generated in theories with a strongly-interacting light Higgs
sector, including Little Higgs and Holographic Higgs theories [4]. Of course, there are
many more dimension-6 operators relevant to electroweak physics, which are discussed
in more detail in [34–40].
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2. The physics of massive gauge bosons

2.1.4. Experimental status
In the previous section we have found that from a theoretical point of view, alternat-
ive models of symmetry breaking can solve questions that the Standard Model leaves
unanswered. However, so far the experimental reality fails to comply with these ar-
guments and indeed provides impressive evidence in favour of the Standard Model.
In the summer of 2012, the ATLAS and CMS experiments discovered a new reson-
ance around mH = 125 GeV that remarkably resembles the Standard Model Higgs
boson [1, 2]. Its scalar nature is established [41] and a CP -even eigenstate is pre-
ferred over a CP -odd eigenstate, although admixtures are not ruled out. The coup-
lings of this particle agree with the Standard Model predictions, albeit within relat-
ively large error bars [42]. With the Higgs discovery, the particle zoo of the Standard
Model is complete. Even worse for models of new physics, the first run of the LHC
has not given us any other new resonances or, more generally, deviations from the
Standard Model. All in all, the LHC results so far are a triumph for the Standard
Model.
So where does this leave alternative models of the electroweak sector? Theories

without a light Higgs-like resonance such as the original Technicolor are ruled out by the
Higgs discovery. On the other hand, strongly interacting light Higgs sectors, including
Little Higgs and Holographic Higgs models, are still alive. The absence of any direct sig-
nal puts these theories under pressure and shifts their energy scales above the TeV scale,
which implies that they can only provide a less natural solution to the hierarchy problem
than originally hoped for. Still, it is way too early to give up on these well-motivated
models.
It is now safe to assume that the Standard Model provides a good description of

physics up to the TeV scale, and any relevant new physics resides at higher scales. This
justifies the parameterisation of new physics in terms of effective field theory as described
in the previous section. Constraints on new physics can hence be expressed as limits on
higher-dimensional operators. For the Higgs-gauge operators of interest in this thesis,
such limits typically arise from electroweak precision data or the measurement of triple
gauge interactions at the LHC [43]. For instance, the operator OW as defined in (2.31)
contributes to the ZWW and WWW vertices. Their measurement at the LHC gives
the limits

−5.4 TeV−2 <
cW
Λ2 < 9.8 TeV−2 (2.34)

at 90% CL [43]. There are no strong constraints from electroweak precision measure-
ments, because the loop contributions from this operator can be balanced by other
operators, making this operator a so-called ‘blind direction’ [44]. The operator Oφ,2 as
defined in (2.32) only affects Higgs interactions and is constrained to

−9.8 TeV−2 <
cφ,2
Λ2 < 7.5 TeV−2 (2.35)
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2.2. The polarisation of gauge bosons

at 90% CL [43].

The discovery of a Higgs-like boson and the first measurements of its properties have
provided some exciting insight into the structure of the electroweak sector, but there are
still many open questions. Understanding the nature of electroweak symmetry breaking
is one of the most important tasks for the upcoming run 2 of the LHC. The Higgs
discovery has given us the Higgs-gauge sector and thus opens new possibilities to tackle
this question. It provides an ideal laboratory for various reasons: on the one hand, the
Higgs mechanism is responsible for the W and Z masses, and the interplay of the Higgs
and the Goldstone modes inside theW and Z bosons is intimately linked to the structure
of electroweak symmetry breaking. On the other hand, the scalar nature of the Higgs
boson is responsible for the troublesome hierarchy problem. The question is not if the
Higgs-gauge sector needs further exploration – it is how to probe the Higgs-gauge sector
and thus the details of the electroweak sector at the LHC experiments.

2.2. The polarisation of gauge bosons
The handle to the electroweak sector that we will focus on during this thesis is the
polarisation of the massive vector bosons W± and Z. In this section we will define
the longitudinal and transverse modes and explain their link to electroweak symmetry
breaking and thus their relevance.

2.2.1. Counting degrees of freedom
Massless gauge bosons

First, let us consider massless gauge bosons. As an example we will use the free photon
field. Its Lagrangian is given by

LMaxwell = −1
4F

µνFµν (2.36)

with field strength Fµν = ∂µAν(x) − ∂νAµ(x). The corresponding equations of motion
are the Maxwell equations

∂µF
µν = 0 . (2.37)

The theory is invariant under a U(1) gauge symmetry acting on Aµ as

Aµ(x)→ Aµ(x)− ∂µΛ(x) . (2.38)

Now we would like to know how many degrees of freedom this photon field has. This
question is best answered in momentum space. Here the field equations read

k2Aµ(k)− kµkνAν(k) = 0. (2.39)
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2. The physics of massive gauge bosons

It is instructive to analyse the implications on the light cone and away from it separately:

• For off-shell momenta, i. e. k2 6= 0, one can use the gauge freedom to choose the
Lorenz gauge by requiring kµAµ(k) = 0. Then the Maxwell equation (2.39) implies

Aµ(k) = 0. (2.40)

In other words, by fixing the gauge outside of the light cone, the free photon field
is restricted to the light cone.

• On the light-cone, i. e. where k2 = 0, the Maxwell equations (2.39) give the four-
transversality condition

kµA
µ(k) = 0 (2.41)

without needing to fix the gauge. This result is ‘for free’ and we can still use
the gauge invariance to impose a gauge of our choice. A common choice is the
radiation gauge A0(k) = 0. This is equivalent to the three-transversality condition

kiA
i(k) = 0, (2.42)

where the index i only runs over the spatial indices.

So in this choice of gauge, the photon field only exists on the light cone, where the four
components of Aµ are restricted by two transversality conditions.2 Hence, there are two
degrees of freedom per space-time (or momentum-space) point.
These degrees of freedom are usually expressed as plane waves with constant polar-

isation vectors,

Aµ(x) = εµ exp(−ik · x) , (2.43)

where the transversality conditions read k ·ε = 0 and k ·ε = 0. For a photon propagating
in z direction, kµ = (E, 0, 0, E)µ, a commonly used basis for the polarisation vector ε
are the helicity eigenstates

εµ+ = 1√
2

(0, 1, i, 0)µ , (2.44)

εµ− = 1√
2

(0, 1,−i, 0)µ . (2.45)

Both are what we will call transversely polarised: their spatial part is orthogonal to k, as
required by (2.42). These two modes are democratic, there is no fundamental difference
between them.

2In the words of Kelogg Stelle, ‘the gauge condition shoots twice’ [45].
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Massive vector bosons

In contrast to this, consider a free massive vector boson:

LProca = −1
4F

µνFµν −
m2

2 AµA
µ . (2.46)

This Proca theory leads to the field equation

∂µF
µν −m2Aν = 0 . (2.47)

Note that this equation is not gauge invariant: the mass term breaks the U(1) symmetry
of Maxwell theory.
Again, let us count the degrees of freedom. In momentum space, the equation of

motion reads −k2Aν + kνkµA
µ −m2Aν . Multiplying this with kν yields

kµA
µ(k) = 0 , (2.48)

which is the same four-transversality condition found for massless gauge bosons. How-
ever, without a gauge symmetry there are no further requirements that can be imposed
on Aµ. So for a massive vector boson, there are three degrees of freedom per space-time
(or momentum-space) point.
For a massive boson propagating in z direction, kµ = (E, 0, 0, k3)µ with k2 = m2, a

popular basis for the polarisation vector consists of the two transverse modes

εµ+ = 1√
2

(0, 1, i, 0)µ , (2.49)

εµ− = 1√
2

(0, 1,−i, 0)µ , (2.50)

and an additional longitudinal mode

εµL = 1
m

(k3, 0, 0, E)µ . (2.51)

Again, the designations ‘transverse’ and ‘longitudinal’ refer to the scalar product of the
spatial components k and ε only. The four-transversality condition (2.48), on the other
hand, is always satisfied by on-shell vector bosons.
Clearly, there is a difference between the transverse polarisation vectors (2.49) and

(2.50) on the one hand and the longitudinal polarisation (2.51) on the other hand:
while the former have components of order 1, the latter has components of order E/m.
Therefore, at energies E � m one expects that longitudinal gauge bosons dominate over
transverse modes. This is the first hint at a fundamental difference between longitudinal
and transverse gauge bosons.
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Electroweak symmetry breaking

With these results it is straightforward to count the degrees of freedom in the electroweak
sector before and after electroweak symmetry breaking. One begins with four gauge
bosons, namely the B and the three instances of W i. They are massless, so each of
them has two polarisation states, summing up to a total of eight degrees of freedom per
space-time point. After electroweak symmetry breaking, these fields have transformed
into the massless photon and the now massive bosonsW+,W− and Z. While the photon
has two polarisation states, each of the massive vector bosons contributes three degrees
of freedom, so there are now eleven degrees of freedom between these bosons.
Of course, these three additional degrees of freedom do not just appear out of nowhere.

They come from the three Goldstone bosons, which combine with the original gauge
bosons to form the massive vector bosons as given in (2.18) to (2.19). By incorporating
these scalar fields, the gauge bosons do not only acquire a mass, but also gain a third,
longitudinal polarisation. Since the Goldstone bosons are scalars, each of them brings
one degree of freedom to the table. Hence there is a total of eleven real degrees of freedom
per space-time point, both before and after electroweak symmetry breaking. In a sense,
the longitudinal modes of the massive gauge bosons stem from the Goldstone bosons of
electroweak symmetry breaking. This connection will be the topic of section 2.2.3.

2.2.2. Defining longitudinal and transverse modes
For on-shell W and Z bosons, i. e. for external legs in amplitude calculations, the defin-
ition of transverse and longitudinal states in (2.49) to (2.51) is sufficient. In real-life
processes, though, these bosons can always leave the mass shell. This is obvious for
decays of the 125 GeV Higgs to a pair of massive gauge bosons, where typically one of
the gauge bosons is close to the mass shell, while the other is far off-shell. But also in
other kinematic regimes, the large widths of the W and Z bosons mean that they can
easily leave the mass shell by a few GeV. Finally, t-channel W and Z bosons are always
far off-shell.
To be able to treat all these cases, we have to define polarisation states for on-shell

and off-shell vector bosons alike. We define the transverse part and longitudinal parts
of the W - and Z-boson fields as

V µ
T = P µ

T ν V
ν (2.52)

V µ
L = P µ

Lν V
ν (2.53)

where V = W,Z is the gauge boson field in unitary gauge. PT is the projection operator
to the transverse plane,

P 0
T µ = 0 = P µ

T 0 , (2.54)

P i
T j = δij −

pipj
p2 , (2.55)
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with i, j = 1, 2, 3. The longitudinal projection operator is then

P µ
Lν = (1− PT )µν . (2.56)

For a (potentially off-shell) W boson with momentum kµ = (E, 0, 0, k3)µ, this trans-
verse projection operator takes on the form

P µ
T ν =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (2.57)

and the longitudinal projection operator becomes

P µ
Lν =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 . (2.58)

In the case of on-shell W fields, these operators clearly project correctly onto the sub-
spaces spanned by the basis (2.49) to (2.51).

Reference frame dependence

The definition of polarisation states in (2.52) and (2.53) requires the choice of a reference
frame. In fact, boosting from one reference frame into another will induce a mixing of
polarisations: longitudinal gauge bosons can become transverse and vice versa. The
probability of such a change of polarisation depends on the size of the boost and on the
direction of the boost relative to the gauge boson momentum.
To see this, consider again a W boson propagating in z direction. The corresponding

transverse and longitudinal projectors are given in (2.57) and (2.58). A boost parallel
to the W momentum is described by

Λ µ
z ν =


γ 0 0 βγ
0 1 0 0
0 0 1 0
βγ 0 0 γ

 . (2.59)

Clearly, Λz commutes with PL and PT : boosts along the gauge boson momentum do not
lead to a mixing of longitudinal and transverse momenta.
Boosts orthogonal to the W direction give a different result. For example a boost in

x direction,

Λ µ
x ν =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

 , (2.60)
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does not commute with PL or PT :

[Λx,PT ]µν = βγ


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 . (2.61)

Gauge bosons that are longitudinal in one frame may be (partially) transverse in the
other frame and vice versa. Assuming a quantum mechanical polarisation measurement
after the boost, we can define the probability for a polarisation change. The commut-
ator (2.61) suggests that this probability scales with the size of the boost as βγ. We will
explicitly calculate the probabilities of this mixing for a specific case in section 4.5.1.

MadGraph implementation

We implement propagators for polarisedW and Z fields into the Monte-Carlo event gen-
eration suite MadGraph 5 [46]. This implementation will be used many times throughout
this thesis. Unfortunately, the modular structure of the latest version of MadGraph makes
the creation of a clean interface difficult. The current implementation therefore consists
of new propagator structures in the matrix element calculation [47], which is based on
the original HELAS library [48]. For each process, calls to these functions have to be
added by hand. Our implementation allows the free choice of a reference frame for the
definition of the polarisation.

2.2.3. The Goldstone boson equivalence theorem

Let us now come back to the difference between longitudinal and transverse gauge bosons.
As discussed in section 2.2.1, the longitudinal modes of theW and Z boson appear when
the Goldstone bosons wi are incorporated into the gauge bosons. And already from the
polarisation basis given in (2.49) to (2.51) it is obvious that longitudinal and transverse
vector bosons are not created equal: at large energies, the longitudinal modes become
dominant.
In fact, there is a fundamental difference between transverse and longitudinal states:

in the limit of high energies, the latter correspond exactly to the Goldstone bosons of
electroweak symmetry breaking. Conversely, in this limit the transverse modes represent
the original, ‘pure’ gauge bosons.
To be more precise, consider a process involving external longitudinalW± or Z bosons

with an energy scale E. In the limit E � mW , the matrix element for this process can
be calculated by exchanging all external electroweak bosons with the corresponding
Goldstone bosons w±, w0 and using the Feynman rules for their scattering derived from
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the Standard Model Lagrangian before electroweak symmetry breaking:
W±L

=

w±

+O
(
mW

E

)
. (2.62)

This is the Goldstone boson equivalence theorem [7–9].

So what does all of this mean? At first, the longitudinal and transverse polarisation
states appear to be just a basis for the solutions of the equations of motion of massive
vector bosons. A more thorough investigation, however, reveals that there is a physical
difference between these modes. In the high-energy limit, they can be clearly separated:
the longitudinal states are equivalent to the Goldstone bosons of the Higgs sector, while
the transverse modes correspond to the original electroweak gauge bosons.
In reality we have to analyse processes at finite energies, including off-shell as well

as on-shell bosons. The separation between longitudinal and transverse modes is then
less clean and depends on the reference frame. But this technical difficulty does not
render the physical difference between transverse and longitudinal gauge bosons any less
relevant. We view a separation of longitudinal and transverse gauge bosons as defined
in (2.52) and (2.53) as a first step towards a separation of the original gauge bosons and
the Goldstone bosons, the essential ingredients of electroweak symmetry breaking.

2.3. Gauge boson scattering
At the beginning of this chapter, the big theoretical question of interest was outlined,
which is the nature of electroweak symmetry breaking. Then we discussed the tool we
want to probe it with, namely the polarisation of massive gauge bosons. What is missing
is a laboratory – a process where we can analyse the Higgs-gauge sector at the LHC.
In this section we introduce the scattering of massive vector bosons as such a labor-

atory. First we approach it from a theoretical perspective and explain the relevance
of unitarity in this process. Then we focus on phenomenological aspects and give an
overview of possible measurement strategies.

2.3.1. Gauge boson scattering and unitarity
Longitudinal WW scattering

Let us begin by analysing the scattering of longitudinal vector bosons with a special
interest in the high-energy limit. We consider the exemplary process

W+
LW

−
L →W+

LW
−
L . (2.63)
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Other initial and final states give similar results.
In the Standard Model, seven diagrams contribute to this process at tree level:

• the four-W interaction,

• s-channel diagrams with a photon, a Z, or a Higgs boson, and

• t-channel diagrams with a photon, a Z, or a Higgs boson.

The exact amplitude is rather involved. However, we are interested in the high-energy
behaviour of this cross section, so we can use the Goldstone boson equivalence theorem
to considerably simplify the calculation. The coupling of Goldstone bosons w± to other
particles can be read off the Standard Model Lagrangian, see appendix A.1 for more
details. The diagrams involving only Goldstone and Higgs bosons then yield the following
expressions:

w−

w+

w−

w+

= −4iλ , (2.64)

H

w−

w+

w−

w+

= −4iλ2v2

s−m2
H

, (2.65)

H

w−

w+

w−

w+

= −4iλ2v2

t−m2
H

. (2.66)

The γ and Z contributions turn out to be negligible. The total matrix element is then
approximately

MSM(W+
LW

−
L →W+

LW
−
L ) ≈MSM(w+w− → w+w−) (2.67)

≈ −4iλ− 4iλ2v2

s−m2
H

− 4iλ2v2

t−m2
H

(2.68)

≈ −im
2
H

v2

[
2 + m2

H

s−m2
H

+ m2
H

t−m2
H

]
. (2.69)
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In the high-energy limit of s, |t| � m2
H , this expression becomes constant, so the cross

section falls off proportional to

σSM ∼
1
s
. (2.70)

In contrast, consider a scenario without a Higgs boson, which we emulate by taking
the limit mH →∞.3 With m2

H = 2λv2 and s, |t| � m2
H , the matrix element becomes

MHiggsless(W+
LW

−
L →W+

LW
−
L ) ≈ −im

2
H

v2

2− 1
1− s

m2
H

− 1
1− t

m2
H

 (2.71)

≈ is+ t

v2 . (2.72)

In the high-energy limit, the cross section is therefore proportional to

σHiggsless ∼ s . (2.73)

So we find that at high enough energy scales, the Higgsless amplitude becomes much
larger than the full amplitude. In other words, there is a significant cancellation between
the contributions from pure gauge diagrams and Higgs interactions.

Perturbative unitarity violation

This high-energy behaviour is not just an interesting curiosity, but has some important
implications. A basic postulate of any quantum field theory is that the time evolution
or equivalently the S-matrix is unitary. This can be reformulated in terms of the total
cross section σ and the amplitudeM, giving the optical theorem

σ = 1
s

ImMforward . (2.74)

Here Mforward is the amplitude in the limit of identical final and initial states, i. e. in
the case of extreme forward scattering.
It is immediately clear that the Higgsless cross section (2.73) violates the optical the-

orem. In the high-energy limit, the cross section increases with s, while the corresponding
right-hand side of (2.74) remains constant. In other words, in leading perturbative order
the Higgsless scenario violates the unitarity of the S-matrix. So either some effect of new
physics has to restore the unitarity condition, or the leading contribution in perturbation
theory does not describe the process well, making the WW system strongly interacting.

3In the derivation of the Feynman rules based on the equivalence theorem, we have effectively assumed
the Standard Model structure including a Higgs boson. It is therefore not consistent to simply remove
the Higgs contributions from the expression (2.69).

19



2. The physics of massive gauge bosons

In order to estimate the energy scale at which such a mechanism has to appear to
save perturbative unitarity, we expand the amplitude into partial waves in terms of the
scattering angle θ:

M = 16π
∑
l

(2l + 1)alPl(cos θ) , (2.75)

where θ is the scattering angle and Pl are the Legendre polynomials. In terms of the
partial waves al, the cross-section reads

σ = 16π
s

∑
l

(2l + 1)|al|2 . (2.76)

The fundamental structure of QFT only requires the optical theorem (2.74) to hold for
the full amplitudes M, it does not say anything about the individual partial waves al.
But if a partial wave on its own would violate the optical theorem, there would have to
be large cancellations between the different partial waves, which would at least require
a good explanation. Therefore any tasteful process should satisfy the optical theorem
on the level of partial waves:

16π
s

(2l + 1)|al|2 = 1
s

16π(2l + 1) Im al (2.77)

or

(Re al)2 +
(

Im al −
1
2

)2
= 1

4 . (2.78)

In particular, this equation for a circle in the complex plane implies

|Re al| <
1
2 . (2.79)

Now let us impose this condition on the process of longitudinal W+W− → W+W−

scattering. An expansion of the Standard Model amplitude (2.69) into multipoles gives
the leading term [29]

aSM0 = m2
H

16πv2

[
2 + m2

H

s−m2
H

− m2
H

s
log

(
1 + s

m2
H

)]
. (2.80)

For mH = 125 GeV, aSM0 satisfies the perturbative unitarity inequality (2.79) up to
arbitrarily high energies. Including higher partial waves gives similar results. With the
observed value for the Higgs mass, the Standard Model is thus perfectly consistent and
does not cause any problems with perturbative unitarity [8, 10–12].
The situation is different for the Higgsless scenario. Here the first partial wave reads

aHiggsless0 = − s

32πv2 , (2.81)
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Figure 2.1.: Left: prototypical V V →W+W− scattering diagram, V = γ,W±, Z. Right:
s-channel Higgs diagram, which is the dominant contribution to gauge boson
scattering at mWW ≈ mH .

reflecting the increase of the full amplitude proportional to (s+t). Perturbative unitarity
therefore requires

√
s .
√

32πv ≈ 1.7 TeV . (2.82)

A more thorough calculation involving all diagrams and higher-order corrections gives a
slightly lower bound of the order

√
s . 1.2 TeV [29].

So without a Higgs boson, perturbative unitarity is violated around the TeV scale.
This means that some mechanism has to unitarise the scattering amplitude, and its
effect should be visible at LHC energies. This was the reasoning behind the no-lose
prediction for the LHC: either a Higgs boson would be found, or some new effect would
have to appear around the TeV scale that unitarises the scattering of weak bosons. The
latter scenario is known as strongly interacting WW scattering [13–20].
With the discovery of a Higgs-like boson, the Higgsless scenario became of course less

relevant. Instead one can consider partially strong WW scattering [21–24]: if the coup-
ling of longitudinalW or Z bosons to the Higgs boson deviates from the Standard Model,
there is an increase of the cross section at larger energies, eventually violating unitarity.
However, compared to the Higgsless case this increase is less pronounced and shifted to
higher energy scales, which may or may not be accessible at the LHC. Therefore the
unitarity argument has lost its urgency after the Higgs discovery.

2.3.2. Anatomy of the full process at the LHC

In reality there is no W+W− collider, unfortunately. The currently best place to probe
gauge boson scattering is the LHC, where the relevant full process is

pp→W+W− jj , (2.83)
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Figure 2.2.: Exemplary bremsstrahlung diagrams contributing to the process pp →
W+W− jj. Again V = γ,W±, Z.

followed by leptonic or hadronic W decays. Again, the analysis of other diboson final
states gives comparable results.
The amplitudes contributing to the process (2.83) at the leading electroweak or-

der O
(
α4) can be grouped into two categories. First, there are V V →W+W− diagrams,

where V = γ,W±, Z, as given in the left panel of figure 2.1. This class of processes is
similar to the pure gauge bosons amplitudes discussed above, and in fact we will find
that many features expected for W+W− → W+W− scattering appear in the full pro-
cess (2.83) as well. In particular, the Higgs contributions will again play a crucial role.
The right panel of figure 2.1 shows the s-channel Higgs diagram, which dominates the
full amplitude in the kinematic regime around a diboson mass mWW ≈ mH . The main
difference to the scattering process discussed in the previous section is that the initial
gauge bosons are now not on-shell anymore, but have a t-channel topology.
The second contribution to (2.83) is due to bremsstrahlung of various gauge bosons.

There are four different types of diagrams:

1. The two quark lines exchange a γ,W±, or Z boson. In addition, a W boson is
radiated off each of the two quark lines. See the top left panel of figure 2.2.
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Leptonic cuts Jet cuts

|η`| < 2.5 |ηj | < 5.0
pT,` > 20, 10 GeV pT,j > 25 GeV

mjj > 500 GeV
ηj1 · ηj2 < 0

pmiss
T > 20 GeV ∆ηjj > 4.2

Table 2.2.: Generic cuts used for the analysis of the interference structure of W+W−

scattering.

Parameter Value

Collider setup pp collisions at
√
s = 14 TeV

mH 125 GeV
Number of events 10,000 each
Parton density function CTEQ6L [49]

Table 2.3.: Parameters used for the analysis of the interference structure of W+W−

scattering.

2. The two quark lines exchange a γ,W±, or Z boson. In addition, two W bosons
are radiated off the same quark line. See the top right panel of figure 2.2.

3. Each quark line emits one gauge boson, which then fuse into a W . The second
final W is radiated off one of the two quark lines. See the bottom left panel of
figure 2.2.

4. The two quark lines exchange a γ,W±, or Z boson. In addition, a γ or Z boson
is radiated off a quark line and splits into a W+W− pair. See the bottom right
panel of figure 2.2.

The contributions from V V →W+W− scattering and bremsstrahlung diagrams inev-
itably interfere with each other. We now analyse this interference quantitatively. For this
we calculate the cross section for the process (2.83) with a decay cascade W+ → µ+νµ,
W− → e−ν̄e in MadGraph 5. For simplicity, only the dominant ud initial states are taken
into account and the CKM matrix is set to the unit matrix. Acceptance cuts based on
the ATLAS and CMS detectors are used and two tagging jets with an invariant mass
of 500 GeV between them and a separation in pseudorapidity of 4.2 are required. All
settings and cuts are given in table 2.2 and table 2.3. In this setup we evaluate the full
process as well as the process based on certain diagrams only.
In table 2.4 we give the resulting cross sections. We find that there is a significant

cancellation between the V V → W+W− scattering diagrams and the bremsstrahlung
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2. The physics of massive gauge bosons

Diagrams taken into account Cross section [fb]

All diagrams 0.6

Only V V →W+W− diagrams (c. f. figure 2.1) 35.1
Only bremsstrahlung diagrams (c. f. figure 2.2) 35.0

Only W+W− →W+W− diagrams 17.7
Only ZZ →W+W− diagrams 6.9
Only Zγ →W+W− diagrams 3.9
Only γγ →W+W− diagrams 0.2
Only bremsstrahlung diagrams of type 1 44.7
Only bremsstrahlung diagrams of type 2 44.2
Only bremsstrahlung diagrams of type 3 110.8
Only bremsstrahlung diagrams of type 4 6.6

Table 2.4.: Cross sections for the full process ud→ W+W− jj → (µ+νµ) (e−ν̄e) jj and
for subprocesses limited to certain diagrams. The statistical uncertainties are
irrelevant compared to the differences between the different cross sections.
The categorisation of bremsstrahlung diagrams is explained in the text.

diagrams. The cross section for either of these categories on its own is three orders
of magnitude larger than the cross section of the full process. If the two categories
are further split into smaller groups of diagrams, these interference effects become even
worse.
These cancellations are known and explained by the fact that the individual expres-

sions of the diagrams in figures 2.1 and 2.2 are not gauge invariant (i. e. invariant under
the choice of ξ in the Rξ gauge) on their own, only the sum of all such diagrams is [50].
Due to this interplay, an analysis can never be restricted to V V → V V diagrams, one
always has to include all electroweak tree-level processes in the simulation.
In a next step we analyse how this interference depends on the phase space. In

figure 2.3 we give the mWW distribution for the full process as well as the separated
V V → W+W− and bremsstrahlung contributions. Clearly, the cancellation effects be-
come stronger at large energies. A thorough analysis of different kinematic variables
reveals that this destructive interference extends throughout the whole phase space and
cannot be removed by simple cuts. There is only one exception: the Higgs resonance,
i. e. the region around mWW ≈ mH , visible as the sharp line peak in figure 2.3. Here
the s-channel Higgs amplitudes dominate over all other contributions to the amplitude,
and the bremsstrahlung diagrams can safely be neglected.
In a nutshell, the full process pp → W+W− jj is not a simple extension of

W+W− →W+W− scattering. First, the initial gauge bosons are virtual t-channel
propagators instead of on-shell external legs. There are irreducible contributions from
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Figure 2.3.: The distribution of the energy scale mWW in the full process
ud→W+W− jj → (µ+νµ) (e−ν̄e) jj and in subprocesses limited to certain
diagrams.

ZZ → W+W−, Zγ → W+W− and γγ → W+W− diagrams. Most important, an ana-
lysis cannot be limited to the gauge boson scattering subprocesses, the large number of
bremsstrahlung contributions have to be taken into account as well. Only this gives a
consistent and gauge-invariant result. The only exception to this rule in the Standard
Model is the Higgs resonance, where the s-channel Higgs contribution dominates.

2.3.3. The weak boson fusion signature
From a phenomenological point of view, not only the electroweak structure of gauge
boson scattering is relevant, but also the efficient extraction of the relevant events from
the vast amount of LHC data. We will first discuss the background processes, followed
by the experimental signatures that we can use for their suppression.

Background processes

As discussed in the previous section, the electroweak bremsstrahlung contributions can-
not be separated from the V V → V V subprocesses, so we consider the whole electroweak
process as our signal. The relevant background processes depend on the final gauge bo-
sons and their decay modes as well as on the kinematic region of interest. Typical
backgrounds include the following:

• electroweak production of other V V jj states,

• V V production with additional QCD jets (as in the top left panel of 2.4),
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Figure 2.4.: Example diagrams for QCD backgrounds to electroweak gauge boson scat-
tering.

• Higgs production in gluon fusion (c. f. the top right panel of figure 2.4),

• tt̄ production (see for instance the bottom left panel of figure 2.4),

• τ+τ− production, and

• V + jets production (as in the bottom right panel of figure 2.4).

Generally, more classes of backgrounds are relevant for hadronic gauge boson decays
than for leptonic modes, since QCD jets can mimic the hadronic decay products.

Decay products

The first part of the experimental signature of gauge boson scattering is the gauge boson
pair itself, or more precisely, its decay products. These particles tend to hit the detector
centrally, i. e. at low rapidities [29]. The details of the signature, of course, depend on
the particular decay mode:

26



2.3. Gauge boson scattering

• A leptonically decaying Z boson leads to two leptons with an invariant mass m`` ≈
mZ .4

• A leptonic W decay yields an isolated, central lepton and missing transverse mo-
mentum.

• Hadronic W and Z decays each give a pair of two central jets with an invariant
mass compatible with the gauge boson mass.

Unfortunately, many of the background processes listed above involve gauge boson decays
with just the same features.

Tagging jets

The signal process features two more final-state particles: the two quark lines that emit
the initial gauge bosons. The initial quarks coming from the proton have very large
energies dictated by the proton energy and the parton density functions for valence
quarks, and are, at least in a first approximation, parallel to the beam line. The emission
of a W± or Z boson only takes away energy of the order of the scale of the hard process.
On the one hand, this implies that the jets coming from these final-state quarks still
have very large energies. At the LHC the dijet mass mjj can easily exceed 1 TeV. On
the other hand, the low transverse momentum from the weak boson emission means
that both jets are back-to-back and each jet points in forward direction. In other words,
there is a large rapidity gap between them.
The appearance of these two tagging jets is unique to processes with a topology as

in figure 2.1. Therefore the requirement of one or two such jets is a powerful tool that
strongly suppresses many of the backgrounds.

Additional hadronic activity and the central jet veto

Another crucial phenomenological difference between the signal and background contri-
butions is the level of additional hadronic activity. QCD background diagrams such as
the ones shown in figure 2.4 all feature quark and gluon lines that can easily radiate off
additional jets into the central detector region. A large fraction of background events
therefore includes a number of central jets in addition to the two required tagging jets
and the gauge boson decay products.
Signal events, on the other hand, typically do not feature any central jets, at least as

long as all gauge boson decays are leptonic. In order to understand this lack of extra
QCD radiation, consider corrections to the signal process by virtual gluon exchange first.

4On the Higgs resonance, one of the two gauge bosons is typically off its mass shell. Then this condition
does not hold true anymore, but can be replaced with the condition that all decay products reconstruct
the Higgs boson. We will discuss such kinematic features in section 3.3.2.
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2. The physics of massive gauge bosons

Usually, the leading-order correction to a tree-level amplitude is given by the interference
between the tree-level process and the higher-order diagram. So for electroweak gauge
boson scattering, the leading correction in αs would be the interference between the
diagram in figure 2.1 and the same diagram with an additional gluon exchange between
the two quark lines. However, the colour structure of these two amplitudes is inherently
different, and the interference term vanishes. This means that virtual gluon exchange is
strongly suppressed by the colour structure of the signal process.
This in itself is not particularly relevant, but there is an intimate link between virtual

gluon exchange and real gluon emission. The calculation of non-collinear gluon radi-
ation and virtual gluon exchange each give an infrared divergence, and these two soft
divergences cancel. So if there is no virtual gluon exchange in a process, there cannot be
any non-collinear real gluon emission either. In other words, the suppression of virtual
gluon exchange in our signal process implies that gluons are only radiated collinearly,
i. e. along the beam line or the tagging jets. Baring hadronic gauge boson decays, there
is very little hadronic activity in the central detector region.
The simplest strategy to use this difference between signal and background is the cent-

ral jet veto [51–53]: discarding all events with central jets between the two tagging jets
significantly reduces all QCD backgrounds without a large impact on the signal. More
involved techniques do not simply throw away such events, but combine the information
from the additional jets with other observables to optimise the signal acceptance and
background rejection rates [54, 55]. Regardless of the specific implementation, the dif-
ferent jet radiation patterns between signal and background provide another powerful
tool for the clean extraction of weak boson fusion signatures, at least as long as only
leptonic gauge boson decays play a role.

2.3.4. Where to probe the Higgs-gauge sector

After analysing the structure of the gauge boson scattering amplitude and discussing the
experimental features of this process at the LHC, we are now in a position to tackle the
original question from the first two sections: how can the LHC experiments probe the
Higgs-gauge sector, and more specifically the polarisation of the massive gauge bosons?
There is more than one answer to this. In the following, we classify the possible strategies
by the phase-space regime they probe and the observables they use.

Phase-space regime

The first choice is that of the phase-space regime one wants to probe. There are two
well-motivated options:

1. The high-energy regime. In section 2.3.1 the scattering of longitudinal gauge bo-
sons in the limit of large mV V was analysed. It turned out that a Higgs-gauge
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Figure 2.5.: Different approaches to the Higgs-gauge sector in the process
pp→W+W− jj → (`+ν) (`−ν̄) jj. Left: distribution of mWW . Right:
azimuthal angle between the two leptons at the Higgs resonance. In
both cases, the Standard Model is compared to scenarios with modified
longitudinal Higgs-gauge couplings aL and transverse Higgs-gauge couplings
aT , where aL/T = 1 corresponds to the Standard Model coupling. For more
details, see section 4.2. We require transverse jet momenta of 20 GeV to
remove photon-exchange contributions.

coupling different from the Standard Model leads to an increase of the cross sec-
tion at large energy scales, caused by the incomplete cancellation of Higgs and
gauge amplitudes. This effect persists in the full process of gauge boson scattering
in pp collisions. We demonstrate this in the left panel of figure 2.5, where we show
the distribution of the invariant mass of theW+W− system for the Standard Model
as well as for scenarios where the Higgs boson either couples only to transverse
gauge bosons or only to longitudinal gauge bosons. At energies above 1 TeV, the
missing longitudinal Higgs-gauge coupling induces a visible increase in the cross
section. The transverse Higgs-gauge coupling, however, remains unaffected.

2. The Higgs resonance. The cross section and kinematics are clearly sensitive to
the Higgs-gauge coupling structure in the region around mV V ≈ mH , where the
Higgs s-channel amplitude dominates the electroweak process. As discussed in
section 2.3.2, this is the only region of the phase space without huge cancellations
between gauge boson scattering and bremsstrahlung diagrams, which considerably
simplifies the analysis.
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2. The physics of massive gauge bosons

Observables

In addition to total cross sections, the topology of weak boson scattering as shown in
figure 2.1 provides two classes of kinematic observables:

1. Properties of the gauge boson decay products, which are sensitive to the final
pair of gauge bosons. In particular, angular distributions of the decay products
are sensitive to the polarisation of the final gauge bosons. The right panel of
figure 2.5, for instance, shows the distribution of the azimuthal angle between the
two leptons of the leptonic W+W− channel at the Higgs resonance. The Standard
Model leads to a different distribution than models where the Higgs boson only
couples to longitudinal or transverse gauge bosons.

2. Properties of the tagging jets, which probe the initial pair of gauge bosons. It is
slightly less obvious than in the case of the decay products, but the tagging jets
recoil against the initial gauge bosons and therefore carry information on their
polarisation. At the Higgs pole, this approach is straightforward. Away from the
resonance, however, the large interference between scattering and bremsstrahlung
diagrams discussed in the previous section makes it hard to define initial gauge
bosons.

Of course, correlations between these two sets of observables can also be of interest.

Analysis strategies

The classical approach to polarised gauge boson scattering is event counting in the
high-energy regime. The separation of longitudinal and transverse gauge bosons is well
established in these studies. For instance, in [13–15] analysis strategies to select highly
energetic longitudinal gauge bosons are developed for all leptonic gauge boson topologies,
including jet tagging, a central jet veto, and angular correlations between the decay
products. The authors of [16] are the first to analyse the semileptonic W+W− channel
and introduce the concept of boosted W tagging. The full set of semileptonic decay
modes is discussed in [17–20]. High-energy gauge boson scattering is investigated in the
context of a light Higgs boson with anomalous couplings to the gauge bosons in [21–23].
In [24] it was pointed out that such rate measurements at large energy scales suffer

not only from low rates, but also from large systematic uncertainties due to scale am-
biguities. The authors suggested measuring the polarisation of the final gauge bosons
by fitting decay-angle distributions in the semileptonic WW channel. In such a relat-
ive measurement, the problematic theoretical uncertainties cancel. In chapter 3 of this
thesis we will follow this idea and expand it to other gauge boson channels.
A second class of publications investigates the Higgs resonance in order to determine

properties of the Higgs boson. Most studies focus on the cross section in order to measure
the Higgs-gauge couplings [42], which have been interpreted in terms of effective field
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2.3. Gauge boson scattering

theory [36, 43]. The kinematic properties of the Higgs-decay products and the tagging
jets, in particular angular correlations, have been used in measurements of the Higgs spin
and CP properties [41, 56–64]. In chapter 4 of this thesis we will propose a new strategy
that uses the tagging jet kinematics at the Higgs resonance to measure the polarisation
of the initial gauge bosons.
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3. Polarisation measurements with decay
angles

The most straightforward handle to the polarisation of gauge bosons are angular distri-
butions in their decay products [65]. These observables are sensitive to the final pair of
gauge bosons. This approach has the advantage of being independent of the model and
the phase-space region, which means that it can be used both at the Higgs resonance and
in the high-energy regime. Originally, this strategy was suggested in [24] for high-energy
W+W− scattering with semileptonic decays. The authors found that such a relative
measurement of longitudinal and transverse polarisations significantly reduces scale un-
certainties as compared to the usual cut-and-count approach. But while the basic idea
is straightforward, it is not easy to find an optimal channel for such an analysis at the
LHC. In some topologies, neutrinos spoil the reconstruction of the decay angles, while
other final states are plagued by low rates or large QCD backgrounds.
In this chapter we implement such a polarisation measurement for various diboson

channels and briefly evaluate the prospects for its realisation. First, the angular distribu-
tions in the decays of longitudinal and transverse vector bosons are derived. Section 3.2
then gives an overview of the various V V channels. In section 3.3 we present our strategy
to reconstruct decay angles and measure the final-state gauge boson polarisation. We
give our results in section 3.4 and draw conclusions on the feasibility of such a strategy
in section 3.5.

3.1. From polarised gauge bosons to decay angles
A straightforward tree-level calculation of the differential cross-section reveals that lon-
gitudinal W or Z bosons decay into two fermions according to the distribution

dσ(VL → f1f2)
d cos θ∗ ∝ E∗1E∗2 + p∗2(1− 2 cos2 θ∗) + 2 cLcR

c2
L + c2

R

m1m2 . (3.1)

Transverse gauge bosons are distributed according to

dσ(VT → f1f2)
d cos θ∗ ∝ E∗1E∗2 + p∗2 cos2 θ∗ ± c2

L − c2
R

c2
L + c2

R

(E∗1 + E∗2) |p∗| cos θ∗

+ 2 cLcR
c2
L + c2

R

m1m2 . (3.2)
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3. Polarisation measurements with decay angles

Here θ∗ is the angle between the fermion direction in the V rest frame and the direction
of V (V = W,Z throughout this chapter).1 cL and cR are the couplings of V to the
left-handed and right-handed fermions in question. mV , m1 and m2 are the masses of
the gauge boson and its decay products. Finally, the energies and spatial momenta of
the fermions in the V rest frame, E∗1 , E∗2 , p∗ and −p∗, are fixed by energy-momentum
conservation to

E∗1 = m2
V +m2

1 −m2
2

2mV
, (3.3)

E∗2 = m2
V +m2

2 −m2
1

2mV
, (3.4)

|p∗| = 1
2mV λ

1
2
(
1, m

2
1

m2
V

,
m2

2
m2
V

)
(3.5)

with the usual kinematic function

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xz . (3.6)

For W bosons, which couple only to left-handed particles, and in the limit of massless
fermions, the distributions simplify considerably and give the more familiar results

1
σ

dσ(VL → f1f2)
d cos θ∗ = 3

4(1− cos2 θ∗) , (3.7)

1
σ

dσ(VT → f1f2)
d cos θ∗ = 3

8(1± cos θ∗)2. (3.8)

Figure 3.1 shows the expected angular distributions of a leptonic W decay as well as a
Z decay into an uū pair.
A detailed derivation of (3.1) and (3.2) can be found in appendix A.2. These distri-

butions are exact only at tree level. QCD corrections to the decays into quarks are of
order O(1%) [66] and should not be relevant for the general procedure developed here.
The distributions (3.1) to (3.2) are the main ingredient for the measurement strategy

discussed in this section: after collecting enough events with V V decays, we can fit
these distributions to data and thus determine the relative fractions of longitudinal and
transverse gauge bosons. This strategy should significantly reduce scale uncertainties
compared to cut-and-count searches for highly energetic longitudinal gauge bosons [24].

3.2. Gauge boson channels at the LHC
Fitting the distributions presented in the previous section to gauge boson data at the
LHC is straightforward from a theoretical perspective. The situation becomes more

1Note that the angle θ∗ depends on the choice of reference frame. While it is invariant under boosts
along the momentum of V , it changes with any other boost. This corresponds to the reference frame
dependence of the polarisation of gauge bosons discussed in section 2.2.2, as it must.
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Figure 3.1.: Expected angular distribution in different V decays. Left: leptonicW decay.
Right: Z boson decaying into uū pair.

complicated, though, when we try to pick a specific V V decay channel. So let us take a
step back and have a look at the different diboson states and their decay modes at the
LHC.

The four different V V states W+W−, W±W±, W±Z and ZZ and their various
leptonic, semileptonic and hadronic decay channels each feature distinct rates, back-
grounds and kinematic properties. They are also sensitive to different models of new
physics. It is by no means obvious which of them are suited for a polarisation analysis
at the LHC. Only the purely hadronic channels are easy to dismiss. While their rates
are large, they yield a final state consisting of six jets without any leptons or missing
transverse energy. Of course, the QCD background to this ‘signature’ is overwhelming.

This leaves five leptonic channels,

W+W− → (`+ν) (`−ν̄) ,
W±W± → (`±ν) (`±ν) ,

WZ → (`±ν) (`+`−) ,
ZZ → (`+`−) (`+`−) ,
ZZ → (`+`−) (νν̄) ,

(3.9)
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and four semileptonic channels,

WW → (`±ν) (jj) ,
WZ → (`±ν) (jj) ,
WZ → (jj) (`+`−) ,
ZZ → (`+`−) (jj) .

(3.10)

Here ` denotes an electron or muon, ν any (anti-)neutrino, and j denotes a jet coming
from an u, d, c or s quark. We do not consider τ leptons and b jets. This is because
τ decays involve either neutrinos or jets, in both cases making the analysis more com-
plicated, and because the b jets would fall victim to a b-jet veto, which is necessary to
reduce top backgrounds as discussed in section 2.3.3.
For a polarisation measurement by decay-angle fits, a channel has to satisfy three

criteria:

• Its rate has to be large enough for sufficient statistics to be collected at the LHC.
Here W bosons generally fare better than Z bosons due to the larger production
cross-section and larger leptonic branching ratio.

• QCD and other backgrounds are sufficiently small. This is especially problematic
for semileptonic states due to the large QCD background.

• The relevant kinematic properties of the V bosons can be reconstructed from their
measurable decay daughters with sufficient precision. This will be a crucial point
for all states involving neutrinos, especially for the leptonic WW states, which
feature two neutrinos.

In this chapter we answer the question which of the eight channels given in (3.9) to
(3.10) satisfy these three criteria.

3.3. Analysis strategy

3.3.1. Event generation

We generate event samples with MadGraph 5 for each channel in (3.9) and (3.10), in-
cluding all tree-level electroweak diagrams at leading perturbative order O

(
α4). For

simplicity, we limit ourselves to the parton level and do not simulate QCD backgrounds.
Inspired by the design of the ATLAS and CMS detectors [67–69] and various ana-

lyses [70–72], we impose the typical weak boson fusion selection cuts given in table 3.1.
Most important is the requirement of two tagging jets in opposite hemispheres with an
invariant mass of mj1,j2 > 500 GeV between them and a separation in pseudorapidity of
∆ηj1,j2 > 4.2. These cuts are designed to suppress QCD backgrounds to a manageable
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Leptonic cuts Jet cuts

|η`| < 2.5 |ηj | < 5.0
pT,` > 20, 10 GeV pT,j > 25 GeV

mj1,j2 > 500 GeV
ηj1 · ηj2 < 0

(pmiss
T > 20 GeV) ∆ηj1,j2 > 4.2

Table 3.1.: Generic acceptance cuts applied in this chapter. The cut on pmiss
T is only

applied in the channels involving neutrinos.

Parameter Value

Collider setup pp collisions at
√
s = 13 TeV

mH 125 GeV
Number of events 100,000 each
Parton density function CTEQ6L [49]

Table 3.2.: Parameters used in the event generation for the final-state polarisation meas-
urements.

level, as discussed in section 2.3.3. Other settings for the event generation can be found
in table 3.2.
We also generate event samples limited to specific polarisations of the final vector

bosons. This will later allow for a sanity check of our analysis strategy. For this purpose,
polarisations are defined in the laboratory frame following the definitions in section 2.2.2.

3.3.2. Event reconstruction

In this chapter we aim to measure the gauge boson polarisation by means of the decay
angle θ∗, for which we rely on the knowledge of the four-momenta of the decaying V bo-
sons. For Z bosons decaying leptonically or hadronically, and for hadronic W decays,
this is not a problem. The energies and momenta of the resulting jets and charged
leptons can be measured quite precisely in a detector such as ATLAS or CMS. By ana-
lysing the flavours and charges of leptons as well as the invariant mass of lepton and jet
pairings, it can be determined which pair originated from which vector boson and what
its momentum was.
The decay of a ZZ state into a pair of leptons and a pair of neutrinos is a special

case: the leptonic Z boson can be reconstructed precisely, while the neutrinos only
let us measure the sum of their transverse momenta in form of the missing transverse
momentum. Here we simply ignore this invisible Z decay.
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3. Polarisation measurements with decay angles

In leptonicW decays, however, we cannot neglect the neutrinos. These events can still
be reconstructed approximately, but this procedure introduces an intrinsic uncertainty
and relies on certain assumptions. In this analysis we will distinguish two phase-space
regions and prescribe different reconstruction procedures. In the first scenario, we assume
both vector bosons to be on the mass shell. This is a good approximation for V V pairs
above the mV V > 2mV threshold. In the second scenario, we assume the V V pair to
stem from the decay of an on-shell Higgs boson with mH < 2mV . In the following the
reconstruction procedures for leptonic W decays are presented for both scenarios.

Both vector bosons on shell

As long as only one leptonicW decay takes place in an event, and neglecting experimental
uncertainties, the measurable total missing transverse momentum pmiss

T is equal to the
transverse momentum of the neutrino. The remaining longitudinal component of its
momentum can be reconstructed by postulating the W on-shell condition

(p` + pν)2 = m2
W . (3.11)

This quadratic equation gives two solutions for the missing component of pν , in the
following denoted by p(1)

z,ν and p
(2)
z,ν . Hence the neutrino four-momentum can be recon-

structed to be one of two solutions

p(k)µ
ν =

(√
pmiss 2
T + p

(k) 2
z,ν ,pmiss 2

T , p(k) 2
z,ν

)µ
(3.12)

with k = 1, 2. In this analysis, we use both solutions, with an appropriately reduced
event weight and corrected statistical uncertainties. We find that this approach leads to
better results than either averaging (as in [24]) or just using one solution (as in [70]).
Events where the on-shell condition 3.11 has no solutions are rejected.
For the fully leptonic WW states this procedure does not work. Two neutrinos escape

the detector, and only the sum of their transverse momenta is measurable as missing
transverse momentum. An exact reconstruction of the true ν momenta pµν1 and pµν2 is
therefore impossible. Fortunately, observable quantities contain enough information for
an approximate reconstruction. For such topologies, i. e. two massive particles, each
decaying into one observable and one undetectable daughter, it is common to calculate
the variable

mT2 = min
p̃T,ν1+p̃T,ν2=pmiss

T

{
max

[
mT,W (pT,`1, p̃T,ν1) , mT,W (pT,`2, p̃T,ν2)

]}
, (3.13)

where pT,`1 and pT,`2 are the transverse momenta of the charged leptons and

mT,W (pT,`, p̃T,ν) =
√
m2
` + 2(ET,`ET,ν − pT,`p̃T,ν) (3.14)
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is the transverse mass of a single W boson. The mT2 variable [73, 74] has acquired quite
some fame as a lower bound for the mass of a particle decaying into theWW system. But
the value of mT2 is not the only result of this procedure. In this minimisation, values are
assigned to the neutrino transverse momenta p̃T,ν1 and p̃T,ν2. It can be shown that they
follow a Gaussian distribution around the true values and thus provide an estimate of
the true neutrino momenta [75]. These estimates better for larger values of mT2, hence
a cut on this variable can lead to a more precise reconstruction [76]. As in the case
of final states with one neutrino, an on-shell condition (3.11) can then be imposed for
each W boson to give estimates for the missing component, again leading to a discrete
ambiguity.
This procedure is known as mT2-assisted on-shell reconstruction (MAOS) [75, 76]

and will be used for the reconstruction of the W boson momenta in the leptonic WW
channels throughout this chapter. We will later evaluate how well the results based
on this technique agree with the ones that are obtained from the unobservable true W
momenta, and whether requiring a large mT2 improves the reconstruction accuracy.

Off-shell bosons at the Higgs resonance

The Higgs boson with mH = 125 GeV cannot decay into two on-shell vector bosons. The
Breit-Wigner distribution suggests that one of the two final W bosons is approximately
on shell, while the other has a lower invariant mass of about 40 GeV. Therefore a different
reconstruction protocol is required on the Higgs pole.
In the one-neutrino channels, we use the following strategy:

• An on-shell condition for the leptonically decaying W boson is imposed and the
system is reconstructed up to the usual discrete ambiguity.

• If one of the two solutions is compatible with an on-shell Higgs boson, it is used
(and the second solution discarded).

• If none of the solutions reconstruct the Higgs boson, the invariant mass of the
leptonicW is set to 40 GeV instead and the system is again reconstructed, yielding
two additional solutions.

• If this second reconstruction leads to a solution compatible with a Higgs boson,
this solution is used.

• If none of these solutions is compatible with an on-shell Higgs boson, the event is
rejected.

This strategy leads to a high efficiency for true Higgs-boson decays, while keeping the
samples relatively pure.
As before, the leptonic WW states require a more involved treatment:
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3. Polarisation measurements with decay angles

• Using mT2 minimisation, we assign values to the neutrino transverse momenta as
discussed in the previous section.

• The W on-shell condition (3.11) is imposed on the vector boson with the larger
reconstructed transverse momentum. The other gauge boson is reconstructed by
assuming that both W bosons reconstruct an on-shell H:

(p` + pν + pother V)2 = m2
H . (3.15)

This again introduces a discrete ambiguity.

• If (3.15) has no solutions, the procedure is repeated with swapped gauge bosons,
assuming the W with the lower transverse momentum to be on-shell.

• If this also does not give any solutions, the event is rejected.

We will analyse the efficiency of this approach in section 3.4.

3.3.3. Data selection

In this chapter we do not aim to propose a detailed analysis strategy with optimised
cuts. We rather try to assess the general prospects of a angular decay measurement
for different final states and in different relevant regions of phase space. Therefore we
will use three different event selections for the analysis, representing different possible
strategies.

All

First, we analyse the full set of events passing the acceptance cuts in table 3.1 and the
reconstruction procedure for on-shell V bosons. These samples demonstrate an upper
limit on the statistics that can be accumulated in a V V channel while still providing a
decent background suppression by means of the WBF cuts.

High energies

As a second approach, we analyse events that pass a high-energy cut in addition to the
acceptance cuts in table 3.1. Such a selection is sensitive to an increase of the V V cross
sections due to a non-cancellation between Higgs and gauge amplitudes as discussed in
section 2.3. In the reconstructable channels (i. e. those with 0 or 1 neutrinos), we require

mV V > 400 GeV. (3.16)
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In the channels with two neutrinos, we define a transverse mass for the V V system [77, 78]
as

m2
T =

(
ET,`` + ET,νν

)2
−
(
pT,`` + pmiss

T

)2
(3.17)

with

ET,`` =
√

p2
T,`` +m2

`` , (3.18)

ET,νν =
√

pmiss 2
T +m2

`` . (3.19)

We require

mT > 250 GeV (3.20)

instead of the mV V cut. Note that this V V transverse mass is not the same observable
as the transverse mass of a single W used in the definition of mT2 (3.14).

Higgs resonance

Finally, we analyse W+W− and ZZ events compatible with the Higgs pole. In addition
to the acceptance cuts in table 3.1 and the Higgs-resonance reconstruction procedure,
we require

120 GeV < mV V < 130 GeV (3.21)

in the reconstructable channels and

50 GeV < mT < 130 GeV (3.22)

in modes involving two neutrinos.

3.3.4. Polarisation measurement
After the event samples have passed the reconstruction procedure described in sec-
tion 3.3.2 and the selection cuts given in section 3.3.3, the distributions of the decay
angle θ∗ are calculated. Then the expected longitudinal and transverse distributions
given in (3.1) and (3.2) are fitted to the data.
There is a final complication due to the limited acceptance regions for the V decay

products, especially due to the η and pT cuts. A significant fraction of vector bosons is
produced in moderate forward direction, but not strongly boosted. Events where these
gauge bosons emit leptons or quarks collinearly are less likely to pass the acceptance
cuts than events with gauge bosons decaying orthogonally. Thus the observable cos θ∗
distributions are suppressed at | cos θ∗| ∼ 1.
This bias can be corrected with different strategies:
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3. Polarisation measurements with decay angles

1. Additional cuts can be imposed, requiring that the reconstructed gauge bosons
hit the detector centrally and highly boosted. This reduces the already low rates
further.

2. The impact of the acceptance effect can be reduced by limiting the fit of (3.1)
and (3.2) to the region of low and moderate values of | cos θ∗|, i. e. excluding the
problematic forward and backward directions. Of course, this also leads to a small
loss of information.

3. By simulating event samples with and without the acceptance cuts, the acceptance
effect can be measured, quantified as a function of the decay angle and removed
from the data. Such an approach relies on the kinematic distributions of the V
bosons and thus to some degree on the physics model, but retains all events.

The third option should be used in a thorough analysis. For simplicity, we choose the
second strategy and fit the decay distributions to data only in the region

| cos θ∗| ≤ 0.75. (3.23)

We find that this measure reduces the acceptance effects to a manageable level, and
retains most of the information in the distributions.
The fit does not only yield the best values for the fractions of longitudinal and trans-

verse gauge bosons, but also uncertainties for these parameters. We set the error bars of
the distributions such that they correspond to the expected statistical fluctuations after
300 fb−1 of data. In this way the parameter errors from the fit are a first approxim-
ation for the uncertainty of the polarisation measurement at the coming years of LHC
operation.

3.4. Results

3.4.1. Rates

The first results of interest are the cross sections before and after the reconstruction
procedure, which are given in table 3.3. Without further selection cuts, we find rates
spanning more than two orders of magnitude, from 0.1 fb for the leptonic ZZ states to
30 fb for semileptonicWW events. Generally, W bosons feature higher production cross
sections than Z bosons, and semileptonic decays are more likely than leptonic decays, in
agreement with the W and Z branching ratios. The high-energy event selection reduces
event rates by a factor of two to three. Both for the full samples and for the high-energy
events, the reconstruction procedure does not induce a significant rate loss.
To put these numbers into perspective, consider that the LHC is expected to soon

record data equivalent to 40 fb−1 per year [79, 80]. After some years of operation,
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Channel σ0 [fb] σReco [fb] εReco

W+W− → (`+ν) (`−ν̄) 7.90± 0.02 7.82± 0.02 0.99
W±W± → (`±ν) (`±ν) 0.42± 0.01 0.42± 0.01 0.99

WZ → (`±ν) (`+`−) 0.78± 0.01 0.68± 0.01 0.87
ZZ → (`+`−) (`+`−) 0.09± 0.01 0.09± 0.01 1.00
ZZ → (`+`−) (νν̄) 0.66± 0.01 0.66± 0.01 1.00

WW → (`±ν) (jj) 29.36± 0.08 25.80± 0.08 0.88
WZ → (`±ν) (jj) 5.08± 0.01 4.41± 0.01 0.87
WZ → (jj) (`+`−) 2.05± 0.01 2.05± 0.01 1.00
ZZ → (`+`−) (jj) 1.10± 0.01 1.10± 0.01 1.00

(a) All events

Channel σ0 [fb] σReco [fb] εReco

W+W− → (`+ν) (`−ν̄) 2.86± 0.01 2.79± 0.01 0.98
W±W± → (`±ν) (`±ν) 0.26± 0.01 0.26± 0.01 0.99

WZ → (`±ν) (`+`−) 0.33± 0.01 0.29± 0.01 0.89
ZZ → (`+`−) (`+`−) 0.03± 0.01 0.03± 0.01 1.00
ZZ → (`+`−) (νν̄) 0.25± 0.01 0.25± 0.01 1.00

WW → (`±ν) (jj) 11.39± 0.05 10.09± 0.05 0.89
WZ → (`±ν) (jj) 2.41± 0.01 2.10± 0.01 0.87
WZ → (jj) (`+`−) 0.96± 0.01 0.96± 0.01 1.00
ZZ → (`+`−) (jj) 0.42± 0.01 0.42± 0.01 1.00

(b) High-energy selection.

Channel σ0 [fb] σReco [fb] εReco

W+W− → (`+ν) (`−ν̄) 2.35± 0.01 0.16± 0.01 0.07
ZZ → (`+`−) (`+`−) 0.03± 0.01 0.03± 0.01 1.00
ZZ → (`+`−) (νν̄) 0.06± 0.01 0.06± 0.01 1.00

WW → (`±ν) (jj) 3.13± 0.02 1.95± 0.02 0.62
ZZ → (`+`−) (jj) 0.14± 0.01 0.14± 0.01 1.00

(c) Higgs-resonance selection.

Table 3.3.: Partonic cross-sections before the reconstruction procedure σ0, after the re-
construction procedure σReco, and reconstruction efficiencies εReco. The given
errors are purely statistical.
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3. Polarisation measurements with decay angles

the leptonic and semileptonic WW channels might yield enough events for a statistical
analysis of these events. The WZ states and the ZZ decay to leptons and neutrinos
might also be feasible. The leptonic and semileptonic ZZ states are rarer and will
only become relevant at a high-luminosity LHC (HL-LHC), which is planned to give an
integrated luminosity of up to 3000 fb−1 after 10 years of operation [80, 81].
After the Higgs-resonance selection, the ZZ decays are again too rare to allow for a

statistical polarisation analysis. The ZZ decay to leptons and neutrinos suffers from
the fact that the transverse-mass cut (3.22) is very inefficient when the two neutrinos
come from the off-shell Z. The leptonic WW signature gives a larger rate. However, we
find that the MAOS reconstruction procedure performs badly in this part of the phase
space, where one of the W bosons is off its mass shell: only 7% of the Higgs decays
survive the reconstruction and selection procedure, pushing the rate to a useless level.
So only the semileptonic WW channel remains, troubled by a reconstruction efficiency
of around 60% and potentially large backgrounds.
Therefore, based on the cross sections, the leptonic W+W− channel away from the

Higgs resonance seems most promising. It remains to be seen how well the reconstruction
procedure works in this channel with its two neutrinos. Other leptonic states suffer from
low rates, while the semileptonic channels have to fight against overwhelming QCD
backgrounds.

3.4.2. Decay angles

Before we turn to the results of the polarisation fits, let us first analyse the effect of the
reconstruction procedure on the decay distribution. We give distributions of truth-level
and reconstructed decay angles for some of the channels in figure 3.2, the results for all
channels are given in appendix B.1. In figure 3.3, the difference between truth-level and
reconstructed results is plotted.
We find that longitudinal gauge bosons generally decay more centrally than trans-

verse ones. The distributions are in agreement with the predictions (3.1) and (3.2).
Small deviations can be explained as off-shell effects. All distributions are suppressed
at | cos θ∗| ∼ 1 compared to the expectations, which is due to the acceptance effects
discussed in section 3.3.4.
In the one-neutrino channels, the reconstruction introduces a slight smearing of the

decay angles, as can be seen in the left panels of figure 3.3. This effect is less pronounced
in the high-energy and Higgs-resonance samples, where the strong boost of the gauge
bosons or the additional kinematic condition that the gauge bosons reconstruct the
Higgs, respectively, improve the reconstruction. All in all, the reconstruction has a
visible, but not critical impact on these distributions.
The reconstruction for two-neutrino states gives much worse results, shown in the right

panels of figure 3.3. The involved MAOS procedure yields an estimate for cos θ∗ which
is distributed around the true value, but with a significant variance and a bias towards
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Figure 3.2.: Distribution of decay angles on truth-level (top panels) and after the recon-
struction procedure (bottom panels). Only events passing the high-energy
cut are shown. Left: leptonic W decay in the semileptonic WW channel.
Right: W+ decay in the leptonic W+W− channel after the mT2 cut (3.24).
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Figure 3.3.: Smearing of the decay angles induced by the reconstruction procedure.
The left panels show the channels involving one neutrino, the right pan-
els those with two neutrinos. In the top row, all events are shown, while
the middle and bottom rows only show events satisfying high-energy and
Higgs-resonance cuts, respectively.
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lower values of cos θ∗. This dramatically changes the shape of the angular distributions.
We find that the situation is slightly improved by requiring

mT2 > 40 GeV , (3.24)

as discussed in section 3.3.2. The difference between longitudinal and transverse gauge
bosons is at least partially conserved and there is still some discrimination power between
the samples, visible in the bottom right panel of figure 3.2. Still, it is clear that these
channels are not suited for a simple fit to the theoretical expectations.

3.4.3. Polarisation fits
Now, a simple fit of the expected angular distributions (3.1) and (3.2) to the samples
gives the fraction of longitudinal and transverse bosons. We give our results in tables 3.4
to 3.6. As a sanity check, we perform the same fits on polarised samples, the results
of which can be found in appendix B.2. As explained in section 3.3.4, we also give
uncertainty estimates based on the expected statistical fluctuations for data equivalent
to 300 fb−1. This number should not be mistaken for consistent statistical limit setting,
but serves as a first approximation for the precision of such a measurement at the LHC
in the coming years.
Let us first take a look at the truth-level polarisation. The fits to the polarised samples

generally reproduce the correct polarisations. Small deviations of longitudinal fractions
from 0 or 1 are expected due to off-shell effects, as the theoretical angular distribu-
tions (3.1) and (3.2) are only strictly true for on-shell gauge bosons. Unexpectedly large
deviations appear only in hadronic decays of transverse bosons, which decay more cent-
rally than expected. This might be an artefact of acceptance effects as discussed in
section 3.3.4.
In the full, unpolarised samples, the longitudinal fractions vary between 30% and

40% for leptonic decays, as given in table 3.4. In the high-energy event selections, the
fraction is around 20% to 30%, while the Higgs-resonance samples are dominated by
longitudinal gauge bosons as expected. This is especially true for the reconstructable
channels, where the mV V cut gives a much pure sample than the mT cut in the non-
reconstructable channel can provide. Again, the hadronic decays give larger longitudinal
fractions, which can be explained by the different acceptance regions for jets compared
to leptons.
Fitting the reconstructed distributions instead of the true results induces small devi-

ations in the channels with one neutrino. These effects should be carefully monitored in
a more thorough study, but they appear not to pose a serious problem. In the leptonic
WW channels with two neutrinos, however, the fitting algorithm fails to converge. The
approximate MAOS reconstruction procedure distorts the distributions to such a large
degree that our simple fit does not work any longer. Other, more robust observables or a
template-based approach to decay distributions are needed to deal with these channels.
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3. Polarisation measurements with decay angles

V V channel Gauge boson Longitudinal fraction

True Reconstructed

W+W− → (`+ν) (`−ν̄) W+ 0.38± 0.11 −
W− 0.40± 0.11 −

W±W± → (`±ν) (`±ν) lower-η W 0.30± 0.39 −
larger-η W 0.32± 0.39 −

WZ → (`±ν) (`+`−) W 0.31± 0.22 0.30± 0.22
Z 0.33± 0.22 0.33± 0.22

ZZ → (`+`−) (`+`−) lower-η Z 0.46± 0.72 0.46± 0.72
larger-η Z 0.46± 0.72 0.46± 0.72

ZZ → (`+`−) (νν̄) leptonic Z 0.41± 0.22 0.41± 0.22

WW → (`±ν) (jj) leptonic W 0.53± 0.03 0.30± 0.04
hadronic W 0.68± 0.03 0.68± 0.03

WZ → (`±ν) (jj) W 0.38± 0.09 0.35± 0.09
Z 0.51± 0.08 0.51± 0.08

WZ → (jj) (`+`−) W 0.57± 0.12 0.57± 0.12
Z 0.33± 0.13 0.33± 0.13

ZZ → (`+`−) (jj) leptonic Z 0.41± 0.18 0.41± 0.18
hadronic Z 0.57± 0.16 0.57± 0.16

Table 3.4.: Relative fraction of longitudinally polarised gauge bosons as determined by a
decay fit. The given uncertainties are a first approximation for the expected
statistical uncertainty of such a measurement at the LHC after 300 fb−1 of
data. See the discussion in the text for more details. In the reconstructed
leptonic WW states, the fitting procedure does not converge.
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V V channel Gauge boson Longitudinal fraction

True Reconstructed

W+W− → (`+ν) (`−ν̄) W+ 0.31± 0.17 −
W− 0.21± 0.17 −

W±W± → (`±ν) (`±ν) lower-η W 0.27± 0.63 −
larger-η W 0.29± 0.64 −

WZ → (`±ν) (`+`−) W 0.30± 0.32 0.24± 0.32
Z 0.29± 0.32 0.29± 0.32

ZZ → (`+`−) (`+`−) lower-η Z 0.27± 0.62 0.27± 0.62
larger-η Z 0.23± 0.70 0.23± 0.70

ZZ → (`+`−) (νν̄) leptonic Z 0.24± 0.34 0.24± 0.34

WW → (`±ν) (jj) leptonic W 0.40± 0.06 0.31± 0.06
hadronic W 0.52± 0.05 0.52± 0.05

WZ → (`±ν) (jj) W 0.38± 0.12 0.31± 0.12
Z 0.47± 0.12 0.47± 0.12

WZ → (jj) (`+`−) W 0.49± 0.17 0.49± 0.17
Z 0.30± 0.19 0.30± 0.19

ZZ → (`+`−) (jj) leptonic Z 0.26± 0.28 0.26± 0.28
hadronic Z 0.42± 0.26 0.42± 0.26

Table 3.5.: Relative fraction of longitudinally polarised gauge bosons in the high-energy
event selection. The given uncertainties are a first approximation for
the expected statistical uncertainty of such a measurement at the LHC
after 300 fb−1 of data. In the reconstructed leptonic WW states, the fit-
ting procedure does not converge.
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V V channel Gauge boson Longitudinal fraction

True Reconstructed

W+W− → (`+ν) (`−ν̄) W+ 0.58± 0.41 −
W− 1.00± 0.64 −

ZZ → (`+`−) (`+`−) lower-η Z 0.80± 0.88 0.80± 0.88
larger-η Z 0.80± 0.88 0.80± 0.88

ZZ → (`+`−) (νν̄) leptonic Z 0.90± 0.94 0.90± 0.94

WW → (`±ν) (jj) leptonic W 1.00± 0.07 0.97± 0.05
hadronic W 1.00± 0.01 1.00± 0.01

ZZ → (`+`−) (jj) leptonic Z 0.88± 0.80 0.88± 0.80
hadronic Z 1.00± 0.95 1.00± 0.95

Table 3.6.: Relative fraction of longitudinally polarised gauge bosons in the Higgs-
resonance event selection. The given uncertainties are a first approximation
for the expected statistical uncertainty of such a measurement at the LHC
after 300 fb−1 of data. In the reconstructed leptonic WW state, the fitting
procedure does not converge.

Finally, most of the channels are severely limited by statistics, which can be seen by
the uncertainties in tables 3.4 to 3.6. The leptonic channels other than W+W− simply
produce too few events for the coming years of LHC operation. The semileptonic WW
and WZ channels fare better, but they will have to survive large QCD backgrounds,
which are not included in this first analysis.

3.5. Conclusions
In this chapter we presented a basic strategy to measure the polarisation of the final-state
gauge bosons: the reconstruction of their decay angles allows a fit to the distributions
expected for longitudinal and transverse modes. This approach is independent of the
model and the phase-space region. We find that it works in principle and gives the
correct results for polarised samples. As found in [24], this strategy also reduces the
large systematic uncertainties of counting experiments. It is thus well suited to analyse
gauge boson signatures, at least in channels with sufficiently large rates, low backgrounds
and fully reconstructable gauge bosons.
Alas, such a decay mode does not exist. We have analysed all leptonic and semilepto-

nic V V channels, which can be grouped into nine categories with different strengths and
weaknesses:

• W+W− → (`+ν) (`−ν̄): This channel features a large rate and low backgrounds.

50



3.5. Conclusions

But the two neutrinos make the reconstruction of the event difficult. We find that a
method based on mT2 minimisation can provide approximated decay distributions,
but they are too different from the true distributions for a straightforward fit.
Instead of the reconstruction of decay angles, more robust observables such as the
angular correlation of the two leptons should be considered. Unlike decay angles,
such distributions are not model-independent.

• W±W± → (`±ν) (`±ν): The same-sign version is similar to the opposite-sign
signature above, but with lower rate and lower backgrounds. The reconstruction
problem due to the two neutrinos persists. Again, a different approach to this
channel is preferable.

• WZ → (`±ν) (`+`−): This channel also has low backgrounds and is well recon-
structable regardless of the neutrino. The rate is too low for such an analysis in
the next years, but it may become feasible with larger integrated luminosities.

• ZZ → (`+`−) (`+`−): There are low backgrounds and a perfect reconstructability,
but the cross section is way too low to be relevant at any time before the HL-LHC
upgrade.

• ZZ → (`+`−) (νν̄): One of the bosons can be reconstructed precisely. The rate
is low, but larger than in the fully leptonic ZZ case. This channel may become
relevant in a few years.

• WW → (`±ν) (jj): The channel originally suggested for such an analysis [24]
has a large rate and is well reconstructable despite the neutrino. There are large
QCD backgrounds which require further evaluation. This might still be the most
promising channel for an analysis in the near future.

• WZ → (`±ν) (jj): This channel is similar to the semileptonic WW channel, but
has a lower rate. If the large backgrounds can be controlled, this measurement
may become feasible at the HL-LHC.

• WZ → (jj) (`+`−): In comparison to the other semileptonic WZ channel, this
mode offers a better reconstruction, but gives a lower rate. Its analysis might only
become possible with a good background rejection and a lot of statistics.

• ZZ → (`+`−) (jj): This is the semileptonic state with the lowest rate, but similarly
large backgrounds. It is unlikely to work in the near future.

There is no golden channel, and any analysis strategy will face challenges due to low rates,
QCD backgrounds, or unreconstructable decay modes. Still, some of these channels
might become feasible for an LHC analysis.
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We have limited ourselves to a very basic analysis on parton level, without any attempt
to simulate backgrounds or to optimise cuts. There are other loose ends, including
deviations from the theoretical distributions for some hadronic decay angles. A more
thorough study should also work on the reconstruction of the leptonic WW states. A
next logical step would be the simulation of scenarios of new physics, e. g. in an effective
field theory approach, and the measurement of their impact on the polarisation fit results.
But such a detailed analysis goes beyond the scope of this thesis, in which we are content
with a basic demonstration of the technique. Instead of further developing this approach,
we focus on something completely different in the next chapter.
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4. Polarisation measurements with tagging
jets

In this chapter we develop a novel approach to the Higgs-gauge sector: we propose to
measure the polarisation of the initial gauge bosons in gauge boson scattering processes
in the kinematics of the tagging jets. We focus on the Higgs pole rather than the high-
energy regime. These two features distinguish our analysis from existing studies, which
have either investigated the high-energy regime or the decay products of the final gauge
bosons, as discussed in section 2.3.4.
Our strategy is motivated by the effective W approximation, which predicts an ana-

lytical relation between the transverse momenta of the tagging jets and the polarisation
of the initial gauge bosons. We discuss this framework and its implications and analyse
its validity. We then use the full process to search for signatures of the gauge boson
polarisation in jet observables and evaluate their significance. We compare our results
to those from established techniques.
Often the Higgs-gauge sector is parameterised in terms of higher-dimensional operators

as discussed in section 2.1.3. However, this effective field theory approach has problems
to ask the simple and physical question of gauge boson polarisation. This is why we use
a simple model in which the couplings of the Higgs boson to longitudinal and transverse
massive gauge bosons are two independent parameters. This definition requires the
choice of a reference frame, breaking Lorentz invariance. Later in this chapter we will
discuss this worrisome property of the simple model and link it to an approach based on
effective field theory.
In section 4.1, we discuss the relation of gauge boson polarisation and tagging jet

kinematics in the framework of the effective W approximation. Our simple model is
introduced in section 4.2 and we develop our analysis strategy in section 4.3. The
results follow in section 4.4. In section 4.5, we link our model to an approach based
on higher-dimensional operators and discuss the dependence on reference frames. Our
conclusions are given in section 4.6.

The work presented in this chapter has been submitted for publication [28]. There is
some overlap in text, tables, and figures between this chapter and the submitted draft.
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4.1. The effective W approximation

4.1.1. Introduction

Hadrons are usually considered as a sea of only quarks and gluons. However, under
certain conditions the radiation of electroweak gauge bosons off incoming quarks can be
factorised out of scattering processes, effectively allowing for the treatment of W± and
Z bosons as partons. Consider a process qX → q′Y where the interaction is mediated
by aW boson. In the effectiveW approximation (EWA), this process is factorised into a
splitting function describing the radiation of aW off a quark and a hard process initiated
by an on-shell W :

W

X

q

Y

q′

≈ q

W

q′

⊗

X

W

Y . (4.1)

Essentially, this turns the t-channel W of the full process into an on-shell s-channel
propagator.
To be more precise, in the effective W approximation the cross-section is given by [27]

dσEWA(qX → q′Y )
dxdpT

= PT (x, pT ) dσ̂(WTX → Y ) + PL(x, pT ) dσ̂(WLX → Y ) . (4.2)

Here

PT (x, pT ) = g2

16π2
1 + (1− x)2

x

p3
T

((1− x)m2
W + p2

T )2 (4.3)

and

PL(x, pT ) = g2

16π2
1− x
x

2pT (1− x)m2
W

((1− x)m2
W + p2

T )2 (4.4)

are the splitting functions for transverse and longitudinal W bosons carrying a longit-
udinal momentum fraction x of the quark and a transverse momentum pT relative to
the quark. PT and PL are the analogue of pT -dependent parton density functions. For
us, the relevant feature of these functions is the different pT dependence between longit-
udinal and transverse gauge bosons. A similar result is obtained for processes mediated
by Z bosons.
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4.1. The effective W approximation

For hadronic cross-sections, (4.2) has to be convoluted with the parton density function
fi(x) of quark flavour i inside a proton:

dσEWA(pX → q′Y )
dpT

=
∑
i

∫ 1

0
dxq

∫ 1

0
dxW fi(xq)

[
PT (xW , pT ) dσ̂(WTX → Y )

+ PL(x, pT ) dσ̂(WLX → Y )
]
. (4.5)

The sum includes all relevant quark flavours i. xq is the fraction of the proton energy
carried by q, while xW describes the fraction of the longitudinal momentum of q carried
by the W boson. The longitudinal momentum of a W boson radiating off a proton with
energy E is therefore given by xWxqE.
It is straightforward to generalise this result to processes of the form pp → q′1q

′
2XY

where again the interaction is mediated by two W bosons radiating off initial-state
quarks. This is exactly the topology of vector boson scattering at the LHC. The effective
W approximation then reads

dσEWA(pp→ q′1q
′
2XY )

dpT1dpT1
=
∑
i

∑
j

∑
m

∑
n

∫ 1

0
dxq1

∫ 1

0
dxq2

∫ 1

0
dxW1

∫ 1

0
dxW2

× fi(xq1) fj(xq2) Pm(xW1, pT1) Pn(xW2, pT2) dσ̂(WmWn → Y ), (4.6)

where the sums run over all allowed combinations of quark flavours i, j and W polarisa-
tion states m,n.
To first order the initial quarks inside the proton have vanishing transverse momenta,

so the transverse momenta of the final-state quarks are equal to those of the W bosons.
Thus, (4.6) together with (4.3) and (4.4) presents an analytical relation between the
transverse momenta of the tagging jets in weak boson fusion processes and the polar-
isation of the initial gauge bosons. The effective W approximation thus predicts that
longitudinal W bosons correspond to lower transverse jet momenta than transverse W
bosons.

4.1.2. Validity at the Higgs pole
But is the effective W approximation valid in the regime of our analysis, which is WW
scattering at the Higgs resonance? The EWA essentially considers the W as a parton
inside the proton. This assumes a hierarchy

Ep ∼ Eq � mH � pT,j ∼ mW , (4.7)

where mH is the scale of the hard WW scattering process. In [27], this hierarchy is
expressed in terms of two validity conditions:

mW

Eq
� 1 (4.8)
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Parameter Value

Collider setup pp collisions at
√
s = 14 TeV

mH 400 GeV, 1000 GeV
Number of events (MadGraph samples) 100,000 each
Number of points (MC integration of EWA) 10,000,000 each
Parton density function CTEQ6L [49]

Table 4.1.: Parameters used for the validation of the effective W approximation.

and

pT,j
Eq
� 1 . (4.9)

We analyse the validity of the effective W approximation by comparing the EWA
prediction to a simulation of the full amplitude. For simplicity, we limit ourselves to the
subprocess

ud→ du W+W− → du H , (4.10)

which is the dominant contribution to the weak boson fusion production of Higgs bosons,
as discussed in 2.3.3.
This process is fully simulated in MadGraph 5 [46] with different Higgs masses. We

also generate samples where the polarisations of the initial W bosons are limited to
longitudinal or transverse. The polarisation states are defined in the Higgs rest frame.
Table 4.1 summarises the parameters used for the event generation.
The EWA prediction for weak-boson-fusion topologies is given in (4.6). A straightfor-

ward calculation gives the cross section for the hard process W+W− → H as

dσ̂(W+
T W

−
T → H) = πg2m2

W

2mH

√
m2
H − 4m2

W

δ(xW1xW2xq1xq2s−m2
H), (4.11)

dσ̂(W+
LW

−
L → H) = πg2(m2

H − 2m2
W )2

4m2
WmH

√
m2
H − 4m2

W

δ(xW1xW2xq1xq2s−m2
H), (4.12)

dσ̂(W+
T W

−
L → H) = 0, (4.13)

dσ̂(W+
LW

−
T → H) = 0. (4.14)

This assumes both W bosons and the Higgs boson to be on-shell. The calculation is
given in appendix A.3. For a Higgs boson with the observed mass of 125 GeV, this gives
a vanishing cross section, reflecting the assumption of on-shell W bosons. Hence only
the production of heavy Higgs bosons with mH > 2mW is analysed.
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4.1. The effective W approximation

mH [GeV] Initial W Cross section [fb]

Full process EWA (bare) EWA (cuts)

1000 All 45.0
Longitudinal 45.1 48.4 47.0
Transverse 0.084 0.200 0.108

400 All 267
Longitudinal 276 272 225
Transverse 5.14 37.8 11.1

180 All 747
Longitudinal 931 191 103
Transverse 105 1343 212

Table 4.2.: Cross sections for Higgs production in weak boson fusion for the full process
simulated with MadGraph and according to the effective W approximation,
both before and after applying the validity cuts (4.15) to (4.16). The stat-
istical uncertainties on these results are negligible.

We calculate the EWA prediction for this process, given in (4.6) and (4.11) to (4.14),
by Monte-Carlo integration. All parameters are chosen to be consistent with the full
simulation with MadGraph. The parton density functions are included with the LHAPDF
library [82]. A number of sanity checks verify that the Monte-Carlo integration performs
as expected.
The effective W approximation is assumed to be valid only in the regime where (4.8)

and (4.9) hold. In addition to the numerical calculation of the full integrals in (4.6), we
therefore calculate the EWA cross section with the additional phase-space cuts

mW

Eqi
≤ 1

4 (4.15)

and

pT i
Eqi
≤ 1

4 . (4.16)

These conditions cut off the integrals where the EWA fails to be valid.
We give the cross sections for the full simulation and the EWA prediction in table 4.2.

As expected, Higgs boson production is dominated by longitudinal modes, especially for
heavy Higgs bosons. The rates for longitudinal W bosons only are larger than the result
for the full process, which is evidence for destructive interference between transverse
and longitudinal contributions. For mH = 1000 GeV, the effective W approximation
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4. Polarisation measurements with tagging jets

agrees with these rates within O (10%), at least after the application of the EWA validity
cuts (4.15) and (4.16). For smaller Higgs boson masses, the agreement becomes gradually
worse, and at mH = 180 GeV the results differ by as much as an order of magnitude.
The distributions of the transverse jet momenta in the full process and in the effective

W approximation are compared in figure 4.1. Again, we find good agreement for a
heavy Higgs boson of mH = 1000 GeV, especially in the longitudinal modes. But even
in this high-mass regime, the transverse modes show a different fall-off behaviour at large
pT . With decreasing Higgs mass, the deviations become more prominent. Close to the
threshold mH = 2mW , the EWA loses its validity entirely.
So longitudinal W bosons and heavy Higgs bosons give a better agreement between

the effectiveW approximation and the full process than light Higgs bosons or transverse
vector bosons. To demonstrate the reason for this, we show the distribution of the
critical ratios pT,j/Eq and mW /Eq in figure 4.2. We find that for mH = 1000 GeV and
especially for longitudinalW modes, the conditions (4.15) and (4.16) are easily satisfied.
There is a hierarchy between the energy scales of the proton, the hard process and the
weak scale, as required by the effective W approximation. For lower Higgs masses as
well as for transverseW bosons (corresponding to less collinearly emitted gauge bosons),
this hierarchy becomes weaker, and the validity conditions begin to fail.

All in all, we find that the effectiveW approximation works well at a hypothetical heavy
resonance, where a clean hierarchy between the proton energy, the energy scale of the
hard process and the weak scale exists. In particular, at such a heavy resonance the
pT dependence of longitudinal and transverse vector bosons is well described by (4.3)
and (4.4). At the observed Higgs mass of mH = 125 GeV, however, the EWA loses its
validity, and its quantitative predictions are not useful for our analysis. Still, it serves
as a motivation to analyse the relation between the polarisation of gauge bosons and the
transverse momenta of the tagging jets.

4.2. A simple model

Since the effective W approximation gives a poor description at the Higgs resonance,
we now leave it behind and analyse the full process. Motivated by the equivalence
theorem as discussed in section 2.2.3, we aim to measure the couplings of longitudinal
and transverse gauge bosons to the Higgs separately. This separation is unproblematic
for final states, which depending on the phase-space region are often nearly on-shell. It
is also well defined in the limit of high energies, where the longitudinal modes are just
the Goldstone bosons. For initial gauge bosons at finite energies, the separation is less
clean. As discussed in section 2.3.2, the initial vector bosons are t-channel propagators
and therefore far off-shell. The definition of their polarisation requires the choice of a
reference frame and requires us to break Lorentz invariance. However, this technical
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Figure 4.1.: pT,j1 distributions for the full process given in (4.10), and predictions based
on the effective W approximation after the validity cuts (4.15) and (4.16).
The left panels assume a heavy Higgs with mH = 1 TeV, the right ones
mH = 180 GeV. The lower panels show the normalised distributions.
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(blue) W bosons in the Monte-Carlo integration of the EWA prediction.
The EWA assumes both quantities to be much smaller than 1.
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complication does not make the question of how longitudinal and transverse vector
bosons couple to the Higgs any less relevant.
We use the definition of polarisation states discussed in section 2.2.2. This allows us to

split the Higgs-gauge interaction term into its longitudinal and transverse components.
We choose to apply this definition in the W+W− rest frame, which for the dominant
s-channel Higgs amplitude is the Higgs rest frame. There are two reasons for this: first,
this choice of reference frame is best suited for an interpretation in terms of effective field
theory, as we will discuss in 4.5.2. Second, this definition disposes of mixed contributions
H VLVT and the Standard Model Higgs-gauge vertex becomes

LSM ⊃ gSMH V V = gSM (H VLVL +H VTVT ) (4.17)

with V = W,Z. In section 4.5.1, other choices of the reference frame will be discussed.
We define a simple model by introducing scaling factors aL and aT for the coupling

of the Higgs boson to longitudinal and transverse gauge bosons:

L ⊃ aL gSMH VLVL + aT gSMH VTVT . (4.18)

The parameters aL and aT are real numbers, and we do not enforce their sign or a sum
rule protecting the total Higgs production and decay rates. We will use this model as a
test scenario for our analysis strategy.
As mentioned before, this model is neither gauge invariant nor Lorentz invariant.

Clearly it does not pose a consistent quantum field theory. However, independent lon-
gitudinal and transverse Higgs-gauge couplings can be induced by perfectly valid models
of new physics. In section 4.5.2 we will demonstrate this by linking the simple model to
an approach based on effective field theory, which respects Lorentz and gauge symmetry
intrinsically. The couplings aL and aT then become momentum-dependent.

4.3. Analysis strategy

4.3.1. Choosing a laboratory

As debated in section 2.3.4, there are essentially two choices to make for an analysis of the
Higgs-gauge sector, namely the phase-space region and the observables. Regarding the
first question, we choose to probe the longitudinal and transverse Higgs-gauge couplings
in Higgs production in weak boson fusion. As a decay mode we analyse the leptonic
W−W+ state. In other words, we are interested in W+W− scattering of the form

pp→W+W− jj → (`+ν̄) (`−ν) jj (4.19)

with scattering energies close to the Higgs resonance. This channel is appealing for
different reasons. Since the observed resonance resembles the Standard Model Higgs
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4. Polarisation measurements with tagging jets

boson, we know that a large fraction of the events actually come from the s-channel
Higgs diagram. Higgs production in weak boson fusion probes the couplings of the
initial gauge bosons to the Higgs, while the decay mode is sensitive to the couplings of
the final bosons. The cross section of the process is reasonably large. Finally, its two
forward jets and its lack of additional hadronic activity mean that QCD backgrounds
can be suppressed quite well, as discussed in section 2.3.3.
A key feature of our approach is that we probe the Higgs-gauge sector at the Higgs

resonance rather than in the high-energy regime. Looking for longitudinal scattering in
the region of a large invariant mWW has a long history, as discussed in section 2.3.4. But
these analyses suffer from low rates and large scale uncertainties. In addition, the Higgs
discovery takes away some of the motivation for this kind of challenging measurement. It
is safe to assume that the increase of the cross section at large energies with its eventual
violation of perturbative unitarity is at least partially cured by the newly discovered
boson. This postpones any critical behaviour to higher energies and thus lower rates.
Since most of the WW jj cross section comes from the Higgs pole, it seems natural
to analyse the Higgs-gauge sector at this resonance rather than in the region of high
energies.
The second question is the choice of observables. Of course, the leptons are sensitive

to the final HV V coupling. As a matter of fact, the LHC Higgs analyses already use
correlations between the two leptons based on the scalar nature of the Higgs [1, 2]. The
most straightforward observables are decay angles, which were extensively examined in
chapter 3. However, we found that the two neutrinos of the channel (4.19) make the
reconstruction of these angles very difficult, especially close to the Higgs resonance where
at least one of the final W bosons is forced off shell. Alternative observables include the
lepton transverse momenta, the dilepton invariant mass, angular correlations between
the two leptons, or the missing transverse momentum. We will later briefly discuss an
analysis based on such quantities.
Instead of the leptons, we focus on the tagging jets, which provide a handle to the

initial HV V vertex [58–64]. This is motivated by the effective W approximation, which
predicts an analytical relationship between the polarisation of the initial gauge bosons
and the transverse jet momenta, as discussed in the previous section. We will later see
that the information encoded in the tagging jets is similar to the information in the
lepton kinematics. Our approach has the advantage of being independent of the decay
channel, allowing for an efficient combination of individual Higgs decay modes.

4.3.2. Event generation and selection

We implement the simple model defined in section 4.2 in MadGraph 5 and generate
event samples. The full amplitude for the process (4.19) at the leading electroweak
order O

(
α4) is taken into account. This includes the signal s-channel Higgs amplitude

as well as continuum electroweak W+W− production as a first background. As an
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Parameter Value

Collider setup pp collisions at
√
s = 13 TeV

mH 125 GeV
Number of events > 100, 000 each
Parton density function CTEQ6L [49]

Table 4.3.: Parameters for the event generation.

Leptonic cuts Jet cuts

|η`| < 2.5 |ηj | < 5.0
pT,` > 20, 10 GeV pT,j > 25 GeV

mjj > 500 GeV
ηj1 · ηj2 < 0

pmiss
T > 20 GeV ∆ηjj > 4.2

Table 4.4.: Acceptance and weak boson fusion cuts required during event generation.

additional background, Higgs production in gluon fusion (GF) with the same final state
at order O

(
αggH α

2
s α
)
is included. Finally, we simulate continuum W+W− production

at order O
(
α2
s α

2). The most dangerous background missing in our simulation is tt̄
production. As discussed in section 2.3.3, it can be kept at bay with techniques such as
a central jet veto [77, 78], and should be studied in a more thorough analysis at hadron
level. There is also background from τ+τ− and ZZ production with additional jets, but
these contributions do not pose a serious threat [77, 78].
These processes are simulated for pp collisions at an energy of

√
s = 13 TeV. Since

it is established that weak boson fusion signatures can be extracted experimentally, we
limit our study to the parton level. We assume a Higgs mass of mH = 125 GeV and a
corresponding decay width of ΓH = 4.4 MeV, calculated with HDecay [83]. For the Higgs-
gauge coupling parameters (aL, aT ), a total of 529 parameter points are simulated, 441
of which are evenly distributed in the range aL/T ∈ [−2, 2], while the remaining 88 are
chosen close to the Standard Model value aL = aT = 1 to increase the sensitivity in this
region of interest. A map of the simulated parameter points is shown in figure B.10 in
appendix B.3. Between these points cross sections, kinematic quantities and p-values are
interpolated by Delauny triangulation [84]. Other settings used in the event generation
are given in table 4.3.
We simulate typical detector acceptance regions [67–69] and suppress the backgrounds

by imposing the standard weak boson fusion cuts given in table 4.4. We require two
tagging jets with an invariant mass of mjj > 500 GeV between them and a separation
of pseudorapidity of at least ∆ηjj > 4.2. In order to select events from the Higgs pole,
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Figure 4.3.: Transverse mass distribution for the signal (white) and background (red,
green, and blue) contributions in the Standard Model. The dashed lines
indicate the selection cuts.

we again use the transverse mass of the WW system,

m2
T =

(
ET,`` + ET,νν

)2
−
(
pT,`` + pmiss

T

)2
(4.20)

with

ET,`` =
√

p2
T,`` +m2

`` , (4.21)

ET,νν =
√

pmiss 2
T +m2

`` , (4.22)

and require the events to satisfy

50 GeV < mT < 130 GeV . (4.23)

4.4. Results

4.4.1. Signal and background contributions

Before analysing the effect of the longitudinal and transverse Higgs-gauge couplings
on observables, we give the signal and background distributions to the transverse mass
distribution in figure 4.3. The selection cut (4.23) retains 74% of the true Higgs-resonance
events and gives a signal-to-background ratio of approximately unity (c.f. table 4.5).
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Contribution Cross section [fb]

Before mT cut After mT cut

WBF H →W+W− 3.15 ± 0.01 2.34 ± 0.01
Continuum O

(
α4) 4.54 ± 0.01 0.31 ± 0.01

GF H →W+W− 1.62 ± 0.01 1.13 ± 0.01
Continuum O

(
α2
sα

2) 11.01 ± 0.01 1.17 ± 0.01

S/(S +B) 0.15 0.47

Table 4.5.: Cross sections in fb for the different contributions before and after the mT

cut (4.23). The given uncertainties are purely statistical.
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Figure 4.4.: Cross section at the Higgs resonance as a function of the Higgs couplings
to longitudinal and transverse vector bosons. The star marks the Standard
Model.
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4.4.2. Resonance cross section
In the following sections we answer the question how a modification of the longitudinal
and transverse Higgs-gauge couplings translates into observables. First, we give the
cross section on the Higgs resonance as a function of the parameter space in figure 4.4.
Close to the Standard Model, the rate is nearly insensitive to the transverse Higgs-gauge
coupling. This agrees with the expectation that the Standard Model Higgs boson couples
predominantly to longitudinal W bosons.
Further away from the Standard Model, we find that the curve with a constant rate

is approximately an ellipse in the (aL, aT ) plane. This reflects the fact that the Higgs
production rate is quadratic in aL/T :

σproduction =
∫

dΩ | [aLML + aTMT +Mew] |2 + σQCD . (4.24)

Here Ω denotes the phase space, including the parton density functions and all other
prefactors, ML(T ) are the amplitudes corresponding to initial longitudinal (transverse)
gauge bosons, Mew is the amplitude from electroweak non-Higgs diagrams, and σQCD
is the cross-section from all QCD-involving background processes that do not interfere
with the electroweak signal due to the different colour structure. (4.24) is the equation
of an ellipse in (aL, aT ) space. However, also the H → W+W− decay is governed by
the parameters aL/T , which introduces higher powers of aL/T into the expression for
the cross section and leads to deviations from a purely elliptical shape. This parameter
space region of constant cross section is where we need additional kinematic information
to constrain the individual couplings aL,T .

4.4.3. Tagging jet kinematics
Transverse momentum

In section 4.1 we found that the effectiveW approximation predicts an analytical relation
between the polarisation of the initial gauge boson pair and the transverse momenta of
the tagging jets. It turned out that the EWA is not a good approximation for light
Higgs resonances. Nevertheless, it motivates an analysis of the transverse jet momenta.
In the left panel of figure 4.5 we give these distributions for the leading jet, based on
the Standard Model and on four additional parameter points which give the same cross
section. In the right panel of the same figure the average transverse momentum of the
leading jet is shown as a function of the parameters aL and aT . An analysis of the
subleading jet shows a qualitatively similar, but less pronounced behaviour.
We find that deviations from the Standard Model typically shift the distribution to

larger transverse jet momenta. The Standard Model does not mark the parameter-space
point with the minimal jet pT scale, but it is not far away from this minimum. All in all,
the effect of a modified Higgs-gauge sector on these distributions is clearly visible, but
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Figure 4.5.: Left: distribution of the transverse momentum of the leading jet in the
Standard Model and in four scenarios with modified Higgs-gauge coupling
structures, all giving the same cross section. Right: average transverse
momentum of the leading jet as a function of the parameter space of our
simple model. The Standard Model is marked with a star, and the ellipse
denotes the region giving a constant cross section.

it is not huge. These signatures will be further reduced by hadronisation, jet clustering,
and detector resolution.
The individual transverse momenta of the leading and subleading jet are not the

only potentially relevant parameterisation. We also evaluate the average transverse
momentum,

p̄T = 1
2 (pT,j1 + pT,j2) , (4.25)

and the asymmetry in the transverse momenta between the two jets,

ApT = (pT,j1 − pT,j2)
(pT,j1 + pT,j2) . (4.26)

This asymmetry is particularly robust under systematic uncertainties such as the jet
energy scale.
The average transverse momentum behaves similar to the transverse momentum of the

leading jet: modifications of the Standard Model Higgs-gauge sector typically shift it to
larger values. Regarding the asymmetry ApT we find that a deviation from the Standard
Model tends to marginally shift the distribution to lower values, as can be seen in the
right panel of figure 4.6. So moving away from the Standard Model in parameter space
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Figure 4.6.: Alternative parameterisations of the transverse jet momenta. As before,
the distributions in the Standard Model and in four scenarios with modified
Higgs-gauge coupling structures are shown. Left: vectorial sum of the trans-
verse jet momenta. Right: pT asymmetry between the two jets as defined
in (4.26).

lets both jets gain transverse momentum, but the subleading jet increases its transverse
momentum by a larger factor than the leading jet.
As a final parameterisation we consider the vectorial sum and difference of the two

transverse jet momenta. Unlike the observables discussed so far, these quantities include
the angular correlation between the two jets. We find that the vectorial sum is shifted
to larger (lower) values for aL > aT (aL < aT ), as can be seen in the left panel of
figure 4.6. The vectorial difference shows the opposite behaviour, but the differences are
less pronounced.

Azimuthal angle

As a next observable we consider the azimuthal angle between the two tagging jets,
∆φjj , which has a long tradition as an observable sensitive to the HV V vertex in weak
boson fusion signatures [58–64]. In particular, it has been proposed as a measure of the
Higgs spin and CP properties. Its distribution for the same parameter points as before
is given in the left panel of figure 4.7. Indeed, deviations from the Standard Model leave
a very clear signature in this observable. With aL > aT , jets are more collinear in the
transverse plane. Conversely, a small increase of aT with respect to the longitudinal
coupling favours back-to-back geometries.
This effect can be quantified in a way that minimises systematic uncertainties by
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Figure 4.7.: Left: distribution of the azimuthal angle between the two jets in the Stand-
ard Model and in four scenarios with modified Higgs-gauge coupling struc-
tures, all giving the same cross section. Right: asymmetry Aφ as defined
in (4.27) as a function of the parameter space of our simple model. Again,
the Standard Model is marked with a star, and the ellipse denotes the region
giving a constant cross section.

defining the asymmetry [58]

Aφ =
σ(∆φjj < π

2 )− σ(∆φjj > π
2 )

σ(∆φjj < π
2 ) + σ(∆φjj > π

2 ) . (4.27)

The distribution of this asymmetry as a function of the parameter space can be seen in
the right panel of figure 4.7. Its behaviour agrees with the results from the full ∆φjj
distribution, and any modification of the Higgs-gauge couplings is clearly visible in the
Aφ value.
Comparing the right panels of figures 4.5 and 4.7 to figure 4.4, one can see that the

information encoded in the pT,j and ∆φjj distributions is orthogonal to that of the cross
section. Therefore we expect their combination to improve the discrimination power in
the parameter space.

Other observables

So far our analysis was restricted to the jet kinematics in the transverse plane, which
indeed turned out to be sensitive to the structure of the Higgs-gauge sector. Now let us
focus on quantities that are mostly sensitive to the longitudinal jet momenta. We analyse
the jet energies, the dijet invariant mass mjj , and the separation pseudorapidity between
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Figure 4.8.: Left: distribution of the dijet mass in the Standard Model and in scenarios
with a modified Higgs-gauge coupling structure. Right: distribution of the
rapidity gap between the two jets in the same scenarios.

the two jets ∆ηjj . In figure 4.8 the distributions of the latter two observables are given
for the usual parameter points. We find that they are less sensitive to the Higgs-gauge
couplings than the transverse quantities discussed before. As a matter of fact, what
little discrimination is visible in these distributions can be traced to the transverse jet
momenta, which contribute to these quantities as well. The longitudinal components of
the jet momenta are almost entirely insensitive to the Higgs-gauge couplings.
This observation is no surprise. The longitudinal momenta of the final-state quarks

in weak boson fusion processes are dictated by the incoming quarks, which in turn have
an energy scale given by the proton energies and the parton density functions. At the
LHC this scale is much larger than that describing the hard WW scattering process.
Therefore the transverse components of the jet momenta are much more sensitive to the
hard process than the longitudinal parts. As a demonstration we give the distribution of
the Mandelstam variable t of the hard WW →WW process for different pT,j1 and pL,j1
slices in figure 4.9. It is obvious that the transverse momentum is strongly correlated
with this energy scale of the hard process, while there is very little sensitivity to t in the
longitudinal jet momentum.
Including these variables does not improve the discrimination power in parameter

space, which is why we limit this analysis to the transverse jet momenta and azimuthal
angles discussed above.

As an aside, we also search for correlations between the tagging jet properties and the
polarisation of the final gauge bosons, which can for instance be measured with decay
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√
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angles. Limiting the analysis to the signal, i. e. the true Higgs resonance, we find that
the tagging jet kinematics and the final-state polarisation are entirely uncorrelated. In
other words, the Higgs decay knows nothing about its production. This is of course
due to the scalar nature of the Higgs. Including the backgrounds, however, we find a
correlation between tagging jet properties and the final polarisation. This reflects the
fact that final-state longitudinal gauge bosons have a higher probability to be Higgs
decay products, while transverse vector bosons are more likely to stem from background
interactions.

4.4.4. Statistical significance

It is now clear that a modification of the Higgs-gauge coupling structure induces qualit-
ative changes in the distributions of different tagging jet properties. In a next step, we
estimate the sensitivity in the parameter space based on these different observables, thus
quantifying the significance of the signatures discussed above. To this end we ask the
question which region of the parameter space can be excluded given a certain statistical
sample size, assuming there is no new physics beyond the Standard Model.
More specifically, we generate a number of toy data samples based on the Standard

Model. Each of them includes statistical fluctuations for a given integrated luminosity.
Then the (aL, aT ) parameter space of the simple model is checked for compatibility
with each of these data samples. These compatibility tests are done for all observables
discussed above. In case of the cross section and the asymmetry Aφ, the full probability
density functions are calculated. For all other kinematic observables, the compatibility

71



4. Polarisation measurements with tagging jets

Observables Limit on aL Limit on aT
σ (≤ 1.07) (≤ 1.97)
σ, pT,j1 (0.76 – 1.08) (0.25 – 1.79)
σ, pT,j1, pT,j2 (0.82 – 1.08) (0.56 – 1.68)
σ, p̄T (0.79 – 1.07) (0.41 – 1.73)
σ, ApT (0.65 – 1.08) (≤ 1.86)
σ, p̄T , ApT (0.78 – 1.09) (0.39 – 1.73)
σ, ∆φjj (0.49 – 0.54), (0.95 – 1.06) (0.83 – 1.17), (1.89 – 1.94)
σ, Aφ (0.52 – 0.64), (0.94 – 1.06) (0.82 – 1.15), (1.77 – 2.00)
σ, |(~pT,j1 + ~pT,j1)| (0.93 – 1.06) (0.66 – 1.28)
σ, |(~pT,j1 − ~pT,j1)| (≤ 0.61), (0.85 – 1.08) (≤ 1.96)
σ, pT,j1, pT,j2, ∆φjj (0.92 – 1.08) (0.82 – 1.19)
σ, pT,j1, pT,j2, Aφ (0.92 – 1.08) (0.80 – 1.18)

Table 4.6.: Limits on aL,T ∈ [0, 2] in the absence of a signal based on different combin-
ations of observables. The limits are given at 95% CL assuming statistics
representing an integrated luminosity of 300 fb−1. For the limit on aL, aT is
allowed to float freely, and vice versa.

is probed by χ2 tests on the normalised distributions.
These tests give a number of p-values for each combination of parameter point (aL, aT )

and tested observable. If the median of these values is below 0.05, the parameter point
(aL, aT ) is expected to be excluded at 95% CL in the absence of a signal based on
this observable. The results from certain combinations of observables are statistically
independent. In this case they can be combined, for which we use Fisher’s method [85].
In table 4.6 the resulting limits on the parameters aL,T based on different combin-

ations of observables are given. It turns out that observables including the cross sec-
tion and the angular correlation between the jets impose the strongest constraints on
the parameter space. On the other hand, an analysis based only on these observ-
ables leads to a binary ambiguity: there is a phase-space region around aL ≈ 0.6,
aT ≈ 1.8 which yields rates and angular correlations between the jets similar to the
Standard Model. This blind spot can be removed by including the transverse jet
momenta in the analysis. In the end, the strongest exclusion limits come from a
combination of the Higgs-resonance cross section, the asymmetry Aφ or equivalently
the full ∆φjj distribution, and the transverse momenta of the leading and subleading
jet.
The expected exclusion regions based on these observables are shown in the left panels

of figure 4.10. Assuming data equivalent to 300 fb−1, most of the (aL, aT ) plane can be
excluded. We find that the longitudinal coupling aL should be measurable at a precision
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Figure 4.10.: Expected exclusion regions at 95% CL after 100 fb−1 (top panels) and
300 fb−1 (bottom panels) of data in the absence of a signal. The constraints
from the Higgs-resonance cross section (blue), kinematic properties of the
tagging jets (green), and their combination (red) are shown. The results
in the left panels do not take into account any systematic uncertainties.
In the right panels we include an additional 10% uncertainty on the Higgs
production and decay rate.
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of O (10%), while the transverse coupling aT should be measurable at O (20%). The
mirrored solution with aL ≈ −1, aT ≈ −1 cannot be excluded in this channel, but the
H → γγ decay, mediated by a top loop and a W loop, should easily be sensitive to this
sign change.
Note that these results only take into account statistical uncertainties within our

parton-level analysis. A realistic analysis will have to consider theoretical and systematic
uncertainties as well. As a rough demonstration, the right panels of figure 4.10 show
the exclusion limits based on the same observables, assuming an additional Gaussian
uncertainty of 10% on the measurement of the cross section.

4.4.5. Comparison to other approaches

The analysis strategy of this chapter focuses on the kinematics of the tagging jets at
the Higgs resonance. But, as discussed in section 2.3.4 and in the introduction of this
chapter, there are other approaches to the Higgs-gauge sector. On the one hand, it is
possible to measure lepton properties instead of tagging-jet observables, and thus probe
the polarisation of the final gauge boson pair. On the other hand, one can leave the
Higgs resonance and analyse the high-energy regime of gauge boson scattering. We will
now briefly demonstrate both of these approaches inside our framework and discuss their
results.

Lepton kinematics

We begin with the lepton kinematics at the Higgs resonance. The observables most
sensitive to the polarisation of the final gauge bosons are decay angles, which have been
discussed in detail in chapter 3. But in the leptonicW+W− mode, these angles cannot be
reconstructed well due to the two neutrinos. As alternative observables, the transverse
momenta of the two leptons, their separation in the azimuthal angle ∆φ``, their invariant
mass m``, and the missing transverse momentum have been suggested [13].
An analysis of these observables shows that ∆φ`` and m`` are indeed sensitive to the

Higgs-gauge coupling structure. In figure 4.11 their distributions for the usual parameter
points are given. We find that longitudinal gauge bosons favour back-to-back leptons,
while transverse gauge bosons yield more collinear leptons, in agreement with the liter-
ature [13]. However, these signatures are not as pronounced as those we found in the
tagging jet observables in the previous sections.
A statistical analysis of the significance of these deviations confirms this result. Fol-

lowing the same procedure as in the previous section, we determine exclusion regions
in the (aL, aT ) plane based on the leptonic observables and the Higgs-resonance cross
section. We find that after 300 fb−1 of data and without taking systematic uncertainties
into account, the longitudinal coupling can be measured on the O (40%) level, while the
transverse coupling can only be measured to a precision of O (80%). Of course, lepton
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Figure 4.11.: Left: distribution of the dilepton mass in the Standard Model and in four
scenarios with modified Higgs-gauge couplings. Right: distribution of the
azimuthal angle between the two leptons in the same five scenarios.

observables will suffer less from systematic uncertainties than jet measurements, but
this is still significantly worse than the O (20%) precision of the tagging-jet approach
presented above. Keeping in mind the limitations of our study, it seems that tagging-jet
observables are sensitive to the Higgs-gauge coupling structure at lower statistics than
lepton observables.

High-energy cross section

As a second alternative approach, we analyse the cross section after a selection optimised
for high-energy longitudinal gauge boson pairs. As demonstrated in section 2.3.1, a
longitudinal Higgs-gauge coupling different from the Standard Model should lead to a
non-cancellation of Higgs and gauge amplitude. This should give an increase of the cross
section at large energy scales.
Many sets of selection cuts for such an analysis have been suggested [13, 14, 16–

18, 21–23]. Following [14], we analyse the cross section after the cuts of table 4.7. This
selection utilises kinematic features both of the leptons and the tagging jets to suppress
transverse gauge bosons with respect to longitudinal vector bosons. We apply these
cuts in addition to the acceptance cuts of table 4.4, which leads to a difference to the
literature: the authors of [14] only require one tagging jet, while our event samples
are generated with the requirement of two tagging jets with certain properties. Hence
our selection is slightly tighter, and indeed we find lower cross sections than the results
quoted in [14].
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4. Polarisation measurements with tagging jets

Leptonic cuts Jet cuts

|η`| < 2.0 |ηj | > 3.0
pT,` > 100 GeV pT,j > 40 GeV
|(pT,`1 − pT,`2)| > 440 GeV Ej > 800 GeV
cos ∆φ`` < −0.8
m`` > 250 GeV

Table 4.7.: Selection cuts optimised for high-energy longitudinal gauge boson pairs, as
suggested by [14].
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Figure 4.12.: Cross sections after the high-energy selection of table 4.7 as a function of the
parameter space of our simple model. The star marks the Standard Model,
while the ellipse denotes the parameter-space region giving a constant cross
section at the Higgs resonance.
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In figure 4.12 we show the cross section after this selection as a function of the coupling
parameters aL and aT . Indeed, this high-energy rate does not depend on the transverse
Higgs-gauge coupling at all, showing that the selection successfully suppresses transverse
contributions. Any modification of the longitudinal coupling, regardless of whether
|aL| < 1 or |aL| > 1, leads to an increase in the cross section. This is exactly the expected
behaviour and reflects the non-cancellation between the gauge and Higgs amplitudes at
high energies for longitudinal Higgs-gauge couplings different from the Standard Model
value.
While this effect is clearly visible, the cross sections in question are quite low. Again,

the significance of these signatures is measured by calculating exclusion regions in para-
meter space. We find that even without taking into account the large systematic un-
certainties of such a high-energy rate measurement, 300 fb−1 of data are not enough
to constrain the coupling parameters further than just with the Higgs-resonance cross
section. Data of at least O

(
1000 fb−1) are needed for this method to become useful, but

then the information from jet and lepton kinematics is already much more precise.
Of course we do not claim that such an analysis is useless. On the one hand, the

discussion in this chapter is limited to one exemplary set of selection cuts. Other,
preferably more loose, selections might yield a better performance. On the other hand,
our simple model might not capture all relevant physics that can lead to a cross-section
increase at high energies. Heavy resonances or momentum-dependent couplings due to
some higher-scale dynamics might be invisible at the Higgs resonance, but give clear
signatures in the high-energy limit. Still it is safe to conclude that with the discovery of
the Higgs boson the most natural place to analyse the Higgs-gauge sector is the Higgs
pole and not the high-energy regime of gauge boson scattering.

4.5. Beyond the simple model
In the analysis above, the Higgs-gauge sector was parameterised in terms of independent
longitudinal and transverse Higgs-gauge couplings. While this approach is simple and
gives results in agreement with the equivalence theorem and the effective W approx-
imation, one has to pick a reference frame for the definition of the polarisation states,
thus breaking Lorentz invariance. The model is also not gauge invariant. In this section
these worrisome properties of the simple model are addressed. First the choice of other
reference frames is discussed, then the simple model is linked to an approach based on
effective field theory.

4.5.1. Reference frame dependence
In the simple model introduced in section 4.2, the polarisation states of the massive
gauge bosons are defined in the Higgs rest frame. There are different reasons for this.
The Higgs rest frame is in a sense the natural frame of the hard W+W− scattering
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process. This choice also simplifies the Higgs-gauge coupling structure by removing
mixed HVLVT contributions. We will later show that this definition also provides an
agreement between the simple model and higher-dimensional operators.

But how do the results of the simple model change if the polarised gauge bosons are
defined in a different reference frame? To answer this question, we have to understand
how polarisation states behave under boosts. In section 2.2.2, the frame dependence
of the polarisation basis was discussed in general. Now we will analyse how longitud-
inal and transverse modes change specifically at the Higgs resonance. For the tagging
jet kinematics the polarisations of the initial gauge bosons producing the Higgs are the
quantities of interest. For simplicity, we consider the final gauge bosons instead. Typic-
ally, the Higgs boson decays to an on-shell and an off-shell W boson, which fixes most
of the kinematics.

We assume such a final pair of W+W− bosons in the Higgs rest frame with given
polarisation. Then a boost into another reference frame is applied in which the Higgs
boson has a non-zero momentum pH . The probability of a transverse boson becoming
longitudinal or vice versa during this boost depends on the size of the boost as well as the
angle between the boost direction and theW momentum. In section 2.2.2 we have argued
that a boost parallel to the momentum of a gauge boson does not induce any mixing
between longitudinal and transverse modes, while a boost orthogonal to the momentum
maximises this mixing. We average over the angle between the W momentum and the
direction of the boost, and calculate the mixing probabilities as a function of the size of
the boost, quantified by the Higgs momentum pH in the new frame.

The results are given in the left panel of figure 4.13. It turns out that for Higgs
momenta around 200 GeV or, equivalently, for γ factors around 2, the probability for
a polarisation change reaches O (50%). Such a boost essentially randomises the polar-
isation, washing out any effect that is clear in the Higgs rest frame. As an aside, in
the limit of large boosts we find that all modes become longitudinal. This reflects the
dominance of longitudinal modes at large energy scales as discussed in section 2.2.2.

In the right panel of figure 4.13, we give the Higgs momentum in the laboratory
frame in the Standard Model for the signal process (4.19) after the usual acceptance and
Higgs-resonance cuts. Typical values range from 100 to 300 GeV. In the rest frame of
the two colliding partons, the Higgs momenta are slightly lower. We therefore expect
that the clear phenomenological differences between longitudinal and transverse gauge
bosons in the Higgs rest frame mostly vanish if the definition of polarisation states is
shifted to the laboratory or partonic centre-of-mass frame. Indeed we find that defining
the simple model in one of these alternative frames gives qualitatively similar, but much
less pronounced results.
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Figure 4.13.: Left: probabilities for a change in polarisation during a boost from the
Higgs rest frame to the laboratory frame as a function of the Higgs mo-
mentum in the laboratory frame. Right: distribution of the Higgs mo-
mentum in the laboratory frame in the Standard Model after our selection
cuts.

4.5.2. Effective field theory
Higher-dimensional operators and the Higgs-gauge coupling

Deviations from the Standard Model in the Higgs-gauge sector are often parameterised
in the language of effective field theory, i. e. in terms of higher-dimensional operators, as
introduced in section 2.1.3. These operators are manifestly gauge invariant and Lorentz
invariant. A link between effective field theory and the simple model of section 4.2
can thus demonstrate that the separation of longitudinal and transverse Higgs-gauge
couplings at finite energies is indeed physical and does not necessarily imply Lorentz
violation.
As examples we consider the two dimension-six electroweak operators

Oφ,2 = 1
2∂µ

(
φ†φ

)
∂µ
(
φ†φ

)
(4.28)

and

OW = (Dµφ)† Ŵµν (Dνφ) , (4.29)

following the conventions of [34]. As discussed in section 2.1.3, these operators can
for instance arise in strongly interacting Higgs sectors such as Little Higgs and Holo-
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graphic Higgs models. We will now analyse the effect of these operators on the HWW
interaction.
The operator Oφ,2 does not contain a direct contribution to the HWW vertex. How-

ever, it generates a new contribution to the kinetic term of the Higgs boson,

L ⊃ cφ,2v
2

Λ2 ∂µH∂
µH . (4.30)

The canonical normalisation of the Higgs kinetic term can be restored by a field redefin-
ition

H → 1√
1 + cφ,2v2/Λ2

H , (4.31)

which also introduces a form factor at every Higgs vertex. At leading order in cφ,2/Λ2,
this operator therefore modifies the HWW interaction by a universal, constant factor

aL = aT = 1− cφ,2
2

v2

Λ2 . (4.32)

This is equivalent to the aL = aT case in our simple model.
The operatorOW has a more complex phenomenology. It contributes to the interaction

of the pure gauge bosons W i with the Higgs boson, but there is no term of order φ3

or higher representing Higgs-Goldstone couplings. The equivalence theorem therefore
predicts that in the high-energy limit OW affects the transverse Higgs-gauge couplings,
but not the interaction of longitudinal gauge bosons with the Higgs. The Higgs resonance
hardly constitutes a high-energy limit, but we still expect that OW affects the transverse
coupling more strongly than the longitudinal coupling.
An expansion of OW in unitary gauge reveals two corrections to the HWW vertex:

H

W−ν

W+
µ

= igmW

[
gµν − gµν

cW
2Λ2

(
(pHp+) + (pHp−)

)
︸ ︷︷ ︸

a
(1)
L,T

+ cW
2Λ2

(
pHµ p

+
ν + p−µ p

H
ν

)
︸ ︷︷ ︸

a
(2)
L,T

]
,

(4.33)

where p±µ and pHµ are the incoming momenta of theW± and theH, respectively. The first
two terms of (4.33) are the Standard Model vertex and a higher-dimensional correction
with unchanged Lorentz structure. Assuming the Higgs boson to be on-shell, and since
p+ + p− + pH = 0, these two terms are equivalent to a coupling modification of

a
(1)
L = a

(1)
T = 1− cW

2Λ2 (pH · p+ + pH · p−) = 1 + cWm
2
H

2Λ2 . (4.34)
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The last term in (4.33), on the other hand, features contractions of the type (pHε±),
where ε± are the polarisation vectors of the W± bosons. In the Higgs rest frame,
these terms vanish for transverse gauge bosons, but contribute towards the coupling of
longitudinal gauge bosons to the Higgs. This contribution is a function of the momenta.
So all in all we find

a
(2)
T = 0 , (4.35)

a
(2)
L = cW

Λ2 F (p+, p−) (4.36)

with a momentum-dependent function F (p+, p−). This momentum dependence goes
beyond the simple model of the previous sections, where aL and aT were constants.
The full effect of the operator OW on the HWW interaction should then in leading

order in cW /Λ2 be given by

aL = a
(1)
L + a

(2)
L = 1 + cW

Λ2

(
m2
H

2 + F (p+, p−)
)
, (4.37)

aT = a
(1)
T + a

(2)
T = 1 + cWm

2
H

2Λ2 . (4.38)

So the operator OW affects longitudinal and transverse Higgs-gauge couplings differently.
Unlike in our simple model, these couplings are now momentum dependent.

Comparison of signatures

In a next step, we analyse the effects of these operators on the kinematics of the tagging
jets and compare the results to the signatures of our simple model. In the case of Oφ,2
this is straightforward: the operator is exactly equivalent to the aL = aT part of the
parameter space of the simple model. Indeed we find that the cross sections and the
kinematic distributions agree exactly between both approaches, confirming (4.32).
For OW , we first consider the contributions from the first and second part of (4.33)

separately before discussing the effect of the full operator. We choose

cW
Λ2 = ±10 TeV−2 , (4.39)

roughly representing current exclusion limits [43]. Using MadGraph, samples are gen-
erated in these setups for the signal process of (4.19). No backgrounds are included,
otherwise the same cuts and technical details as in the previous section are used. In
figure 4.14 the resulting pT,j1 and ∆φjj distributions are shown as the solid red and blue
lines.
The first term of (4.33) leads to an increase of the cross section with positive cW and

a decrease with negative cW , while the kinematic features remain unaffected, as can
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Figure 4.14.: Effects of OW on kinematic distributions and the corresponding results
from our simple model. We separate the first term (left panels) and second
term (middle panels) as defined in (4.33). The right panels show the effect
of the full operator.

be seen in the left panels of figure 4.14. This is just the behaviour expected from the
discussion above. For comparison, the dashed lines show the results based on our simple
model, with parameters following (4.34). The operator results and our simple model
agree very well. This is not surprising, since for on-shell Higgs bosons both approaches
should be equivalent according to (4.34). Deviations can only arise from off-shell Higgs
contributions.
The effect of the second term of (4.33) on the distributions is shown in the middle

panels of 4.14. The effect on the rate is now anti-proportional to cW , reflecting the
relative sign between the first and second part of 4.33. Unlike the first part, this term
introduces new Lorentz structures and thus also modifies the kinematic distributions. In
particular, positive values of cW slightly soften the tagging jets and favour back-to-back
jets. Negative cW , on the other hand, lead to harder tagging jets and induce a preference
for aligned jets.
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4.5. Beyond the simple model

In order to compare these results to our simple model, we fit a constant aL to these
distributions, while keeping aT = 0 fixed as discussed above. The results are shown as
the dotted curves. For cW /Λ2 = 10 TeV−2, the fit yields

a
(2)
L = 0.89 , (4.40)

or equivalently

F (p+, p−) = −(105 GeV)2 . (4.41)

This choice gives good agreement between the operator results and the simple model
in both the cross section and the angular correlation between the jets, as can be seen
in the bottom middle panel of 4.14. However, there are substantial deviations in the
distribution of the transverse jet momentum (upper middle panel of figure 4.14). For
positive (negative) cW , the jets are softer (harder) in the effective field theory results
than in our simple model. This discrepancy is due to the fact that the constant couplings
aL and aT of the simple model cannot account for the momentum-dependent function
F (p+p−) describing the dynamics of OW .
Ignoring this complication, the best fit value for F (p+, p−) given in (4.41) is interesting.

Its negative sign indicates that the effect on the longitudinal coupling from the second
part of (4.33) is anti-proportional to the effect of the first term. For the full operator OW
these contributions are combined and nearly cancel, while the transverse coupling is
unaffected by the second part. For cW /Λ2 = 10 TeV−2, we find

aL = a
(1)
L + a

(2)
L = 1 + cW

Λ2

(1
2m

2
H − (105 GeV)2

)
= 0.97 , (4.42)

aT = a
(1)
T + a

(2)
T = 1 + cW

2Λ2m
2
H = 1.08 . (4.43)

It turns out that the operator primarily affects the coupling of transverse gauge bosons
to the Higgs, with a suppressed effect on the longitudinal Higgs-gauge couplings. This
is exactly what is expected from the simple argument based on the equivalence theorem
given above.
Finally, the effect of the full operator on the tagging jet kinematics is shown in the

right panels of figure 4.14. The large effects on the cross sections from the individual
two terms partly cancel, only a small decrease of the rate for positive cW and a small
increase for negative cW remains. This corresponds to the large contributions to the
longitudinal coupling from the individual two terms, which mostly cancel for the full
operator. The kinematic features are the same as for the second term only. Again, the
dotted lines show the equivalent results for the simple model. There is good agreement
between OW and the simple model in the cross section and the angular correlation, but
the discrepancy in the distribution of the jet momenta remains as well.
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4. Polarisation measurements with tagging jets

Taking everything into account, the analysed dimension-six operators can be trans-
lated into longitudinal and transverse Higgs-gauge couplings. Unlike in our simple model,
these couplings can be momentum-dependent. While the qualitative features of both ap-
proaches generally agree, this momentum dependence can lead to substantial deviations
in certain distributions.

4.6. Conclusions
In this chapter we have developed a new approach to the Higgs-gauge sector. Its aim is
the measurement of the polarisation of the initial gauge bosons in W+W− scattering at
the Higgs resonance. We parameterise the Higgs-gauge sector in a simple model in terms
of independent couplings of the Higgs boson to longitudinal and transverse massive gauge
bosons. From a theoretical perspective, this model has some worrisome properties: in
order to define the polarisation states, Lorentz invariance must be broken. However, we
have shown that independent longitudinal and transverse Higgs-gauge couplings can also
be generated in an approach based on effective field theory, giving comparable results.
As observables we propose the kinematic properties of the tagging jets, which recoil

against the initial gauge bosons and are thus sensitive to their properties. In particu-
lar, the effective W approximation predicts that the transverse jet momenta reflect the
polarisation of the initial gauge bosons. We find its prediction to be valid at energies
much larger than the weak scale, but not at the observed Higgs mass, where the scale
of the hard process and the weak scale are not separated enough for the effective W
approximation to hold.
Still, an analysis of the full process shows that the transverse momenta of the two jets

and the azimuthal angle between them are sensitive to the structure of the Higgs-gauge
sector. In a brief comparison, these jet observables in fact give rise to stronger limits on
the longitudinal and transverse couplings than alternative approaches based on lepton
kinematics or the high-energy cross section. The constraints from these jet observables
are orthogonal to those based on the cross section. A combination of these distribu-
tions with the rate at the Higgs resonance allows the measurement of the individual
longitudinal and transverse Higgs-gauge couplings at the O (20%) level using 300 fb−1

of data at 13 TeV. While our analysis is limited to the parton level and does not take
systematic uncertainties into account, it is safe to assume that this strategy is feasible
at the upcoming LHC run.
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5. Conclusions

In this thesis we have investigated how a measurement of the polarisation of W± and Z
bosons can aid our understanding of the nature of electroweak symmetry breaking. This
idea is motivated by the Goldstone boson equivalence theorem, which links longitudinal
vector bosons to the Goldstone bosons of the Higgs sector and transverse states to the
original electroweak gauge bosons. While this correspondence is only exact in the high-
energy limit, a physical difference between longitudinal and transverse modes remains
at finite energies.
A well-established approach to polarised gauge boson scattering is the measurement

of the cross section at large energies. Any deviation from the Standard Model Higgs-
gauge sector leads to an increase of this rate. However, this strategy suffers from large
systematic uncertainties and low cross sections, especially after the discovery of a scalar
resembling the Standard Model Higgs boson. In this thesis we have analysed two altern-
ative methods.
The first approach is the measurement of angular distributions in the decays of gauge

boson pairs. These observables are a model-independent measure of the polarisation
of the final gauge bosons in V V → V V scattering (V = W±, Z). In particular, such
a strategy is feasible both in the high-energy regime and at the Higgs resonance, and
therefore does not necessarily suffer from low rates. Since the relative longitudinal and
transverse fractions are measured, the large systematic uncertainties associated to the
individual rates cancel.
We demonstrate that this strategy reproduces the correct polarisation fractions. How-

ever, when we try to pick a particular gauge boson channel, we face a dilemma: none
of them comes without significant problems. In the leptonic WW states, the two neut-
rinos make the exact reconstruction of the decay angles impossible, and approximate
reconstruction methods do not give satisfactory results. The leptonic ZZ and WZ de-
cay modes are reconstructable, but suffer from low rates. The semileptonic gauge boson
channels face dangerous QCD backgrounds. All in all, such a measurement is challenging
and requires large statistics as well as a careful monitoring of the backgrounds. A more
thorough analysis is necessary to judge its feasibility at the LHC.
Our second approach is more radical. We propose to measure the polarisation of

the initial gauge bosons in V V → V V scattering with the kinematic properties of the
tagging jets. Instead of the high-energy limit, we focus on the Higgs resonance with its
larger cross section. We parameterise the Higgs-gauge sector in a simple model where
the couplings of the Higgs boson to longitudinal and transverse massive gauge bosons
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5. Conclusions

are two independent parameters. This definition requires the choice of a reference frame,
which means that our model is not Lorentz invariant. We justify this by showing that
such independent longitudinal and transverse Higgs-gauge couplings can be generated
in the consistent framework of effective field theory, giving comparable results to our
simple model.
With this model, we first evaluate the effective W approximation, which predicts an

analytical relation between the transverse jet momenta and the polarisation of the initial
gauge bosons. While this approximation provides a good description at the resonance
of a heavy Higgs boson with mH & 1 TeV, we find that its validity becomes worse closer
to the weak scale and in particular at the observed Higgs resonance at mH = 125 GeV.
We explain this observation in terms of a missing separation between the scale of the
hard process and the weak scale, which is necessary for the effective W approximation
to hold.
In a next step, we look for the kinematic signatures of a modified Higgs-gauge coupling

structure. It turns out that in addition to the cross section at the Higgs resonance, the
transverse momenta and angular correlations of the tagging jets are indeed sensitive to
the Higgs-gauge sector. The constraints from these kinematic distributions are ortho-
gonal to the constraints from the cross section, so their combination permits an efficient
determination of the Higgs-gauge coupling structure. We find that 300 fb−1 of LHC
data at 13 TeV allow us to measure both longitudinal and transverse couplings at the
O (20%) level. A brief comparison shows that the bounds based on our novel strategy
are stronger than those based on lepton observables and especially than the limits from
high-energy rate measurements. We conclude that after the Higgs discovery the natural
laboratory to probe the electroweak sector is the Higgs resonance, not the high-energy
regime.
This thesis is only a first step towards a measurement at the LHC, and there are several

omissions and loose ends. This is especially true for the decay-angle analysis, where the
next logical steps are the simulation of scenarios of new physics and the inclusion of
backgrounds. The tagging-jet analysis can be extended to other Higgs decay modes,
thus improving the statistics, and additional backgrounds such as tt̄ production should
be simulated. Both approaches presented in this thesis are limited to the parton level, a
more thorough analysis should include hadronisation and detector effects. At the same
time, the cuts can be optimised and additional techniques such as a central jet veto
have to be investigated. Ultimately, both measurement strategies should be combined
in order to analyse correlations between the polarisations of initial and final states.

To summarise, we have analysed different strategies to measure the polarisation of
massive gauge bosons as probes of the Higgs-gauge sector. In V V → V V scatter-
ing, the final polarisation may be determined with angular distributions in the gauge
boson decays. While this model-independent technique works, it is not clear whether
it can be realised anytime soon at the LHC. Alternatively, the initial polarisation can
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be measured in the kinematics of the tagging jets. We have developed a measurement
strategy for this novel approach and found that it should be feasible at the upcoming
LHC run. Hopefully, these ideas can contribute to a better understanding of electroweak
symmetry breaking, which is one of the fundamental building blocks in our current model
of high-energy physics.
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Appendix A.

The fine print

A.1. Gauge boson scattering
The process W+

LW
−
L → W+

LW
−
L was studied in section 2.3.1. In the Standard Model,

it involves seven tree-level diagrams, which are the four-W interaction vertex as well
as s-channel and t-channel diagrams involving a photon, a Z boson, or a Higgs boson.
According to the Goldstone boson equivalence theorem, their matrix elements in the
high-energy limit can be calculated by replacing the external W± bosons with the cor-
responding Goldstone bosons w±. The Feynman rules needed for these diagrams can be
derived from the Standard Model Lagrangian (2.28). The Higgs potential contains the
interactions between Goldstone bosons and other Goldstone bosons or Higgs bosons:

LSM ⊃ −λ(φ†φ)2 (A.1)

= −λ4 (w2
1 + w2

2 + w2
3 + (v +H)2)2 (A.2)

⊃ −λ4 (2w+w− + 2vH)2 (A.3)

with

w± ≡ w1 ± iw2√
2

. (A.4)

Including combinatorial factors, the vertices of interest are given by

w−

w+

w−

w+

↔ −4iλ , (A.5)

w−

w+

H ↔ −2iλv . (A.6)
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Appendix A. The fine print

The coupling of the Goldstone bosons to the gauge bosons stems from the kinetic terms
of the scalar doublet:

LSM ⊃ (Dµφ)†Dµφ (A.7)

=
∣∣∣∣∣(∂µ + ig τ2 ·Wµ + ig′ 12Bµ) 1√

2

(
−iw1 − w2
v +H + iw3

)∣∣∣∣∣
2

(A.8)

⊃
∣∣∣∣ 1√

2
(∂µ + ig1

2W
3
µ + ig′ 12Bµ)(iw1 + w2)

∣∣∣∣2 (A.9)

= (∂µ − ieAµ − ie2

(
sW
cW
− cW
sW

)
Zµ)w+(∂µ + ieAµ + ie2

(
sW
cW
− cW
sW

)
Zµ)w−

(A.10)

⊃
[
ieAµ + ie2

(
sW
cW
− cW
sW

)
Zµ
] [
w−∂µw

+ − w+∂µw
−
]
. (A.11)

This yields the Feynman rules

γ

w−, p−

w+, p+

µ ↔ ie(pµ+ − p
µ
−) , (A.12)

Z

w−, p−

w+, p+

µ ↔ ie
2

(
sW
cW
− cW
sW

)
(pµ+ − p

µ
−) . (A.13)

where p+ and p− are the incoming four-momenta of the W+ and W−, respectively.
With the couplings (A.5), (A.6), (A.12), and (A.13), it is straightforward to write

down the matrix elements for all contributing diagrams:

w−

w+

w−

w+

= −4iλ , (A.14)

γ

w−, q

w+, p

w−, q′

w+, p′

= −ie2(p− q)(p′ − q′)
s

, (A.15)

90



A.2. Gauge boson decays

Z

w−, q

w+, p

w−, q′

w+, p′

=
−1

4 ie2( sWcW −
cW
sW

)2(p− q)(p′ − q′)
s−m2

Z

, (A.16)

H

w−

w+

w−

w+

= −4iλ2v2

s−m2
H

, (A.17)

γ

w−, q

w+, p

w−, q′

w+, p′

= −ie2(p+ p′)(q + q′)
t

, (A.18)

Z

w−, q

w+, p

w−, q′

w+, p′

=
−1

4 ie2( sWcW −
cW
sW

)2(p+ p′)(q + q′)
t−m2

Z

, (A.19)

H

w−

w+

w−

w+

= −4iλ2v2

t−m2
H

. (A.20)

A.2. Gauge boson decays
In section 3.1, the tree-level angular decay distributions of longitudinal and transverse
massive vector bosons were given. These distributions are the key ingredient to the
measurement strategy discussed throughout chapter 3. Here we give the calculation of
these results in detail.
Assume a vector boson V with momentum

p̃µV = (E, 0, 0, p3)µ , (A.21)

mass mV and polarisation vector ε̃. As polarisation basis we use the two transverse
modes

ε̃µ± = 1√
2

(0, 1,±i, 0)µ (A.22)
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Appendix A. The fine print

and the longitudinal polarisation

ε̃µL = 1√
E2 − k2

3

(k3, 0, 0, E)µ . (A.23)

Boosting into the V reference frame, the transverse states remain unchanged,

εµ± = ε̃µ± = 1√
2

(0, 1,±i, 0)µ , (A.24)

while the longitudinal polarisation becomes

εµL = (0, 0, 0, 1)µ . (A.25)

From now on, all quantities will be given in this V rest frame.
Now, let V decay into a fermion f1 with momentum

pµ1 = (E1,p)µ (A.26)

and mass m1 and an anti-fermion f̄2 with momentum

pµ2 = (E2,−p)µ (A.27)

and mass m2. Let θ be the angle between p and the εL, or equivalently, the angle
between p and the spatial momentum of the V boson in the original reference frame,
p̃W . Crucially, this definition depends on the original reference frame. This subtlety
will be discussed at the end of this section. Let gV and gA denote the vector and
axial coupling structure of the decay. Later the result will be rephrased in terms of the
coupling of V to left-handed and right-handed fermions,

cL = gV − gA , (A.28)
cR = gV + gA . (A.29)

Then the amplitude for this decay is given by

M = ū(p1)/ε (gV + gAγ5) v(p2) . (A.30)

Squaring and summing over the fermionic spins (but not the vector boson states) gives

|M|2 ∝
∑
spins

v̄(p2)/ε∗ (gV + gAγ5)u(p1)ū(p1)/ε (gV + gAγ5) v(p2) (A.31)

∝ Tr
[
/ε∗ (gV + gAγ5)u(p1)ū(p1)/ε (gV + gAγ5) v(p2)v̄(p2)

]
(A.32)

∝ Tr
[
/ε∗ (gV + gAγ5)

(
/p1 +m1

)
/ε (gV + gAγ5)

(
/p2 −m2

) ]
. (A.33)
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A.2. Gauge boson decays

Most of these terms vanish inside the trace, leaving only

|M|2 ∝ g2
V Tr

[
/ε∗/p1/ε/p2

]
+ gV gA Tr

[
/ε∗/p1/εγ5/p2

]
+ gV gA Tr

[
/ε∗γ5/p1/ε/p2

]
+ g2

A Tr
[
/ε∗γ5/p1/εγ5/p2

]
−m1m2g

2
V Tr

[
/ε∗/ε
]
−m1m2g

2
A Tr

[
/ε∗γ5/εγ5

]
. (A.34)

This evaluates to

|M|2 ∝ 4(g2
V + g2

A)
(
p1 · ε∗ p2 · ε− p1 · p2 ε

∗ · ε+ p1 · ε p2 · ε∗
)

+ 8igV gA εµνρσε∗µp1 νερp2σ − 4m1m2(g2
V − g2

A)ε∗ · ε (A.35)

or equivalently

|M|2 ∝ 2(c2
L + c2

R)
(
p1 · ε∗ p2 · ε− p1 · p2 ε

∗ · ε+ p1 · ε p2 · ε∗
)

+ 2i(c2
R − c2

L) εµνρσε∗µp1 νερp2σ − 4m1m2cLcRε
∗ · ε . (A.36)

Plugging in the longitudinal polarisation vector (A.25) gives

p1 · ε∗L p2 · εL + p1 · εL p2 · ε∗L = −2p2 cos2 θ (A.37)

and

εµνρσε∗Lµp1 νεLρp2σ = 0 . (A.38)

For the transverse polarisation vectors (A.24), one finds

p1 · ε∗± p2 · ε± + p1 · ε± p2 · ε∗± = 1
2
(
(px ∓ ipy)(−px ∓ ipy)

+ (px ± ipy)(−px ± ipy)
)

(A.39)

= −(p2
x + p2

y) (A.40)
= −p2(1− cos2 θ) (A.41)

and

εµνρσε∗±µp1 νε± ρp2σ = ε1ν2σ 1√
2
p1 ν(± i√

2
)p2σ + ε2ν1σ(∓ i√

2
)p1 ν

1√
2
p2σ (A.42)

= ±i(E1 + E2)|p| cos θ∗ . (A.43)

Putting everything together and shuffling the pieces around some more leads to

|M|2 ∝


E1E2 + p2(1− 2 cos2 θ) + 2 cLcR

c2
L+c2

R
m1m2 for VL

E1E2 + p2 cos2 θ∗

± c2
L−c

2
R

c2
L+c2

R
(E1 + E2)|p| cos θ∗ + 2 cLcR

c2
L+c2

R
m1m2 for VT .

(A.44)
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The differential decay width is proportional to |M|2, so this gives exactly the decay
distribution of longitudinal gauge bosons,

dσ(VL → f1f2)
d cos θ∗ ∝ E1E2 + p2(1− 2 cos2 θ) + 2 cLcR

c2
L + c2

R

m1m2 , (A.45)

and the distribution of transverse gauge bosons,

dσ(VT → f1f2)
d cos θ∗ ∝ E1E2 + p2 cos2 θ∗ ± c2

L − c2
R

c2
L + c2

R

(E1 + E2)|p| cos θ∗

+ 2 cLcR
c2
L + c2

R

m1m2 . (A.46)

E1, E2 and |p| are fixed by energy-momentum conservation to

E1 = m2
V +m2

1 −m2
2

2mV
, (A.47)

E2 = m2
V +m2

2 −m2
1

2mV
, (A.48)

|p| = 1
2mV λ

1
2

(
1, m

2
1

m2
V

,
m2

2
m2
V

)
, (A.49)

where λ(x, y, z) is the kinematic function given in (3.6).
In the limit of vanishing fermion masses, E1 = E2 = |p| = 1

2mV , and the results
simplify to

dσ(VL → f1f2)
d cos θ∗ ∝ 1− cos2 θ∗ , (A.50)

dσ(VT → f1f2)
d cos θ∗ ∝ 1 + cos2 θ∗ ± 2c

2
L − c2

R

c2
L + c2

R

cos θ∗ (A.51)

in agreement with the literature. For W bosons, where cR = 0, and including normal-
isation factors, this gives the well-known results

1
σ

dσ(WL → f1f2)
d cos θ∗ = 3

4(1− cos2 θ∗) (A.52)

and
1
σ

dσ(WT → f1f2)
d cos θ∗ = 3

8(1± cos θ∗)2 . (A.53)

At first sight, this derivation seems to be independent of the choice of the original co-
ordinate system, as everything was calculated in the rest frame of V . That is wrong. The
definition of longitudinal polarisation, or in other words the definition of the reference
axis for the definition of cos θ∗, depends on the V momentum in the original reference
frame, p̃V . So the variable θ∗ depends on the reference frame – as it must, because the
polarisation of gauge bosons is also frame dependent, as discussed in section 2.2.2.
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A.3. Higgs production in weak boson fusion
In order to calculate the full cross section for the process

pp→ Hqq′X (A.54)

in the effective W approximation, the partonic cross sections W+W− → H for different
W polarisation states are needed. The W+W−H vertex corresponds to a factor of
igmW gµν , so the total matrix element squared is given by

|M|2 = g2m2
W |ε∗+ · ε−|2 . (A.55)

Here ε± are the polarisation vectors of the W± bosons, respectively. Assuming the
Higgs-boson to be on-shell, the cross section in the centre-of-mass frame is

dσ̂(W+W− → H) = π

λ
1
2 (ŝ,m2

W ,m
2
W )
|M|2 δ(ŝ−m2

H) , (A.56)

where ŝ is the centre-of-mass energy squared of the W+W− system and λ(x, y, z) is the
kinematic function given in (3.6). This gives

dσ̂ =
πg2m2

W |ε∗+ · ε−|2

mH

√
m2
H − 4m2

W

δ(ŝ−m2
H) . (A.57)

Due to the form of the polarisation vectors (2.49) to (2.51), the product |ε∗+ · ε−|2 yields

|ε∗+ · ε−|2 =


(m2

H−2m2
W )2

4m4
W

if both W are longitudinally polarised
1 if both W have the same transverse polarisation
0 for differing polarisations .

(A.58)

Taking everything into account, the cross-sections for the process W+W− → H are
given by

dσ̂(W+
T W

−
T → H) = πg2m2

W

2mH

√
m2
H − 4m2

W

δ(ŝ−m2
H) , (A.59)

dσ̂(W+
LW

−
L → H) = πg2(m2

H − 2m2
W )2

4m2
WmH

√
m2
H − 4m2

W

δ(ŝ−m2
H) , (A.60)

dσ̂(W+
T W

−
L → H) = 0 , (A.61)

dσ̂(W+
LW

−
T → H) = 0 , (A.62)

where the additional factor of 1
2 in the transverse result comes from averaging over initial

polarisations.
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Appendix B.

Numerical results

B.1. Decay distributions
In section 3.4.2, the distribution of decay angles in different gauge boson channels was
discussed. We give these distributions both before and after reconstruction in the fig-
ures B.1 to B.9.
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Figure B.1.: Distribution of decay angles in the ZZ → (`+`−) (νν̄) channel after the
high-energy event selection. Only the decay angle for the `+`− pair is
reconstructed. Left: truth-level results. Right: after reconstruction.
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Figure B.2.: Distribution of decay angles in the W+W− → (`+ν) (`−ν̄) channel after
the high-energy event selection. Top: truth-level results. Bottom: after
reconstruction. Left: W+ decay. Right: W− decay.
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Figure B.3.: Distribution of decay angles in the W±W± → (`±ν) (`±ν) channel after
the high-energy event selection. Top: truth-level results. Bottom: after
reconstruction. Left: decay of W with lower rapidity. Right: decay of W
with larger rapidity.
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Figure B.4.: Distribution of decay angles in the WZ → (`±ν) (`+`−) channel after the
high-energy event selection. Top: truth-level results. Bottom: after recon-
struction. Left: W decay. Right: Z decay.
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Figure B.5.: Distribution of decay angles in the ZZ → (`+`−) (`+`−) channel after
the high-energy event selection. Top: truth-level results. Bottom: after
reconstruction. Left: decay of Z with lower rapidity. Right: decay of Z
with larger rapidity.
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Figure B.6.: Distribution of decay angles in the WW → (`±ν) (jj) channel after the
high-energy event selection. Top: truth-level results. Bottom: after recon-
struction. Left: leptonic W decay. Right: hadronic W decay.
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Figure B.7.: Distribution of decay angles in the WZ → (`±ν) (jj) channel after the
high-energy event selection. Top: truth-level results. Bottom: after recon-
struction. Left: W decay. Right: Z decay.
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Figure B.8.: Distribution of decay angles in the WZ → (jj) (`+`−) channel after the
high-energy event selection. Top: truth-level results. Bottom: after recon-
struction. Left: W decay. Right: Z decay.
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Figure B.9.: Distribution of decay angles in the ZZ → (`+`−) (jj) channel after the
high-energy event selection. Top: truth-level results. Bottom: after recon-
struction. Left: leptonic Z decay. Right: hadronic Z decay.
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Appendix B. Numerical results

B.2. Results of decay fits
In section 3.4.3 the results of polarisation fits to decay angular distributions were given.
In tables B.1 and B.2 we show the same results for polarised samples, which were limited
at generation level to only longitudinal or transverse final V V pairs.

V V channel Gauge boson Longitudinal fraction

True Reconstructed

W+W− → (`+ν) (`−ν̄) W+ 0.99± 0.01 −
W− 1.00± 0.01 −

W±W± → (`±ν) (`±ν) lower-η W 0.94± 0.01 −
larger-η W 0.93± 0.01 −

WZ → (`±ν) (`+`−) W 0.94± 0.01 0.72± 0.01
Z 0.98± 0.01 0.98± 0.01

ZZ → (`+`−) (`+`−) lower-η Z 1.00± 0.01 1.00± 0.01
larger-η Z 1.00± 0.01 1.00± 0.01

ZZ → (`+`−) (νν̄) leptonic Z 1.00± 0.01 1.00± 0.01

WW → (`±ν) (jj) leptonic W 0.98± 0.01 0.60± 0.01
hadronic W 1.00± 0.01 1.00± 0.01

WZ → (`±ν) (jj) W 0.94± 0.01 0.73± 0.01
Z 1.00± 0.01 1.00± 0.01

WZ → (jj) (`+`−) W 1.00± 0.01 1.00± 0.01
Z 1.00± 0.01 1.00± 0.01

ZZ → (`+`−) (jj) leptonic Z 1.00± 0.01 1.00± 0.01
hadronic Z 1.00± 0.01 1.00± 0.01

Table B.1.: Polarisation fit results for a sample consisting of only longitudinal final gauge
bosons. The errors are based on the statistical uncertainties of the generated
samples, not a measure of statistics at the LHC. In the reconstructed leptonic
WW states, the fitting procedure does not converge.
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B.2. Results of decay fits

V V channel Gauge boson Longitudinal fraction

True Reconstructed

W+W− → (`+ν) (`−ν̄) W+ 0.00± 0.01 −
W− 0.00± 0.01 −

W±W± → (`±ν) (`±ν) lower-η W 0.00± 0.01 −
larger-η W 0.00± 0.01 −

WZ → (`±ν) (`+`−) W 0.04± 0.01 0.17± 0.01
Z 0.01± 0.01 0.01± 0.01

ZZ → (`+`−) (`+`−) lower-η Z 0.08± 0.01 0.08± 0.01
larger-η Z 0.06± 0.01 0.06± 0.01

ZZ → (`+`−) (νν̄) leptonic Z 0.03± 0.01 0.03± 0.01

WW → (`±ν) (jj) leptonic W 0.18± 0.01 0.20± 0.01
hadronic W 0.33± 0.01 0.33± 0.01

WZ → (`±ν) (jj) W 0.10± 0.01 0.22± 0.01
Z 0.19± 0.01 0.19± 0.01

WZ → (jj) (`+`−) W 0.26± 0.01 0.26± 0.01
Z 0.02± 0.01 0.02± 0.01

ZZ → (`+`−) (jj) leptonic Z 0.03± 0.01 0.03± 0.01
hadronic Z 0.21± 0.01 0.21± 0.01

Table B.2.: Polarisation fit results for a sample consisting of only transverse final gauge
bosons. The errors are based on the statistical uncertainties of the generated
samples, not a measure of statistics at the LHC. In the reconstructed leptonic
WW states, the fitting procedure does not converge.
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Appendix B. Numerical results

B.3. Parameter space for the simple model
In chapter 4 events were generated for a simple model with two parameters aL and aT ,
which describe the coupling of the Higgs boson to longitudinal and transverse massive
vector bosons. In figure B.10 we give the parameter points for which event samples were
generated. Between these points, results were interpolated based on Delauny triangula-
tion [84].
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Figure B.10.: Parameter-space points in the simple model for which event samples were
generated. Close to the Standard Model value aL = aT = 1, the resolution
of the parameter-space sampling is larger than the binning of this plot.
The colour of the dots denotes the cross section after our Higgs-resonance
selection cuts. The stars show the benchmark samples used to plot many
of the kinematic distributions in section 4.4, while the dotted ellipse again
denotes the region of constant cross section.
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