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Einschränkung des NMSSM mit LHC und Planck

Die Beobachtung von Physik jenseits des Standard Models wie dunkler Materie
führten zur Entwicklung neuer Theorien wie Supersymmetrie. Die vorliegende Ar-
beit untersucht die Möglichkeit das NMSSM, ein supersymmetrisches Model, an-
hand der Ergebnisse von Experimenten in den Bereichen dunkle Materie, am LHC
sowie zum anomalen magnetischen Moment des Muons einzuschränken. Dazu
wurde NMSSMTools, ein Program zur Berechnung des Massenspektrum sowie
weiterer Observablen im NMSSM, in SFitter eingebunden. In einer Studie des
NMSSM im Grenzfall des MSSM können wir mSUGRA in den h und A-funnel
Regionen innerhalb von 10% Abweichung in das CNMSSN einbetten. Ausgehend
von diesen Punkten untersuchen wir den Einfluss der zusätzlichen NMSSM Pa-
rameter, die den Parameterraum im Vergleich zum MSSM erweitern, in Likelikood
Fits unter Nutzung der Frequentist Methode.
In der h-funnnel Region finden wir zwei Regionen, die mit den Messungen zu dun-
kler Materie und der Higgs Masse übereinstimmen. In einer Region ist das Singlet
entkoppelt und in der anderen besteht das zweit schwerste Higgs im wesentlichen
aus dem Singletanteil. Der best-fit Punkt der A-funnel Region vergrößert sich zu
einem Bereich in der �--Ebene, mit einem konstanten Verhältnis von � zu .

Constraining the NMSSM with LHC and Planck

The observation of physics beyond the Standard Model like dark matter lead to the
development of new theories like supersymmetry. The present thesis studies the
possibility to constrain the NMSSM, a supersymmetric model, using experimental
measurements obtained from dark matter searches, the LHC and studies of the
anomalous magnetic moment. NMSSMTools, a program to calculate the mass
spectrum and additional observables for the NMSSM, is implemented in SFitter.
Studying the NMSSM in the limit of the MSSM, we are able to embed mSUGRA
in the CNMSSM in the h and A-funnel region within 10 % error. Using the
reproduced results as start points we investigate the impact of the additional
NMSSM variables, that extend the parameter space with respect to the MSSM,
in likelihood fits using the frequentist method.
For the h-funnel region we find two regions consistent with the dark matter and
Higgs mass measurements, one with a decoupled singlet and one where the second
heaviest Higgs is singlet like. For the A-funnel region the best fitting point enlarges
into a region in �- -plane that corresponds to a constant ratio of �/.
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1 Introduction

The Standard Model of Particle Physics (SM) [1] is one of the most successful the-
ories ever developed to describe nature. It describes the universe at its innermost
principles by postulating its elementary particles and the mechanisms by which they
interact with each other. Predicting the outcome of a huge variety of experiments
with results varying over many orders of magnitude, it is the most precisely mea-
sured theory that exists.

On the other hand we encounter deviations of experimental results from theoret-
ical predictions and further unsolved problems. One of the best known examples
is the existence of dark matter that can only be measured due to its gravitational
impact but represents 26.8% [2] of the mass-energy of the universe. As it remains
invisible for optical research methods, its electromagnetic interaction must be very
weak. Adhering to a description with elementary particles, its massive constituents
can not be provided by the SM.

The intriguing difference of 3.6 � between the theoretical prediction of the anoma-
lous magnetic moment of the muon and its measurement [3] provokes as well spec-
ulations about physics beyond the SM.

One last example is the ATLAS/CMS [4] discovery of a new particle, in agreement
with the SM expectation of a Higgs particle, that gives rise to unanswered questions.
In fact the Higgs mass can not be deduced from first principles in the SM and it
is by no means clear why the mass is so small compared to the grand unification
(GUT) scale.

The mentioned problems make it necessary to develop new theories. To be suc-
cessful, a new theory has to describe the so far unsolved problems in addition to the
data that are already well described by the SM. Therefore it suggests itself to just
extend the SM, which is where supersymmetry [5] comes into play. It embeds the
SM into a model where every SM particle has a supersymmetric partner [6]. Super-
symmetry has become one of the most popular theories to solve the discrepancies
because of its capability to unify the couplings of the three interactions and the fact
that the lightest supersymmetric particle (LSP) provides a good dark matter can-
didate. The simplest supersymmetric model in the sense of particle multiplicity is
the minimal supersymmetric extension of the SM (MSSM) [7] as it is built with the
minimal amount of additional particles that are necessary to form a supersymmetric
theory. The MSSM has been studied in detail by many scientists with promising
results. But as no supersymmetric partner has been found this leaves open space
for more complex models like the NMSSM[8].
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By adding one additional singlet to the MSSM, the NMSSM, the next to mini-
mal supersymmetric extension of the Standard Model, benefits from a richer phe-
nomenology in the especially interesting Higgs sector.

The purpose of this thesis is to study the phenomenology of the NMSSM in the
limit of a semi constrained model. We focus on the h-funnel and A-funnel regions
that can provide the correct relic density. Both regions have been the objectiv of
MSSM studies. First we consider the NMSSM in the MSSM limit by decoupling the
introduced singlet for the two regions.

Starting from mSUGRA best-fit points we explore the phenomenology of the
NMSSM under consideration of the above mentioned measurements. We use SFitter
[9] to fit the semi constrained NMSSM to the data for a given parameter space by
maximizing the corresponding log-likelihood.
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2 Beyond the Standard Model

2.1 Why Supersymmetry? A Short Motivation
The Standard Model of particle physics (SM) [1] has been developed during the
last century and describes all known matter particles and their interactions on the
quantum level. Although most of its predictions can be verified today with an
unprecedented accuracy, some discrepancies as well as unsolved problems remain
experiment-wise as well as theory-wise. The most famous ones arise from astronom-
ical observations and concern the existence of dark matter and dark energy that can
not be explained with the SM. Others, like the fact that general relativity is not
included in the SM or the tension between the predicted value of the anomalous
magnetic moment and its measurement [3] give further evidence that the SM is not
the final solution.

The problem at which we will take a close look is the so called Hierarchy Problem.
For its description and the introduction to the MSSM I will follow the conventions
and methods of S.P. Martin’s Supersymmetry Primer [5]. When we compute the
loop corrections to the propagator of the Higgs Boson in the Standard Model we
basically encounter three contributions: those of the fermions like the top quark
(Fig. 2.1a), those of the Higgs itself (Fig. 2.1b) and those of the W/Z Boson. These
result in quadratically divergent contributions on the cutoff scale ⇤ to the bare Higgs
mass:

m2
H = m2

H,0 +
3g2

32⇡2

⇤

2

m2
W

✓
m2

H + 2m2
W +m2

Z � 4

3

m2
t

◆
[10] (2.1)

If we want to compensate for these contributions by introducing a counterterm
we have to face two problems. On the one hand the counterterm would strongly

t

t

H H

(a)

H

H H

(b)

Figure 2.1: Corrections to the Higgs propagator coming from the top quark (a) and
the Higgs boson (b).
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depend on the exact value of the cutoff scale, as it does not enter logarithmically.
On the other hand the cancellation has to be very precise, e.g. when we assume
⇤ = QP lanck, the counterterm has to be of the order of 102⇥19

GeV

2 and cancel with
the loop corrections to generate a term of the order of 104 GeV

2. This requires an
extreme fine tuning.

In order to avoid this fine tuning, supersymmetry [6] makes use of the different
signs that we observe in equation 2.1. While the bosons enter with a positive sign
the top quark as every other fermion gives a negative contribution. This means we
can avoid the finetuning by introducing a systematic cancellation of the bosonic and
fermionic terms that diverge with ⇤

2.
Therefore we have to assign a bosonic partner to each SM fermion and a fermionic

partner to each boson. In other words, one introduces a transformation that turns
a bosonic state into a fermionic one and vice versa while keeping the gauge charges
identical. The corresponding symmetry is called supersymmetry.

To account for the SUSY transformation it turns out to be convenient to combine
SM particles and their supersymmetric partners in a common structure, a supermul-
tiplet. A chiral supermultiplet combines a complex scalar field and a Weyl fermion
and is therefore used for the SM quarks and leptons and the Higgs particles. The
gauge bosons and their partners are represented by gauge supermultiplets that con-
tain a spin 1 vector boson and again a spin 1/2 Weyl fermion.

The starting point for every model is the superpotential that is written in terms
of these supermultiplets. A theory containing all SM particles can be derived from

WMSSM = hu
ˆHu

ˆQ ˆUC
R � hd

ˆHd
ˆQ ˆDC

R � he
ˆHd

ˆL ˆEC
R + µ ˆHu

ˆHd. (2.2)

We can identify the chiral supermultiplets for the left handed and right handed
quarks (

ˆQ, ˆUC
R ,

ˆDC
R), two for the Higgs (

ˆHu, ˆHd), the Yukawa coupling (hi) and a
dimensionfull parameter (µ). The two different doublet chiral supermultiplets for
the Higgs are necessary as the charges of the fields have to add up to zero for up as
well as down-type quarks. Otherwise the terms would not be gauge invariant under
the electromagnetic transformation. The gauge multiplets enter into the Lagrangian
through the usual covariant derivatives when we make our Lagrangian gauge invari-
ant under U(1), SU(2) and SU(3).

Starting from the superpotential one obtains the scalar potential of the theory by
adding the derivatives of the superpotential with respect to all scalar fields (�i) :

V (�,�⇤
) = W iW ⇤

i

 
+

1

2

X

a

g2a(�
⇤T a�)2

!
with W i

=

�W

��i
(2.3)

The second term arises from gauge interaction. ga is the gauge coupling and T a are
the hermitian matrices that represent the gauge groups.

A full description of how to derive the complete Lagrangian from the superpoten-
tial can be found under [5].
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If we want to adopt supersymmetry we encounter a major problem. If supersym-
metry was implemented in the described way, each supersymmetric partner of a SM
particle would have the same mass as the SM particle and would have been discov-
ered long time ago. Supersymmetry thus has to be broken. In order to continue
to provide a solution for the hierarchy problem, the SUSY breaking terms that we
insert into the Lagrangian must not affect the coupling of SUSY particles, as the
contributions to the Higgs mass in eq.2.1 - although written in terms of the masses -
are determined by the coupling. Nevertheless we can introduce soft SUSY breaking
mass terms that leave the coupling unchanged but can push the masses to higher
values and finally out of the so far detectable mass range.

In the next section we will take a look at an actual implementation of supersym-
metry and its phenomenology.

2.2 The MSSM

2.2.1 The Particle Content

The Minimal Supersymmetric Standard Model contains the minimal number of par-
ticles that is necessary to construct a supersymmetric version of the SM. According
to section 2.1 we introduce spin-0 sleptons and squarks as supersymmetric partners
of the SM fermions and spin-1/2 gauginos as partners of the spin-1 gauge bosons.
For the Higgs sector we have to introduce two SU(2)L doublet chiral supermulti-
plets, one for the up-type quarks and one for down-type quarks and leptons. One
doublet consist (e.g. Hu) hence of two complex or four real scalar fields (H+

u , H
0
u)

and two Weyl fermions (

˜H+
u , ˜H

0
u)

✓
H+

u
˜H+
u

◆✓
H0

u
˜H0
u

◆�
,

✓
H0

d
˜H0
d

◆✓
H�

d
˜H�
d

◆�
(2.4)

These fields mix into mass eigenstates. On the bosonic side we start with 8
real scalar fields. Three of them have to be Goldstone bosons that become the
longitudinal degrees of freedom of the W± and Z0 bosons. The two remaining
charged fields combine to form a charged Higgs boson H±. So we are left with three
neutral scalar fields. Two of them are CP-even bosons h0

1 and h0
2, one of them being

usually SM like, and the last one is a CP-odd scalar field A0
1.

Combining up and down-type Higgsinos we find two neutral fermions, that mix
with the two neutral gauginos ˜W 0 (wino) and ˜B0 (bino) into four mass eigenstates,
so called neutralinos. Additionally we find two charged fermions ˜H+

u and ˜H�
d . They

mix with the ˜W± into two charginos, charged mass eigenstates.
An overview can be found under neutralinos and charginos in Table 2.1.
For the left and right handed component of every quark we introduce separate

partners. These mix into non degenerate mass eigenstates. This leaves us with two
scalar squarks for each quark. The same is true for the electron, muon and tau.

5
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SM Particle (R=+1) SUSY Partner(R=-1)
Names Gauge ES Mass ES Spin Gauge ES Mass ES Spin

quarks / squarks uL/R, cL/R, tL/R u, c, t 1/2 ũL/R, c̃L/R, ˜tL/R ũ1/2, c̃1/2, ˜t1/2 0
dL/R, sL/R, bL/R d, s, b 1/2 ˜dL/R, s̃L/R,˜bL/R ˜d1/2, s̃1/2,˜b1/2 0

lepton / sleptons eL/R, µL/R, ⌧L/R e, µ, ⌧ 1/2 ẽL/R, µ̃L/R, ⌧̃L/R ẽ1/2, µ̃1/2, ⌧̃1/2 0
⌫e, ⌫µ, ⌫⌧ ⌫e, ⌫µ, ⌫⌧ 1/2 ⌫̃e, ⌫̃µ, ⌫̃⌧ ⌫̃e, ⌫̃µ, ⌫̃⌧ 0

neutralinos W 0, B0 Z0, � 1 ˜W 0, ˜B0

�̃0
1, �̃

0
2, �̃

0
3, �̃

0
4 1/2

H0
u, H

0
d h0

1, h
0
2, A

0
1 0 ˜H0

u,
˜H0
d

charginos W± W± 1 ˜W±
�̃±
1 , �̃

±
2 1/2

H+
u , H

�
d H± 0 ˜H+

u , ˜H
�
d

gluon / gluino g g 1 g̃ g̃ 1/2

Table 2.1: Overview of SM particles and their supersymmetric partners in the MSSM

The influence of the neutrino sector on SUSY observables like the LSP or the
Higgs masses is negligible. For practical purpose we only assume three sneutrinos
(partners of the left handed neutrinos) for which the mass eigenstate coincides with
their gauge eigenstate, neglecting the possibility of right handed neutrinos [11].

Finally there are eight massless gluons and their mass degenerate superpartners
that are called gluinos. Summing up we are left with 31 undetected massive particles.

2.2.2 The Mass Spectrum of the MSSM
In the last section we have identified the particles that arise for the minimal super-
symmetric extension of the SM. Now we will see how their masses depend on the
SUSY breaking parameters.

We start by writing down the most general expression for SUSY breaking terms
in the MSSM. Therefore one has to consider three classes of soft-breaking terms:

1. Scalar mass terms

2. Trilinear scalar interactions

3. Gaugino mass terms

Hence the Lagrangian contains additional mass terms for gauginos, squarks, slep-
tons and the Higgs bosons and a mixing term that relates Hu and Hd. The second
class introduces trilinear scalar interactions between the Higgs and the squarks and
slepton. The SUSY breaking mass terms and the trilinear SUSY breaking couplings
are 3 ⇥ 3 matrices in family space like the Yukawa couplings in the superpotential.
Finally the gaugino mass terms contain the SUSY breaking masses for gluinos, winos
and binos.
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Summing up all terms we find:

LMSSM
soft = � ˜Q†m2

Q
˜Q � ˜L†m2

L
˜L � ˜ū†m2

ū
˜ū† � ˜

¯d†m2
d̄
˜

¯d† � ˜ē†m2
ē
˜ē†

� m2
H

u

H⇤
uHu � m2

H
d

H⇤
dHd � (m2

3HuHd + c.c.)

� (

˜ūhuAu
˜QHu +

˜

¯dhdAd
˜QHd + ˜ēheAe

˜LHd + c.c.)

� 1

2

(M3g̃g̃ +M2
˜W ˜W +M1

˜B ˜B + c.c.) (2.5)

So far we made no assumption about the origin of these terms. Instead we only
state that there is a hidden sector which causes SUSY breaking and which interacts
with the MSSM in such a way that the SUSY breaking can be transferred from the
hidden sector to the MSSM. One of the most investigated models is mSUGRA [12]
where the breaking occurs due to a flavour blind and purely gravitational interaction
between the hidden sector and the MSSM. This model has the advantage of only 5
input parameters: m0,m1/2, A0, tan� and the sign of µ. m0 and m1/2 are the unified
masses of the scalars and gauginos at the GUT scale. A0 is the unifies the trilinear
couplings at the GUT scale and tan � is the ratio of the two vacuum expectation
values, the only parameter given at the electroweak scale. All unification parameters
set the values of the masses and couplings at the GUT scale. To evaluate the mass
spectrum at the electroweak scale we have to run the unified couplings and susy
breaking masses separately to the electroweak scale where the parameters are no
longer unified due to their RGEs that differ depending on the considered parame-
ter. As we will later analyse a similar model for the more complex NMSSM case,
it is instructive to see how the masses of the SUSY particles depend on the input
parameters for the mSUGRA case.

Higgs

The Higgs boson has a special position in the Standard Model. Due to electroweak
symmetry breaking the Higgs acquires a non vanishing vacuum expectation value
(vev). Therefore it gives mass to the Z and W boson and the quarks and leptons
proportional to their Yukawa coupling to the Higgs. The mass of Higgs itself is
determined by its vev and the Higgs self-coupling. In the MSSM we have two CP
even, one CP odd and one charged Higgs. Their tree level Higgs masses can be
calculated using the soft SUSY breaking parameters mH

u

,mH
d

and µ. mH
u

and
mH

d

in turn are unified to m0 at the GUT scale and we have to run them with
the renormalization group equations to obtain their value at the electroweak scale.
Using the soft input parameters the tree level masses are

m2
A1

= 2 |µ|2 +m2
H

u

+m2
H

d

(2.6)

m2
h1,h2

=

1

2

✓
m2

A1
+m2

Z ⌥
q

(m2
A1

� m2
Z)

2
+ 4m2

A1
m2

Z sin

2
2�

◆
(2.7)

m2
H± = m2

A1
+m2

W . (2.8)
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While mA1 ,mh2 and mH± can in principle become arbitrarily large - apart from
the fact that the SUSY breaking terms will no longer be soft at some point - the
mass of the lightest Higgs is limited by mh1 < mZ |cos 2�|. Loop contributions from
the stop squarks are in principle able to increase this value at one loop level if the
stop squarks are sufficiently heavy [13].

Squarks and Sleptons

The masses of the squarks and sleptons are determined as eigenvalues of mass matri-
ces that in principle allow for mixinq of all scalars with the same quantum numbers.
Due to experimental evidence as the branching ratio µ ! e� [14] we know that
most of the mixing angles have to be very small so that we can assume the mixing
matrices to be diagonal for the first and second generation.

mSUGRA assumes the unification of the squark and slepton masses at the GUT
scale. This means that the mass at the other scales can be parametrized by the
distance from the GUT scale.
In the case of the right handed up-type squark this results in

m2
¯u1,2

= m2
0 +K3 +

4

9

K1 with Ka(Q) =

0

@
3/5
3/4
4/3

1

A 1

2⇡2

Z lnQ0

lnQ

g2a(t) |Ma(t)|2 dt.

(2.9)

g2a(t) are the couplings of the three different forces and |Ma(t)|2 the SUSY break-
ing masses of the corresponding sfermions evaluated at the scale t. The prefactor
4
9 corresponds to the squared electromagnetic charge of an up-type quark. The fac-
tors Ka are the same for all squarks and sleptons and only the prefactors change
depending on the charges of the sparticles under the gauge group.

The stronger Yukawa coupling of the third generation and the soft scalar coupling
cause a non negligible mixing for the third generation, as one can see in the off
diagonal terms of its mixing matrix.

m2
t̄ =

✓
m2

Q3
+m2

t + (

1
2 � 2

3 sin
2 ✓W ) cos(2�)m2

Z v(a⇤t sin � � µyt cos �)
v(at sin � � µ⇤yt cos �) m2

ū3
+m2

t + (

2
3 sin

2 ✓W ) cos(2�)m2
Z

◆

(2.10)

The off diagonal terms depend on the mass of the top quark mt = ytv and can be
hence of the same order of magnitude as the diagonal terms. Hence the masses of
the stops have to be determined in an additional step as Eigenvalues of their mixing
matrix.

Neutralinos and Charginos

The tree level contributions to the neutralino and chargino masses consist of the
soft breaking terms proportional to M1,M2 and µ and the coupling between Higgs

8
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bosons and gauginos evaluated around the vev. A first approximation evaluating
the Eigenvalues of the tree level mass matrices identifies one neutralino mass of the
order of M1, a neutralino and a chargino with masses of about M2 and the masses
of two neutralinos and one chargino whose absolute values are roughly M3.

Especially the mass of the lightest neutralino is very important for further studies,
as it is the most likely candidate for dark matter in supersymmetric models [15].

The beta functions of the running masses Mi(i = 1, 2, 3) reveal that Mi/g
2
i remains

scale independent for one loop corrections. Moreover the running coupling constants
gi tend to cross each other [16] roughly at the same scale around 2 ⇥ 10

16
GeV so

that we can impose unification at the GUT scale to gU . Adding the mSUGRA
assumption, that the Mi unify at the GUT scale to m1/2 leads to the correlation

M1

g21
=

M2

g22
=

M3

g23
=

m1/2

g2U
(2.11)

that is now valid for all scales.
Using the known ratios of the coupling constants at the SUSY scale, the mass

parameters are related by

M1 : M2 : M3 = 1 :

3

5

tan

�2 ✓W :

3

5

↵s

↵
cos

2 ✓W = 1 : 2 : 6. (2.12)

This implies a mass hierarchy that allows us to identify the masses of the neutralinos
and charginos as m�0

1
⇡ M1, m�0

2
⇡ m�±

1
⇡ M2 and

���m�0
3

��� ⇡
���m�0

4

��� ⇡
���m�±

2

��� ⇡ |µ|.
Now we can use the leading order RGE of M2 to give a very rough estimation of

the mass of the LSP in terms of the input parameter m1/2. The leading order of the
RGE is

16⇡2 dM2

d lnQ2
= g22M2. (2.13)

Using M2(QGUT ) = m1/2 we find

m1/2

M2(Q)

=

✓
QGUT

Q

◆ 2g

2
2

16⇡

2

. (2.14)

under the assumption of a scale independent coupling g2. Evaluating this expression
around the SUSY scale we can estimate a typical ratio for m1/2(QGUT )/M2(QSUSY )

of about 1.2. This allows us finally to express the LSP mass directly in terms of
m1/2.

m�0
1

⇡ M1(QSUSY ) =
M2(QSUSY )

2

=

m1/2

2 ⇥ 1.2
=

m1/2

2.4
(2.15)
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Gluino

In the same way we can do a first order approximation for the gluino [17] mass

mg̃ = M3 =
m1/2 ⇥ 3

1.2
(2.16)

that is considerably heavier than the neutralino and chargino masses. However there
are additional contributions that cause sizeable deviations from this value due to
the strong coupling at one loop level.

2.2.3 The µ Problem
A rather intriguing parameter that appeared during the discussion of the MSSM
is the µ parameter. It appears the first time in the superpotential in eq. 2.2 as a
dimensionfull parameter in the Higgs mass term. It is in that sense special, that
it is the only dimensionfull parameter that does not break supersymmetry. As it
does not arise from SUSY breaking, this parameter is not connected to the SUSY
breaking scale. Therefore a natural choice would be a value around the GUT scale,
that is the only other scale that we have.

Yet it turns out, that we can find an expression for µ when we minimize the Higgs
potential of the MSSM. Collecting only those terms that are quadratic in the neutral
Higgs fields and contain no other field - otherwise the term vanishes in the minimum
- we find an expression for the potential in the minimum:

V = (|µ|2 +m2
H

u

)

��H0
u

��2
+ (|µ|2 +m2

H
d

)

��H0
d

��2 (2.17)

� (m2
3H

0
uH

0
d + c.c.) +

1

8

(g2 + g02)
⇣��H0

u

��2 �
��H0

d

��2
⌘2

(2.18)

Using the minimization conditions @V/@H0
u = 0 and @V/@H0

d = 0 one finds two
equations:

sin(2�) =
2m2

3

m2
H

u

+m2
H

d

+ 2 |µ|2
(2.19)

m2
Z = m2

H
u

(

1

cos(2�)
� 1) � m2

H
d

(

1

cos(2�)
+ 1) � 2 |µ|2 (2.20)

The squared Z mass is approximately 8300GeV

2. At the same time m2
H

u

and m2
H

d

are SUSY breaking parameters. In mSUGRA they are unified at the GUT scale.
With the renormalization group equations one evolves their values to the SUSY
breaking scale where one typically finds values of about 10

6
GeV

2. These high val-
ues are mainly driven by the high stop masses. They now have to cancel with the
SUSY respecting parameter µ that has no reason to be around the SUSY breaking
scale. Moreover it is necessary that this cancellation happens at least at percent

10



MSSM mSUGRA

Yukawa couplings hu,hd,he

Dimensionfull SUSY parameter µ sgn(µ)
Corresponding s.br. parameter m2

3(⌘ Bµ)
Ratio of vevs tan � tan �
Higgs masses (s.br.) m2

H
u

,m2
H

d

m0

Squark and slepton masses (s.br.) m2
Q,m

2
U,m

2
D,m

2
L,m

2
E m0

Trilinear couplings (s.br.) Au,Ad,Ae A0

Gaugino masses (s.br.) M1,M2,M3 m1/2

Table 2.2: Supersymmetric parameters for the MSSM and their unified parameters
in mSUGRA. SUSY breaking parameters are labelled s.br.

level to generate the Z mass term. We call this fine tuning problem the µ-problem.

In the context of gravity mediated supersymmetry breaking the Giudice-Masiero
mechanism [18] can provide a solution to the µ-problem. It introduces an additional
operator in the Kähler potential.

K � �µ

MP
HuHdX

⇤
+ c.c. (2.21)

�µ is a dimensionless coupling and X is a chiral field. It is the messenger whose aux-
iliary field F is responsible for SUSY breaking. If F acquires a vev we can reproduce
the µ-term with µ =

�
µ

M
P

< F ⇤
X >. As a typical value of the vev in the low energy

limit is < F ⇤
X >⇡ msoftMP , we end up with a µ value at the order of the desired

soft SUSY breaking scale.

2.2.4 Summary
In this section we have introduced supersymmetry on the basis of the MSSM. We
found that the extension to supersymmetry is highly predictive, as all couplings are
already determined by the SM. It is only after the introduction of SUSY breaking
terms that the number of parameters increases to those displayed in table 2.2. Using
the minimization conditions of the scalar potential reduces the parameters by |µ|
and m2

3 that can be expressed in terms of m2
H

u

,m2
H

d

and tan �.
Through mSUGRA we introduce the unification of the remaining SUSY breaking

parameters. The gaugino masses are unified to m1/2 which determines the masses of
the neutralinos, charginos and gluinos at leading order. The SUSY breaking trilinear
couplings are unified to A0 and the ratio of the vacuum expectations values remains
as a dimensionless input parameter.
m0 finally unifies the remaining scalar mass terms for the squarks, sleptons and

Higgs. |µ| and m2
3 can be determined in terms of m0 so that only the sign of µ has

11

That is really too short to make a lot of sense…



to be set.
The complete set of input parameters is reduced to m0,m1/2, A0, tan� and sgn(µ).

2.3 The NMSSM
In the last section we described the µ-problem that refers to a cancellation of the
SUSY respecting parameter µ with the SUSY breaking parameters m2

H
u

and m2
H

d

.
As this cancellation seems to have no motivation one attempt is to replace the pa-
rameter µ by an additional gauge-singlet chiral supermultiplet that only couples
to itself and the Higgs. In this case the µ term will be generated by the vacuum
expectation value of the singlet. One calls this the Next to Minimal Supersymmet-
ric extension of the Standard Model, NMSSM. The conventions and computations
in this section follow the report "The Next-to-Minimal Supersymmetric Standard
Model" by U.Ellwanger, C. Hugonie and A.M. Teixeira [19].

The NMSSM now appears to have a richer phenomenology due to three additional
particles and provides additional contributions to increase the lightest Higgs mass.
The additional supermultiplet results in two scalar bosons, a CP-even Higgs (h3)
and a CP-odd Higgs (A2), and one fermion, a fifth neutralino (�0

5).
To insert this supermultiplet into our Lagrangian we start again with the su-

perpotential. From the MSSM we are familiar with the following superpotential
that contains the Yukawa coupling between Higgs and quarks or leptons and the "µ
term", the supersymmetric mass term of the Higgs.

WMSSM = hu
ˆHu

ˆQ ˆUC
R � hd

ˆHd
ˆQ ˆDC

R � he
ˆHd

ˆL ˆEC
R + µ ˆHu

ˆHd (2.22)

The most general potential including the new gauge singlet is

WNMSSM = WMSSM + � ˆS ˆHu
ˆHd + ⇠F ˆS +

1

2

µ0
ˆS2

+

1

3

 ˆS3 (2.23)

where we have introduced four new parameters. � and  are dimensionless Yukawa
couplings that couple the singlet to itself and the Higgs bosons. The term including
µ0 is the supersymmetric mass term for the singlet, comparable to the µ term that
we know for the Higgs boson. Finally there is the tadpole term that is parametrized
by ⇠F . In a global supersymmetry it can be removed by a constant shift of the
singlet. Comparing the µ-term in equation 2.22 with the �-term in equation 2.23 we
observe that we are now able to generate an effective µ-term as soon as S acquires
a non vanishing vev.

Given that the masses of the Standard Model particles and their partners are
not degenerat, we have to introduce supersymmetry breaking parameters as for the
MSSM. Apart from the appearance of a fifth neutralino in the gaugino sector, the
modifications with respect to the MSSM only appear in the scalar sector.

In the following we focus on the scalar potential and list only the Higgs and singlet
related terms. Starting again with the soft terms known from the MSSM, LMSSM

soft,Higgs,
we find the following contributions for the complex scalar fields:
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MSSM NMSSM

dimensionfull SUSY parameters µ ⇠F , µ
0

(s.br.) m2
3(⌘ Bµ) ⇠S,m

02
S (⌘ B0µ0

)

Higgs and singlet masses (s.br.) m2
H

u

,m2
H

d

m2
S

Yukawa, trilinear couplings hu,hd,he �,
Trilinear couplings (s.br.) Au,Ad,Ae A�, A

squark and slepton masses (s.br.) m2
Q,m

2
U,m

2
D,m

2
L,m

2
E

gaugino masses M1,M2,M3

Table 2.3: Supersymmetric parameters of the NMSSM. The right column displays
the parameters that enter in addition to the MSSM parameters.

�LMSSM
soft,Higgs =m2

H
u

|Hu|2 +m2
H

d

|Hd|2 + (m2
3HuHd + h.c.)1

�LNMSSM
soft =m2

S |S|2 +
✓
�A�HuHdS +

1

3

AS
3
+

1

2

m
02
S S

2
+ h.c.

◆
1 (2.24)

Table 2.3 shows an overview of all parameters that we already know from the
MSSM and those that are introduced in addition for the NMSSM. For the sake of
completeness ⇠F is listed too.

2.3.1 The NMSSM Higgs Sector
Starting with the general form of the Lagrangian defined in the last section we will
use some constraints and redefinitions to reduce the number of free parameters and
bring them into a more convenient form.

1. The main motivation for the introduction of the NMSSM is the µ problem
where the mass parameter µ has to cancel with SUSY breaking parameters
although it arises from a SUSY respecting term(see section 2.2.3). Now that
we have introduced the gauge singlet we can merge two terms of the superpo-
tential:

WNMSSM � (µ+ � ˆS) ˆHu
ˆHd (2.25)

Now we can generate an effective µ-term with the vev of the singlet while the
parameter µ - which still has no reason to be of the order of the SUSY breaking
scale - can be set to zero. Going one step further we can ask the superpotential
to be scale invariant. Therefore we have to eliminate the remaining dimen-
sionfull parameter µ0 to zero. In contrast to the MSSM µ term it is possible

1One often finds the alternative definition: m2
3 = Bµ, m

02
S = B0µ0
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to set µ0 by setting it to zero as it is not determined by other parameters. By
now we have suppressed the parameters µ, µ0 and ⇠F . Following this attempt
it is sensible to eliminate the corresponding SUSY breaking terms by setting
m2

3 = m2
S = ⇠S = 0.

By doing so we have not only made our potential scale independent but we
have also introduced a new Z3-symmetry. Multiplying all chiral superfields
with a factor ei2/3⇡ leaves the Lagrangian now invariant.

2. In a second step we will use the minimization conditions of the vacuum ex-
pectation values to replace m2

H
u

,m2
H

d

and m2
S. The scalar NMSSM Higgs

potential, including the soft SUSY breaking terms, reads:

VHiggs =
���(H+

u H
�
d � H0

uH
0
d) + S2

��2 (2.26)

+

�
m2

H
u

+ |�S|2
�
(

��H0
u

��2
+

��H+
u

��2
) (2.27)

+

�
m2

H
d

+ |�S|2
�
(

��H0
d

��2
+

��H�
d

��2
) (2.28)

+

g21 + g22
8

⇣��H0
u

��2
+

��H+
u

��2 �
��H0

d

��2 �
��H�

d

��2
⌘2

(2.29)

+

g22
2

��H+
u H

0⇤
d +H0

uH
�⇤
d

��2
+m2

S |S|2 (2.30)

+

✓
�A�(H

+
u H

�
d � H0

uH
0
d)S +

1

3

AS
3
+ h.c.

◆
(2.31)

When we now assume that we are in the minimum of the potential, the partial
derivative of the potential with respect to H0

u has to be equal to zero. Therefore
we expand the fields with non vanishing vevs (H0

u, H
0
d , S) around their vevs:

H0
u = vu +

H0
u,R + iH0

u,Ip
2

, H0
d = vd +

H0
d,R + iH0

d,Ip
2

, S = s+
SR + iSIp

2

(2.32)

Now we can take the partial derivative and evaluate this expression at the
minimum, where the charged fields vanish as electromagnetism is unbroken.

0 =

@VHiggs

@H0
u

����H0
u

=v
u

H0
d

=v
d

S=s

=

�
m2

H
u

+ �2s2
�
vu +

g2

4

· 2(v2u � v2d)vu (2.33)

� �vd(s
2 � �vuvd) � �A�vds (2.34)

=vu

✓
m2

H
u

+ �2s2 + �2v2d +
g2

2

(v2u � v2d)

◆
(2.35)

� vd�s(s+ A�) (2.36)

As indicated for equation 2.23 we now replace every occurance of s by an
effective µ parameter µeff = �s. Applying the same procedure to H0

d and S
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leaves us with three equations that can now be used to express mH
u

,mH
d

and
mS in terms of vu, vd and µeff .

m2
H

u

= �µ2
eff � �2v2d +

g2

2

(v2d � v2u) + vd/vuµeff (


�
µeff + A�) (2.37)

m2
H

d

= �µ2
eff � �2v2u +

g2

2

(v2u � v2d) + vu/vdµeff (


�
µeff + A�) (2.38)

m2
s = �

�
Aµeff � 2

2

�2
µ2
eff � �2

(v2u + v2d) + 2�vuvd + �2vuvdA�/µeff

(2.39)

Finally we know that vu and vd can be replaced by the known mass of the
Z-Boson and tan � the ratio of the Higgs vacuum expectation values that we
know from the MSSM.

tan � =

v
u

v
d

m2
z = v2g2 = (v2u + v2d)

g2
1+g2

2
2

)
vu = v sin � =

m
z

g sin �

vd = v cos � =

m
z

g cos �
(2.40)

Now we are able to express m2
H

u

,m2
H

u

and m2
S in terms of µeff , tan � and mZ ,

which are more familiar and hence more convenient as input parameters for
our model. The obtained results will now be used to determine the Higgs
masses.

2.3.2 The Higgs Mass
Considering the potential in section 2.3.1 we can derive an expressions for the Higgs
mass matrices. Distinguishing between CP-even and CP-odd bosons we call the
matrix for the real scalar fields MS and the one for the imaginary part MP . For MS

we set the basis to (H0
d,R, H

0
u,R, S

0
R). As an example we start with the term M2

S,22.
The only contributions from the Higgs potential that can contain terms with (H0

u,R)
2

and no other field come from 2.26, 2.27 and 2.29. Collectings these terms we find:

M2
S,22/2 =

�2v2d
2

+

1

2

�
m2

H
u

+ |�s|2
�
+

g2

4

�
3v2u � v2d

�
(2.41)

Replacing m2
H

u

with equation 2.37 and using the relation 2.40 results in:

M2
S,22 = m2

Z sin

2 � +

1

tan �
µeff

⇣
�
µeff + A�

⌘
(2.42)

The remaining diagonal entries of the CP even mass matrix are:

M2
S,11 = m2

Z cos

2 � + tan �µeff

⇣
�
µeff + A�

⌘
(2.43)

M2
S,33 = �2 A�m

2
Z

2g2µeff
sin 2� +



�
µeff (A + 4



�
µeff ) (2.44)
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For the off diagonal entries one finds:

M2
S,12 =

✓
2

�2

g2
� 1

◆
m2

Z sin � cos � � µeff

⇣
A� +



�
µeff

⌘
(2.45)

M2
S,13 = �

mZ

g

⇣
2µeff cos � �

⇣
A� + 2



�
µeff

⌘
sin �

⌘
(2.46)

M2
S,23 = �

mZ

g

⇣
2µeff sin � �

⇣
A� + 2



�
µeff

⌘
cos �

⌘
(2.47)

Although the masses of the bosons are the eigenvalues of the matrix and can not
be deduced directly from the elements of the matrix, we can already infer some
informations about the mass dependence on the additional NMSSM parameters.

The trilinear singlet coupling A only appears in the diagonal entry of the singlet
and will therefore only have a very small direct impact on the other Higgs masses.
The selfcoupling of the singlet exclusively appears in the fraction /� multiplied
by µeff . This shows a strong correlation between the two parameters and a way
the selfcoupling can enter indirectly. Also the mixing entries with the singlet are
multiplied with � as it is the coupling between the singlet and the Higgs sector. A�

appears mainly in sums with /� which hints at a correlation.
When one rotates the submatrix for the Higgs bosons by the angle �, the upper

limit of the lightest Higgs mass becomes

m2
Z

✓
cos

2
2� +

�2

g2
sin

2
2�

◆
. (2.48)

The possible mass range is increased with respect to the MSSM if � > g. This
allows for smaller loop corrections and therefore smaller stop quark masses and
smaller symmetry breaking. However this can only produce an actual effect if tan �
is rather small.

For the CP odd bosons one can observe similar characteristics concerning , A�

and A.

M2
P,11 = 2

µeff (A� +

�µeff )

sin 2�
(2.49)

M2
P,22 = �2

⇣
A� + 4



�
µeff

⌘ m2
Z sin � cos �

g2µeff
� 3



�
Aµeff (2.50)

M2
P,12 = �2

⇣
A� � 2



�
µeff

⌘ mZ

g
(2.51)

2.3.3 The Semi Constrained NMSSM
In the MSSM we drastically reduced the number of input parameters by mSUGRA,
that introduces a unification at the GUT scale. In the same way we construct the
semi constrained NMSSM. Similar to the unification conditions in mSUGRA we
introduce the unification parameters m0,m1/2 and A0.
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m0 is the mass of the scalar sleptons and squarks at the GUT scale. In contrast to
the familiar mSUGRA model m2

H
u

and m2
H

d

don’t take the value of m0 at the
GUT scale as they are already fully constrained by equation 2.37 and 2.38.

m1/2 is the mass of the gauginos at the GUT scale. It unifies M1,M2 and M3.
Their values at the SUSY scale can be derived using the renormalization group
equations (RGE).

A0 is the unified trilinear coupling. It unifies Au,Ad, and Ae.

Taking into account all unifications, the number of additional input parameters
with respect to the Standard Model from table 2.3 has reduced to m0,m1/2, A0,
tan �, µeff ,�,, A�, A.

Compared to mSUGRA we can now set µeff and the additional parameters
�,, A� and A appear. These appear due to the additional singlet and the fact
that m2

H
u

and m2
H

d

are not unified at the GUT scale. In this case - the constrained
NMSSM -  and µeff are no free parameters but can be computed from the mini-
mization equations of the scalar potential that are otherwise used to determine m2

H
u

and m2
H

d

.

2.3.4 RGEs
For an actual implementation of the model we have to specify the scale at which
the input parameters are given. For those input parameters that are supposed to
be a unified quantity at the GUT scale, namely m0,m1/2 and A0 the GUT scale
is an obvious choice. In order to offer the possibility to unify A�, A with A0 it is
convenient to set them at the GUT scale too.
We have seen that tan � and mZ can replace the Higgs vacuum expectation values
vu and vd. Therefore tan � has to be defined at the electroweak scale. �, and µeff

are set at the SUSY breaking scale which is set to 1000 GeV. After setting the
input parameters at a special scale, we use the RGEs to determine their value at
the electroweak scale as suggested by Ref. [20].

In order to understand the behaviour of the additional NMSSM parameters at
different scales, we take a look at their scale dependence. The scale dependence is
parametrized by t = lnQ. The renormalization group equations for the couplings
are

16⇡2d�
2

dt
= �2

(3h2
t + 3h2

b + h2
⌧ + 4�2

+ 22 � g21 � 3g22) (2.52)

16⇡2d
2

dt
= 2

(6�2
+ 62

). (2.53)

The RGEs are given for the square of the coupling. Therefore we can only make
statements about their absolute value. For small values of � the scale dependence
is dominated by the top Yukawa coupling and grows with t. For higher values of
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� the coupling itself leads to a stronger increase until it reaches values bigger then
1 and is no longer weakly coupled. This means that the coupling can no longer be
described by perturbation theory. If this happens before the GUT scale the model
will be excluded.

The running of  depends at leading order only on � and itself. As both contri-
butions are positive,  will always increase exponentially with the scale.

16⇡2dA�

dt
= 4�2A� + 3h2

tAt + 3h2
bAb + h2

⌧A⌧ + 22A + g12M1 + 3g22M2

(2.54)

16⇡2dA

dt
= 62A + 6�2A� (2.55)

The scale dependence of A� depends on the sign of At and its ratio to the gaugino
masses and A through A� on the same variables.

For further analysis of the spectrum at the electroweak scale it is crucial to know
how the known MSSM parameter are influenced by the additional NMSSM param-
eters.

Leading order contributions from � appear in the RGEs of ht, hb, h⌧ . Additional
contributions from � in combination with A� appear in the RGEs of At, Ab, A⌧ ,
m2

H
u

,m2
H

d

.  and A appear in the same RGEs only in next to leading order terms.

16⇡2dh
2
t

dt
= h2

t (6h
2
t + h2

b + �2 � 13

9

g21 � 3g22 � 16

3

g23) (2.56)

16⇡2dAt

dt
= 6h2

tAt + h2
bAb + �2A� +

13

9

g21M1 + 3g22M2 +
16

3

g23M3 (2.57)

32⇡2dµ

dt
= µ(3h2

t + 3h2
b + h2

⌧ + 2�2 � g21 � 3g22) (2.58)

The top Yukawa coupling decreases with t due to the large negative contribution
of the SU(3) coupling. As �2 enters with a positive sign, it decreases the gradient
of the running. As the Yukawa coupling is fixed by the top mass at the electroweak
scale, this leads to a higher value for h2

t at the GUT scale compared to an MSSM
scenario.

The trilinear coupling depends on too many arbitrary input parameters to make
any prediction about the influence of A�.

The absolute value of µ will increases with t because of the combined effect of
top, bottom and tau Yukawa coupling. The additional � term increases the scale
dependence and leads to a steeper incline. This effect is in accordance with the
enhanced top Yukawa coupling.

The last RGE we consider is that of m2
H

u

. Therefore we define first the two
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quantities

M2
t = m2

Q3
+m2

U3
+m2

H
u

+ A2
t (2.59)

M2
� = m2

H
u

+m2
H

d

+m2
S + A2

�. (2.60)

The scale dependence of m2
H

u

can now be written as

16⇡2dm
2
H

u

dt
= 3h2

tM
2
t + �2M2

� � g21M
2
1 � 3g22M

2
2 . (2.61)

The influence of the additional NMSSM parameters on the RGEs and the be-
haviour of the Higgs masses at tree level help us to understand the spectrum of the
NMSSM. A key observable for physics beyond the SM is the amount of dark matter
in the universe that is closely connected to the masses of the sparticles. Therefore
we will now discuss how special mass configurations can lead to the correct relic
density.

2.4 Dark Matter Annihilation Channels in SUSY
In the early universe dark matter has been produced in thermal equilibrium assuming
a dark matter model with weakly interacting particles (WIMP) as in supersymmetry.
In equilibrium the number density follows the Boltzmann equation

dn�

dt
+ 3Hn� = � < �Av >T [n2

� � n2
�,eq] (2.62)

The Hubble constant H accounts for the expansion of the universe, < �Av >T is
the thermally averaged annihilation cross section and the term in brackets adjusts
the creation and annihilation cross section to generate the number density in equi-
librium.

The expansion of the universe causes a drop in the temperature. When the tem-
perature becomes smaller than the mass of the WIMP, the pair creation of the
dark matter needs particles from the tail of the velocity distribution. Therefore the
number density decreases exponentially. At some point the density of dark matter
particles is so low, that the annihilation cross section becomes smaller than the effect
caused by the expansion of the univers. At that point the freeze out occurs as the
dark matter can no longer annihilate.

The amount of dark matter in the universe today depends therefore on the anni-
hilation cross section of dark matter before the freeze out. To generate a small relic
density it is crucial to find an annihilation process with a sufficiently high cross sec-
tion. In the following we will discuss typical annihilation channels for dark matter
in supersymmetric models.

In supersymmetry the dark matter candidate is the LSP, the lightest supersym-
metric particle, as it can not decay any further into supersymmetric or Standard
Model particles. As it has to be "dark", which means not having an electric charge,
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the only possible candidates are neutralinos, sneutrinos and gravitinos. The MSSM
sneutrinos have already been ruled out by experiments, so we will focus on the light-
est neutralino as a dark matter candidate [15] and discuss its annihilation channels.

h-funnel

h-funnel means that two LSP annihilate into a Higgs boson which consequently
decays into a particle and an antiparticle, mostly b¯b, as shown in Fig. 2.2. The
cross section for this process and therefore the annihilation efficiency is highest if
the process is on shell. Taking into account that the particles in the early universe
move with non negligible velocity v we get the following mass relation for Higgs and
LSP in CMS for the on shell case:

m2
h = (p1 + p2)

2
= (2E1/2)

2
= 4(m2

�0
1
+ ~p2) = 4�2m2

�0
1

(2.63)

m�0
1
=

mh

2

r
1 � v2

c2
(2.64)

As the mass of the Higgs is known, this sets the mass of the LSP. In the usual
case of a neutralino LSP, the LSP is usually "bino-like" and depends strongly on
M1 respectively m1/2 in SUGRA like Models. Therefore investigating a likelihood
map of for SUGRA like models, one can easily identify the Higgs funnel region in a
projection on the m0-m1/2-plane.

A-funnel

The concept of the A-funnel region is similar to that of the h-funnel. Differences
arise due to the width of the A boson at the order of 40 GeV and therefore about 4
orders of magnitude bigger than that of the SM Higgs. Even if we fix the mass of the
LSP to m�0

1
= 740.9GeV , we find the correct relic density e.g. for mA = 1497.9GeV

as well as mA = 1505.3GeV which shows that it is not necessary to hit the pole.
Furthermore the mass of A is not fixed by current experiments. Thus there is a
wider region in the parameter space of mSUGRA that corresponds to this region.

Co-annihilation region

Co-annihilation regions can appear for sleptons [21], squarks [22] and charginos [23].
For this type of annihilation channels the mass of the next-to-lightest supersymmet-
ric particle has to be close to mass of the LSP. The mass difference can only be of
the order of a few percent or less. Otherwise this particle would decay into its SM
partner and the LSP. If the masses are nearly degenerate, this decay is suppressed
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Figure 2.2: Dark matter annihilation processes for the funnel region (a), the ⌧̃ -co-
annihilation region (b) and the focus point (c).

by the phase space. In the example of a ⌧̃ -co-annihilation [21] the annihilation pro-
cess is an s-channel diagram. ⌧̃ and the LSP annihilate via a ⌧ lepton into a ⌧ and
a pseudo scalar Higgs. In this case the LSP can have a large Higgsino component
as the coupling is determined by the Yukawa coupling that is enhanced sufficiently
only for stau and the stop squark. For co annihilation with the lightest stop squark
the lightest stop mass should be in the range of 1- 1.05 times the LSP mass. [24]

Focus point region
The focus point region [25] is defined by gaugino and Higgsino masses at the electro
weak scale while squarks and sleptons become heavy. This region is consequently
determined by large m0 and small m1/2. The focussing enters through the require-
ment that the electroweak potential is insensitive to small changes of the SUSY
breaking parameters. The correct relic density can be be provided by an LSP with
a non trivial Higgsino or wino component and a mass around the electroweak scale.
µ is very small to generate the according mixing. The annihilation then goes via a
t-channel chargino into two W bosons.
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3 Measurements

Among the data, that we use for the fit, we first of all choose those experiments
that made it necessary to search for new physics. Dark matter for example doesn’t
exist in the SM and supersymmetry is supposed to introduce a particle that will
provide a dark matter candidate. The exact Higgs mass is neither predicted by the
Standard Model but when we set the input parameters for the NMSSM the masses
of the three CP even Higgs bosons will be fixed and one of them will have to be
consistent with the discovered scalar.

To test the validity of the tested model we also use precision measurements that
will be sensitive to new particles e.g. through loop contributions. We include the
anomalous magnetic moment, B-Physics observables and results from experiments
in the electroweak sector. Starting with the Higgs mass the impacts of the different
measurements are now explained in detail. The given statistical and systematic er-
rors are taken from the official papers. The theory errors arise from uncertainties on
the supersymmetry calculations. For the Higgs mass, the relic density, the anoma-
lous magnetic moment and the branching ratio BR(B0

s ! µ+µ�
) the theoretical

errors on the SUSY calculations have been estimated in the SFitter paper [26].

3.1 Higgs Mass and Couplings
mh = (126.0 ± 0.4 stat ± 0.4 syst ± 3.0 theo)GeV (ATLAS[4] + theo. uncert.)

So far the Higgs boson is the only detected elementary scalar particle. Its mass
measurements by ATLAS and CMS are compatible within the statistical and sys-
tematic errors. As the theoretical error of the SUSY calculations is more than five
times bigger than the combined statistical and systematic error, a combination of
both measurements would not change the results significantly.

The main production channel for the Higgs at the LHC is gluon fusion through
a top loop followed by weak boson fusion and the associated Higgs production. A
produced Higgs of about 125 GeV decays mainly into a b¯b pair that forms jets, which
are indistinguishable from the background for gluon fusion. The same applies for a
decay into gluons or cc̄. For Higgs production associated with a W or Z boson and
weak boson fusion, it is possible to distinguish the decay into b¯b from backgrounds
like qq̄ ! Zg⇤ ! Zb¯b [27], but the resolution remains weak. Finally the mass of the
Higgs has been reconstructed in the decay channels H ! ZZ ! 4l and H ! ��
that have a smaller cross section but a better signal to background ratio and mass
resolution.

After the discovery of the Higgs bosons these channels remain an important source
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for further informations. The measurement of the mass has been improved due to
more accumulated statistics and the Yukawa couplings can be measured through a
wide variety of different production and decay channels [28].

In the context of supersymmetry the detected boson is just one of many scalars.
In the MSSM there are two CP even Higgs bosons, in the NMSSM even three. In the
MSSM the tree level mass of the lightest Higgs is limited by the mass of the Z boson
(sec. 2.2.2) which is in tension with the measurement. A correct mass can either be
obtained by loop corrections from heavy stop quarks or by choosing a heavier Higgs
to be the one at 126 GeV. In the NMSSM (sec. 2.3.2) the lightest Higgs mass on
tree level can also be slightly increased if the ratio �2

g2 is bigger than 1. In this study
we assume the lightest Higgs to be Standard Model like which leads to high masses
of the stop quark in regions that are compatible with the experimental data.

3.2 The Relic Density

⌦h2
= 0.1187 ± 0.0017 stat ± 0.0120 theo (Planck[2] + theo. uncert.)

The amount of dark matter in the whole universe is determined by methods like
gravitational lensing and cosmic microwave background (CMB).

Astronomical measurements like the observation of quasars lead to the conclusion
that dark matter is made up of cold particles. In the early universe mass was dis-
tributed in a homogeneous way. Photons and baryons were coupled into a plasma, a
perfect fluid, due to rapid scattering. The inflationary seeds of the universe’s struc-
ture were quantum overdensities that created potential gravitational wells. While
the gravitational force pulled the fluid into the centre of these fluctuations the photon
pressure leads to a rejection forming so called acoustic oscillations. The combined
effects of gravitation and photon pressure lead to periodic compression (overdensi-
ties) and rarefications (underdensities). Due to its expansion, the universe cooled
down so that atoms could form from free electrons and protons and the universe
became transparent for photons. The so called freeze out lead to a cut off in in the
oscillations and the freed photons are nowadays observed as CMB. The radiation is
isotropic at a level of 10�5 and its spectrum corresponds to that of a black body
with a temperature of 2.725 K [29].

The amount of dark matter in the universe is determined from the small temper-
ature anisotropies of the CMB [2]. One expands them in terms of the normalized
spherical harmonics:

�T

T0
(✓,�) =

+1X

l=0

+lX

m=�l

almYlm(✓,�) (3.1)
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The contained informations can be extracted by considering the variance

Cl ⌘< |alm|2 >=

1

2l + 1

lX

m=�l

|alm|2 (3.2)

multiplied by l(l + 1)/2⇡. l = 0 corresponds to a monopole and l = 1 to a dipole
moment. The dipole moment is caused by the motion of the solar system relative to
the CMB. For l � 2 the variances carry information about the intrinsic anisotropy
of the CMB. Higher values of l correspond to smaller angles and scales.

This spectrum can now be used to determine best-fit parameters for cosmological
models and thereby the relic density.

The Wilkinson Microwave Anisotropy Probe (WMAP) data [30] lead to an amount
of baryons and matter of

⌦bh
2
= 0.024 ± 0.001 and ⌦Mh2

= 0.14 ± 0.02 (3.3)

The relic density is obtained as the difference between total matter and baryonic
matter.

The WMAP results have been combined amongst others with those obtained by
ACBAR [31] and CBI [32] that studied smaller scales than WMAP. The combined
measurement benefits from smaller uncertainties and results in[33]

⌦bh
2
= 0.0224 ± 0.0009 and ⌦Mh2

= 0.135+0.008
�0.009 (3.4)

The latest results for the dark matter density are provided by the Planck collab-
oration [2]. The spacecraft that was collecting data from 2009 to 2013 measured
radiation of the CMB in nine frequency bands. The combined results have been
used to construct a full-sky map of the CMB from which the actual value for the
dark matter density was obtained. To improve the reliability the Planck result has
been combined with large scale polarization data from WMAP [34], results from
the South Pole Telescope and the Atacama Cosmology Telescope [35], and baryon
acoustic oscillation measurements (BAO) [36]. The higher angular resolution en-
ables Planck to make more precise measurements on its own without encountering
difficulties through combinations with other measurements.

3.3 The Anomalous Magnetic Moment
aµ = (287±63 exp ±49 SM ±20 theo) ·10�11

(MuonG�2[37], [3]+ theo. uncert.)

The magnetic moment of a particle is a quantity that determines the influence of
an external magnetic field. The magnetic moment of a single particle is related to
its spin, charge and mass by the Landé factor g.

~µ = g
e

2m
~s (3.5)
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Figure 3.1: Standar Model loop corrections to the magnetic moment. From left to
right: QED (a), EW (a,b) and hadronic (c) corrections.

The Dirac equation predicts g = 2 for spin-1/2 particles like the electron and the
muon. QED, EW and hadronic loop corrections to this vertex (see feynmangraphs)
lead to deviations from 2. These deviations from the Dirac prediction are quantified
as the anomalous magnetic moment.

a =

g � 2

2

(3.6)

aSM = (116591802 ± 2QED+EW ± 42had,LO ± 26had,HO) ⇤ 10

�11 (3.7)

While the electroweak corrections can be predicted with a high accuracy, the low
order and high order hadronic corrections lead to an uncertainty of about 49 · 10�11

when summed up quadratically.
Comparing the experimental value obtained by the Muon G-2 Collaboration [37]

and the theoretical prediction for the Standard Model including electroweak and
hadronic corrections leads to a discrepancy of 3.6 �.

aexp = (116592089 ± 54 ± 33) ⇤ 10

�11 (3.8)
�aµ = aexp � aSM = (287 ± 63 ± 49) ⇤ 10

�11 (3.9)

Supersymmetry would add further loop corrections [38] which enlarge the value
of a and could lead to a better agreement with data.

3.4 Other Observables
The following observables only have minor influence on the fit results. The experi-
mental results are listed in table 3.1.

B-Physics
The rate b ! s� measures the flavour changing neutral current that is only possibly
through a loop. It can be obtained from the measurement of B ! Xs� that has
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Measurement Value and error

BR(B ! Xs�) (3.55 ± 0.24 stat ± 0.09 syst) · 10�4 [39]
BR(B0

s ! µ+µ�
) (3.2 ± 1.4 stat ± 0.5 syst ± 0.2 theo) · 10�9 [42]

BR(B+ ! ⌧+⌫) (1.41 ± 0.43 stat) · 10�4 [43]
�mB0

(0.510 ± 0.004 stat ± 0.003 syst ± 0.400 theo) · 1012 ~s�1 [43]
�mB0

s

(17.69 ± 0.08 stat ± 7.00 theo) · 1012 ~s�1 [43]
�Z!Inv (�1.9 ± 1.5 stat ± 0.2 theo)MeV [44]
�Z!Higgs (6.5 ± 2.3 stat ± 1.0 theo)MeV [44]
mt (173.5 ± 0.6 stat ± 0.8 syst)GeV [45]

Table 3.1: Data used for the fit including their systematic and statistical errors from
the measurements and theoretical errors for SUSY calculations as far as
they are considered.

been performed by BaBar, CLEO and Belle [39]. The combined value is displayed
in Table 3.1. The bottom quark is converted through a loop containing a W and an
up type quark into a strange quark and a photon that is necessary for momentum
conservation. Recent NNLO calculations for the Standard Model predict a value of
(3.15±0.23)⇤10�4 [40] and (2.98±0.26)⇤10�4 [41] for E� > 1.6GeV. Supersymme-
try introduces additional loop contributions including Higgsinos, winos, binos and
gluinos. These contributions increase the value of the rate.

The decay B0
s ! µ+µ� is as well only possible through a loop and receives ad-

ditional contributions from SUSY particles. The measurement of the branching
fraction has been performed by LHCb with their data from 2011 and 1012 [42].

The branching ratio B+ ! ⌧+ + ⌫ has been measured by BaBar and Belle [43].
The s-channel decay that goes through the W-boson for the Standard Model can
get contributions from the charged Higgs boson.

�m
B

0 is a measure for the oscillation frequency of a B � ¯B-system. The HFAG
average value [43] has been calculated from a large number of experiments. The
most recent measurements have been carried out by LHCb, D0, BaBar and Belle.

The average value for the Bs � ¯Bs mixing �m
B

0
s

has also been evaluated by the
HFAG using the results from LHCb and CDF. The theoretical errors are estimated
from the ones calculated in NMSSMTools. The main contributions come from un-
certainties on CKM matrix elements and lattice QCD calculations.

Electroweak Precision Data

For the electroweak measurements the branching ratios of the Z-boson are taken into
account. The decay of Z ! ⌫⌫̄ or more general Z to invisible receives additional
contributions from the decay into the LSP Z ! �0

1 + �0
1. Therefore the value given

26



in table 3.1 is the difference between the measured value (499MeV ± 1.5MeV (fit
using lepton universality) / 503MeV ± 16MeV (average)[44]) and the Standard
Model prediction (500.9 MeV). The second branching ratio is the difference between
the measured total decay width of the Z boson (2495.2MeV±2.3MeV [44]) and the
SM prediction (2488.7MeV). Additional contributions of the NMSSM with respect
to the Standard Model can compensate for this difference. They will arise from the
decay into Higgs bosons Z ! hi+Aj if the decay products are together lighter than
the Z boson.

Top Quark Mass
Having a mass of about 175GeV the top mass is so far the heaviest elementary
particle. Due to its large mass it has a lifetime that is too short to form bound
states which is unique for the quark sector. Instead it decays immediately into a W
boson and a down type quark which then hadronize. The mass measurements [45]
have been performed by ATLAS, CDF, CMS and D0. Due to its high mass and the
corresponding Yukawa coupling of about 1 the top mass is an essential parameter for
BSM physics. Appearing in loop contributions small changes in his mass can have
big effects on observables. Therefore the top mass will later be used as a variable
input parameter. At the same time the measurement of the top quark mass will be
taken into account in the fit.
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4 SFitter

4.1 Idea
The attempts to explain deviations from the Standard Model have result and con-
tinue to result in a huge amount of new theories. Each theory again results in
different models and each model is characterized by a certain number of input pa-
rameters that can be chosen freely in a defined range.

This makes it necessary to develop efficient and flexible tools to compare the given
data with the predictions of many models. SFitter is such a program. It is designed
in a way that allows to implement arbitrary models and then do a fit over different
input parameters to determine their likelihood and find best fitting points for the
given data. SFitter has been used for the determination of supersymmetric param-
eters [9], including a bottom-up renormalization group analysis and experimental
information on production rates [46], as well as Higgs coupling measurements [47]
for MSSM scenarios.

The likelihood of a set of model parameters given experimental results is defined
as the probability to measure these results if the model is true [10]. Both expressions
are meant to be evaluated over the parameter space of the model.

L(mod|meas) = P (meas|mod) (4.1)

To determine a probability one has to consider the errors on the measurement as
well as the theoretical error from the prediction. The experimental errors are divided
into systematic and statistical errors. For a small number of events the statistical
error of a measurement is described by a Poisson distribution. If the number of
events increases, the distribution approaches the limit of a Gaussian.

The systematic errors of a measurement arise for example from efficiencies in
particle identification or calibration of jet and lepton energy scales. They can be
described by a Gaussian as they are often determined from background processes
that have a high number of events.

Therefore both experimental errors can in many cases be described by a Gaussian.

L(y) = e�
(x�y)2

2�

2 (4.2)

Theoretical errors often arise from higher order QCD effects in perturbation the-
ory. It follows that the probability distribution does not peak around a central
value but remains flat. Nevertheless we assume that perturbation theory is able to
describe the prediction and so the uncertainty has to be limited. The theoretical
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uncertainty is therefore described as a flat box-shaped error.

L(y) = ⇥(y � xmin)⇥(xmax � y) (4.3)

To evaluate the likelihood of a measurement one has to combine the systematic,
statistical and theoretical errors. As the convolution of two Gaussian results again in
a Gaussian the systematic and the statistical uncertainties are combined by adding
the standard deviations squared. To combine the Gaussian with the theoretical flat
box-shaped error we have to determine the convoluted likelihood. It is given by

L(x) = max

y
⇥(y � xmin)⇥(xmax � y)e�

(x�y)2

2�

2 (4.4)
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The result is a Gaussian that has been cut at its peak to insert a flat distribution
with the length of the theory error. The same is true for the combination of a Poisson
distribution with a box shaped error. The combination of a Possion distribution with
a Gaussian proceeds in the same way leading to the non trivial result

L(x) = max

y
exp

✓
�N + y logN � log y! � (x � y)2

2�2

◆
. (4.7)

This construction is called RFit scheme [48].

To combine different observables one has to multiply all involved likelihoods.
Therefore it is numerically more stable to consider their logarithms that only have to
be added. If we consider the log-likelihood in the limit of a Gaussian, the logarithm
of the likelihood corresponds to the �2 value by

L(x) = e�
x

2

2�

2
= e�

�

2

2 , �2
= �2 logL(x) (4.8)

SFitter allows to include correlations between the measurements. The correlation
is implemented by means of the symmetric correlation matrix C. For independent
measurements the correlation matrix is simply diagonal. Generalizing the relation
between the likelihood and �2 for correlated measurements in the RFit scheme re-
places �2 by

�2 logL = ~xC~xT (4.9)

~x represents all observables that are taken into account. Its components xi are
determined to be
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(4.10)

in order to reproduce �2 in the limit of uncorrelated measurements with Gaussian
errors.

For this study correlations between the Higgs mass and the Higgs couplings are
taken into account. All other measurements like g� 2 are considered to be indepen-
dent.

4.2 Bayesian vs. Frequentist
After calculating the likelihood for many points in the parameter space one has to
project the result on a two dimensional plane to display it. Therefore exist two
methods to project a multidimensional parameter space on a lower dimensional one.

Bayesian
Using the Bayes’ theorem we can show that the likelihood is proportional to the
probability that a model is true given the measurements.

P (mod|meas) = P (meas|mod)
P (mod)

P (meas)
= L(mod|meas)

P (mod)

P (meas)
(4.11)

The likelihood can therefore be determined when we know the probability of the
measurement, the probability of the model The probability of the measurement
P (meas) gives an normalization factor that has to ensure that P (mod|meas) inte-
grated over P (meas) is normalized to unity.

The probability P (mod) on the other hand implies a measure that depends on
the choice of the model parameters. This choice is in principle arbitrary, but it
introduces a prior that has to be taken into account. When we project the likelihood
map on a lower dimensional map we have to integrate over the spare parameters
taken into account the introduced prior.

In SFitter the integration is done by counting the number of times the Markov
chains ends in one bin and weighted with the prior.

Frequentist
The frequentist method uses another approach. We assume a given likelihood of
a n+1-dimensional parameter space L(x1, ..., xn, y), that we want to reduce to a
likelihood over a n-dimensional parameter space L(x1, ..., xn). Instead of integrating
over the spare parameter y, the higher dimensional map is projected on the lower
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dimensional one by choosing the value of y that maximizes the probability. The new
likelihood distribution is given by

L(x1, ..., xn) = max

y
L(x1, ..., xn, y). (4.12)

One calls this a profile likelihood. In the present studies we use the frequentist
method to avoid the influence of a prior of the Bayesian method.

4.3 Implementation
The fitter tries to maximize the likelihood in the given range of the input parame-
ters using markov chains. In doing so for each selected point of the parameter space
SFitter has to call the tools that calculate the observables which are compared to
the data. One strength of SFitter is, that it keeps different tools well separated from
each other, so that one can run them independently and use only those that one
needs for a certain setup. A common SLHA-file enables the tools to communicate.

We will look at its two input files - one for the model and one for the data - to
illustrate how this is working in detail.

In the modelfile one first specifies the model that one wants to use. This is
necessary to reserve memory for the model specific input parameters.

Then one selects the tools that calculate observables like masses or the relic density
from the input parameters. The tools have to be set in the right order so that
consecutive programs can use the output of previous ones.

Next, different global preferences can be specified, e.g. the GUT-scale is set to
3 · 1017 GeV and the CMS energy is set to 7TeV.

After the tools, the fitter along with its settings has to be calibrated. Here we use
markov chains with 200000 points and a flat prior.

Finally one has to set the input parameters of the model and the Standard Model
values for some parameters like the top mass. These values can be fixed or a range
can be given by the lowest and the highest value and a third value that sets the
fineness of the grid for the fit.

For each point of the Markov chain the corresponding input parameters are writ-
ten into the SLHA-file. The different tools know the address of the input parameters
and fill the SLHA file with their results until the final observables are calculated.
Their address again has to be given in the data file to relate the provided results
of measurements and their errors with the predictions that are now stored in the
SLHA file.

In the data file the measured values and their errors are set. Statistical and
systematic errors enter as Gaussian errors while the theory errors enter flat. As
described before this means that within the theory limits all values have the same
probability while outside these limits the probability decreases as the Gaussian of
the statistical and systematic errors.
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4.4 Markov Chains
Before choosing a special fitting tool we have to know what we expect from the
results. For instance one can do a scan over the whole parameter space by setting a
grid. In this case one gets an overview over the whole space and a reasonable idea
of the underlying structures. One problem for this method is that the time for the
scans grows exponentially with the number of parameters. Even if we have only 4
input parameters and we want to increase the finesse for each by a factor of 5 the
calculation time gets multiplied by 5

4
= 625. Additionally such a scan will treat

areas with small probability - in which we are not interested - the same way as areas
with a high probability.

Another method is a fit that tries to find the point in the parameter space that
describes the data best. This brings us already closer to what we want, as we are
interested in parameter configurations that might actually be realised in nature, but
this time we won’t see the structure of the area around.

To solve this problem we use Markov Chains with different starting points. The
concept of Markov Chains is, that the next step only depends on the current state
of a system. The Markov Chain tries to find a point with higher likelihood following
a proposal function for choosing the next point in parameter space. The proposal
function is a Breit-Wigner distribution which means the closer another point in
parameter space the more likely it is chosen as a next point of the chain.

This way the Markov chain searches for points in parameter space with higher
probability. If it finds a better point the new point will be the starting point for the
next search.

For each new calculation the fitter has to launch each of the tools that are necess-
sary to calculate the spectrum and the observables. In the following we introduce
the most importan tools available for SFitter.

4.5 Tools
SuSpect

SuSpect [52], a spectrum calculator for the MSSM has been used so far for mSUGRA
and general MSSM studies. The running of the gauge couplings, the Yukawa cou-
plings and the gaugino mass terms are calculated at 2-loop level. The Higgs masses
are calculated at 1-loop level including leading contributions at 2-loop level. The
remaining parameters are calculated at 1-loop level. While SuSpect2 was entirely
fortran based, SuSpect3 has a C++ interface that makes it easier accessible.

SuSyHit

SuSyHit [53] is an interface between SuSpect, SDECAY and HDECAY. SDECAY
calculates the widths and branching ratios for supersymmetric particles in the MSSM.
HDECAY calculates the same observables for the Higgs bosons.
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SUSY-POPE

SUSY-POPE (SUSY Precision Observables Precisely Evaluated) [54] is a mainly
fortran based program that is used to calculate the partial decay widths of the Z
boson, pole cross sections for e+e� collisions and asymmetry parameters for the SM
and the MSSM.

4.5.1 NMSSMTools

NMSSMTools is a compilation of tools to calculate the Higgs and sparticle spectrum
of the NMSSM including some extra observables like contributions to the anoma-
lous magnetic moment. It contains the tools NMHDECAY [55], NMSPEC [56],
NMGMSB [57] and NMSDECAY [58] written by Ulrich Ellwanger, John F. Gunion,
Cyril Hugonie, C.-C. Jean-Louis and Ana M. Teixeira.

For the present studies we use NMSPEC and NMHDECAY. They calculate the
masses of the Higgs and the sparticles, the decay widths and the couplings of the
Higgs. In order to include NMSSMTools as tools in SFitter we had to split the pro-
gram into independent parts. The so created tools are called NMSSMSPECTRUM,
NMSSMDECAY, NMSSMEW, NMSSMGMU and NMSSMBPHYSICS. Further-
more we had to create interfaces for each program to connect the fortran based
NMSSMtools with SFitter that is written in C++.

The fortran structure to store data is the common block. The common block
allocates its data so that one can access them via "commonblock.variable". The
interface can therefore fill the common block with the data from the SLHA file and
overwrite the SLHA input after the computation with the new results that are stored
in the common block.

The first tool that is launched is NMSSMSPECTRUM. After initializing the input
it runs the RGEs to compute the values of the soft SUSY breaking parameters at the
SUSY breaking scale. All couplings and soft terms are calculated at 2 loop level. If
the computation is successful the program will continue computing the masses of the
sfermions, the Higgs bosons, the gluinos, charginos and neutralinos. This includes
the computation of the corresponding mixing matrices. They are e.g. necessary for
the calculation of the additional contributions to the Z width due to decays into
Higgs bosons. The calculation of the Higgs boson masses includes the full 1 loop
corrections including pole masses and the 2-loop corrections that originate from top
and bottom Yukawa couplings.

The next tool that originates from NMSSMTools is NMSSMDECAY. It calculates
the total width and the branching ratios of the charged and the five neutral Higgs
boson. The branching ratios are necessary to predict the cross sections for different
channels used to determine the coupling of the Higgs. The predictions are made by
HIGGSPROD. When we include HIGGSPROD the sequence of the programs be-
comes crucial. We use HDECAY to calculate the Standard Model branching ratios
for a given Higgs mass. For the NMSSM there are three cp even Higgs bosons and
hence three possible candidates. Therefore one has to specify in ToolHdecay.cxx and
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in the modelfile (HIGGSPROD) which Higgs boson is supposed to be the Standard
Model like. Now HDECAY fills the SLHA-file not only with the branching ratios
for a Standard Model like Higgs but also with the MSSM branching ratios for those
Higgs bosons that would appear in the MSSM. These have to be overwritten by
NMSSMDECAY. Afterwards HIGGSPROD has all necessary informations to calcu-
late the crosssections for the channels.

The other NMSSM tools can be called afterwards in arbitrary sequence.
NMSSMEW calculates the additional contributions to the Z width due to decays
into Higgs bosons and the lightest neutralino which contributes to the partial decay
width of Z into invisible.
NMSSMGMU calculates the NMSSM contributions to the anomalous magnetic mo-
ment of the muon up to 2-loop contributions.
NMSSMBPHYSICS calculates the branching ratios b ! s�, B0

s ! µ+µ� and B+ !
⌧+ + ⌫ and the mass differences �m

B

0 and �m
B

0
s

4.5.2 MicrOMEGAs
MicrOMEGAs [59] is a program, that calculates dark matter properties like the
relic density for a given model. The program itself has been included as a tool
before for the MSSM and has been used in combination with SuSpect. Adding now
the NMSSM produces library conflicts. As MSSM and NMSSM use different input
parameters, the input depends on the chosen model. Hence we had to implement
a new reading routine to fill the additional mixing matrix for the CP odd Higgs
bosons and the bigger mixing matrices for the neutralinos and the CP even Higgs
bosons.

Moreover in MicrOMEGAs exist two distinct directories MSSM and NMSSM that
have their own libraries. Due to double assignment of some variables we can not
load both libraries at the same time. In order to access MicrOMEGAs with the
same tool independent of the model we have to implement dynamic loading of the
libraries.
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5 Constraining the NMSSM

In the previous chapters we have introduced the NMSSM. Starting with the simplest
implementation of supersymmetry, we have motivated the introduction of an addi-
tional singlet and followed this path to the actual realisation in a semi constrained
model with only few input parameters. The general NMSSM differs from the MSSM
only by the introduction of an additional singlet. Therefore the parameter space of
the MSSM is a subspace of the NMSSM parameter space and one can embed it by
decoupling the additional singlet. In the same way mSUGRA is a subspace of the
semi constrained NMSSM, as all constraints applied for the semi constrained model
have also been applied to mSUGRA. mSUGRA can therefore be embedded into the
larger parameter space of the semi constrained model. We illustrate this by con-
sidering the best-fit points of a former study of mSUGRA that has been performed
by SFitter [26] and that used the same measurements as described in chapter 3.
In order to embed these points into the NMSSM, we will apply also the additional
mSUGRA specific constraints to the semi constrained NMSSM. For the actual tran-
sition to mSUGRA we decouple the singlet by setting the coupling � to a value close
to zero, which should finally result in the same predictions of the mass spectrum as
mSUGRA. As we expect to find the same results as for mSUGRA, this allows us in
addition to test the implementation of the software and to compare the underlying
algorithms of the two programs SuSpect and NMSSMTools.

5.1 The NMSSM in the MSSM Limit
We shortly review the results of the mSUGRA study that has been performed by
SFitter [26]. For the results that we will refer to, the sign of µ has been fixed
to +1. The fit has been done for m0 < 5TeV, m1/2 < 5TeV, tan � < 60 and
�4TeV < A0 < 4TeV. In addition the top mass is free to vary within the error of
its measurement. The result of the fit is displayed in Fig. 5.1 that shows the profile
likelihood projections on the m0-m1/2-plane and the m1/2-tan �-plane. The z-axis
parametrizes the likelihood.

m0 m1/2 tan � A0 mt µ

h-funnel 4232 135 26.6 -2925 174.2 484.4
A-funnel 1500 1700 46.5 2231 173.9 1560
⌧ -co-ann 442 999 24.6 -1347 174.0 1400

Table 5.1: Input parameters of mSUGRA best-fit points and result for µ

35



7

 [GeV]0m
0 1000 2000 3000 4000 5000

 [G
eV

]
1/

2
m

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

 [GeV]0m
0 1000 2000 3000 4000 5000

 [G
eV

]
0A

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

 [GeV]0m
0 1000 2000 3000 4000 5000

β
ta

n

10

20

30

40

50

60

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

 [GeV]1/2m
0 1000 2000 3000 4000 5000

β
ta

n
10

20

30

40

50

60

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

FIG. 1: Profile likelihood projections onto the (m0, m1/2) plane, the (m0, A0) plane, the (m0, tan �) plane, and the
(m1/2, tan �) plane. All results are based on the Planck measurement and assume µ > 0.

In particular the size of the A-funnel region is then defined by the light Higgs mass constraint. Relating the
Higgs mass constraint we need to be a little careful. In Section II we have seen that the relevant trilinear
coupling At mostly scales with m1/2. The main contribution to the light Higgs mass comes from the two top
squarks, so the relatively heavy Higgs mass pushes the preferred physical stop masses to large values. According
to Eq.(1) negative values of A0 will increase |At|, leading to a larger stop mass splitting and hence a smaller
mass of the lighter stop mass eigenstate. Indeed, we find that the di�erent measurements prefer A0 > 0, while
large negative A0 values and low m0 values are disfavored by the Higgs mass constraint.

In the lower panels of Figure 1 we see that large tan� values are clearly favored, independently of m0. An
exception appears only for large m0 values, where the allowed range in tan � becomes sizeable. The dark blue
area for 500 . m0 . 3000 GeV and tan � < 35 is disfavored by the Higgs mass measurement. Large values of
tan � are needed to increase its value, while the stop masses are fairly independent of m0. Dark matter plays
the key role in excluding the white area around m0 ⇡ 3.5 TeV.

m0 m1/2 tan � A0 m
t

�2 log L/dof �2 log L/dof (LHCb)
co-annihilation 442 999 24.6 -1347 174.0 49.0/75 49.0/75
A-funnel 1500 1700 46.5 2231 173.9 48.9/75 49.2/75
h-funnel 4232 135 26.6 -2925 174.2 46.1/75 46.1/75

TABLE II: Illustration of best–fit parameters for the three regions of mSUGRA: A-funnel, h-funnel, and co-annihilation
with µ > 0. The corresponding �2 log L is given in column 7. The last column illustrates the impact on the new LHCb
measurement of BR(B

s

� µ+µ�).
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(m1/2, tan �) plane. All results are based on the Planck measurement and assume µ > 0.

In particular the size of the A-funnel region is then defined by the light Higgs mass constraint. Relating the
Higgs mass constraint we need to be a little careful. In Section II we have seen that the relevant trilinear
coupling At mostly scales with m1/2. The main contribution to the light Higgs mass comes from the two top
squarks, so the relatively heavy Higgs mass pushes the preferred physical stop masses to large values. According
to Eq.(1) negative values of A0 will increase |At|, leading to a larger stop mass splitting and hence a smaller
mass of the lighter stop mass eigenstate. Indeed, we find that the di�erent measurements prefer A0 > 0, while
large negative A0 values and low m0 values are disfavored by the Higgs mass constraint.

In the lower panels of Figure 1 we see that large tan� values are clearly favored, independently of m0. An
exception appears only for large m0 values, where the allowed range in tan � becomes sizeable. The dark blue
area for 500 . m0 . 3000 GeV and tan � < 35 is disfavored by the Higgs mass measurement. Large values of
tan � are needed to increase its value, while the stop masses are fairly independent of m0. Dark matter plays
the key role in excluding the white area around m0 ⇡ 3.5 TeV.

m0 m1/2 tan � A0 m
t

�2 log L/dof �2 log L/dof (LHCb)
co-annihilation 442 999 24.6 -1347 174.0 49.0/75 49.0/75
A-funnel 1500 1700 46.5 2231 173.9 48.9/75 49.2/75
h-funnel 4232 135 26.6 -2925 174.2 46.1/75 46.1/75

TABLE II: Illustration of best–fit parameters for the three regions of mSUGRA: A-funnel, h-funnel, and co-annihilation
with µ > 0. The corresponding �2 log L is given in column 7. The last column illustrates the impact on the new LHCb
measurement of BR(B

s

� µ+µ�).

(b)

Figure 5.1: Profile likelihood projections for mSUGRA fit on m0-m1/2-plane (a) and
m1/2-tan �-plane (b) from the SFitter paper [26].

One can identify three regions as described in section 2.4: The h funnel region
with m1/2 ⇡ 130GeV, the A-funnel region with m1/2 ⇡ 1.7TeV, 42 < tan � < 55

and the ⌧̃ -co-annihilation region with m1/2 < 1TeV,m0 < 1TeV. Their best-fit
points are listed in table 5.1. We start by emedding the best-fit points of the h and
A-funnel region in the CNMSSM to test the stability of the underlying algorithms
in the mSUGRA limit.

Now how do we come from the NMSSM to the mSUGRA limit?
So far we have introduced the semi constrained NMSSM. Compared to mSUGRA

we have the additional parameters �,, A�, A and |µeff | while m0, m1/2, tan �,
A0,mt and the sign of µeff are given by the best-fit point. In contrast to mSUGRA
the semi constrained NMSSM does not assume the unification of m2

H
u

and m2
H

d

at
the GUT scale. Assuming their unification to m0 gives two additional conditions
that reduce the number of free parameters by  and |µeff |.

Furthermore we have not assumed the unification of A�, A. As they are free
parameters, we have the freedom to be consistent and unify them by setting A� =

A = A0 in the input. The only free parameter left is �, the coupling between the
singlet and the Higgs doublets.

In order to go to the limit of mSUGRA we have to decouple the singlet from the
supersymmetric sector and hence from the Higgs doublets. This is done by setting
� to a very small value, 10�16.

Applying all constraints eliminates all degrees of freedom and should reproduce
the mSUGRA points. The results for the h-funnel point are listed in the third
column in table 5.2.

Most of the sparticle masses have similar values as in the mSUGRA case. This
is what we expect as the masses strongly depend on the input parameters m0 for
scalars and m1/2 for the neutralinos and charginos. Nevertheless we find deviations
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mSUGRA CNMSSM

� 10

�16
10

�16

mt 174.2 174.2 175.4
 1.408 · 10�15

5.775 · 10�16

µeff 484.4 259.4 482.5
⌦h2 0.1105 0.0209 0.0804
mh1 123.84 121.9 122.2
mh2 3626 3613 3633
mh3 6534 4787
mA 3626 3613 3633
mH+ 3627 3614 3634
m�0

1
59.48 57.86 59.68

m�0
2

119 111 120
m�0

3
-504 -278 -502

mt̃1 2376 2429 2406
mg̃ 477 477 477

Table 5.2: Reproducing the best-fit h-funnel point with the constrained NMSSM

on the 10% level for the second neutralino and a factor of 2 difference between the
two values for µeff and the mass of the third neutralino that is in a first approx-
imation determined by µeff . With a value of 0.02 instead of 0.11 we observe the
biggest deviation for the relic density. This is caused by the mass difference of the
Higgs and the lightest neutralino as the h-funnel region is very sensitive to small
deviations of the Higgs and the LSP mass.

The question remains why we observe this deviation. µeff is determined at the
SUSY breaking scale in terms of the soft SUSY breaking parameters m2

H
u

and m2
H

d

that are only fixed at the GUT scale. The value of m2
H

u

at the SUSY breaking scale
is very sensitive to the top Yukawa coupling ht as it is multiplied with the heavy
stop mass. The codes of SuSpect and NMSSMTools differ in their algorithms that
calculate the running of ht that is closely connected to the mass of the top quark.
Adjusting this mass can therefore bring µeff to the expected value as displayed in
the third column. We observe that all other masses come closer to the values that
have been computed by SuSpect. The mass differences are now all smaller than
2%. The mass of the third Higgs that appears in addition to mSUGRA decreases
and makes it more accessible for BSM searches. Another effect is that the relic
density has now a reasonable order of magnitude (0.08) which makes this point a
good starting point for further studies.

A similar study has been performed for the A-funnel region. Table 5.3 displays
the results. The first column for the CNMSSM shows the reproduced point with the
same top mass for the CNMSSM. Again we observe deviations of more than 10%
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Model mSUGRA CNMSSM
� 10

�16
10

�16

mt 173.9 173.9 174.8
 �8.4 · 10�17 �8.608 · 10�17

µeff 1560 1603 1560
⌦h2 0.1127 2.939 0.116
mh1 123.03 120.17 120.8
mh2 1498 1320 1498
mh3 2066 2054
mA1 1498 1319.6 1498
mH+ 1500 1322 1500
m�0

1
744.6 740.9 740.9

m�0
2

1379 1380 1378
m�0

3
-1589 -1633 -1591

mt̃1 2771 2980 2958
mg̃ 3596 3607 3606

Table 5.3: Reproducing the best-fit A-funnel point with the constrained NMSSM

in the Higgs sector. The deviation on the mass mA0
1

leads to strong deviations in
the relic density. It is increased by a factor of 30, as the annihilation through the
A-funnel is not accessible.

The attempt to adjust the mass of the top quark does not lead to the desired
corrections. Instead we fix the value for µeff to the one predicted by the mSUGRA
point. Then we perform a two parameter fit for  and the mass of the top quark,
requiring mA0

1
to be around 1500. The result is displayed in the last column. Again

we find an enhanced mass of the top quark with respect to the mSUGRA result
from SuSpect due to the underlying algorithms. All values agree with the mSUGRA
result within 5%. The price we have to pay for this is to loosen the constraint on
the running Higgs masses. Instead of the unified value m0 = 1.5⇥ 10

3 we have now
deviations of 6% for mH

u

and 17.0% for mH
d

.

5.2 Extending the h-funnel point

Starting from the point we found in section 5.1 we will now analyse the influence of
the additional singlet in the h-funnel region. Therefore we loosen the applied con-
straints and go back from the constrained NMSSM to the semi constrained NMSSM.
mH

u

and mH
d

no longer have to be unified. Instead we set µeff to the value of the
best-fit point in table 5.1 and  will be a fit parameter as �. In addition A� and A

won’t be unified but become free fit parameters. m0,m1/2, A0, tan � are also set to
the values of the best-fit point in table 5.1 and the mass of the top quark is adjusted
to 175.4GeV as found in section 5.1.
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Figure 5.2: Profile likelihood projections for semi constrained NMSSM fit on A�-A-
plane (a) and �--plane (b).

The range is set to 0 < �, < 1,�4TeV < A� < 4TeV and �8TeV < A <
0TeV. The results of the fit in terms of frequentist projections are displayed in Fig.
5.2. The projection on the A�-A-plane shows a basically homogeneous distribution.
Aside from a smaller region around A� ⇡ �3TeV and A > �1TeV that has on
average a smaller likelihood, we can not distinguish any substructures.

Fig. 5.2 (b) shows the projection on the �- plane. In contrast to the A�-A

plane we find clear structures. First of all there is a wide area, coloured white,
where SFitter finds only non valid results. This is caused by different problems
depending on the area of the parameter space. For � < 0.02 the stop mass squared
becomes negative and for  < 0.4 the quadratic Higgs mass becomes smaller than
0. These are unphysical results and are therefore not displayed. For the white
region with  > 0.5 the model has a Landau pole below the GUT scale which causes
integration problems in the RGEs. Looking at the RGEs we have seen that � and
 are strongly correlated:

16⇡2 d�2

d lnQ2
= 4�4

+ 2�22
+ . . . (5.1)

16⇡2 d2

d lnQ2
= 64

+ 62�2
+ . . . (5.2)

On the one hand both couplings grow with Q2. On the other hand they have to
remain smaller than 1 up to the GUT scale where new physics has to enter. Other-
wise the theory is no longer perturbative. Therefore we find maximum values for �
and . Moreover we observe a correlation between � and  for the maximal value.
This is caused by the second term in the RGE where the couplings enter quadrati-
cally. One can state: the bigger  the faster grows � and vice versa. Therefore at
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Observable value CNMSSM
R1 ��2 R2 ��2

mh 126.0 125.25 0.00 120.18 24.83
⌦h2 0.1187 0.1217 0.00 0.10768 0.00
aµ 2.87 · 10�9

6.3 · 10�11 10.67 4.6 · 10�11 10.81
BR(B ! Xs�) 3.55 · 10�4

2.73 · 10�4 10.15 3.12 · 10�4 2.87
BR(B0

s ! µ+µ�
) 3.2 · 10�9

3.8 · 10�9 0.07 3.8 · 10�9 0.07
BR(B+ ! ⌧+⌫) 1.41 · 10�4

1.32 · 10�4 0.05 1.32 · 10�4 0.05
�mB0 0.51 0.63 0.00 0.62 0.00
�mB0

s

17.69 21.94 0.00 21.33 0.00
�Z!Inv -1.9 0.00 1.36 0.00 1.36
�Z!Higgs 6.5 0.00 5.72 0.00 5.72
mt 173.5 175.4 3.61 175.4 3.61

�2 44.912 68.33

Table 5.4: Best-fit points for R1 and R2.

the limit we observe smaller values of  for bigger values of �.

Next we consider the actually accessible parameter space. Here we can identify
two regions that do not overlap. The first narrow region (R1) is characterized by a
constant ratio of /�.

It is limited by 10 . /� . 40 with the most likely configuration of 17 . /� . 30.
For small values of � R1 limits at the same time the fully accessible region in the
�--parameter space. The second region (R2) has a lower limit of 0.015 <  which
distinguishes it from R1 that is not limited from below. Besides R2 is not limited
by linear correlation but evolves with deviations around /� ⇡ 2.0.

Comparing best-fit points from different runs in the blue area reveals, that the
high �2 is caused by deviations from the relic density. As we are in the h-funnel
region the relic density is highly sensitive to the masses of the lightest Higgs h1 and
the LSP �0

1. Fixing  to 0.5 and fitting A� and A for � = 0.05 (R1), 0.15 (blue)
and 0.2 (R2) shows that the difference comes from small differences in the Higgs
mass, that varies by 0.4 GeV while the mass of the LSP only varies by less than
0.1 GeV. From  = 0.05 to 0.15 the Higgs mass increases by 0.2 GeV while the
LSP mass decreases by 0.06 GeV which brings them closer to the on-shell condition.
Therefore the annihilation cross section increases and the relic density becomes too
small. For  = 0.2 the Higgs mass decreases again by 0.4 GeV to a smaller value
than for  = 0.05 resulting again in the correct relic density.

As the observed structures depend on the LSP and the Higgs mass, we can ex-
plain them by looking at the calculation of their masses. As mentioned in section
2.2.2 the LSP mass is basically set by m1/2 and depends only indirectly on  and
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�. The tree level Higgs mass matrix on the other hand clearly depends on the ra-
tio /� at the tree level. Here one expects a stronger dependence on the NMSSM
parameters which is also in agreement with the observation. We can therefore state
that the measurements of the relic density and the Higgs mass still select narrow re-
gions of the parameter space even though we have added four additional parameters.

To analyse the likelihood of the two regions we consider the uncorrelated contri-
butions to �2 that is related to the likelihood by �2

= �2 logL. The best-fit points
in table 5.4 show how the observables aside from the Higgs couplings contribute to
the total �2 of 44.9 for R1 and 68.3 for R2. For both regions ⌦h2 is the measurement
that has the highest influence on the likelihood map. Deviations from the funnel
region and the resulting deviations of the relic density can lead to �2 contributions
several orders of magnitude higher than the best fit result. Therefore the best-fit
points are in agreement with the experimental outcome. The predictions are also
in agreement with �mB0

s

and �mB0 due to the large theoretical uncertainty of the
SUSY calculations. For �Z!Inv and �Z!Higgs we do not observe any contributions
from the NMSSM due to the LSP and Higgs masses that are too high for decay
products of the Z boson. The contribution from the top mass is of course also the
same for both points.

For the other observables the deviations from the experiments differ between the
two regions. For the first region the Higgs mass lies in the allowed range and there-
fore the contribution from this measurement is zero. The main contributions to �2

come from aµ and BR(B ! Xs�) where the NMSSM contributions that are sup-
posed to enhance the SM values are systematically too small. The �2 contributions
from the Higgs channels are not listed. All contributions to �2 are of order one or
less and therefore compatible. For the second region the main contributions come
from the Higgs mass, that is too small, and again from the anomalous magnetic
moment. The diagonal entries of the CP even Higgs mass matrix show a positive
dependence on /� that might cause the smaller Higgs mass for the smaller ratio
of /� in this region. The deviation from the observed Higgs mass also results in
higher deviations for the couplings which again result in a bigger total �2. So we
find that the second region is more favourable for the B-Physics observables but the
deviations from the measured Higgs mass make it overall less likely.

After analysing the �2 contribution of the best-fit points of the two regions we
want to know which influence the singlet has on R1 and R2. Due to the singlet
we have an additional neutralino, a CP even and a CP odd Higgs. As we are in
the h-funnel region, we can observe the influence of the singlet via the CP even
Higgs sector. We set an additional constraint on the Higgs mixing matrix HMIX .
First we require the heaviest Higgs to be mainly singlet by setting HMIX,33 > 0.99.
The fit result is displayed in figure 5.3(a). For another fit we do the same for the
second Higgs, setting HMIX,23 > 0.99 (Fig. 5.3 (b)). Finally we require a minimal
contribution to the lightest Higgs HMIX,13 > 0.02 (Fig. 5.4).

We observe that the first constraint reproduces most of R1 while R2 remains
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Figure 5.3: Profile likelihood projections on �, plane for semi constrained NMSSM
fit with additional constraints on the Higgs mixing matrix: singlet like
h3 (a) and singlet like h2 (b)

accessible but only with poor results. So we isolate the region that contains the
reproduced mSUGRA point. This is in agreement with the expectation that the
constraint enforces a decoupled singlet and as soon as the singlet-like Higgs has no
impact on the SUSY sector we observe a mSUGRA like phenomenology.

When applying the first constraint, that decouples the singlet R1 is not fully
recovered but only up to /� > 13. The second constraint gives back R2 and
the missing part of R1 a small band with 10 < /� < 13, that is the limit of the
accessible parameter space. Thus a combination of both fits would recover the whole
region of R1.

Applying the third constraint, that requires a singlet contribution to the lightest
Higgs, leads to a strongly reduced parameter space. R1 is not included anymore and
R2 is reduced to � < 0.3
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Figure 5.4: Profile likelihood projection on �, plane for semi constrained NMSSM
fit with singlet contribution to the lightest Higgs by requiring HMIX,13 >
0.02

42



λ
0 0.1 0.2 0.3 0.4 0.5 0.6

κ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

2

4

6

8

10

12

14

-310×

λ
0 0.1 0.2 0.3 0.4 0.5 0.6

[G
eV
]

λA

-4

-3

-2

-1

0

1

2
310×

0

2

4

6

8

10

12

14

-310×

λ
0 0.1 0.2 0.3 0.4 0.5 0.6

[G
eV
]

κA

-8

-7

-6

-5

-4

-3

-2

-1

0
310×

0

2

4

6

8

10

12

14

-310×

κ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

[G
eV
]

λA

-4

-3

-2

-1

0

1

2
310×

0

2

4

6

8

10

12

14

-310×

κ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

[G
eV
]

κA

-8

-7

-6

-5

-4

-3

-2

-1

0
310×

0

2

4

6

8

10

12

14

-310×

[GeV]λA
-4 -3 -2 -1 0 1 2 310×

[G
eV
]

κA

-8

-7

-6

-5

-4

-3

-2

-1

0
310×

0

2

4

6

8

10

12

14

-310×

Figure 5.5: Profile likelihood fit for the best-fit point of the mSUGRA A-funnel
region. 0 < �, < 1, �4TeV < A� < 2TeV and �8TeV < A < 0TeV.

Summing up we found two regions in the �--plane (see Fig. 5.2(b)). One includes
the reproduced mSUGRA point and reproduces its properties. The second has a
singlet like second Higgs, which hints at additional solutions due to the NMSSM,
but does not describe data as well as the first one.

5.3 Extending the A-funnel Point

After investigating the h-funnel region, the question arises whether the A-funnel
region behaves the same way, providing a second region due to a singlet like A0

2. As
for the h-funnel point we set m0,m1/2, A0, tan �, µeff and mt to the best-fit point pa-
rameters and the input parameters found to reproduce this point. Then we perform
a fit over the singlet related parameters setting 0 < �, < 1, �4TeV < A� < 2TeV

and �8TeV < A < 0TeV.

Figure 5.5 shows again a linear correlation between � and . In addition A� is
correlated to both couplings. The linear correlation of � and  can again be ex-
plained by looking at the A mass matrix. As for the H mass matrix  only appears
in the ratio /�, even though we also observe � as a global factor in the off diagonal
and the second diagonal entry. This explains again the linear correlation between
the two parameters. For A� the correlation can not be determined from first prin-
ciples. It appears on tree level only in sums with µeff/� and different prefactors.
In addition the input parameter for A�, that is displayed in the fit, is given at the
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Observable Measurement NMSSM prediction ��2

mh 126.0 120.80 15.17
⌦h2 0.1187 0.1285 0.00
mA0 1505
m�0

1
740.9

aµ 2.87 · 10�9
2.13 · 10�10 9.48

BR(B ! Xs�) 3.55 · 10�4
3.23 · 10�4 1.56

BR(B0
s ! µ+µ�

) 3.2 · 10�9
2.3 · 10�9 0.21

BR(B+ ! ⌧+⌫) 1.41 · 10�4
1.26 · 10�4 0.11

�mB0 0.51 0.61 0.00
�mB0

s

17.69 21.13 0.00
�Z!Inv -1.9 0 1.36
�Z!Higgs 6.5 0 5.72
mt 173.5 174.8 1.69

�2 54.19

Table 5.5: Best-fit point for the A-funnel region.

GUT scale, while the mass matrix is calculated at the electroweak scale. Figure
5.5 therefore shows a correlation that is in principle expected but not predictable
in details. Concerning A we observe no correlation in the region with enhanced
likelihood.

The �2 contributions of the best-fit point in table 5.5 indicate strengths and
weaknesses of this region compared to the h-funnel region.

As for the h-funnel the relic density is the constraining parameter, that reduces the
acceptable region to the parameter space that reproduces the correct relic density.
There ⌦h2 is in agreement with the measurement. For the anomalous magnetic
moment we find the same difficulties in producing sufficient contributions to loop
corrections, but we can at least detect sizeable contributions of 7% of the measured
value. The branching ratio BR(B ! Xs�), that was one of the main contributions in
the h-funnel point, has acquired sufficient contributions to reduce the �2 to 1.6. The
discussed variable all provide the same or a better agreement with measurements and
the additional contributions due to B-physics, the top quark mass and electroweak
precision data are also comparable.

The only problematic parameter is the mass of the lightest Higgs, that is too light.
This leads not only too a strong deviation from the observed Higgs mass but also
to further deviations due to the couplings. Including these discrepancies we find a
total �2 of 54.19 that is higher then the value found for the mSUGRA like h-funnel
region but smaller than the �2 found for R2.

A second fit that allows for negative couplings by setting �1 < �, < 1 and
�3TeV < A�, A < 3TeV leads to the results displayed in Fig. 5.6. We see the

44



λ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

κ

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

-310×

λ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

[G
eV
]

λA

-3

-2

-1

0

1

2

3
310×

0

2

4

6

8

10

12

-310×

λ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

[G
eV
]

κA

-3

-2

-1

0

1

2

3
310×

0

2

4

6

8

10

12

-310×

κ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

[G
eV
]

λA

-3

-2

-1

0

1

2

3
310×

0

2

4

6

8

10

12

-310×

κ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

[G
eV
]

κA

-3

-2

-1

0

1

2

3
310×

0

2

4

6

8

10

12

-310×

[GeV]λA
-3 -2 -1 0 1 2 3 310×

[G
eV
]

κA

-3

-2

-1

0

1

2

3
310×

0

2

4

6

8

10

12

-310×

Figure 5.6: Profile likelihood fit for the best-fit point of the mSUGRA A-funnel
region. �3TeV < A�, A < 3TeV and �1 < �, < 1.

symmetric form that is determined by the signs of the couplings and the correspond-
ing SUSY breaking trilinear couplings. We find the following correlation: if � and
 have the same sign, A is negative and A� is smaller than 1 TeV. Otherwise A is
positive and A� is larger than 1 TeV.

Summarizing we can state that also in the extension of the A-funnel best-fit point
the measurements only allow for narrow regions in the �--plane and imply a strong
correlation between A� and the couplings.
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6 Conclusion and Outlook

For the study of the NMSSM by SFitter we have implemented NMSSMTools for
SFitter.

The software has been tested in the MSSM limit of a decoupled singlet. We used
two different ways to embed the best fit points of the h- and A-funnel region of
mSUGRA into a constrained version of the NMSSM. For the h-funnel we were able
to apply the full constraints from mSUGRA plus the additional unification of A�

and A. Differences in algorithms between SuSpect and NMSSMTools required an
adjustment of the top quark mass due to its impact on the µ parameter. This way
we were able to embed the point into the CNMSSM and find a mass spectrum that
is compatible with the mSUGRA point within 5%.

For the A-funnel we had to release the unification of the soft Higgs masses and
do a fit over the top quark mass and the self-coupling  to find a point with the
correct mass spectrum. Comparing both methods the first one appears as the more
natural choice to embed mSUGRA into the semi-constrained NMSSM, but its suc-
cess clearly depends on the region in parameter space.

Starting from the embedded points we have studied the impact of the additional
parameter space with respect to the MSSM that opens due to the singlet.

In the �--plane of the h-funnel’s best fitting point we found two regions. One
is the continuation of the mSUGRA h-funnel point, that is characterized by a de-
coupled singlet that leads to a heavy singlet-like third Higgs boson. Moreover we
found a second region with smaller ratio of /�, that provides the right ratio of
neutralino and Higgs mass to obtain a relic density within the allowed limits. This
solution arises when the singlet contributes to the Higgs sector and is characterised
by a singlet like second Higgs boson. The region has a smaller mass of the lightest
Higgs boson which decreases its likelihood. A possible reason is the influence of a
smaller ratio of /� on the tree level mass.

For the A-funnel the best fitting point also opens into a region in the �--plane.
The parameter space corresponds again to a special ratio of  over �. The best-fit
point has a smaller likelihood than the best fit point in the h-funnel region due to
the smaller Higgs mass. In addition we found a sizeable region with mixed signs of
the coupling constants. The regions are symmetric for simultaneous sign exchange
in � and  and around the A�-value of 1 TeV.

The analysis of the h-funnel region gave hints at additional parameter configura-
tions that provide the correct the relic density. At the same time we found, that
the measurements of the Higgs mass and the relic density select only narrow re-
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gions of the parameter space instead of leaving the whole parameter space available
due to the additional parameters. A first step into further analysis is the study of
the remaining ⌧̄ -co-annihilation region that has been found by the mSUGRA study.
In a next step one would release the parameters of the constrained and the semi-
constrained NMSSM for a full scan. The present study revealed strong correlations
e.g. between � and  and gave us a principle idea of their behaviour. So for a global
fit including all parameters we would expect that again not all of the parameter
space remains accessible but that we find structures and correlations between input
parameters like � and .

Another possibility is the implementation of a new model, a low scale NMSSM
with an larger parameter space. It will be interesting to see whether the measure-
ments are even here able to select certain regions or whether it finally becomes
impossible to find substructures due to the high number of parameters.
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