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Abstract

We extend the Standard Model by a new U(1) gauge symmetry, giving rise

to a new Z′ gauge boson. Further we introduce an additional scalar S and a

dark matter candidate ψ, with the Z′ acting as a mediator between the Standard

model and the dark sector. The inclusion of the scalar allows the model to be self

consistent, since S can gibe mass to the Z′, and opens up new search channels.

One of these would be S → Z′Z, which would not be possible in a pure Z′

model. The main parts of this work consist in producing a consistent model,

implementing it into FeynRules and producing Micromegas and Madgraph files

with the goal to compute constraints on the model as well as to investigate these

novel search channels. We find that the S → Z′Z search channel can even be a

discovery channel improving on previously considered search strategies.

Zusammenfassung

Wir erweitern das Standardmodell mit einer neuen U(1) eich Symmetrie, wo-

durch ein neues Z′ eich boson auftaucht. Zustzlich fhren wir noch einen neuen

Skalar S und ein dunkle Materie Kandidaten ψ ein, wobei das Z′ as Media-

tor zwischen dem Standard Modell und dem dunkle Materie Sektor fungiert.

Der Skalar sorgt zum einen dafr, dass das Model in sich konsistent ist, da er fr

die Masse des Z′s verantwortlich sein kann, und ermglicht zum anderen neue

Kanle um nach dem Z′ zu suchen. Einer dieser Kanle ist S → Z′Z, welcher in

einem reinen Z′ Modell nicht mglich wre. Der Hauptteil dieser Arbeit besteht

daraus ein konsistentes Modell to erstellen, dieses in FeynRules zu implementie-

ren und MadGraph und Micromegas Dateien zu produzieren, mit dem Ziel die

Einsuchrnkungen des Modells zu berechnen und die neuen Suchkanle zu unter-

suchen. Dabei finden wir, dass eine Entdeckung im S → Z′Z Kanal mglich ist

und er eine Verbesserung gegenber zuvor in Betracht gezogenen Suchstrategien

darstellt.
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1 Introduction

The Standard Model of particle physics has been very successful in describing the

interactions of particles as well as in predicting the results of various experiments.

However there are also several questions left unanswered. One of these questions

is the nature of dark matter, whose existence is heavily supported through several

measurements [1, 2]. Another one is that the gauge group of the Standard Model is

a direct product of three symmetry groups: SU(3)C , the strong interaction, SU(2)L

, the weak interaction and the hypercharge gauge group U(1)Y . However, there are

several other seemingly coincidental global symmetries, and the question can be raised

whether the U(1)Y is the only abelian gauge symmetry.

In this thesis we address both of these questions. By turning one of these

global U(1) symmetries into a gauge-group we introduce a new gauge boson Z ′ that

could be the portal to a dark sector. Such Z ′ models are very popular and have

previously been investigated, for example in ref. [3] and [4]. This new boson cannot

be massless like the photon, because if it were it would have already been found,

since the experimental constraints on massless gauge bosons, even ones with weak

couplings, are very strict [5]. Therefore, a mechanism similar to the Higgs mechanism

is required to give mass to this new Z ′. To this end, we introduce a new scalar field

that gives mass to the Z ′ and that, like the Higgs, has a vacuum expectation value.

As a consequence of this the masses of the Z ′, the scalar and potentially the mass of

the dark matter would be proportional to the vacuum expectation value of the new

scalar field and a coupling factor. These couplings may not be greater than 4π to

ensure the model remains perturbative, and further the coupling of the Z ′ to the new

vev is its gauge coupling, which cannot be too small, in order for collider experiments

to be relevant. Therefore, the masses of all the new particles cannot be very different,

but rather have to be of the same order of magnitude. This means that there are

several new discovery channels involving both the Z ′ and the scalar that have the

potential to not only prove the existence of the Z ′, but also provide insight into the

structure of the dark matter sector.

In order to judge whether these discovery channels are viable and, if they are,

in which parameter space, we implement several models with an anomaly free U(1)

symmetries in FeynRules. This both allows us to calculate the branching ratios of

the new particles and enables us to use a Monte Carlo simulation program, such as

MadGraph, to simulate their production cross sections.
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2 Anomaly Free Gauge Groups

In order to introduce a new gauge symmetry group and thereby a new conserved

charge to the Standard Model, one has to first make sure that the symmetry is

not already broken on a quantum level. If this is the case the symmetry is called

anomalous. Anomalies may, for example, be caused by loop-level interactions that

already violate the charge conservation implied by the symmetry in question [6]. If

we want to promote a global symmetry to a gauge symmetry we therefore need to

demand that the symmetry is in fact anomaly free. This would mean checking every

possible n-loop process for potential anomalies, fortunately we can use the Adler-

Bardeen Theorem [7, 8] that states that if a potential anomaly vanishes at one-loop

level, it also vanishes at all other loop levels.

The easiest way to check for anomaly cancellation is with fermion triangle

diagrams, whereby the contribution of triangle diagrams has to be zero. The contri-

butions are proportional to eq. (1) for the bosons Aaµ, Abν and Acλ, where ta...tc are

the generators of the symmetry groups of the respective bosons. Therefore, in order

for the individual anomalies to cancel, we only need eq. (1) to be zero [9].

The Standard Model with the U(1)Y , SU(2)L and SU(3)C symmetry groups

is already anomaly free, as can be seen easily. Since

tr[γ5ta{tb, tc}] = 0 (1)

the only diagrams that are not zero by definition are shown in fig. 2. For these

we can now calculate the contributions:

• U(1)Y with two SU(3)C

tr[tatbY ] =
1

2
δabY

∑
q

Yq (2)

Here the q in the sum represents a summation over the first generation quark

flavors as well as the left- and right handed contributions, with the left handed

ones acquiring an additional minus sign. Leptons do not contribute, since the

strong interaction does not couple to them:

∑
q

Yq = YuR + YdR − YuL − YdL =
(2

3

)
+
(
− 1

3

)
− 2
(1

6

)
= 0 (3)
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• U(1)Y with two SU(2)L

tr[τaτ bY ] =
1

2
δabY

∑
fL

YfL (4)

This time the summation runs over left handed fermion contributions, right-

handed ones being left out since they are unaffected by weak interaction. Since

both remaining terms a left handed both acquire a minus sign.∑
fL

YfL = −3YQL − YEL = −3
(1

6

)
−
(
− 1

2

)
= 0 (5)

The factor 3 in the quark charge stems form summing over the 3 color states.

• Three U(1)Y

tr[Y 3] =
∑
f

Y 3
f (6)

Whereby the sum runs over all fermions charged under U(1)∑
f

Y 3
f = 3[Y 3

uR + Y 3
dR − Y

3
uL − Y

3
dL ] + Y 3

eR + Y 3
µR − YeL (7)

∑
f

Y 3
f = 3

[(2

3

)3

+
(
− 1

3

)3

− 2
(1

6

)3
]
− 2
(
− 1

2

)3

+ (−1)3 (8)

=
(192

216

)
−
( 24

216

)
−
( 6

216

)
+
( 54

216

)
− 1 = 0 (9)

• U(1)Y and 2 gravitons

tr[Y ] =
∑
f

Yf (10)

This does go beyond the Standard Model, since gravity has not yet been quan-

tized, however it seems reasonable to demand that this diagram is also anomaly

free.

Again with the sum running over all fermions.

∑
f

Yf = 3[YuR + YdR − YuL − YdL ] + YeR + YµR − YeL (11)

∑
f

Yf = 3

[(2

3

)
+
(
− 1

3

)
− 2
(1

6

)]
− 2
(
− 1

2

)
+ (−1) = 0 (12)
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SU(3)C

SU(3)C

U(1)Y

SU(2)L

SU(2)L

U(1)Y

U(1)Y

U(1)Y

U(1)Y

grav

grav

U(1)Y

Figure 1: Triangle diagrams contributing to possible gauge anomalies in the SM.

SU(3)C SU(2)L U(1)Y(
u
d

)
L

3 2 1
6

uR 3 1 2
3

dR 3 1 − 1
3(

e
ν

)
L

0 2 − 1
2

eR 0 1 −1

Table 1: Quantum numbers of the SM fermions

As previously stated, the Standard Model with the gauge group SU(3)C ×
SU(2)L × U(1)Y and with the quantum numbers as in table 1 is anomaly free.

When we demand the same from our new symmetry, this greatly limits the pos-

sible Standard Model extensions. Introducing a new U(1)X symmetry (with charges

Xi), results in a new table of quantum numbers that can be seen in table 2.

SU(3) SU(2) U(1)Y U(1)X(
u
d

)
L

3 2 1
6 a

uR 3 1 2
3 b

uR 3 1 − 1
3 c(

e
ν

)
L

0 2 − 1
2 d

eR 0 1 −1 e

Table 2: Quantum numbers of the SM fermions with a new U(1)X symmetry.
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U(1)X
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U(1)Y
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U(1)Y

U(1)X

Figure 2: Triangle diagrams contributing to anomalies in the Standard Model with a
U(1)X extension

The new symmetry also results in new anomalous diagrams, seen in fig. (2),

that we have to consider.

Just as before the anomalies have to cancel:

• U(1)X with two SU(2)L:

tr[tatbX] =
1

2
δab
∑
q

Xq (13)

∑
q

Xq = XuR +XdR −XuL −XdL = 2a− b− c = 0 (14)

• U(1)X with two SU(2)L

tr[τaτ bX] =
1

2
δab
∑
fL

XfL (15)

∑
fL

XfL = −3XQL −XEL = −3a− d = 0 (16)

• Three U(1)X

tr[X3] =
∑
f

X3
f (17)
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∑
f

X3
f = 3(X3

uR +X3
dR −X

3
uL −X

3
dL) +X3

eR +X3
νL −X

3
eL (18)

= 3(−2a3 + b3 + c3)− 2d3 + e3 (19)

• U(1)X and 2 gravitons.

tr[X] =
∑
f

Xf (20)

∑
f

Xf = 3(XuR +XdR −XuL −XdL) +XeR +XνL −XeL (21)

= 3(−2a+ b+ c)− 2d+ e (22)

• U(1)X and two U(2)Y

tr[XY 2] =
∑
f

XfY
2
f (23)

∑
f

X2
fYf = 3[XuRY

2
uR+XdRY

2
dR−XuLY

2
uL−XdLY

2
dL ]+XeRY

2
eR+XνLY

2
νL−XeLY

2
eL

(24)

= 3

[
− 2
(1

6

)2

a+
(2

3

)2

b+
(1

3

2)
c

]
− 2
(1

2

)2

d+ e (25)

• Two U(1)X and one U(2)Y

tr[XY 2] =
∑
f

YfX
2
f (26)

∑
f

YfX
2
f = 3[YuRX

2
uR+YdRX

2
dR−YuLX2uL−XdLY

2
dL ]+YeRX

2
eR+YνLX

2
νL−YeLX

2
eL

(27)

= 3

[
− 2
(1

6

)
a(2) +

(2

3

)
b2
(−1

3

)
c2
]
− 2(

1

2
)d2 + e2 (28)
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3 Possible Anomaly Free Extensions

Solving these equations in a general way would be complicated, a simpler and more

direct approach consist in taking a symmetry that already exists at tree level and

check if it is also anomaly free. This leads to several potential U(1)-symmetries that

are anomaly free. Common examples are

1. U(1)B−L, meaning the difference between baryon and lepton number is con-

served, in this case quarks have a charge of a = b = c = 1
3 and leptons a

universal charge of d = e = −1.

2. U(1)L1−L2, where L1 and L2 are lepton numbers of different generations, so

e− µ, e− τ or µ− τ . These models are equivalently anomaly free, however for

reasons that will be discussed later µ−τ has advantages over the other two. All

three models are only anomaly free when the sum over all lepton generations is

take into account.

However any difference of a quantum number from one generation and the

same number from a different generation can be used as a conserved quantity for a

anomaly-free symmetry, as long as eq. (27) is also fulfilled. This can easily be seen as

the set of equations is identical for all three fermion generations, therefore taking the

difference between two of them always comes out as zero, except for eq.(27) which

has quadratic terms.

Therefore U(1)B1−B2 would also be a anomaly free group, as would U(1)B2−B3,

U(1)B1−B3 and any possible linear combination of the three, e.g. U(1)B1+B2−2B3.

4 Flavor Structures of Anomaly Free Groups

There is also another constraint that needs to be looked at when introducing a new

gauge symmetry. The Standard Model Lagrangian contains the expression seen in

eq. (29), representing the weak interaction of quarks with the Z boson, the strong

interaction, the electromagnetic interaction and the weak interaction with a W boson,

in that order.

LSM ⊃ gzQLZµγµQL + gsqLG
µ
aγµQLT

a
F + geQLA

µγµQLQq + guLW
+
µ γ

µdL (29)

7



Further, we also have the Yukawa couplings to the Higgs:

LSM ⊃ uLyuuR
1√
2

(v + h) + dLyddR
1√
2

(v + h) + h.c. (30)

Here uL and dL are vectors in flavor space containing the up- and down-type quarks,

respectively, and yd and yu are 3x3 matrices containing the Yukawa couplings. Now

we want to transform the expressions from flavor eigenstates to mass eigenstates, since

in collider searches we are only able to observe mass eigenstates of particles. This is

done by diagonalizing the Yukawa matrices. In order to do so we insert V uL V
u†
L = 1

and V uRV
u†
R = 1 on either side.

LSM ⊃ uLV uL V
u†
L YuV

u
RV

u†
R uR

1√
2

(v+h)+dLV
d
LV

d†
L YdV

d
RV

d†
R dR

1√
2

(v+h)+h.c. (31)

This allows us to extract:

V u†L YuV
u
R =

mu 0 0

0 mc 0

0 0 mt

 , (32)

V d†L YdV
d
R =

md 0 0

0 ms 0

0 0 mb

 . (33)

Further we define the new quark mass eigenstate vectors as :

u′L = uLV
u
L , (34)

u′R = V u†R uR, (35)

d′L = dLV
d
L , (36)

d′R = V d†R dR. (37)

Now we can look at the Standard Model interactions in this new basis and

to simplify things we only look at left-handed up-type quarks. Since the only differ-

ence between gluon, Z-boson and photon interactions in this case is that gluons and

photons couple to left and right handed fermions equally, while the Z-boson couples

differently to left-handed and right right-handed ones it is sufficient to look at the

term

8



gzuLZ
µγµuL, (38)

to understand the structures.

Since there are no tree-level flavor changing neutral currents in the Standard

Model, only left-handed quarks of the same generation couple to one another, so we

can write eq. (38) as

gzuL

1 0 0

0 1 0

0 0 1

ZµγµuL. (39)

Once again inserting V uL V
u†
L = 1 and V uRV

u†
R = 1 gives us the expression in

the mass eigenbasis.

gzZ
µγµuLV

u
L V

u†
L

1 0 0

0 1 0

0 0 1

V uL V
u†
L uL (40)

= gzZ
µγµu

′
LV

u†
L

1 0 0

0 1 0

0 0 1

V uL u
′
L (41)

= gzZ
µγµu

′
LV

u†
L V uL u

′
L (42)

= gzZ
µγµu

′
Lu
′
L. (43)

This allows us to see that the interaction terms look the same in both mass

and flavor eigenbases.

The same can be done for the quark W interactions, for simplicity’s sake we

will only look at the W+ case, since it is equivalent to the W− case,

guLW
+
µ γ

µdL. (44)
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Once again, in the interaction base, only quarks of the same generation couple.

gW+
µ γ

µuL

1 0 0

0 1 0

0 0 1

 dL (45)

= gW+
µ γ

µuLV
u†
L V uL

1 0 0

0 1 0

0 0 1

V d†L V dLdL (46)

= gW+
µ γ

µu′LV
u
L

1 0 0

0 1 0

0 0 1

V d†L d′L (47)

= gW+
µ γ

µu′LV
u
L V

d†
L d′L. (48)

The matrix V uL V
d†
L that couples up-type quarks to down-type quarks is known

as the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The entries of the CKM matrix

have been measured in experiments with a very high precision, so any new theory has

to reproduce it within a very small margin, as can be seen below [10]

V uL V
d†
L =


0.97472± 0.00015 0.22534± 0.00065 0.00351+0.00015

−0.00014

0.22520± 0.00065 0.97344± 0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.99146+0.000021
−0.000046

 . (49)

Now we can look at what happens when we introduce a new gauge symmetry

and therefore a new interaction, for example U(1)B2−B3
, where Bi denotes the baryon

family numbers. In this case the term in the Lagrangian has the form:

uLZ
µgz′γµuL. (50)

Consider a flavor non-universal gz′ :

gz′ =

0 0 0

0 1 0

0 0 −1

 . (51)
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In the mass base this becomes

γµZ
µuLV

u†
L V uL

0 0 0

0 1 0

0 0 −1

V u†L V uL uL (52)

= γµZ
µu′LV

u
L

0 0 0

0 1 0

0 0 −1

V u†L u′L. (53)

The coupling matrix in the mass base would therefore be

VZ′ = V uL

0 0 0

0 1 0

0 0 −1

V u†L . (54)

Now we have no reason to assume that the matrix in eq (54) is diagonal, however

since flavor changing neutral currents are experimentally very constrained for a large

range of gZ′ and MZ′ values, this matrix has to be very close to diagonal, otherwise

the new model would conflict with reality. Therefore V u†L , V uL , V d†L and V dL would

have to both diagonalize the matrix in (54) and reproduce the measured CKM matrix.

This makes any model that couples different quark generations non-uniformly very

unattractive.

This calculation can be performed equivalently for leptons and will give a

similar result for models like Lµ −Lτ , exept instead of reproducing the CKM matrix

one would have to reproduce the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix.

However, this matrix is far less strictly constrained and the breaking of the symmetry

can even explain the structure of the PMNS matrix [11].

The B-L model circumvents this problem completely by having universal quark

and lepton couplings, i.e. gz′ for quarks is

gz′q =


1
3 0 0

0 1
3 0

0 0 1
3

 . (55)

And for leptons

gz′L =

−1 0 0

0 −1 0

0 0 −1

 . (56)
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This causes the total coupling to again be diagonal, similar to eq. (43).

5 Dark Matter

There are several observations which indicate that either our current understanding

of gravity is incorrect, or that the universe contains a type of matter that we cannot

directly observe. The most prominent of these observations are the results of mea-

suring the rotation curves of galaxies, which do reproduce what would be expected

when only visible matter is taken into account. A further indication is the cosmic mi-

crowave background (CMB). During the early stages of the universe the temperature

dropped low enough for photons to decouple form matter. This allowed those photons

to freely propagate through the universe. These photons make up the CMB. Under

the assumption that at the time of the decoupling energy was distributed homoge-

neously throughout the universe, we would expect for the CMB to be homogeneous

as well, however this is not the case. One crucial component in explaining these

inhomogeneity is the existence of dark matter.

Am important measure for the amount of dark matter in the universe is the

so called relic density ΩΨ, which is defined as

ΩΨ =
ρΨ

ρc
. (57)

Where ρΨ is the density of dark matter and ρc is the critical density that

separates a expanding universe from a collapsing one [12].

Precise measurements of the CMB using the Planck satellite allowed to deter-

mine the relic density of dark matter as [13]

ΩΨh
2 = 0.1198± 0.0015. (58)

For our model it is vital that we allow for a parameter space in which the

relic density that the model predicts is in agreement with the measured one. Since

additional dark matter contributions or mediators can modify this calculation, we

demand a relic density between 1/3 and 1.1 times the central value.

Phenomenologically the relic density is large when the cross section of dark

matter-dark matter annihilation is small and small when the cross section is large.

This is rather obvious since a large annihilation cross section reduces the total amount

of dark matter and therefore the relic density.
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Specifically for our case the dark matter only couples to the Z ′ and, via the

Z-Z ′ mixing, to the Standard Model Z the only relevant processes are therefore

ΨΨ → Z ′ and (to a lesser extent) ΨΨ → Z. The dark matter to Z ′ coupling only

depends on gZ′ and the charge of the dark matter, and can therefore be assumed

as constant, so the main factor for the cross section are the masses of the relevant

particles. For example if the masses fulfill the relation MZ′ = 2MΨ, then the process

ΨΨ→ Z ′ can happen directly on-shell, leading to the maximal cross section.

6 Three Different Models

For the reasons previously outlined we consider three U(1) extensions to the Standard

Model that all lead to a new spin 1 mediator we call Z ′:

1. U(1)X , here the Z ′ has no direct coupling to the Standard Model and we use

the fact that the Standard Model itself is already anomaly free.

2. U(1)µ−τ , where the Z ′ couples to muons, tauons, muon-neutrinos and tauon-

neutrinos.

3. U(1)B−L, where the Z ′ couples to all Standard Model fermions.

For all three versions we further introduce a scalar S, which similarly to the Standard

Model Higgs boson, breaks the newly introduced symmetry and gives a mass to the

Z ′.

Finally we also add a dark matter candidate Ψ. The previous discussion about

the advantages of anomaly free models would be meaningless if the introduction of Ψ

caused an anomaly by itself. In order to ensure that the model remains anomaly free,

it is sufficient to make sure that the dark sector is anomaly free, since the Standard

Model already has no anomalies under the 3 proposed gauge groups. Since the dark

matter candidate only interacts gravitationally and with the Z ′ we only need to look

at eq. (19) and (22). Defining QΨR and QΨL as the charge of the right-/left-handed

dark matter respectively, this can be written as:

0 = QΨR −QΨL , (59)

0 = Q3
ΨR −Q

3
ΨL . (60)

Therefore the right- and left-handed components of the dark matter have to

have the same charge. This does however mean that the interaction term of dark

matter and the new scalar is not gauge invariant.
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LSΨ = ΨLSΨR. (61)

As a consequence of this, there is no dark matter-scalar interaction in the model

and the dark matter does not get its mass from the scalar. Instead the nature of the

dark matter charges allows us to directly write a mass term, since the expression in

eq. (62) is gauge invariant.

L ⊃MΨΨΨ. (62)

This means that, in an anomaly free model, the mass of the dark matter is a

completely free parameter that has no connection to the vacuum expectation value

of S and by extension to the mass of the Z ′ or the scalar.

To keep the model as general as possible we introduce kinetic mixing between

the new Z ′ and the Standard Model Z. This leads to a new kinetic term that gets

added to the Standard Model Lagrangian:

Lkin new = − sinχ

2
Ẑ ′µνB̂µν +

1

4
Ẑ ′µνẐ ′µν , (63)

where B̂µν is the Standard Model hypercharge field strength tensor and χ a parameter

describing how large the mixing between Z ′ and Z is.

Similarly we also allow for mixing between the new scalar and the Higgs boson:

Lnew scalar =
1

2
(DµS)(DµS)† + µ2

SS
†S +

λ′S
2

(S†S)2 + λHSH
†HS†S (64)

With the covariant derivative Dµ = ∂µ−igZ′QSZ ′µ, the charge of the scalar under the

new symmetry QS , the gauge coupling of the Z ′ gZ′ and λHS the mixing parameters

for S and the Higgs boson.

In order to implement the Z ′ couplings described at the beginning of this

section, we further introduce the term

LZ′ = −gZ′jµZ′Z
′
µ (65)

where jµZ′ is the current associated with the new symmetry and depends on the version

of the model:
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jµZ′(X) = 0, (66)

jµZ′(µ−τ) = µγµµ+ νµγµνµ − τγµτ − ντγµντ , (67)

jµZ′(B−L) =
1

3
QγµQ+

1

3
uRγµuR +

1

3
dRγµdR + LγµL+ lγµl. (68)

In our model we now have two scalars, the Standard Model Higgs boson, H,

and the new scalar, S. Both of them acquire a vacuum expectation value:

〈H〉 =
v√
2
, 〈S〉 =

vS√
2
. (69)

Therefore we can write the fields as:

H =
v√
2

+ h, S =
vS√

2
+ s, (70)

where s and h are the excitations of the fields. Further, since the potential of

the new scalar has to have a minimum at vS , we get the relation:

v2
S√
2

= −µ
2

λ′S
, (71)

as well as the terms in the Lagrangian involving the scalars:

L ⊃ µ2
HH

†H +
λ′H
2

(H†H)2 + µ2
SS
†S +

λ′S
2

(S†S)2 + λHSH
†HS† (72)

Inserting eq. (70) leads to:

L ⊃ µ2
H

( v√
2

+ h
)2

+
λ′H
2

( v√
2

+ h
)4

+ µ2
S

( vS√
2

+ s
)2

+
λ′S
2

( vS√
2

+ s
)4

+ λHS

( v√
2

+ h
)2( vS√

2
+ s
)2

(73)
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L ⊃ −λ′H
v2

√
2

( v√
2

+ h
)2

+
λ′H
2

( v√
2

+ h
)4

− λ′S
vS√

2

2( v2
S√
2

+ s
)

+
λ′S
2

( vS√
2

+ s
)4

+ λHS

( v√
2

+ h
)2( vS√

2
+ s
)2

(74)

Scalar mass terms in the Lagrangian can easily be recognized by their form: m2Ψ†Ψ.

In order to compute the mass mixing matrix we can therefore neglect all terms that

do not contain two scalar fields:

L ⊃ −λ′H
v2

2
h2 +

λ′H
2

6
v2

2
h2 − λ′S

v2
S

2
s2 +

λ′S
2

6
v2
S

2
s2

+ λHS
v2
S

2
h2 + λHS

v2

2
s2 + 4λHS

vS
2

v

2
sh,

(75)

L ⊃ 2λ′H
v2

2
h2 + 2λ′S

v2
S

2
s2

+ λHS
v2
S

2
h2 + λHS

v2

2
s2 + 2λHSvSvsh

. (76)

This can be expressed in a matrix:

(
h s

)(λ′Hv2 + λHS
2 v2

S λHSvvS

λHSvvS λ′Sv
2
S + λHS

2 v2

)(
h

s

)
(77)

To simplify this we first make the shifts

λH = λ′H +
λHS

2

v2
S

v2
(78)

λS = λ′S +
λHS

2

v2

v2
S

(79)

.

With this eq. (77) becomes

(
h s

)( λHv
2 λHSvvS

λHSvvS λSv
2
S

)(
h

s

)
(80)

.
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In order to get the mass eigenbasis we have to diagonalize this matrix. This

can be done by multiplying a generic 2 rotation matrix R(α) to both sides.

R(α)†

(
λHv

2 λHSvvS

λHSvvS λSv
2
S

)
R(α), (81)

R(α) =

(
cosα sinα

− sinα cosα

)
. (82)

This diagonalizes the mass matrix for

tan 2α =
2λHSvvS

λHv2 − λSv2
s

. (83)

This transforms the excitations of the scalar fields to:

s→ s cosα+ h sinα, (84)

h→ h cosα− s sinα. (85)

Under the assumption that the new scalar is heavier than the Higgs boson this

gives the masses of the two particles, which are the diagonal entries of the diagonalized

matrix:

MH =

√
1

2
(λHv2 + λSv2

s −
√

(λHv2 − λSv2
s)2 + (2λHSvvs)2), (86)

MS =

√
1

2
(λHv2 + λSv2

s +
√

(λHv2 − λSv2
s)2 + (2λHSvvs)2). (87)

In order to do the same for the Z ′ we first have to normalize the gauge boson kinetic

terms in eq.(63), so we no longer have any mixed terms. To this end we introduce a

new basis for the gauge bosons B̂µ, Âµ3 , Ẑ
′µ, that we can get from the original basis

via a non-orthogonal rotation G(χ):B̂µÂµ3
Ẑ ′µ

 = G(χ)

BµA3
µ

Z ′

 =

1 0 − tanχ

0 1 0

0 0 1
cosχs


BµA3

µ

Z ′

 (88)

The Z ′ itself mixes with the Standard Model gauge bosons B and A3, leading

to a term in the Lagrangian
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L ⊃
(
Bµ A3

µ Z ′
) v2

4

 g′2 −gg′ −g′2 tanχ

−gg′ g2 gg′ tanχ

−g′2 tanχ gg′ tanχ g′2 tanχ+ 2gZ′
v2
S

v2
cosχ2

Q2
S


BµA3

µ

Z ′


(89)

The (1, 1), (1, 2), (2, 1) and (2, 2) entries of this matrix are consistent with the

equivalent 2 × 2 matrix in the Standard Model. In order to get the expressions for

the mass of the Z ′ and the Z we need to once again diagonalize this matrix. This

can again be done by multiplication with two generic rotation matrices R1(ξ) and

R2(Θw):

R1(ξ) =

1 0 0

0 cos ξ sin ξ

0 − sin ξ cos ξ

 , (90)

R2(Θw) =

 cos Θw sin Θw 0

− sin Θw cos Θw 0

0 0 1

 . (91)

Here ξ is the kinetic mixing angle of the Z ′ and Θw is the Weinberg angle.

Appliying the first rotation results in

(g2 + g′2)v2

2


0 0 0

0 1 tχsΘw

0 tχsΘw t2χsΘw + 1
2c2χ

2g2
Z′Q

2
Sv

2
S

(g2+g′2)v2

 , (92)

with sΘw = sin Θw, cχ = cosχ and tχ = tanχ.

Substituting M2
Z = (g2+g′2)v2

2 which is the mass of the Z boson in the Stan-

dard Model and M2
Z′ = g2

Z′Q
2
Sv

2
S which is the mass of Z ′ before the mixing, and

diagonalizing the matrix in eq. (92) gives the mass eigenvalues:

M2
2,3 =

1

2

[
M2
Z(1 + t2χs

2
Θ) +

1

2c2χ
M2
Z′ ±

√(
M2
Z(1 + t2χs

2
Θ) +

1

2c2χM
2
Z′

)2

− 2

c2
M2
Z′M

2
Z

]
(93)

The first eigenvalue M2
1 is zero and corresponds to the photon mass. The

second and third eigenvalue are the mass of the Z and Z ′ which depends on whether

we assume the Z-or Z ′-mass is higher. From this we can also calculate the kinetic

mixing angle
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tan 2ξ =
2M2

ZtχsΘw

M2
Z(1− t2χ)sΘw − 1

2c2χ
M2
Z′

(94)

Now we can define the mass eigenstates of the bosons in relation to their gauge

eigenstates:

AµZµ1
Zµ2

 = R1(ξ)R2(Θw)G−1(χ)R−1
2 (Θw)

 ÂµẐµ
Ẑ ′µ

 (95)

=

1 0 cΘwsχ

0 cξ cχsξ − cξsχsΘw

0 −sξ cχcξ + sχsΘwsξ


 ÂµẐµ
Ẑ ′µ

 (96)

Or, we can do the inverse using the rotationK = [R1(ξ)R2(Θw)G−1(χ)R−1
2 (Θw)]−1

with

K =

1 −cΘwsξtχ −cΘwsχ
0 cξ + sΘwsξtχ cξsΘw tχ − sξ
0

sξ
cχ

cξ
cχ

 . (97)

This finally allows us to write the couplings of the currents to the gauge bosons,

as well as the couplings to the scalars

L ⊃
(
ejEM jZ

e
sΘwc−Θw

jZ′gZ′
)
K

AµZµ
Z ′µ

 (98)

L ⊃
(
Aµ Zµ Z ′µ

)
K†

0 0 0

0
M2
Z

2v (v + cαh− sαs) 0

0 0
M2
Z′

2vS
(v + cαs+ sαh)

K

AµZµ
Z ′µ


(99)
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7 Details of the Implementation

To simplify the later simulations we had to decide on a set of free parameters to scan

over. For these we chose MZ′ , MS , λHS to determine the strength of the Higgs-S

mixing and χ for the Z − Z ′ mixing. In addition to this we keep both QS and gZ′

constant. This allows us to calculate the remaining parameters. Further we will from

here on refer to the new scalar as S.

λS =
M2
S +M2

H +
√

(M2
S −M2

H)2 − (2λHSvvS)2

(2v2
S)

, (100)

λH =
(M2

S +M2
H)

v2
− λSv

2
S

v2
, (101)

vS =

√
2 cosχMZ′

√
M2
Z′ −M2

Z −M2
Zs

2
Θw

tanχ2

g′
√
M2
Z′ −M2

ZQS
. (102)

We note that the vev of S, vS , is already fixed by only MZ′ and χ. Further, we use

the Standard Model masses of the Z boson and the Higgs boson for MZ and MH and

the Standard Model Higgs vev for v. This allows us to ensure that the model remains

consistent with the current measurements of the Standard Model.

The models itself was implemented using the Mathematica [14] package Feyn-

Rules [15, 16], which allows for automated Feynman rules calculation. We also used

FeynRules to directly calculate the analytical expressions for the decay widths of both

Z ′ and S into individual channels that were later used to determine the branching

ratios.

8 Implementation of the Relic Density Constraint

For the calculation of the relic density the program Micromegas [17] was used. Mi-

cromegas is based on the CalcHEP [18] package, using it to calculate the tree level

cross sections relevant for interactions of the dark matter candidate, that then in turn

can be used to calculate the relic density. The implementation of the model itself has

been performed by taking advantage of the FeynRules CH output.

We used this setup to scan over a varying range of parameters. The first plot

(fig. (3)) shows the relic density for different Z ′ and dark matter masses. The area

between the red lines indicates the parameter-spaces where the relic density has the

desired value. In the plot we can see two valleys of low relic density, one at MΨ ≈
45 GeV, which is about half the mass of the Standard Model Z boson, and one along
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Figure 3: Relic density plot for different Z ′ and dark matter masses, sections between
the red lines have the desired relic density

the area where MΨ ≈ MZ′
2 . This is exactly as expected, since the annihilation cross

sections are the highest if either of the on-shell conditions is met. For values of Mψ

slightly higher than MZ′
2 the relic density drops of again. In order determine the

reason for this, we can use the fact that Micromegas can not only compute the relic

density, but also records which processes were the most relevant for a specific pair of

parameters. From this we see that at the drop off happens when 2MΨ ≈MS +MZ′ .

This is relevant since the scan was performed using the model in which the Z ′ has

no couplings to the Standard Model outside of the mixing with the Z. This means

the only tree level couplings of the Z ′ are with the scalar. Therefore the process

Ψ + Ψ→ Z ′∗ → Z ′ + S is relevant when compared to Ψ + Ψ→ Z ′ → XSM +XSM ,

despite requiring an off-shell Z ′ propagator.

Lastly, we can see that there are several areas where our model produces the

right relic density, the one left of the MΨ ≈ MZ′
2 valley is the most relevant for our

searches, since this allows for decays of Z ′ into dark matter, enabling a potential Z ′

to invisible collider search.

In fig. (4) we can see the effect of the kinetic mixing parameter χ has on the

relic density. For convenience the corresponding values of ξ were also printed along the

y-axis. We note, however, that ξ and χ do not have a linear relation to each other.

Once again we can make out three valleys, one at MΨ = MZ

2 , one at MΨ = MZ′
2

and a last one at MΨ = MZ′+MS

2 , corresponding to the three annihilation channels

mentioned above. To explain the structures, we need to look at how the individual
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channels depend on the χ, in relation to each other.

1. Ψ+Ψ→ Z → XSM +XSM . The first vertex is proportional to
(
sξ
cχ

)2

as we will

see later the c2χ in the denominator appears in all channels, so we will neglect

it. The second vertex is proportional to
(
cξ + sΘwsξtχ− cΘwsξtχ)2, since ξ is so

small we can drop the terms containing sξ, resulting in (cχ)2. This annihilation

channels is therefore approximately proportional to s2
ξc

2
χ

2. Ψ + Ψ → Z ′ → XSM + XSM . The first vertex is proportional to
(
cξ
cχ

)2

, and

once again we can ignore the denominator. The second vertex is proportional

to
(
cξsΘw tχ − sξ − cΘwsχ

)2

. Again we can assume that cξ ≈ 1 and sξ ≈ 0

giving us:
(
sΘw tχ − cΘwsχ

)2

which behaves proportional to sχ, as long as χ

is not too big. Of course the second coupling of the vertex does not seem be

relevant here, since it describes a decay, which will always eventually happen,

no matter how small the coupling. After all the Z ′ is not stable. However,

we have to keep in mind that while the dark matter mass is below the MZ′
2

threshold a decay of Z ′ is also possible and since dark matter to dark matter

processes are not relevant for the relic density we do have to take the second

vertex’s coupling into account. For this explanation the approximation that the

channel is proportional to s2
χc

2
ξ is sufficient.

3. Ψ + Ψ → Z ′∗ → S + Z ′. Like in the previous channel the first vertex is
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proportional to
(
cξ
cχ

)2

. The second vertex is proportional to
(
c2ξ
c2χ

)2

. Once

again assuming cξ ≈ 1, the channel is proportional to 1
c4χ

.

This means that both channels that have Standard Model final states have

larger cross sections when χ, and therefore ξ, is larger, in an approximately linear

relation. In the plot this can be seen as the relic density along the first two valleys

getting smaller, and the valley getting wider. Meanwhile, the third valley attributed

to the SZ ′ final state barely changes depending on the mixing angles. The only effect

can be seen in the region where χ approaches 1.

9 Branching Ratios

9.1 Z ′ Branching Ratios

In order to judge what channels could prove useful in the search for our Z’ we first

look at the branching ratios of the Z ′ as well as the scalar for different Masses and

mixing angles.

The Z ′ has the following decay channels:

1. Tree level: Depending on which model is used, Z ′ either has tree level couplings

only to dark matter, dark matter and two lepton generations (L1−L2) or to dark

matter as well as all fermions of the Standard Model (B − L). These channels

will be dominant once kinematically allowed, however if the dark matter is heavy

enough and the Z ′ has no Standard Model tree level couplings, there might be

mass region where the Z ′ can only decay via the mixing.

2. Z-Z ′-Mixing: Since the Z ′ mixes with the Z boson it can decay into the same

final states as the Z boson. This also allows the Z ′ to radiate a S and then mix

into a Z, leading to a ZS final state. Further the Z ′ also gains a coupling to the

EM current through the mixing, as can be seen in eq. (98) and (97). This gives

the Z′ additional photon-like couplings. Therefore the branching ratios of the

Z ′ are different than those of the Z. However these channels are all suppressed

by the mixing angle and therefore only really relevant as long as no tree level

decays are possible.

For each of the models we will now look at the branching ratios of the Z ′

individually.
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Figure 5: Branching ratios Br(Z ′ → X) for MS=500 GeV, gZ′ = 1, Mψ =600 GeV
and different values of χ and λHS , U(1)X model

9.1.1 U(1)X

Fig. (5) shows the branching ratios of the Z ′ in a model where the non-mixing Z ′

coupling is to dark matter. As expected the dark matter decay channel is dominant,

as soon as MZ′ ≥ 2Mψ. Even for a large mixing of χ = 1 it exceeds the other channels

by at least an order of magnitude.

In the fermion channels several effects can be observed, for one there is a 50%

increase in the up-type branching ratio at around 350 GeV, that corresponds to the

tt channel opening up. Further the charged lepton channel starts out with a low

branching ratio, only to then supersede the other fermion channels. This is caused

by the fact that the coupling of the Z ′ to the EM- current jEM only scales with χ,

while the coupling to the neutral current scales with both χ and ξ (see ep. (98) and

(97)). However, for a constant χ, ξ gets smaller as the difference between MZ and

Mz′ increases (eq. 94). Therefore, the couplings of the Z ′ are closer to those of the Z

for low masses and closer to those of a photon for large masses, and since the coupling

of the Z to charged leptons is weaker than that of the photon, the charged lepton

branching ration increases for larger Z ′ masses.

Finally we can see that the decay into SZ exists and scales with the scalar-

Higgs-mixing parameter λHS , but it is way to small to be helpful in collider searches.

A search in the lepton channels, especially muons, would be a lot more promising.
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Figure 6: Branching ratios Br(Z ′ → X) for MS=500 GeV, gZ′ = 1, Mψ=600 GeV
and different values of χ and λHS , U(1)µ−τ model

9.1.2 U(1)µ−τ

For low values of χ the branching ratios is fig. (6) behave just as expected, muon-,

tauon (and their respective neutrino-, left out in the plot for readability) decays are

dominant, until the dark matter decay becomes possible, from then on the muon,

tauon and dark matter decays are equally likely. It is no surprise that the SZ contri-

bution is even smaller in this scenario. For models like this a search in lepton channels

wins out by far.

There is, however, another interesting effect to be seen. Once we increase χ

the muon and tauon channels no longer have the same branching ration. To better

observe this we plot plot the muon, tauon and neutrino branching ratios in relation

to χ in fig. (7).

In this we can see that the branching ratio of muons and muon neutrinos

increases for higher values of χ, while the tauon and tauon neutrino ratios decrease.

This is caused by the fact that under the new symmetries muons and muon neutrinos

have a charge of +1 and tauons and tauon neutrinos have a charge of −1. In the

Lagrangian the terms that describe the coupling of the Z ′ to these leptons can be

written like this.

25



=400 GeVZ'M

χ
3−

10 2−10 1−10 1

B
R

(Z
' -

>
 X

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

µ µ
τ τ

µν µν
τν τν

=400 GeVZ'M

Figure 7: Branching ratios Br(Z ′ → X) for MZ′ = 400 GeV depending on the mixing
parameter χ

L ⊃Z ′µµγµµ(QµkZ′ + kmix)

+Z ′µνµγµνµ(QµkZ′ + kmix neutr)

+Z ′µτγµτ(QτkZ′ + kmix)

+Z ′µντγµντ (QτkZ′ + kmix neutr)

(103)

Where Qµ and Qτ are the U(1)µ−τ charges of muons and tauons, kZ′ describes

the contribution to the vertices coming from the tree level Z ′ interaction and kmix and

kmix neutr are the contribution from the Z-Z ′ mixing, which is smaller for neutrinos,

since the neutrino contribution only comes from the interaction with jZ while the one

for charged leptons originates form both the interactions with jZ and jEM . These

factors contribute quadratic in the matrix elements, that are therefore proportional

to:

((1)kZ′ + kmix)2, (104)

((−1)kZ′ + kmix)2. (105)

This shows that a larger mixing contribution actually decreases the coupling
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of the Z ′ to the lepton generation with a negative charge under the new interaction.

9.1.3 U(1)µ−τ LEP Constraints

Similar to how the Z-Z ′ mixing has an effect on the Z ′ branching ratios, it also has

effects on the branching ratios of the Standard Model Z. This is was not the case in

the previous model, since the Z ′ has to have direct couplings to the Standard Model

for this effect to occur. These ratios have been however measured very precisely at

the Large Electron Positron Collider (LEP) as [10]

Γee
Γtot

= (3.363± 0.004)%,

Γµµ
Γtot

= (3.366± 0.007)%.

From this we can calculate the ratio between the two:

Γee
Γµµ

= 0.9991± 0.0024 (106)
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Figure 9: Branching ratios Br(Z ′ → X) for MS=500 GeV, gZ′ = 1, Mψ=600 GeV
and different values of χ and λHS , U(1)B−L model.

This ratio can also be calculated in the U(1)µ−τ model. This was done in

fig. (8). Here we see the ratio from eq. (106) plotted as heat-map in for different Z ′

masses and values of χ. Further there are three lines drawn representing the points

where the simulated ratio is one, two or three sigma different from the measured one.

From this we see that especially for heavier Z ′ masses the mixing is barely

constrained.

9.1.4 U(1)B−L

In this model the Z ′ has tree level couplings to all fermions. Therefore the decays into

fermions are the dominant ones, as can be seem in fig. (9). The model behaves very

similarly to the previously discussed U(1)µ−τ model, in that for large χ the mixing

has an effect on the branching ratios, causing the ratios for up- and down-type quarks

and charged and uncharged leptons to no longer be the same. Furthermore the ZS

channel is even more suppressed than before.
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9.2 S Branching Ratios

There are three ways for the new scalar S to decay:

1. In an absence of mixing the only tree level interaction of S is with Z ′. Since

all other couplings are inadvertently suppressed relative to this, the Z ′Z ′ decay

channel will be dominant once it is kinematically allowed.

2. Via the mixing with the Higgs. Since S and H mix it is possible for the S to mix

into a Higgs and then decay into the same final states that the Standard Model

Higgs can decay into, namely WW , ZZ and tt. These channels are suppressed

relative to the mixing angle α, however as long as the above mentioned Z ′Z ′

channel is not allowed this does not matter, because S is not stable and has to

decay. The mixing with the Higgs also leads to a SHH vertex, that allows for

a decay into two Higgs bosons.

3. Via the Z-Z ′ mixing. It is possible for S to decay into two Z ′s, and then have

one of the Z ′s mix into a Standard Model Z. This is possible once the scalar

mass is larger than the combined mass of Z ′ and Z. The likelihood if this

process is largely dictated by the Z-Z ′ mixing. This mixing also allows for the

case where both Z ′s mix into Zs, resulting in a ZZ final state, however this is

twice suppressed by the mixing angle.

The results of the branching ratio calculation are plotted in fig. (10). As

predicted if both the Z-Z ′-mixing and scalar-mixing are set to zero the scalar only

decays into two Z ′, once MS is greater than 2MZ′ . Allowing Z-Z ′-mixing, the ZZ as

well as the ZZ ′ channel open up, once they are kinematically allowed, while the scalar

mixing allows S to decay through the same channels as the Standard Model Higgs

could decay. If both mixings are allowed the two sets of channels compete against

each other, and as would be expected a large scalar-mixing and small Z-Z ′-mixing

means the Higgs channels are dominant, and vice versa for small scalar- and large

Z-Z ′-mixing.

Also shown in the branching ratio plot are several regions where the parameters

are excluded by other constraints. The first one is that λS has to stay below 4π in

order for the theory to remain perturbative. This is only relevant for large masses

of S. Furthermore, the Higgs mixing is also constrained by experimental results [19],

which is why parameter spaces with sinα > 0.4 are excluded. The mass restriction

stems form the fact that for a given λHS the mass of S and the mass of the Higgs

cannot be to close to each other. This is because, as can be seen from eq. (87) and

eq. (86), there is a minimal difference between MH and MS that scales with λHS ,

vs and v. In the plot itself this can be seen as a small slice of the parameter space

around the mass of the Higgs that is forbidden since the scalar mass and the Higgs

mass would be to close.
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Figure 10: Branching ratios Br(Z ′ → X) for MS=500 GeV, gZ′ = 1, Mψ=600 GeV
and different values of χ and λHS .
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We can see that a parameter space exists where a search in the S → Z ′ + Z

channel would be worthwhile. However to actually decide this we also need to look

at the total cross section of the p + p → S → Z ′ + Z process. For this we need to

determine the production cross section of S and then multiply it with the branching

ratios.

10 S Production Cross Section

The only way of producing the new scalar in a collider is via the mixing with the

Higgs boson, therefore the production channels of S are the same as for the Higgs in

the Standard Model. The most important ones of those is gluon-gluon fusion, and

vector boson fusion for large masses of S. The Feynman diagram for this can be

seen in fig. (10). An economic way to implement this interaction would be to add

an effective ggS vertex. In order to obtain this effective vertex one would have to

integrate out the top quark in the loop, however this only makes sense if the mass of

the top is larger than the mass of the new scalar. Since we do not want to constrain

ourselves to these relatively small mass scales the only other way is to simulate the

loop process. In practice this means creating a NLO (Next-to-Leading Order) model

file to run in a Monte Carlo simulation program such as MadGraph [20]. FeynRules

itself comes with a package named NLOCT [21], that allows the calculation of NLO

counter terms, further the extension FeynArts [22] is capable of generating the needed

NLO diagrams. FeynRules already has a functioning FeynArts interface.

The first step consists of renormalizing the Lagrangian. FeynRules can do this

automatically and is able to output the result in the appropriate FeynArts format.

This can be rather time consuming, mostly depending on the size of the Lagrangian

that has to be renormalized as well as the number of internal parameters in the

model, e.g. using only external parameters that have a predefined value makes this a

matter of minutes, while trying to renormalize the model with the full set of dependent

parameters as described above can take several hours on a single laptop CPU. Another

thing to keep in mind is that the existence of tadpoles in the model causes problems

when writing the output for FeynArts. Unfortunately the terms in eq. (64) introduces

such tadpoles, once the scalar fields assume a vev, therefore we drop all terms that

are not relevant to our searches, in other words only terms with the order HHS and

HS are used.

Next we can use this FeynArts file to generate the NLO diagrams and calculate

the counter terms. Here we can also impose restrictions, such as only taking QCD

processes into account or neglecting terms involving 4 scalars. The end result is a .nlo

file containing the new vertices induced by loop diagrams.

Finally we can use this .nlo file in conjunction with the original FeynRules
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Figure 11: Production of the new scalar via gluon gluon fusion

model to generate a UFO (Unified FeynRules Output) model file. It is of note0 that

the last steep seems to cause problems when using Mathematica on iOS, while both

Windows and Linux based systems function just fine.

We can use this model to simulate events in MadGraph, simply by loading

the file and running MadGraph in NLO-mode. This is done by adding [QCD] after

the to be generate process. For example to test the generation of the scalar through

gluon-gluon-fusion one runs:

generate p p > s0 [QCD]

The [QCD] indicates which interaction orders should contribute to the consid-

ered loop diagrams, since for the purpose of simulating gluon gluon fusion QCD is

the only relevant interaction.

In order to verify the simulation we plot the result, the Higgs gluon-gluon

fusion cross section taken from the LHC Working Group [23], the same Higgs cross

section multiplied by sinα2 in the same plot and the cross section of Higgs gluon-

gluon fusion simulated with the Standard Model NLO model provided by MadGraph.

This is show in fig. (12).

We can see that the curve that represents our simulation has the correct shape.

There is a significant difference between our simulated cross section and the one

that we would expect based on the Higgs production cross section given in [23].

This same difference is already present in the comparison between the leading order

Higgs production cross section produced with MadGraph and the LHC working group

prediction. This is the case because for our simulation we only looked at gg → H, at

one-loop level. The results form the LHC Working Group on the other hand include

both higher order processes, as well as processes like gg → H + jet.
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10.1 Total pp→ S → Z ′Z Cross Section

Using the branching ratios and the production cross section of S from the previous

sections we can now calculate the total cross section for the channel of interest. We

decided to use the Higgs cross sections from [23] and scale them by sin (α)
2

for this

calculation, since otherwise we would have to run a new simulation for every relevant

value of the scalar mixing. This also allows us to include contributions for other

production channels such as vector-boson fusion, which could be relevant at high

scalar masses.

Fig. (13) shows the product of the production cross section and the branching

ratios, as well as the same exclusion areas that were used in the plots of the S

branching ratio. We did this for several combinations of λHS and χ, as well es

for two different Z ′ masses. The first thing to notice is that for a Z ′ with a mass of

500 GeV the cross section of pp → S → Z ′Z is to low to be detectable at the LHC.

This is because, as we can see from ref. [24] we would require about 30-40 events for

a discovery in in a resonant mono-Z search. For an integrated luminosity of 100fb−1

and a Z → ee/µµ of about 7% [10] this means the cross section would have to be

at least 5fb to be deletable. For a lighter Z ′ there is, however, a parameter space

where the channel would be viable. In this parameter space λHS cannot be to large,

otherwise the decays via the mixing with the Higgs would be dominant, but λHS also

dictates the production cross section of S, meaning it also cannot be to low. Similarly,

a sufficiently large χ is needed to ensure the decay into Z ′Z happens often enough,

however a large χ and a simultaneously small MZ′ requires a comparatively small vev

of S, as can be seen in eq.(102). This means that for large χ scalar masses big enough
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Figure 13: Total cross sections for pp → S → Z ′Z for MZ′=200 GeV and MZ′=500
GeV,

√
s=14 TeV and different values of χ and λHS .
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to allow for S → Z ′Z are excluded, as can be seen in the lowest plot on the right in

fig. (13).

11 Searches

There are three different strategies to measure couplings of a Z ′ from an anomaly free

gauge group to dark matter.

11.1 Mono Jet

Mono jet searches are the standard approach for dark matter searches at colliders.

The process, where a Z ′ gets produced via the Z-Z ′ mixing and then decays into dark

matter is invisible for the detector. However, if a jet is produced along the way, it

results in a visible signal, usually with a high amount of missing energy and missing

transversal momentum caused by the invisible dark matter. Unfortunately a simple

decay of the Z ′ into neutrinos would result in a similar signature. Therefore, one would

have to see a excess in Z ′ to invisible events compared to what the model without

Z ′-dark matter couplings predicts. In these searches the background for signals with

low amounts of missing energy is rather large. In order to isolate the Z ′-dark matter

couplings they need to be differentiated from model-dependent Z ′ → νν̄ decays. This

requires precision measurements in the mono-jet channel, which are challenging due to

the large backgrounds. The precision does increase for higher missing energy values,

meaning a mono jet search would be most effective when we predict the Z ′ to be

heavy.

11.2 S → Z ′Z

As seen in the previous section, there is a parameter space for which the channel

pp → S → Z ′Z is viable. This allows us to search for a mono-Z signature, which is

significantly more precise than a jet search. Furthermore, this channel would not only

indicate the existence of a Z ′, but also give further insights into the structure of the

dark sector, since the Z ′Z channel is only possible if the model also includes S. From

fig. (13) we know that this channel only works for a lower mass Z ′. Since resonant

mono-Z production is considerably cleaner than the mono-jet search, it is a promising

search to determine Z ′-dark matter couplings in the presence of other missing energy

signatures such as Z ′ → νν̄.
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11.3 Z ′ → l+l−

A third strategy consists in measuring the width of the Z if it is discovered in dilepton

final states. This is especially promising for U(1)µ−τ and U(1)B−L models, since here

the Z ′ has direct couplings to the leptons, however as seen in fig(5) this search can

even be viable for U(1)X models when the Z ′-Z mixing is large enough. A fit to the

total width of the mediator can then reveal the presence of a dark matter final state.

12 Conclusion and Outlook

In this thesis we try to correlate two pressing questions left unanswered by the SM:

Is there a portal to dark matter, and is one of the anomaly free global symmetries

gauged?

We have introduced a new gauge boson to the Standard Model as a potential

dark matter mediator. Beyond that we also introduced a new scalar, giving mass to

the new gauge boson and thereby making the model self consistent and opening up

search-channels not present in models without the scalar. We investigated whether

such a model is able to reproduce the measured dark matter relic density and analyzed

potential the search-channels for collider experiments that could allow us to discover

the existence of our model.

In doing so, we found that there is a large parameter space in which the

model reproduces the desired relic density. This shows that the mass of the Z ′ is not

constrained by the relic density.

Further, we discovered that the partial width of the Z ′ → SZ decay channel

is too small for it to be a relevant search channel. However a parameter space exists

where the process S → ZZ ′ is both the dominant channel for S decays and has a

large enough total cross section to produce a potential discovery signal.

This channel not only has the potential to discover such a mediator, but fur-

ther can isolate the coupling of the Z ′ to dark matter. In this function, this search

is complementary and extends the reach of mono-jet searches, for which precision

measurements to isolate Z ′ → DM from Z ′ → νν̄ decays is challenging. In order

to find out whether this channel is as promising as it seems it has to be compared

to other potential searches. To this end we will simulate the production and decay

of S, and run an analysis on the resulting data that searches for a mono-Z (in the

form of a lepton pair) plus missing energy signal. Performing the same simulation

and analysis for the most important background processes will allow us to estimate

the signal/background ratio of this channel.

Further, we will investigate whether the Z ′, after decaying into Standard Model
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particles via the Z-Z ′ mixing could be seen as a mass peak in measurements. Because

the width of this peak will depend on the couplings of the Z ′, we can then attempt

to fit a function to this mass peak that will give insight into the nature of the Z ′. For

example one could see if the Z ′ has couplings to dark matter.

Finally, we will run a mono-jet simulation and analysis as a benchmark for the

other two searches.

Using these results will allow us to precisely determine what search is the most

promising for different sets of parameters.
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