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Abstract

Machine learning is increasingly important in physics with Neural Networks emerging
as a promising tool to accelerate LHC event generation, making it possible to generate
large amounts of data in a much faster way. We will look at processes where a Z-Boson
and a variable number of jets are produced through proton collision. We have engaged
in the task of optimizing the autoregressive transformer (AT), which proves to be a
powerful tool in the context of event generation. As the transformer is influenced by
the order of the input sequence, we have been working on finding good orderings. We
trained models on multiple randomly generated orderings, to distinguish good from bad
ones, by comparing the quality of samplings for different orders. However, it turns out
that the so called ”permutrain“ models learn to sample every component independently
and thus give almost identical results for any sampling order. In addition, we devoted
ourselves to joint training of events with different jet counts. Due to the structure of the
AT we can use events with lower jet numbers to support and enhance the generation of
events with larger jet quantities.

Zusammenfassung

Maschinelles Lernen spielt eine zunehmend zentrale Rolle in der Physik, wobei neu-
ronale Netzwerke als vielversprechendes Instrument hervortreten, um die Ereignisgener-
ierung am LHC zu beschleunigen und somit die Möglichkeit bieten, große Datenmengen
auf wesentlich schnellere Weise zu generieren. Wir untersuchen Prozesse, bei denen
durch Protonenkollision ein Z-Boson und eine variable Anzahl von Jets erzeugt werden.
Unsere Aufgabe besteht darin, den autoregressiven Transformer (AT) zu optimieren,
der sich als leistungsstarkes Werkzeug im Kontext der Ereignisgenerierung erwiesen
hat. Da der Transformer durch die Reihenfolge der Eingabesequenz beeinflusst wird,
arbeiten wir daran, optimale Reihenfolgen zu finden. Modelle wurden auf mehreren
zufällig generierten Reihenfolgen trainiert, um gute von schlechten zu unterscheiden, in-
dem wir die Qualität von Stichproben für verschiedene Reihen verglichen. Es stellt sich
jedoch heraus, dass die sogenannten ”permutrain”-Modelle lernen, jede Komponente un-
abhängig zu sampeln, und somit für jede Sampelreihenfolge nahezu identische Ergebnisse
liefern. Zusätzlich haben wir uns dem gemeinsamen Training von Ereignissen mit unter-
schiedlichen Jet-Zahlen gewidmet. Aufgrund der Struktur des AT können Ereignisse mit
geringerer Jet-Anzahl genutzt werden, um die Generierung von Ereignissen mit größeren
Jet-Mengen zu unterstützen und zu verbessern.
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1

Introduction

With the Large Hadron Collider (LHC) it became possible to enforce high energy colli-
sions between particles, to discover and examine standard particles and their behaviour.
The most popular result is the discovery of the Higgs Boson [1, 2], which completes the
Standard Model (SM) [3]. With its use it became possible to investigate particle scat-
tering and decays, QCD effects, hadron showers and more. Our goal is to advance our
understanding of fundamental particles and the laws of physics, by searching for new
particles or studying the fundamental forces. We do that by performing high energy
collisions and observing the resulting particles and their behaviour. The main subject
of the research at LHC are tests of leading theories like the Standard Model and inves-
tigations of e.g. Dark Matter [4].
The usual way to combine theory and experiment is the following. In theoretical de-
partments experimental results will be simulated by using tools like MadGraph, Pythia,
Delphes, etc. [5–9]. Each of these tools covers a step of the simulation chain. First
computing the amplitudes and probabilities of our actual events (MadGraph), then sim-
ulating the parton showering, hadronization, and decay of particles (Pythia) and finally
computing the response of a particle detector to the produced particles, giving us the
measured events.
The same thing will be done in experimental departments the other way around, so
a theory will be postulated by doing experiments and several other tools to evaluate
the data. One example are the experiments at LHC. By doing both we have the hope
of meeting with similar results somewhere on the way. This event generation chain is
illustrated in Fig. 1.1.

Figure 1.1: Event generation chain; taken from [10]

The theoretical predictions are done by the mentioned tools using Monte-Carlo-methods.
These simulations process physical laws to generate events, but they are computationally
costly and take a lot of time. So machine learning is used to enhance the process, by
training a neural network on of a number of events, which are Monte-Carlo-simulated.

1



1 Introduction

The model learns the phase space density and is able to reproduce physical events.
Though the training of the model takes time, this process accelerates the event genera-
tion, because the sampling process is extremely fast and computationally cheap. In this
process only the physical information of the original data set is processed so there is only
a reasonable number events that can be considered statistically relevant. This number
is dependent on the size of the original data set and an amplification factor which we
call the GANplification factor[11].
In recent years many different kinds of networks have been probed on that task, in-
cluding adversarial networks (GANs) [12, 13], invertible neural networks (INN) [14] or
variational autoencoders (VAEs)[15].

In our case we want to examine the capability of an autoregressive transformer to tackle
this task. The main structural feature of the AT is that it interprets the input compo-
nents as a sequence. It learns the phase space density and generates events by predicting
the following component, conditioned on the previous components.
We expect the AT to work well especially on high jet-multiplicity’s (events with multi-
ple of similar components), due to its structure. The architecture of the AT allows us
to train the same model on events with different numbers of jets. We will use this to
support the training of difficult tasks by adding a training of easier tasks with less jets.
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2

Physical Background

As mentioned, our physical background is the investigation of particle collisions in the
LHC. When high energy protons collide, a tremendous amount of energy is released.
This can lead to the creation of new particles, including quarks and gluons.
One particular kind of event will be looked at, where in the collision process of two
protons a Z-Boson is created by a quark and an anti-quark, which will decay in a muon
and an anti-muon. The Feynman-diagram of this process is visualized in following
Fig. 2.1:

Figure 2.1: Feynman-diagram of the muon production from a Z-Boson; taken from [16]

The other hadrons that resolve from the collisions can be summarized as jets [17], using
jet algorithms like anti-kt [18], that tell us which comments belong to which jet. Jets are
particle sprays resulting from the collision process and the hadronization of quarks and
gluons. They will be described by four components, by computing a mean angle and a
summed up momentum and mass. From then on these jets will be treated as a single
particle to enable the computer to isolate the main information of the events structure
and to make the data more handy.

In the Feynman-diagram Fig. 2.2 we have another example of muon and anti-muon
production including an earlier process, depending on the initial state particles. In this
example the final state has two additional jets. The full collision process can be described
as:

pp → Zµµ + jets (2.1)

Zµµ → µ+ + µ− (2.2)
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2 Physical Background

Figure 2.2: Feynman-diagram of jet production with two jets and the Z decay into
muons; taken from [16]

2.1 Data Set

The resulting particles of e.g. two jets and two leptons will be measured and character-
ized in a vector of 16 components. Each jet and lepton have a mass, a momentum and
two angular components, which are relative to the direction of the first lepton. From
now on the first lepton will be described with only one angular component, due to the
cylindrical symmetry. The masses of the leptons will be eliminated from the list of
components as well, because they are fundamental physical quantities, which are fix at
≈ 105.658MeV so the model does not need to learn them. The dimension of this vector
of components is defined by the number of jets. The number of components n equals
(2 + njets)× 4− 3.
In this way, the events in the particle accelerator can be described by a vector of n
components.

The data sets that will be used are created by Monte-Carlo-simulation using the tools
MadGraph and Pythia. In the process of our data set creation we generate 0 to 5 jet
events, but there are more events created for smaller jet numbers. The reason given is
that events with more jets are more computationally costly. The final shape of our data
set is shown in Tab. 2.1.

Number of jets Shape(Number of events, Sequence length)
0 (4776763, 8 )
1 (4776763, 12)
2 (4776763, 16)
3 (4776763, 20)
4 (1064147, 24)
5 (235823, 28)

Table 2.1: Shape of our data set, before eliminating the unnecessary components

The data sets for 0 to 5 jet events will be used to compare the work of the transformer on
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2 Physical Background

different jet multiplicities and to take a look at how the transformer responses to learning
several jet multiplicities simultaneously. Of course it is expected that the transformer
and any Neural Network learn lower jet events easier, as the tasks are less complex.

2.2 Distributions that will be examined

For every component there is a distribution and a plot, which is basically a histogram
of the value of one component in different events. These will be called 1d-plots and are
shown in Fig. 2.3.
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Figure 2.3: ϕ(angle), η(angle/pseudo-rapidity), pT (momentum), m(mass) of the first jet

To be more exact the η component is not actually an angle, but the pseudo rapid-
ity of the particle which by definition contains the information of the elevation angle
η = − ln

[
tan
(
θ
2

)]
. ϕ is the azimuth angle orthogonal to the particle stream.

Several other distributions that will be looked at are the ∆R-distribution and the dis-
tribution of the Z-mass. Those are especially important, because they carry important
and difficult to learn features.
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2 Physical Background
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Figure 2.4: The three ∆R-plots and the Z-mass

There are three ∆R distributions in the case of 3-jet-events, which are defined by the
angles of two jets in the following way,

∆Rj1,j2 =
√

(∆ϕ)2 + (∆η)2 (2.3)

with ∆ϕ = ϕj1 − ϕj2 and ∆η = ηj1 − ηj2. (2.4)

Though η is not actually an angle, its values are within the range of 0 to 5 so it can be
approximately treated as an angle over 2π.
The Z-mass is one of the more difficult components to learn. Especially because the
model needs to compute it only from correlations. So later on we changed the input
components by boosting the lepton particles into the rest-frame of the Z-Boson. Instead
of giving the model the initial components

ϕl1, ηl1, pT,l1, ϕl2, ηl2, pT,l2,

we gave the model

ϕZ , ηZ , pT,Z ,mZ , ϕl2′ , ηl2′ .

The momentum therefore is the sum of the lepton momenta pT,Z = pT,l1 + pT,l2. With
the information of the Z-mass given initially, the peaks will get almost perfect. During
this work this will not yet be used, so the Z-mass-peak can only be learned from the
correlations of the components. It is one of the most difficult distributions for the model
to learn and a good plot to evaluate the quality of our training.
Another interesting feature are the smaller peaks on the left, which are an artefact of
the ISR enhancement [19]. When separating our jets further by splitting them in smaller
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2 Physical Background

jets we get jets that are closer together and if we proceed this we get a divergence close
to 0 as every particle is considered a jet. To get rid of that we position a cut, still
leaving the peak as a secondary feature to the distribution, which is quite hard to learn.
Because they are difficult to learn as well they are likewise a good measure of the quality
of our models. The physical explanation of the cut is therefore that two jets can not be
arbitrarily close together.

7



3

Machine Learning Background

3.1 Prelude

Neural Networks (NN) enable us to enhance the speed of event generation. Monte-Carlo-
simulations are slow and very computationally intensive tasks, in contrast to sampling
from a NN. When reproducing events with a NN that learned the phase-space-density,
physical events can be generated in a much faster way. There are several different
kinds of NNs and all bring different advantages and ideas with them. With the goal of
finding the optimal way to do these event generations, we investigated the autoregressive
transformer.
Before coming to that we will clear up some important terminology and basic machine
learning concepts.

3.1.1 Structure

The structure of a basic NN consists of multiple layers of neurons (Illustrated in Fig. 3.1).

Figure 3.1: Structure of a fully connected neural network; taken from [20]

A basic neural network consists of an input layer, where data is fed into the network,
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3 Machine Learning Background

one or more hidden layers, which process the input data through weighted connections
and an output layer, which produces the final prediction. Neurons within each layer are
interconnected, and the network learns by adjusting the weights of these connections
during training to optimize its performance on a given task.

3.1.2 Linear layers

A linear layer is a transformation, where every input neuron is connected to each output
neuron with a weight and a bias (output = input × weights + bias). Linear layers are
responsible for learning relationships in the data and are often followed by non-linear
activation functions.

3.1.3 Activation functions

Activation Functions introduce non-linearities to a NN. They allow the network to model
more complex data. The most common activation functions are the sigmoid, hyperbolic
tangent and rectified linear unit (ReLU).

3.1.4 Backpropagation

Backpropagation is the actual training algorithm that minimizes the error between a
predicted output and the actual outputs of the neural networks. Backpropagation will
be done after feeding the input data through the network, creating a prediction and an
error for the prediction. The gradient of the error with respect of the models parameters
is calculated and used to update the models parameters. This process is done repeatedly,
iteratively updating the model and improving the models parameters.

3.2 Transformers in machine learning

Transformers are a type of machine learning model architecture that was introduced in
the paper ”Attention is All You Need” [21]. Transformers have since become a funda-
mental architecture for various natural language processing (NLP) tasks and have been
extended to other domains as well. They are known for their ability to capture long-
range dependencies in data and parallelize training effectively.
The key innovation of transformers is the self-attention mechanism, which allows the
model to weigh the importance of different parts of the input sequence when making
predictions for a particular element in the sequence. This mechanism enables trans-
formers to process input data in parallel, making them more efficient than other neural
network architectures for certain tasks.

9



3 Machine Learning Background

3.3 The architecture of an autoregressive transformer

This research focuses on working with the Autoregressive Transformer for LHC event
generation, which was presented by our group in that context [22]. The main differ-
ence to most generative models is that the AT would interpret the phase space vector
x = (x1, ...xn) as a sequence of elements xi. Like this we can factorize the probability
pmodel(x|θ) as a product of n one-dimensional conditional probabilities:

pmodel(x|θ) =
n∏

i−1

p(xi|x1, ...xi−1) ≈ pdata (3.1)

All n probabilities are only dependent on the earlier components. That leads to the
property, that a distribution p(xi|x1, ...xi−1) is easier to learn than a distribution which
is conditional on the full phase space vector x. Another advantage of this property is, that
we can choose freely in which order we will feed the components to the model. We can put
the more challenging phase space directions early in the sequence, as p(xi|x1, ...xi−1) gets
easier to compute for small i, because it has less conditional components. The conditional
dependence on the x1, ...xi−1 components will be encoded in a representation ω(i−1). By
using the AT we map the xi components on a representation ω(i). The architecture of
the transformer is illustrated in Fig. 3.3.
When sampling the resulting probability density function (PDF) Eq. 3.2 will be used to
make a prediction for the following xi component.

p(xi|x1, ...xi−1) = p(xi|ωi−1) (3.2)

The construction of this PDF follows a Gaussian Mixture Model (GMM), which repre-
sents the probability function as a sum of weighted Gaussian components:

p(xi|ω(i−1)) =
∑

Gaussian j

w
(i−1)
j N (xi;µ

(i−1)
j , σ

(i−1)
j ) (3.3)

All representations and the attention matrix Aij, which encodes the relation between
two components xi and xj, will be computed in parallel as shown in Fig. 3.2

3.3.1 The Autoregressive Transformer

Let us now take a look at the architecture of our transformer.
The network will start by receiving a sequence of components in a specific order and
adding a zero in front of the sequence. This will be an auxiliary x0 component, which will
be given the network to have a starting point to predict the first actual component from.
Then every component xi will be embedded in a d-dimensional latent space through a lin-
ear projection, denoted as xiα. This vector will run through several Transformer-Decoder
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3 Machine Learning Background

Figure 3.2: Autoregressive computation of the representations, with the attention matrix
Aji and an added x0 = 0 component; taken from [22].

Figure 3.3: Architecture of the autoregressive transformer; taken from [22]

blocks transforming it into a latent space representation x′
iα. The resulting vector will

again be processed through a linear layer giving us the latent space representation ω(i).

3.3.2 Linear Embedding

When representing the components into the latent space the vector xiα is created by
three vectors. Each vector carries essential information about the component that adds
up to its individual point in latent space.

• The jet embedding tells how many jets the whole event has, so it is the same for
all events with the same number of jets.

• The channel embedding carries the information of which particle and what type
components it is. e.g. the mass of the first jet mj1.

• The token embedding is different for every event, individualising them in the latent
space, by embedding the value of the momenta.

The first two are called the positional encoding (aka. positional embedding).
This changes a little when implementing the permutated training. The idea of permu-
training is to switch the ordering during training. More on that will be discussed later.
In terms of the embedding it means that it is necessary to add another encoding vector.
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3 Machine Learning Background

3.3.3 Self Attention

The self-attention mechanism is the most defining part of the transformer. It allows the
model when processing each position to capture dependencies and relationships between
different elements in the sequence.
When we compute our latent space projection x′

iα each input component xi will be asso-
ciated with three linear projections giving us three vectors qiα, kiα and viα per component
i. These three are called query, key and value vector. The complete computation of our
resulting vector x′

iα is Eq. 3.4.

x′
iα = Aijvjβ = Softmaxj

(
qiδkjδ√

d

)
vjβ (3.4)

= Softmaxj

(
WQ

δγxiγW
K
δσxjσ√

d

)
W V

αβxjβ (3.5)

Let’s break it apart and look at the different parts.

First we want to define an attention matrix Aij holding at every value the attention
score between xi and xj, which is commonly computed by the scalar product. To make
the matrix trainable we encode our phase components with learnable transformations
WQ,K , which will allow the transformer to choose a useful basis in the latent space,
giving us our query and key vector:

qiα = WQ
αβxiβ (3.6)

kjα = WK
αβxjβ (3.7)

Using the scalar product on these two vectors will give us the attention score, which is
the similarity/compatibility between the transformed representations of elements i and
j.

Aij ∼ qiαkjα (3.8)

The resulting scores need to be scaled, so they are not dependent on the size of the
latent space, so we will divide by

√
d to get rid of the dependence. Also we want to

normalize the components, so that the sum of all j entries referring to a certain i are 1.∑
j

Aij = 1 (3.9)

We can achieve that by using the SoftMax-function which is defined in the following way.

Softmaxj(xj) =
exj∑
k e

xk
(3.10)
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3 Machine Learning Background
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Figure 3.4: SoftMax Function

The SoftMax-function which is an extension of the Sigmoid function is commonly used
for ML tasks and maps a vector of real numbers to a probability distribution.
Our attention matrix can now be expressed as

Aij = Softmaxj

(
qiαkjα√

d

)
= Softmaxj

(
WQ

δγxiγW
K
δσxjσ√

d

)
. (3.11)

Finally we will apply the attention matrix to the input data, which as well will be
transformed into latent space with a learnable matrix W V , giving us vjα. In conclusion
we get to Eq. 3.4 as a way to compute a latent space representation for our data.
These attention layers can be applied multiple times on our input data. This is called
multi-headed-attention. So for each input component we get 3 × nhead key, query and
value vectors. Also the whole Transformer-Decoder-block can be connected several times
in series, which is implied by the ×N in Fig. 3.3.

3.3.4 Feed-Forward

The second part of our Transformer-Decoder-block is the Feed-Forward function. The
Feed-Forward is another type of transformation with learnable weights that helps our NN
to capture complex patterns and relationships. It consists of two linear Transformations
using learned weights and a non-linear activation function. In our case a GELU function
[23] is used, which can be approximated like this

GELU(x) ≈ 0.5x(1 + tanh[
√

2/π(x+ 0.044715x3)]). (3.12)

Because of its non-linearity it enables the model to learn more complex representations.
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3 Machine Learning Background

3.4 Training algorithm

As mentioned in Fig. 3.2, the training will evaluate all components in parallel.

Figure 3.5: The structure of the training algorithm of the AT; taken from [22]

After computing the linear representations the network will compute the probability
distributions p(xi|ωi−1) and with them the loss function illustrated in Fig. 3.5. The used
loss function is a typical log-likelihood function

L =
n∑

i=1

⟨− log p(xi|ω(i−1))⟩x∼pdata . (3.13)

With the loss function the model receives a score about the quality of the predictions.
The gradient of the loss is afterwards computed in respect to the different weights
(WQ,K,V ). These gradients are propagated backwards through the decoder layers. For
that reason this process is called back-propagation. All the weights will be updated by
the gradient of the loss function. Importantly, since the transformer is an autoregres-
sive model, where each step depends on the previous one, the gradients are propagated
backwards step by step considering the dependencies.
This process will be repeated in several epochs until the model reproduces the events on
an acceptable level. Our model will go through the whole training data once per epoch
updating the model, always after a number of a fraction of the events, which is called a
batch.
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3 Machine Learning Background

3.5 Sampling algorithm

The sampling works a little different. Compared to the likelihood evaluation this process
is less efficient, because it can not be parallelized. The structure is illustrated in Fig. 3.6.

Figure 3.6: The structure of the sampling algorithm of the AT; taken from [22]

The process can not be parallelized, because the input values xi are predicted with the
probability density function p(xi|ω(i−1)). And the representation ω(i−1) is computed by
the transformer block applied on xi−1. Like earlier, an auxiliary initial component x0 = 0
will be inserted. The representations ω(0), ...ω(i−2) have to be regenerated in every step.
This makes the task more computationally expensive. When looking at the process it
still it is very fast compared to the training time.
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4

Sampling from all channel orderings
(with permutrain)

As mentioned the current task is to improve our autoregressive transformer model. There
are several ideas to look into, some of which will be presented in the following part.

One of our first and main ideas is rooted in a result of the paper, that introduces the
autoregressive transformer in the context of event generation [22]. It says, that there
are orderings that improve the precision of our network compared to networks trained
on other orderings. We proceeded with the question of whether it is possible to find an
optimal ordering and possibly an algorithm to find it for different kinds of events as well.
Since our 3-jet-events have 17 values of information the number of possible permutations
is 17! ≈ 1014. Obviously it is not possible to train a model for every single one of them
and compare them, as each training takes several hours.

The idea at hand is to train one model on multiple orderings, which will later be called
“permutrain” and to sample from that training. The reasoning behind this is fairly sim-
ple, namely the sampling time is only a fraction of the time needed for the training. So
it is possible to train one model and compare different samplings, assuming their results
are better for good orderings and worse for bad ones. That would be a faster possibility
of looking for a good or even optimal ordering.
As mentioned in the theory part, our positional encoding changes when using permu-
train. For the original training it is sufficient to tell the model which component should
be predicted next. With permutraining the events get another degree of freedom, be-
cause the channel order changes for every event. For that reason, it is necessary to
give the model additional information so it can distinguish between different orderings.
This is done with another positional encoding vector that contains the information of
which was the previous component in the sequence. Like that the model can iteratively
reconstruct the whole event from every component.
I want to offer an intuition. Our model tries to learn the structure of the events. If
the model does not change it is arbitrary which component was last, when embedding
component xi, because the structure stays the same. If it does change our model needs
to ”take a look back“ to know on what bases the prediction for the next step was made.
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4 Sampling from all channel orderings (with permutrain)

4.1 Training on fix orderings

First we will look into training and sampling with only one fix ordering to get an im-
pression of the differences resulting from different orderings. The three most frequent
orderings, here for three jet events, that we used are

• the ”assumed to be” optimal order
fix0 [ϕj1,ηj1,ϕj2,ηj2,ϕj3,ηj3,pT,l1,ηl1,pT,l2,ϕl2,ηl2,pT,j1,mj1, pT,j2,mj2,pT,j3,mj3],

• the inverted opt. order
fix1 [mj3,pT,j3,mj2,pT,j2,mj1,pT,j1,ηl2,ϕl2,pT,l2,ηl1,pT,l1,ηj3,ϕj3,ηj2,ϕj2,ηj1,ϕj1]

• and the intuitive order
fix4 [pT,l1,ηl1,pT,l2,ϕl2,ηl2,pT,j1,ϕj1,ηj1,mj1,pT,j2,ϕj2,ηj2,mj2,pT,j3,ϕj3,ηj3,mj3].

Fix4 is the order in which the events are generated, so it would be intuitive to use this
order as well. The ”optimal ordering” fix 0 is the ordering that was initially found by
trial and error in the paper putting the jet angles first to improve the ∆R cuts. Fix1 is
the inverse ordering to the optimal ordering which we choose to have a good comparison
to fix0 with as much of a difference as possible.
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Figure 4.1: Comparing the models of fix0 (upper) and fix1 (lower)
We have three different distributions, because we split the data set in two
parts. Training (blue) is the part of the data set on which our model is
trained. Test (black) is the rest of the data set. We split it to get an
impression of the statistical fluctuations. jetGPT (red) is the distribution
for the sampled data, which should be close to the blue training data, if the
model is well trained.

In Fig. 4.1 we have the exact equal training of two different orderings (fix0 and fix1).
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4 Sampling from all channel orderings (with permutrain)

It is clearly visible that as expected the ∆R cuts are learned by the fix0 model and not
by the inverse one. Instead the mass distribution is better for fix1. This should give an
idea of how much the results can differ for different orders.

4.2 Sampling after varying the order

Since the transformer learns to predict components based on the previous components,
it will fail when we try to sample for an ordering, that is different from the channel order
during training. Especially when we change the order completely, e.g. training for the
order fix0 and sampling for the inverse fix1 our results look as expected horrible.
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Figure 4.2: The ∆R and Z-mass distribution, after training for the order fix0 and sam-
pling for the order fix1.

As Fig. 4.2 shows, the main feature for the ∆R distribution, which is the central peak,
is barely recognisable and the Z-mass is not learned at all. The Z-Mass is completely
calculated through correlations and this information is lost by inverting the ordering.
The more the ordering changes the worse the training gets. When inverting the ordering
completely, even the 1d-distributions are absolute chaos, as we would expect from the
theory section.

If we change e.g. two components in the middle of the sequence, then all 1d-components,
that come before the change, will be trained normal. This is because they receive all
the information they received during training as well. The components later on are
influenced by the change. This is exactly what we observe. Fig. 4.3 shows, that up to
the 6th component both models are similar, but a statistic deviation. From then on
differences are clearly visible, when looking at the ratio panel ( jetGPT

Test
).

18



4 Sampling from all channel orderings (with permutrain)

0.00

0.05

0.10

0.15
N

or
m

al
iz

ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

−6 −4 −2 0 2 4 6

η j3

0.1
1.0

10.0

δ
[%
]

.

10−3

10−2

N
or

m
al

iz
ed Test

Train
JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

20 40 60 80 100 120 140

pT,l1

0.1
1.0

10.0

δ
[%
]

.

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

−6 −4 −2 0 2 4 6

ηl1

0.1
1.0

10.0

δ
[%
]

.

10−4

10−3

10−2

N
or

m
al

iz
ed Test

Train
JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

20 40 60 80 100 120 140

pT,l2

0.1
1.0

10.0

δ
[%
]

.

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

−6 −4 −2 0 2 4 6

η j3

0.1
1.0

10.0

δ
[%
]

.

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

−6 −4 −2 0 2 4 6

ηl1

0.1
1.0

10.0
δ
[%
]

.

10−3

10−2

N
or

m
al

iz
ed Test

Train
JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

20 40 60 80 100 120 140

pT,l1

0.1
1.0

10.0

δ
[%
]

.

10−4

10−3

10−2

N
or

m
al

iz
ed Test

Train
JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

20 40 60 80 100 120 140

pT,l2

0.1
1.0

10.0

δ
[%
]

.

Figure 4.3: Comparing the 1d-distributions of two trained models where the 7th and
8th component of the ordering are switched in sampling of the second one.
Showing the 6th, 7th, 8th and 9th component.

4.3 Training for several orderings at once (Permutrain)

4.3.1 Transition from fix to permutrain

Defining for a permutrain model is of course the number of permutations that it will
be exposed to. In Fig. 4.4 different models with different numbers of permutations are
being compared. The models were trained for randomly chosen permutations, excluding
the sampling order fix0. We exclude this order to sample from it and to see if the model
is able to reproduce the events when seeing multiple orderings that can be similar or
rather different. As a reminder, when sampling from a model trained for an order, that
was different than the sampling order our result were very bad (see Fig. 4.2).
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Figure 4.4: The Z-mass-distributions of six different models, seeing different numbers of
permutations (4!/5!/6!). All samplings were done for the order fix0.

Though in none of the runs in Fig. 4.4 the sampling order fix0 is learned, the results
get better for more differently chosen permutations. When choosing more different
permutations more orderings which are similar to fix0 are learned and therefore the
model still learns to sample for these events. One has to take into account, that the

19



4 Sampling from all channel orderings (with permutrain)

Z-mass is in our given setting probably the distribution that is hardest to learn.
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Figure 4.5: The ∆Rj1,j2 of the same models Fig. 4.4

The same thing can be done for one of the ∆R distributions in Fig. 4.5. With very few
permutations the main features of the distributions are learned, but even with many
permutations the more difficult features like the ∆R cuts are not learned.

4.3.2 Event-wise and batch-wise permuting

There are several ways to implement permuted training, depending on how many differ-
ent orders should be included. First, there is the possibility to change the permutation
for every batch and train the whole batch on the same ordering. Secondly, it is possible
to permute the ordering for every event.
The event-wise permutraining sees as many permutations as events in the training data
set. Depending on the batch-size the batch-wise permutraining sees a fraction of that.
In our case we choose a batch-size of 1024 so it only sees 0.1% of the permutations.
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Figure 4.6: Loss functions of batch-wise (left) and event-wise (middle) permutrain and
the fixtrain (right)

As presented in Fig. 4.6, the loss for the event-wise permutraining is more stable, so
proceeding this will be used. Compared to the fixtrain the value to which the loss func-
tion converges is higher and therefore worse. The simple reason is the complexity of the
task. We can not expect to receive better results for a permutrained model.
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4 Sampling from all channel orderings (with permutrain)

Which is not a problem, as that is not what we are aiming for, but to compare the
orderings by sampling from a permutrained model.

4.3.3 Improvement of the distributions with higher number of
epochs

The results are getting better the longer the models are trained. Still there is a reason-
able number of epochs as the model reaches a plateau during training. In Fig. 4.7 the
fixed order training of fix0 is compared with the permutrain model.
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Figure 4.7: Training the Z-mass twice for different numbers of epochs (50/800/2000).
Once trained with a fix ordering fix0 and then permutrained.

The mass-distributions get, as expected, better with longer training, for the fixtrain
it seems, that it reaches a plateau already for 800 epochs and when training for more
epochs it only show statistical deviations. The permutrain network reaches its plateau
around 2000 epochs. The 2000 epoch runs for both trainings still show clearly that the
permutraining is worse, as mentioned due to the complexity of the task. The runs for
50 epochs have the biggest difference, which shows that especially the permutraining
profits from a longer training.

4.3.4 Comparing different samples

After all the crosschecking and examination of the properties of the transformer we take
a look at the differences between different orderings used for sampling. The idea is to
find an optimal ordering by sampling from the permutrained model and comparing the
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4 Sampling from all channel orderings (with permutrain)

samples. If a good order can be found like this, it can be used in fixtrain models, as
they still deliver better results. Again we will especially look at the distribution for the
Z-mass, because it is a very hard to learn distribution and therefore the differences are
most visible. The model that is sampled from is trained for 2000 epochs to be sure that
the plateau is reached.

0.0

0.1

0.2

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

80 90 100 110

mµµ

0.1
1.0

10.0

δ
[%
]

.

0.0

0.1

0.2

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

80 90 100 110

mµµ

0.1
1.0

10.0
δ
[%
]

.

0.0

0.1

0.2

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

80 90 100 110

mµµ

0.1
1.0

10.0

δ
[%
]

.

Figure 4.8: Big permutrained model trained for 2000 epochs sampling from it in three
different ways: fix0, fix1, fix4

The results are surprisingly similar and differences are only of statistical nature, not
allowing an assessment of quality, let alone ranking of different orderings. Contrary to
our assumption that we could determine the usability of different channel sequences, the
model simply does not care about the order of components, but learns to sample the
events independently from another. Even the completely contrary orders fix0 and fix1
look almost identical (first and second distribution in Fig. 4.8).
As it is not possible to tell whether one of the orderings is better then the other, the
assumed purpose of permutraining is invalid.
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5

Jet Multiplicity and Joint Training

Another way to improve the training of an autoregressive transformer is to train the
model on different numbers of jets. This is due the structure of the transformer, which
allows to vary the length of the input sequence. That makes it possible to train a model
e.g. on 1-, 2- and 3-jet-events simultaneously. As established the training for the one
jet events is faster and easier, due to the much simpler task. So when training a model
on different numbers of jets, it learns to predict the lepton components for any jet event
and especially faster and easier for lower jet events. When as well training for higher jet
events, the model learns to use the learned information from the smaller events. So the
bigger events with higher jet numbers are supported by the training of smaller events.

5.1 3-Jet-Events

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

0 2 4 6 8

∆R j1, j2

0.1
1.0

10.0

δ
[%
]

.

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

0 2 4 6 8

∆R j2, j3

0.1
1.0

10.0

δ
[%
]

.

0.0

0.1

0.2

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

80 90 100 110

mµµ

0.1
1.0

10.0

δ
[%
]

.

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

0 2 4 6 8

∆R j1, j2

0.1
1.0

10.0

δ
[%
]

.

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

0 2 4 6 8

∆R j2, j3

0.1
1.0

10.0

δ
[%
]

.

0.0

0.1

0.2

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

80 90 100 110

mµµ

0.1
1.0

10.0

δ
[%
]

.

Figure 5.1: top: training 3-jet-events for 2200 epochs;
bottom: joint training of 1-, 2- and 3-jet-events for 1000 epochs.

In Fig. 5.1 the improvement of the Z-mass is clearly visible. The ∆R distributions are
also better, but not as clearly. Obviously the events with lower jet counts do not carry
much information about jet correlations, so it is rather surprising that the model is
still able to produce the ∆R cuts, especially the ones with 3-jet in this quality, despite
training for less then half of the epochs. In comparison the Z-mass is a component that
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will be learned through the correlations of the lepton components, therefore it improves
more with the joint training.
Fig. 5.2 shows that for shorter trainings the joint training is a bit worse the ∆R cuts
are not as sharp and especially the mass-peak is not as high. So there is a point from
which joint training is more efficient and from where the additional events compensate
the fewer training epochs.

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

0 2 4 6 8

∆R j1, j2

0.1
1.0

10.0

δ
[%
]

.

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

0 2 4 6 8

∆R j2, j3

0.1
1.0

10.0

δ
[%
]

.
0.0

0.1

0.2

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

80 90 100 110

mµµ

0.1
1.0

10.0

δ
[%
]

.

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

0 2 4 6 8

∆R j1, j3

0.1
1.0

10.0

δ
[%
]

.

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

0 2 4 6 8

∆R j2, j3

0.1
1.0

10.0

δ
[%
]

.

0.0

0.1

0.2

N
or

m
al

iz
ed Test

Train

JetGPT

0.9
1.0
1.1

Je
tG

PT
Te

st

80 90 100 110

mµµ

0.1
1.0

10.0

δ
[%
]

.

Figure 5.2: top: training 3-jet-events for 500 epochs;
bottom: joint training of 1-, 2- and 3-jet-events for 200 epochs.

5.1.1 Fair Training

When comparing this, it is necessary to take into account that we can not train a model
with only 3-jet-events and a joint training for 1- ,2- and 3-jet-events for the same number
of epochs. This would not be a fair comparison, as for every epoch the whole data set
is evaluated Three times as many events will be seen for the joint training. Clearly the
joint training will be better in that case, as it receives more information and has a much
longer training time.
Considering this, it is possible to do a fair training by calculating the number of compo-
nents each model sees. So with the shape of the training data (compare Tab. 2.1), if train-
ing model on one jet quantity the following applies nseen−components = nseq;length×nevents.
It is also necessary to take into account, that when training on 4- or 5-jet-events joint
with other events, the number of all other events will be reduced. So during training we
have the same number of events for each jet quantity.
Giving an example of the simple fairness calculation for 5-jet-training and 4- and 5-jet-
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5 Jet Multiplicity and Joint Training

training Eq. 5.1, the values are used in Fig. 5.4.

n(components in 4-jet-sequence) = 21 (5.1)

n(components in 5-jet-sequence) = 25 (5.2)

n(epochs j-5-event is trained for) = 2400 (5.3)

n(epochs j-4and5-event is trained for) = 2400 ∗ 21 + 25

25
≈ 1305 (5.4)

5.2 5-jet-events

Now looking at the joint training of 5-jet-events in Fig. 5.3.
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Figure 5.3: Comparing 5-jet-training for 3600 epochs (top) with joint training of 0- to
5-jet-training for 1000 epochs (bottom). Two selected ∆R and the Z-mass
distribution.

The joint model was trained on all jet-events. As elaborated previously, the strongest
difference is visible in the peak of the Z-mass. The ∆R distributions show consistent
improvement on the cuts as well. For ∆Rj2,j3 this was easily to expect, but for ∆Rj2,j5

the improvement is more interesting, as this distribution is only computed for 5-jet-
events. In contrast the Z-mass is computed six times. This means the more profound
training of the j2 components supports even the 5-jet-∆R-distributions.

5.2.1 Investigating the support of specific jet numbers

Fig. 5.4 shows a fair comparison of the 5-jet-event training to five joint trainings each
with one jet-quantity. As the 4-jet-events hold more components, then any other event it
is given a fraction of the training time. A reasonable expectation would be, that higher
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number jet events improve the ∆R cuts more and lower number jet events improve the
Z-mass, as the events with lower jet numbers see the lepton components more often.
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Figure 5.4: The mass distributions of 5-jet training for 2400 and the joint training in-
cluding 0- (1-; 2-; 3-; 4-) jet events for 2000 (1765; 1580; 1430; 1305) epochs

In Fig. 5.4 the joint training of only one additional jet component is compared with
the training of only 5-jet-events. All models see approximately the same number of
components but different numbers of jet and lepton components. Still almost all the
mass distributions look very similar. In all cases the joint training is slightly better then
the non joint training. Only the 45-jet-event training seems to be slightly shifted. This
could still be due to statistical deviations.

One can see more differences, comparing the numerous ∆R distributions of the earlier
models, one of them illustrated in Fig. 5.6. The models that were supported by 0- or
1-jet-events did not learn any cuts at all. These events do not have multiple jets and
they are therefore apparently no help in learning the cuts. The 5-jet-event model and
the one supported with 2-jet-events learn almost all cuts and the models trained with
3- and 4-jet-events learn the same cuts, but in most cases a bit sharper then the others.
The ∆R cuts that are a correlation of one or multiple events with high jet numbers are
very difficult to learn, which physically and computationally makes sense as 5-jet-events
are rare in comparison to 1- or 2-jet-events.
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Figure 5.5: The ∆R distributions of 5-jet training for 2400 and the joint training includ-
ing 0- (1-; 2-; 3-; 4-) jet events for 2000 (1765; 1580; 1430; 1305) epochs

5.2.2 Most optimal setting

These results now tells us, that it may be optimal to do a joint training of 345-jet-events,
as these components supported the training the most. So now this will be compared to
a fully joint training of 012345-jet-events.
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Figure 5.6: Comparison of 0-5 jet training for 1000 epochs (top) against 3-5 jet training
for 1430 epochs (bottom)

Fig. 5.6 shows very little differences between the two models. The mass peak for the
fully joint training is a bit higher and the second shown ∆R cut slightly sharper. So
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even when using the components that support the training most, smaller events can still
improve the results. Still the differences are not enormous. For any task one has to
evaluate, if producing lower jet events and loading the data sets is worth the effort for
the given task. But if one is doing joint training, the best way is to produce events with
high jet counts, as they improve our training the most.
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6

Conclusion

In this thesis we presented the characteristics and functions of the autoregressive trans-
former in the context of event generation. Working through the architecture and the
individual properties of the AT, we isolated two ideas of improving the training on our
Z-decay-events. We were able to achieve the improvement of our results and to build an
intuition for further task.

Permutraining

First we engaged in the task of finding an optimal ordering using ”permutrain“. The
training of a model on multiple orderings turns out to be possible and provides good
results. The model learns to sample every component independently, so it is able to
sample even for orders it has not been trained on.
Through this effect we can not, as initially planned, compare the quality of different
orderings. We saw that sampling for different orderings achieved equal results and
therefore we can not find an optimal ordering this way. Also the permutraining proves
to be a computationally costly task compared to the fix training, so it does not serve as
a replacement for the fixed training either.

Joint Training

Secondly we used the individual structure of the transformer to implement a joint train-
ing, where one model is trained on multiple jet orderings simultaneously. We showed
that actual improvements are visible through this property when training for a sufficient
amount of epochs. Even when training for an equal number of seen components, the
more profound training of the components in events with few jets seems to enable the
AT to focus on the additional jets later on.
We took a look at the degree of how much different support training data improve our
results and confirmed, that e.g. 0-jet-events influence our training very differently then
4-jet-events. Events with higher numbers of jets are, even when training fair (the same
amount of seen components), a better support to our event generation.
Last but not least we we trained another model ”partially joint” for 3-, 4- and 5-jet-
events, because 3- and 4-jet-events improved our data visibly more then the others.
When comparing this model to the fully joint training we still saw small non statistical
improvements in the results for the fully joint training.
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6 Conclusion

Outlook

Obviously there are numerous things we can further look into to improve the autore-
gressive transformer. We already have another data set of events with tt̄-events, which
are more complex and therefore an interesting test for the model.
For example one of our possibilities is to implement a Bayesian network, by exchanging
all the weights with a Gaussian the network is able to sample the weights, which gives
us a network and sample from this network. When doing this multiple times we can
compute a mean and a deviation for the results, showing the uncertainties from the
training process. This has already proven to be successful.
Also we can improve our results by reweighting them. So after sampling the model
compares the generated events, with the test data and adds weights to the events im-
proving the distributions. As we still want to have unweighted events we need to include
a unweighting process which eliminates events that were sampled poorly. This is very
costly as a lot of events are eliminated and a training for the same quality takes much
more time. So we are working on implementing a DiscFormer, which is the equivalent of
a DiscFlow with a transformer instead of a Normalizing Flow. It gives us the possibility
of reweighting the events during training.
Another thing our group is working on is a ”two-fold-transformer” using one transformer
to learn the correlations between the different particles and one to learn the component
relations of each particle. Again we are making use of the transformers property to learn
similar components easier. As the weights of the second transformer are shared for all
the particles we have an improvement in scaling of the model.

To summarize, the Transformer is a great model to advance LHC event generation,
with very special features due to its unique structure.
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