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1 Abstract

This Master’s thesis describes several approaches to generate calorimeter simulations with
uncertainty estimation using machine learning. The main focus is on normalizing flows
and variational autoencoder. We analyze the corresponding advantages and disadvantages
of these models, paying strong attention to their generation quality and their scaling with
respect to larger datasets. For the second point we analyze the behavior of these models, when
applying them to different datasets with increasing dimensionality. We find that the pure
normalizing flow is consistently superior to the variational autoencoder based approaches.
However, it needs more parameters for the same dataset, what makes it impossible to apply
for large datasets. The variational autoencoder on the other hand, is able to handle large
input dimensionalities without performing significantly worse. We especially introduce a
kernel variational autoencoders, a compromise between a fully connected and a convolutional
approach, that is able to handle our largest dataset with a dimensionaliy of 40500 features.

2 Zusammenfassung

Diese Masterarbeit beschreibt verschiedene Ansätze um schnelle Kalorimetersimulationen mit
Fehlerabschätzung durch maschinelles Lernen zu generieren. Dabei liegt das Hauptaugen-
merk auf “normalizing flows” und “variational autoencoders”. Wir analysieren die jeweiligen
Vor- und Nachteile dieser KI-Modelle, mit einem Fokus auf die Präzision ihrer Vorhersagen
und ihre Skalierungseigenschaften bezüglich der Datendimensionalität. Für die Analyse des
zweiten Punktes untersuchen wir das Verhalten der Modelle, wenn sie auf verschiedenen
Datensätzen mit steigender Dimensionalität trainiert werden. Dabei stellen wir fest, das
ein separater normalizing flow einem Ansatz mit variational autoencoder in der qualität
grundsätzlich überlegen ist. Allerdings braucht der normalizing flow mehr Parameter, was
dazu führt dass er nicht bei großen Datensätzen verwendbar ist. Der variational autoen-
coder hingegen, ist in der Lage diese Datensätze zu bewältigen ohne dabei seine Qualität
weiter einschränken zu müssen. Insbesondere stellen wir den von uns entwickelten “kernel
variational autoencoder” vor, ein Kompromiss zwischen einem “fully connected” und einem
“convolutional” KI-Modell. Dieses Modell ist in der Lage selbst unseren größten Datensatz,
mit einer Dimensionalität von 40500 features, zu verarbeiten.

3



3 Theory

3.1 Particle Physics

In order to understand the need for faster detector simulations with uncertainty estimates
one has to understand this task in a larger context — namely in the context of the standard
model of particle physics. They are an essential tool to probe this theory.

3.1.1 Standard Model

The standard model employs quantum field theory to describe the behavior of subatomic
particles. It does this by assuming a Lagrangian L to be invariant under a specific group
transformation. For the standard model the group SU(3) × SU(2) × U(1) is used, as na-
ture is apparently described by it. It enables us to describe the electroweak interaction
(SU(2)×U(1)) and the strong interaction (SU(3)). A large scale analysis of the mathemat-
ics behind the standard model is beyond the scope of this introduction and we refer to the
corresponding literature. [1–11]
On a phenomenological level, the standard model describes the interaction between the mat-
ter particles (fermions) by introducing gauge bosons that carry the forces between the indi-
vidual particles. A systematic overview of the individual fermions and gauge bosons can be
seen in Figure 1. The standard model is currently one of the most accurate physical models
in general and describes our world with high accuracy. In the rest of this section we are
summarizing the standard model as it is described in [12].
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Figure 1: Visualization of the individual elementary particles of the standard model. Credits
for this figure to [13].
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3.1.2 Gauge bosons

Gauge bosons are the mediators of the three fundamental forces and carry a spin of 1.
The photon γ, one of them, mediates the electromagnetic interaction and corresponds to an
abelian U(1) symmetry. Every particle that carries an electric charge interacts with photons
and thus electromagnetically.
The three weak bosons W+, W− and Z are mediating the weak interaction, responsible for
particle decays. These are associated to a SU(2) symmetry. The first two W± are interacting
with the photon, while the Z-boson is not, as it is neutrally charged. A salient feature of
the weak interaction is its exclusive coupling to left-handed chiral states of fermions. In the
context of the weak interaction, fermions carry a quantum number known as weak isospin
(T ). Specifically, left-handed fermions are grouped into doublets with weak isospin T = 1

2
,

where the third component T3 distinguishes the members of the doublet. For instance, in the
case of leptons, the electron-neutrino and the electron form such a doublet with T3 = +1

2
and

T3 = −1
2
, respectively. The W± bosons couple to transitions between these doublet members,

whereas the Z boson couples to both members without changing T3.
The gluon g is the mediator of the strongly interaction, also known as strong nuclear force.
This force is the main reason of why protons and neutrons are held together. Only particles
that carry a color charge, the charge of the strong force, are interacting strongly. In na-
ture we do not find any free particles with a color charge, instead these particles are bound
in color-neutral so-called “hadrons”. This is called “confinement”. The reason is that the
energy, needed to create a new particle, is smaller than the energy to create a new strong in-
teracting fermion. Therefore, if a strongly interacting fermion is be separated from a hadron,
new fermions arise in between the separated fermion and the hadron. This way a chain
of hadrons is created, that is called “jet”, resuling in serveral bound hadrons, but no free
strongly interacting fermions.

3.1.3 Fermions

The fermions are the other half of the elementary particles, described by the standard model.
They are classified in two general categories: “leptons” and “quarks”. Furthermore, leptons
are divided into electric charged particles and corresponding neutrally charged “neutrinos”.
All fermions carry a spin of 1

2
and all left-handed fermions interact via the weak interaction.

Except for neutrinos, which are not carrying an electric charge, all fermions are also inter-
acting electromagnetically. Quarks are special as they also carry a color charge and thus
interact strongly.
Within each of these three classes (neutrinos, charged leptons and quarks) three “genera-
tions” exist. Particles in one generation (usually) have a similar mass. The exception to this
rule are the neutrinos. They are almost massless and we only know that they have a mass,
but not the size of it [14]. However, in the Standard Model (and in this section) they are
usually considered as “massless” particles, even though the addition of neutrino masses is
straight forward in this theory framework. As the mass increases with the generation, only
the first generation of the massive particles is stable.
The four most important fermions, for this thesis, are the up (u) and down (d) quark, the
electron (e−) and the muon (µ−). the u-quark is a first generation quark with an electric
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charge of 2
3
. The d-quark is the other first generation quark with an electric charge of −1

3
.

The electron is the first generation charged lepton with a charge −1, the muon is the second
generation charged lepton with the same charge. Even though the muon is not stable, it has
significant impact on the experimental setup of modern particle physics experiments.
For every elementary particle, there exists a corresponding anti-particle with an opposite
sign for all charges, but the same mass. For example the positron (e+) is the anti-particle of
the electron. For leptons, we change the superscript of the charge, like for the positron, for
other particles we add a bar over the name. E.g. the anti-down-quark is noted as d̄.

3.1.4 Higgs boson

There is one additional particle in the standard model, that was not mentioned before. It is
a scalar boson and called the “higgs boson” (H), carrying a spin of 0. This boson arises from
the “electroweak symmetry breaking” and it introduces masses for all the other elementary
particles via the “Higgs-mechanism”. One important effect of the electroweak symmetry
breaking is that the U(1) symmetry of the γ is not the U(1) summetry in the U(1)× SU(2)
electroweak symmetry group. Instead it is an unbroken diagonal subgroup of the broken
original U(1)× SU(2) symmetry group. [15–18]

3.1.5 Hadrons

Hadrons are, strictly speaking, no elementary particles. Nevertheless, they are strongly cor-
related to the quarks and the concept of confinement.
Hadrons are bound states of two or three quarks. They are classified into mesons, which
are bound states of a quark and an anti-quark, and (anti-)baryons, which consist of three
(anti-)quarks.
For this thesis, especially, the pion (π), a meson consisting of combinations of the first gen-
eration quarks and anti-quarks, is important. There are three types of pions: The π+ (ud̄),
the π− (dū) and the π0 ( 1√

2
(uū+ dd̄)).

This was only a very short overview over the full standard model as it is needed to
understand the the following chapters of this thesis. In fact, there exists a full particle-zoo
arising from its particles and many important concepts of particle physics were omitted. We
refer the interested reader to the corresponding literature [11,12].

3.2 Detector physics

Particle detectors are devices that we need to verify the predictions of the standard model
and to infer the free parameters in it, for example the particles’ masses. Usually they are
used in combination with a particle collider.
The main idea is to collide two particles at some energy level E (collider) and to measure the
energies that the resulting particles deposit in the detector. This means, that it is necessary
to understand how particles lose energy in matter in order to understand particle detectors.
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3.2.1 Particles in matter

The energy loss in matter is different for each particle. This individual footprint enables
us to distinguish different particle detections. The individual effects are, again, summarized
from [12].

Charged leptons Charged leptons lose energy in matter mainly due to two different rea-
sons:

• Ionization

• Bremsstrahlung

Ionization is the effect, where the lepton removes an electron from an atomic shell of an
absorber atom, ionizing the corresponding atom. The energy loss by ionization satisfies the
“Bethe-Bloch” formula [12, 19], which states that the energy loss depends on the absorber
material mainly by its density ρ, as the mass number A and the atomic number Z are almost
proportional for stable atoms:

dE

dx
≈ −4πℏ2c2α2 ρZ

memuAv2

{
ln

[
2β2γ2c2me

Ie

]
− β2

}

Here, h is Planck’s constant, c the speed of light, me the mass of the electron, mu the mass
of a proton and α the electromagnetic coupling strength. A and Z are the mass number and
the atomic number, respectively, of the absorber material and Ie is the effective potential
averaged over all absorber electrons. β and γ are the corresponding Lorentz transformation
factors and v is the velocity of the ionizing particle.
Particles with βγ ≈ 3 are called “minimal ionizing” as they are close to the minimum of
the Bethe-Bloch formula. These particles do not lose much energy because of ionization
processes.
Bremsstrahlung is the process of the lepton ℓ emitting a photon in the electric field of another
atom ℓ→ ℓ+ γ. The strength of this effect is proportional to the inverse mass of the lepton

r ∝
(

1
mℓ

)2
. Bremsstrahlung happens only above a critical energy Ec ≈ 800

Z
MeV.

In a modern detector Bremsstrahlung is the dominant effect for electrons, but ionization is
dominant for muons, as they are much heavier than electrons. As muons are usually produced
close to βγ = 3, they are penetrating large parts of the detector, before they are stopped by
ionization - usually outside of the detector.

Photons There are three processes, that can be dominant for the photon energy loss:

• Photoelectric effect

• Compton scattering

• e+e− pair-production
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The photoelectric effect describes the photon being absorbed by a shell electron, increasing
the electrons energy: γ+ e− → e−. However, this process happens usually for energies below
the MeV range and is not very relevant for collider experiments.
Compton scattering describes the scattering of the photon off a shell electron, γ+e− → γ+e−.
Also this process is not reducing the photon’s energy significantly in our current setup.
In a collider experiment, the main reason for the photon to reduce its energy is pair produc-
tion. Therefore, the photon decays into an electron-positron pair γ → e+ + e−. This effect is
dominant when Eγ > 10 MeV and each particle is carrying an energy of Enew = Eγ−me

2
≈ Eγ

2
.

Therefore, this effect vanishes entirely, if the energy of the photon is smaller than the rest
mass of two electrons.

Electromagnetic shower Now we see that the dominant energy loss processes of the elec-
tron and the photon are cyclic. A photon decays into an electron and a positron. These two
create two additional photons, which decay again - an exponential growth in the number of
particles. This cascade of particles is called “electromagnetic shower” (cf. Figure 2). The
distance between two splittings, X0, can be approximated by 7

9
of the mean free path length

of the pair production process. This results in values for X0 of O(1) cm. As the energy loss
is exponential in an electromagnetic shower, there are not many generations of splittings in
one shower, such that the overall size of those showers is in the regime of dm.
Since the electromagnetic shower consists of only three different particles and since it pro-
duces a large number of particles in total, the overall fluctuations for showers of the same in-
cident energy are small. The shower ends once the critical energy for pair creation is reached.

γ

e+ γ e+ e− e+ e− e−γ

Figure 2: Visualization of an electromagnetic shower.

Hadrons Hadrons have an additional energy loss mechanism. Of course, all the possibil-
ities of the charged leptons exist, but hadrons can also interact strongly with the protons
and neutrons of the absorber material. If their energy is larger than ≈ 300 MeV they are
able to create other hadrons (the lightest hadron is the pion with mπ ≈ 140 MeV). At this
point the hadronic energy loss is dominated by hadronic showers. They are conceptually
similar to electromagnetic showers but way more diverse as they contain all hadrons that
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are light enough to be produced. This results in larger fluctuations than for electromagnetic
showers. In fact, as π0 → γ + γ, every hadronic shower contains electromagnetic showers as
a component.
Also the average size of a hadronic shower is different to the compact electromagnetic shower.
Typically, the distance between two splittings for hadrons, the “nuclear interaction range”
λI , is already in the regime of decimeter. Resulting in showers that stretch over up to several
meters.

3.2.2 Detector layout

To ensure that all the particles, that arise after the collision, can be detected, all these energy
loss mechanism have to be considered when constructing a particle detector. These restric-
tions resulted in a cylindrical characteristic sandwich-structure that most modern detectors
implement. This cylinder is orientated such that its rotational axis corresponds to the col-
liding particles’ beam. As coordinates, the variables η and ϕ are chosen. ϕ is the azimuth
angle corresponding to the cylinder, η = ln

[
tan
(
θ
2

)]
is the “pseudo-rapidity”. The variable

θ is the angle between the beam axis and the momentum axis of the individual particle, the
polar angle [20].
Typically, the inner part of the detector consists of “tracking chambers” that measure the
bending of the particle’s trajectories in a magnetic field. In this first ionization layer, the
energy deposition is less relevant. However the bending allows for a momentum measurement
of the particles. Afterwards an “electromagnetic calorimeter” is used to measure the energies
of electrons and photons. Typically, it is of the size as the expected electromagnetic showers.
The third layer is a “hadronic calorimeter”. At this distance from the collision point, the
electrons and photons have already been stopped and the energy of the resulting hadronic jets
is measured. Because of the large size of the hadronic showers, also the hadronic calorimeter
has to be large. Often it is the largest segment of a particle detector. The outermost part
of a usual particle detector are the muon chambers. These are needed to detect muons that
are released during the collision. Since these muons are highly penetrating, they are the
only particles, besides neutrinos, that reach the outermost part of the detector [12, 21]. A
schematic visualization of the ATLAS detector can be seen in Figure 3.

Tracking chamber The tracking chamber is used to measure the momentum of the cor-
responding charged particles. The idea is to measure the curvature of their trajectories in
a magnetic field. From electrodynamics, we know that the curvature of the bending is de-
termined by the particles’ charge q, the magnetic field strength B⃗ and the momentum p⃗. In
fact, the important quantity is p⃗ × B⃗, so one has to ensure that the particle trajectory is
orthogonal to the B-field.
Together with the energy measurement in the later calorimeters, this enables us to recon-
struct the full momentum four-vector and thus the mass of the detected particle.
In practice either gas chambers of silicon tracing detectors are used. Gas chambers use a gas
that is ionized by the individual particles. The current, arising by freeing the electrons, can
be detected and used to infer the particle trajectory. Silicon trackers rely on the creation
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Figure 3: Visualization of the ATLAS detector. Image taken from [22].

of electron-hole pairs in silicon semiconductors. To measure the trajectory of the particle in
question, a matrix of semiconductors is used. If the particle traverses through one of these
semiconductors, the electron-hole pairs create a measurable current that is used to identify
the particles positions [12,23].

Electromagnetic calorimeter The electronic calorimeter is used to measure the energy
of the corresponding electromagnetic showers. The problem with calorimeters is that they
need a high-Z material, like lead, to initiate the shower and an active material that actu-
ally measures the energy. The latter usually happens via the detection of scintillation light.
Two types of calorimeters are distinguished. The first type is called “sampling calorimeter”.
It uses an alternating sandwich-setup of an absorber layer and an active layer constructed
by a different material. The shower starts in the the absorber but only the energy that is
deposited in the active layer can be measured. The alternative is to use a “homogeneous
calorimeter”. This type uses the same material as absorber and active material, e.g. lead
tungstate (PbWO4). This results in better energy resolutions, as all the energy can be mea-
sured, but usually also in larger calorimeter sizes. Due to the worse shower properties, the
showers are typically larger in homogeneous calorimeters. Furthermore, the are more expen-
sive than sampling calorimeters.
In the end, several cells of the active material are used to achieve spatial resolution. However,
this resolution is usually not very high and inferior to the tracking chamber [24].
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Hadronic calorimeter The hadronic calorimeter is usually constructed as a sampling
calorimeter. The fact that it is already the largest part of the detector increases the need
to make it as compact as possible. Furthermore, it is more money-efficient to build it as a
sampling calorimeter. The corresponding materials are cheaper [25].

3.2.3 Detector Simulations

Now, that larger context is explained, it becomes obvious, that detector simulations are one
of the most important parts of the analysis of a collider experiment. The interaction of a
particle with the individual detector materials is understood very well, we are able to predict
the energy depositions of, for example an electron, very accurately given the detector and
the particle details. However, this prediction is not invertible: We cannot predict all particle
details exactly from the energy depositions. Reasons are mainly the finite resolutions of our
detector and noise - detector effects. The solution is to predict a set of measurements from
our theory and compare it statistically with our actual set of measurements. The downside of
this inference step is that we need a large set of predictions to make the comparison accurate.
The interactions of the particles with the detector are usually simulated using the tool
GEANT4 [26–28]. This state-of-the-art software uses Monte-Carlo simulations to predict
the energies that are deposited in the corresponding cells of our calorimeters. However, as
the number of particles in a shower is very large, these simulations of the calorimeters on
particle level are expensive (cf Figure 1 in [29]). Especially for high incident energies, where
many particles are produced, the run-time of the detector simulation tools is problematic. In
future runs of current colliders, like the LHC, this time consuming simulation is expected to
be a bottleneck of the overall evaluation. Therefore, the particle physics community tries to
find alternative solutions to prevent this by establishing new algorithms to generate detector
simulations using machine learning [30–40]. One of these efforts is the CaloChallenge [41].
This is a competition to find the “best” method for fast and accurate calorimeter simula-
tions, building the foundation for future collider experiments. The main idea is to replace
the slow Monte-Carlo approach in GEANT4 with a fast machine learning alternative. This
thesis is the summary of my participation in this domain. Now, before more details about
the challenge are presented, a small overview over the used machine learning techniques will
be given. The structure is closely following [42]. An alternative overview over ML can be
found in [43].

3.3 Machine Learning

3.3.1 General idea

Machine learning (ML) can be seen as a fit. We try to optimize the parameters θ of a function
fθ(x) such that it is approximating another (usually unknown) function f(x). However, while
classical fits are used on functions with O(10) parameters, ML tries to optimize functions
with O (106) or more parameters.
Nevertheless, the process is conceptually similar. Since we do not have a closed form solution
for the global optimum of our function parameters, we try to find this optimum iteratively
using “gradient descent”. Therefore, we use a differentiable function L(θ|TS), called “loss
function”, that describes the “quality” of our fit. Here we call TS the set of points, where we
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evaluate the loss function on, our training set. We can find a minimum of the loss function,
and thus an optimum of our fit, by shifting the parameters θ in the direction of the negative
gradient:

θ ← θ − α · ∇θL
The parameter α is called the “learning rate” and it describes, how fast one is following the
gradients of the loss function. One can either use a constant learning rate, or adapt it during
the training. This adaption is called “LR-schedule” and is able to improve the convergence
behavior. In this thesis we are using either a constant LR or a “one-cycle-LR” [44]. The
idea of the one-cycle-LR is to start with a medium-sized LR to let the network find a stable
initialization, and increase the LR soon to its maximum value to speed up the optimization.
In a third phase, the the LR is slowly decaying to a very low value in the final epoch to find
the best configuration in the final optimum.
In practice one usually uses not the full training set to estimate the gradients, but only a
subset from it, a batch. This prevents the optimization to get stuck in bad local optima and
reduces the needed memory during the optimization.

3.3.2 ADAM

In this thesis we are using a more modern optimization algorithm called “ADAM” [45]. It is
minimizing the loss function in analogy to a ball rolling down a hill, by assigning a momentum
to the gradients. This enables the optimizer to leave shallow minima, if the parameters were
reduced a lot beforehand. Just like a ball that can roll up a small hill, if it has a lot of speed.
Empirically, this optimizer is not only converging to a better minimum, but also reaches it
faster:

p← β · p+ (1− β) · ∇θL

p̂ =
p

1− β#Update

v ← γ · v + (1− γ) · (∇θL)2

v̂ =
v

1− γ#Update

θ ← θ − α · p̂√
v̂ + ϵ

p is the momentum estimate that is generated using a running average, v is a variance estimate
to make the convergence more stable and ϵ a small regularization. During the initial updates
v and p are corrected as the running average is not trustworthy there. β and γ are two
hyperparameters that somehow describe the strength of the friction, the ball is experiencing.
We were always using their default values β = 0.9 and γ = 0.999.
The actual differentiation, the computation of the gradients, is straightforward by using
the chain rule. In fact, the calculation of the gradients is done completely autonomous by
common ML-libraries, like PyTorch [46], using “backpropagation” [47].
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3.3.3 Neural Networks

Now, that it is clear how to optimize a loss function, we should discuss which function we
want to fit. Usually the main building block for the fitted function in ML are “neural net-
works”, short NNs [48–50]. These functions are usually called “models” in the context of
ML and are concatenations of linear functions, “linear layers”, and non-linear “activation”
functions. The latter is needed to model non-linear dependencies.

x
(n)
i = NL

(
W

(n)
i,j · x(n−1)

j + b
(n)
i

)
.

Here, (n) is the index of the corresponding layer of our network and NL symbolizes the
(usually non-learnable) non-linearity. In this thesis we will use three types of activation
functions. In the inner layers we are going to use the so called “Rectifying Linear Unit”,
short ReLU

ReLU(x) =

{
x if x ≥ 0

0 if x < 0

or the “leaky ReLU”
LReLU(x; s) = max(0, x) + s ·min(0, x).

In the final layer we are mainly going to use the sigmoid function σ(x), since we usually
require our output to be between zero and one.

σ(x) =
1

1 + e−x

The output dimensionality of the linear layers is called the number of “neurons” of this layer.
A schematic overview of a full NN can be seen in Figure 4.
By theory, we know that a sufficiently wide NN, i.e. a NN with enough neurons, with at least
two linear layers can approximate any continuous function on a compact set [51, 52]. Thus,
we can use this building block for basically any task. Furthermore, one can show that the
number of linear regions, a measure of expressivity, of a NN scales at least polynomial with
the number of neurons, and at least exponential with the number of linear layers [52]. Thus,
a wide network is usually less expressive than a deep network.
Even though NNs are the most important building block of ML models, there are also other
options. One of them is the so called “convolutional neural network” (CNN) [53]. It uses
C · C ′ (“channels”) learnable “convolution kernels” Wc,c′ of size k1 × k2 “pixels” that are
moving over some 2 dimensional input instead of a “fully connected” linear layer. These
models are designed and optimized for image-like data. Their scaling behavior is constant
with the input dimensionality, while normal NNs scale (at least) linearly. The value of a
pixel after the convolution layer is computed the following way:

x
(n)
c,i,j =

∑

a∈{0,...,k1−1}
b∈{0,...,k2−1}
c′∈{0,...,C′}

(
W

(n)
c,c′,a,b · x

(n−1)
c′,i+a,j+b + b

(n)
c,c′

)
.

For the boundary cases usually zeros are appended. The indices i and j after the convolution
are not necessary consecutive. One could also chose i ∈ {0, 2, 4, ..} — this spacing between
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the new indices is called “stride”.
In addition to convolutional layers also pooling layers are used. These layers are shifted over
the input image just like the convolutional kernels, but their weights are fixed. In this thesis
only average pooling layers ( [43], p.13 ff) are used. They correspond to convolutional layers
with only one weight matrix that is channelwise applied to all incoming channels. For all
weights W the normalization for the average 1

k1·k2 is chosen.

x
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3
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x
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x
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(2)
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x
(2)
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Layer 2

Activation
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y
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Figure 4: A schematic visualization of a simple neural network.

3.3.4 Classification

Since the concept of NNs and their optimization is clear now, we should discuss the most
crucial part of the training algorithm:
How to find a good loss function?

The loss function is usually directly connected to the task that we want the model to
perform. Thus, the loss function is the only part of ML that truly varies a lot. A usual
“hello world” of ML is the optimization of a model to distinguish two different things. This
task is generally called “classification” and the corresponding model is a “classifier”. More
precisely, we try to make our model learn the probability of a point to belong to a class C.
In order to train this classifier, we are going to use the KL divergence between two probability
distributions. The true probability of one point x to belong to either class 0 (p0(x)) or class
1 (p1(x) = 1 − p0(x)) and the corresponding probability p̂i as predicted by the network.
This is justified by the Neyman-Pearson lemma, which states the likelihood ratio is the most
powerful test statistic to distinguish two hypotheses [42, 54].

Lclass =
∑

j=0,1

DKL [pj, p̂j]

= ⟨log p0 − log p̂0⟩p0 + ⟨log p1 − log p̂1⟩p1
= −⟨log p̂0⟩p0 − ⟨log p̂1⟩p0 + const(θ)

The constant term in the loss function can be ignored, as it cannot influence our gradients
during the optimization.
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Now, we can approximate the full KL-divergence, over all possible points, by the sum over
the TS. In this step, we are assuming that the TS is a good representation of the possible
output of the function that we want to model.

⇒ Lclass ≈ −
∑

x∈TS

[p0(x) log p̂0(x) + p1(x) log p̂1(x)]

= −
∑

x∈TS

log
[
p̂1(x)

p1(x) · (1− p̂1(x))
(1−p1(x))

]

Thus, we receive the cross entropy between the true probability and the predicted probability
as our loss function.

In practice one finds that the classifier is modeling the likelihood ratio very accurately.
Because of this, its predictions can be used to quantify the quality of the predictions of other
(generative) models [39,55,56]. In this thesis two distinct measures are used to evaluate the
classifier’s judgement: The “AUC” of its “ROC curve” and the weight distributions.

ROC curve A classifier is used to separate two types of samples. However, it is, in fact,
predicting more than a label, but a probability to belong to a class. Therefore, it is not
necessary to apply the decision boundary at 50%. For example, one can also decide that
a chance of 10% for class 0 is still good enough to be classified as class 0, if the cost of a
false classification as class 1 is high enough. For now, let’s assume, that we want to identify
a member from class 1 out of a set of class 0 samples. Then, we can define the number of
samples correctly classified as class 1, NTrue positive, and the number of samples from class
0, that are falsely classified as class 1, NFalse positive. Furthermore, lets label the number of
all samples from class 0 N0 and the number of samples from class 1 N1. Using this values
as functions of the decision boundary d, one can define the ROC curve (receiver operating
characteristic curve) the following way:
For each decision boundary d, compute the true signal rate

ϵS(d) =
NTrue positive(t)

N1

and the background rate

ϵB(d) =
NFalse positive(t)

N0

.

Than, plot the curve consisting of the tuples (ϵS(d), ϵB(d)), the ROC curve. This curve
describes the ability of the classifier to separate the two classes. A ROC curve that is the
diagonal corresponds to random guessing and we assume that our model cannot perform
worse than this. Thus, the larger the area between the diagonal and the actual ROC curve,
the better the classifier. Thus, the area under the ROC curve, the AUC, is a single number
that is able to describe the separation power of the classifier. This means, in the context of
a classifier test, that if an optimal classifier has a bad ROC curce, or an AUC close to 0.5,
the fake samples are indistinguishable from the real samples.
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Weight distributions The second measure are the probabilities that the classifier predicts.
They correspond to the probability p(x) that a sample x is generated by an artificial method.

Now, it is possible to compute the “weight” w(x) = p(x)
1−p(x)

of this sample. For similar, almost
indistinguishable, sets of real and fake samples, we expect the weight distributions of both
subsets to peak at 1. Furthermore, the true weights should reach to higher weight values,
while the fake weights should reach to lower values. These weights can be used to reweight
histograms by considering that w(x) = p1(x)

p2(x)
, where p1 is the generative model’s predicted

probability and p2 is the true probability. Therefore, the weight can be used to correct the
probability predictions of a generative model. Additionally, the weights can be used as a filter
criterion for some high level observables, enabling us to find failure modes in the analyzed
other model.

3.3.5 Invertible Neural Networks

One of the two most important architectures used in this thesis are invertible neural net-
works (INN) or normalizing flows [57–59]. In fact INNs are a special case of normalizing
flows. Other cases are listed in section 3.3.5, “Other flow types”. These models are used for
density estimation and generation tasks. We use them primarily for the latter, as we want to
generate realistic detector simulations as explained in subsubsection 3.2.3. The idea behind
INNs is to morph an arbitrary probability distribution into a “latent distribution”, usually a
normal distribution, by using an invertible function. Of course this is not possible in general,
as we need to preserve the topology if we want to use a bijection, which is necessarily a
homeomorphism since our network (and its inverse) is differentiable [60]. In fact, this is one
of the biggest downsides of INNs. However, let’s assume for now, that the topology of the
modeled distribution is the same as the topology of the latent distribution. We will come
back to this problem later in section 3.3.5, “Final Comments”.
If we are able to find this invertible transformation, we can sample a point from the standard
normal and map this point into the space of our training set. Effectively enabling us to sam-
ple from the underlying probability distribution of the training set. This makes it possible
to generate something new by just observing existing samples, so we are trying to solve a
“generative” problem.
To derive the loss function of an INN we are using the change of variables formula:

dx pmodel (x | θ) = dz platent (z)

⇔ pmodel (x | θ) = platent (z)

∣∣∣∣
∂Gθ(z)

∂z

∣∣∣∣
−1

= platent
(
Ḡθ(x)

) ∣∣∣∣
∂Ḡθ(x)

∂x

∣∣∣∣ .

Here, x corresponds to the training space and z to the latent space. The generative model is
labeled Gθ, such that x = Gθ(z). For better readability we use Ḡθ = G−1

θ for the inverse of
our model.
In the next step we require that the likelihood of our TS, given the optimal model parameters
has to be maximal. This is equivalent to saying that our training set is a good representation
of all reasonable samples.
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⇒ LINN = −⟨log pmodel (x|θ)⟩pdata∼TS

= −
〈
log platent

(
Ḡθ(x)

)
+ log

∣∣∣∣
∂Ḡθ(x)

∂x

∣∣∣∣
〉

pdata∼TS

.
(1)

The main difficulty at this point is to find a model that is invertible and that allows for a
fast evaluation of the Jacobian in Equation 1.
In this thesis we are always using a coupling block architecture to satisfy these two con-
straints. The general idea is to use simple invertible transformations that are parameterized
by a complex neural network. Usually one uses one half of the features, the coordinates of
the corresponding samples, to get the parameters of the transformation and the other half
is transformed accordingly. Once both halves are transformed, one has to shuffle the input
vector to model the correlations of both halves of the vector. This way one can easily invert
the full model, as each individual part of it is invertible. A visualization of a coupling block
using affine transformations (cf section 3.3.5, “Affine coupling blocks”) can be seen in Fig-
ure 5.

Figure 5: A schematic visualization of an affine coupling block. Taken from [61].

Affine coupling blocks An intuitive, yet not very expressive solution, is to use “affine
coupling layers” as coupling blocks for the model:

(
x1

x2

)
=

(
z1 ⊙ es2(z2) + t2 (z2)
z2 ⊙ es1(x1) + t1 (x1)

)
⇔
(

z1
z2

)
=

(
(x1 − t2 (z2))⊙ e−s2(z2)

(x2 − t1 (x1))⊙ e−s1(x1)

)

Here x1 denotes the first half of the input vector and x2 the second half of it, i.e. x = (x1, x2).
Equivalently, we use z = (z1, z2). The parameters s1, s2, t1 & t2 are predicted by an arbitrary
neural network.
x2 does not depend on z1, therefore the Jacobian matrix is an upper triangular matrix.
Because of this, its determinant can be easily computed as the product of the diagonal
entries in ∂Gθ(z)

∂z
:

∂Gθ(z)

∂z
=

(
∂x1/∂z1 ∂x1/∂z2
∂x2/∂z1 ∂x2/∂z2

)
=

(
diag

(
es2(z2)

)
finite

0 diag
(
es1(x1)

)
)

⇒
∣∣∣∣
∂Gθ(z)

∂z

∣∣∣∣ = diag
(
es2(z2)

)
diag

(
es1(x1)

)
.
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Cubic spline coupling blocks A possibility to increase the flexibility of the coupling
blocks is to use a more complex invertible transformation. One possibility are monotonic
“splines” [62]. The idea is to state some points, called “knots”, and functional values and
derivatives of the spline at these knots. Then one can build an unique spline as long as one
chooses a type of functions that connects these knots. The knots, values and derivatives can
be predicted by a neural network, the functional form itself is an important hyperparameter.
As all spline transformations are element wise, we receive, again, an upper triangular matrix
for the Jacobian and thus an easy and fast evaluation of its determinant. One disadvantage
of the spline is that one needs to state an absolute maximum and an absolute minimum of
the data range — one needs to know the first and the last knot. There are two solutions to
relax this problem. The first is to use a sigmoid preprocessing to map the full real axis onto
[0, 1]. The other option is to use linear trails, as suggested in [63]. These are just identity
functions that are used if the values of the input are smaller than the first knot or larger
than the last one.
In this thesis two types of splines are used. One of them is the “cubic spline” as introduced
in [64]. The cubic spline coupling block uses cubic polynomials to connect the knots, while
ensuring that the full spline is continuously differentiable everywhere, also at the knots.
The sub-networks, that are predicting the parameters of the splines fi, have to predict the
positions zKi of the knot K and the spline value at this knot xK

i = fi(z
K
i ). The corresponding

derivatives of the spline δKi = f ′
i(z

K
i ) cannot be stated and are estimated such that the total

spline is monotonous. Here, i corresponds to the feature index of z1 or z2, respectively, as
also the splines act element wise. We must ensure that xK

i < xK+1
i and zKi < zK+1

i ∀K ∈
{0, ...,#Knots−1} to ensure monotonicity for the knots. This can be achieved by predicting
the difference to the previous value instead of the actual value.
Given these prediction we can parameterize the cubic polynomial fK

i between two knots K
and K + 1, using the “method of Steffen” [65]:

ξi = zi − zKi

wK
i = zK+1

i − zKi

sKi =
xK+1
i − xK

i

wK
i

aKi,0 = xK
i

aKi,1 = δKi

aKi,2 =
3 · sKi − 2 · δKi − δK+1

i

wK
i

aKi,3 =
δKi + δK+1

i − 2 · sKi
(wK

i )
2

fK
i (ξi) = aKi,0 + aKi,1 · ξi + aKi,2 · ξ2i + aKi,3 · ξ3i

One can easily check that this parameterization satisfies the given boundary conditions by
plugging ξi = 0 or ξi = wK

i into fK
i and (fK

i )′, respectively. The only thing that is left, is to
ensure that (fK

i )′ > 0, everywhere, to ensure global monotonicity. Since we are using cubic
polynomials, it is not possible to simply predict the derivatives by a neural network. Even
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if we enforce all knot-derivatives to be positive, the spline might have negative derivatives
in general because of the possibility of 2 extrema. To prevent this problem, Steffen suggests
to use the unique quadratic function that passes through the knots K − 1, K and K + 1 to
estimate a reasonable derivative from the slopes si and the widths wi [65]. He ends up with
the estimate

pKi =
sK−1
i · wK

i + sKi · wK−1
i

wK−1
i + wK

i

.

If the quadratic polynomial is not monotonic, one has to correct this estimate, such that one
receives the following final estimate for the derivative:

δKi =

{
2 ·min(sK−1

i , sKi ), if pKi > 2 ·min(sK−1
i , sKi )

pKi , otherwise

The computation of the inverse and the derivative for a cubic function is possible using
existing closed form solutions. However, attention must be paid to numerical stability.
For our implementation of the splines we adapted the code from https://github.com/bay

esiains/nflows/blob/master/nflows/transforms/splines/cubic.py.

Rational quadratic spline coupling blocks The downside not being able to actually
state the derivatives can be circumvented by using a different interpolation function. In [63]
the authors are suggesting to use [66]. In this paper, a parameterization of a monotonic
rational quadratic spline (RQS) is introduced, which is able to handle arbitrary (positive)
derivatives at the knots. However, to our best knowledge, they do not say anything about
uniqueness. Thus, the parameterization is over-restrictive:

ξi =
zi − zKi

zK+1
i − zKi

wK
i = zK+1

i − zKi

sKi =
xK+1
i − xK

i

wK
i

aKi = δKi + δK+1
i − 2 · sKi

fK
i (ξi) =

PK
i (ξi)

QK
i (ξi)

= xK
i +

(
xK+1
i − xK

i

)
·
[
sKi ξ

2 + δKi · ξ · (1− ξ)
]

sKi + aKi · ξ · (1− ξ)

To invert the RQS the authors of [63] show that one has to solve a quadratic equation:

zi = fK
i (ξi) =

PK
i (ξi)

QK
i (ξi)

⇔ 0 = PK
i (ξi)− zi ·QK

i (ξi) ≡ RK
i (ξi). (2)

As P and Q are quadratic functions, R is quadratic as well. So, the only information that
we need to invert the RQS, is which of the two solutions of Equation 2 we should use. This
can be found out by realizing that R(u) = 0 if u = ξ(zi)
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⇒ 0 =
dRK

i

dξi

=
∂RK

i

∂ξi
+

∂RK
i

∂zi

∂zi
∂ξi

=
∂RK

i

∂ξi
−QK

i (ξi)︸ ︷︷ ︸
>0

∂zi
∂xi︸︷︷︸
>0

.

One can deduce that
∂RK

i

∂ξi
> 0, which corresponds to the “+” solution of the quadratic

equation (Equation 2).

Conditional INNs As it is the goal of this thesis to generate calorimeter simulations, we
want the possibility to generate showers for different incident energies. Therefore, we could
either train several INNs, one for each incident energy slice, or try to make the INN learn
a conditional distribution. In our case, the first approach is not useful as the discretization
of the incident energies corresponds to a loss of information. In the paper [67] a simple
possibility is introduced to create a conditional INN. If one passes the conditions to the
coupling blocks and concatenates them to their input, the network will use the additional
information and learn the corresponding conditional distribution properly.

Other flow types Apart from the coupling block architecture, there are also other types
of INNs. They all have in common that they consist of invertible transformations with
tractable determinant. Since they are not use in this thesis we are just stating some commonly
encountered variations.

1. Masked autoregressive models. These models try to improve their expressivity by
making the coupling blocks take more than only half of the features. They are fast
in one direction, but other direction’s speed scales with the dimensionality of the data
[58,68,69].

2. Residual Flows. Normalizing flows of the typeGθ(z) = z+Hθ(z). The idea is to improve
the stability of the training, but problems with the efficient Jacobian computation or
the closed form inversion arise [58,70,71].

3. Infinitesimal flows are a somehow an infinitely deep version of a Residual flow. They
are described by a differential equation d

dt
z(t) = G(z(t), θ(t)). Here, t represents a

“continuous layer index”. More information can be found in [58].

Final Comments Even though, INNs are able to model data very accurately, they have
two major downsides. The first one was already mentioned. Namely, INNs can theoretically
only model distributions that have the same topology as the base distribution. This is limiting
the expressivity of the INN a lot in theory. In practice, however, there is a simple solution to
this problem. One can add uniform noise to the input data in every batch during training.
This way, the data manifold gets smeared out and possible holes are filled by small noise.
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If one chooses the noise such that it is numerically smaller than the needed precision of the
data, the problem of the topology can be mostly circumvented.
The second problem is a technical problem. The INN scales linearly with the number of bins
and the input dimensionality. This makes the INN to be very parameter-hungry in practice.
For example the variational auto encoder, as introduced in subsubsection 3.3.7, scales only
with the input dimensionality. This results in the INN needing O(10) to O(100) times more
parameters than some other network architectures. Limiting the very good model accuracy
to rather small input sizes. Solution to this scaling problem of the INN are the major part
of this master’s thesis.
For the implementation of the INNs we use the python library FrEIA [72].

3.3.6 Bayesian Invertible Neural Networks

If one wants to predict the uncertainties of a network as well, one can use an approach
that treats the model parameters probabilistic. Architectures arising from this approach are
usually called “Bayesian” networks since one treats the weight distributions via Bayesian
statistics. More precisely, one tries to approximate the unknown optimal weight distribution
P (θ|TS), as encoded in the training set, by another distribution q(θ) using variational infer-
ence.
To compare the distributions q(θ) and P (θ|TS), we are using the KL-divergence:

LBNN = DKL[q(θ), p(θ|TS)

=

∫
dθ q(θ) log

q(θ)

p(θ|TS)
Bayes
law=

∫
dθ q(θ) log

q(θ)p(TS)

p(θ)p(TS|θ)

= DKL[q(θ), p(θ)]−
∫

dθ q(θ) log p(TS|θ) + log p(TS)

∫
dθ q(θ)

iid
= DKL[q(θ), p(θ)]︸ ︷︷ ︸

comparison of prior
and approximation

−
∑

x∈TS

∫
dθ q(θ) log p(x|θ)

︸ ︷︷ ︸
Log likelihood of x when
sampling θ according to q

+ log p(TS)

∫
dθ q(θ)

︸ ︷︷ ︸
const(θ)

.

In the last line we assumed that our samples x are independent and identically distributed
random variables (iid), enabling us to write the log likelihood over the whole set as a sum
over its components. Since BNNs are trained in batches, the KL-loss term needs a prefactor
of wkl =

Batch Size
|TS| to correct for the incomplete sum. The structure of this general Bayesian

network loss function has a remarkable advantage. It still contains the log likelihood. So,
the INN-loss function is just a part of the Bayesian INN loss function. The only difference is
that one has to sample the weights in the BINN forward pass according to the learned weight
distribution q(θ) and to add a KL-divergence between the learned distribution and a chosen
prior p(θ). The sampling can be done by replacing the old weights θ by a tuple (µθ, σθ) in
each linear layer during the optimization. Then one can use the local “reparameterization
trick” [73] to sample the Bayesian weight from a normal distribution of the corresponding
mean µθ and width σθ.
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In practice we are usually parameterizing q(θ) and p(θ) as normal distributions, as the KL-
divergence of two Gaussians has a closed form solution:

DKL [qµ,σ(θ), pµ,σ(θ)] =
σ2
q − σ2

p + (µq − µp)
2

2σ2
p

+ log
σp

σq

We do not expect to worsen our error estimates this way, as several of this “variational linear
layers” are concatenated. Prior work verified this [74,75].
Putting all of this together we receive the final INN loss function:

LBINN = wkl

(
σ2
q − σ2

p + (µq − µp)
2

2σ2
p

+ log
σp

σq

)

−
〈
log platent

(
Ḡθ(x)

)
+ log

∣∣∣∣
∂Ḡθ(x)

∂x

∣∣∣∣
〉

x∼pdata,θ∼q

.

The first part is going to be called “KL-loss” and the second part is called “INN-loss” when
we distinguish between them.
For our implementation we are choosing µp = 0 and use σp as a hyperparameter. To evaluate
the uncertainties of an observable one has to produce n samples and compute the observable
for each of the n samples. Then one can compute the mean and the standard deviation over
the n different results for the observable.

3.3.7 Variational autoencoders

The INN is not the only possibility to construct a generative model. An alternative solution
is to assume the existence of a non-bijective true conditional probability distribution D(z|x),
a probabilistic mapping from the input space to a (usually) Gaussian latent space. The re-
sulting model is called variational autoencoder (VAE) [76].
Then, we could train a neural network to assimilate this true distribution by minimizing the
KL-divergence between the true distribution and the predicted “encoder” distribution E(z|x):

LELBO = DKL [E (z|x) , D (z|x)]

=
∑

x∈TS

〈
log

E (z|x)
D (z|x)

〉

E(z|x)

=
∑

x∈TS

〈
logE (z|x)− log

(
D (x|z) platent(z)

pdata(x)

)〉

E(z|x)

=
∑

x∈TS

⟨logE (z|x)− logD (x|z)− log platent(z)⟩E(z|x) + const (x)

=∧ −
∑

x∈TS

⟨logD (x|z)⟩E(z|x) +DKL [E (z|x) , platent (z)]

= −
∑

x∈TS

⟨logD (x|z)⟩E(z|x) +
∑

x∈TS

(
1 + log(σE(x)

2)− µE(x)
2 − σE(x)

2
)

(3)

Since we do not know the true posterior distribution D(z|x), we are learning the correspond-
ing likelihood D(x|z), the “decoder distribution” by a neural network as well, using Bayes’
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law. For the latent distribution we choose a normal distribution with zero mean and unit
variance. For the encoder distribution we assumed a Gaussian as well

E(z|x) ∝ 1

σ
exp

(
−(z − µE(x))

2

2σE(x)2

)
.

For the decoder we can assume a different probabilistic models to make the loss function
explicit. In the original paper the Gaussian and the Bernoulli distribution are suggested [76].
The advantage of this setup is that we are learning two distributions, instead of using an
analytical inverse. This way we can handle different topologies and even different dimen-
sionalities of the latent space and the input space. This enables the VAE to double as a
compression tool, as well.
If one wants to generate new samples one can sample from the latent distribution platent and
use the decoder distribution D(x|z) to transform it into a sample in the input space.

Gaussian decoder The normal distribution is usually the first assumption for the de-
coder distribution. However, the variance σ2 is typically chosen as a constant and thus not
optimized during the training

D(x|z) ∝ exp

(
−(x− µD(z))

2

2σ2
D

)
.

Then the log-likelihood term in Equation 3 becomes a simple mean squared error (MSE)

⟨logD (x|z)⟩E(z|x) =
1

2σ2
D

∑

z∼E(z|x)

(x− µD(z))
2 + const (σD) .

Since σ is a free, but constant parameter, it is common practice to treat it as a hyperparameter
that has to be chosen by hand. In the literature one often finds β = 2 · σ2

D. This parameter
allows the user to decide whether it is more important that the output looks like the input
(small β) or if it is more important that the latent space is close to the prior (large β). The
VAEs that are tuning this parameter β are also called β-VAEs [77].

⇒ LGVAE =
∑

x∈TS


 ∑

z∼E(z|x)

(x− µD(z))
2 + β ·

[
1 + log

(
σE(x)

2
)
− µE(x)

2 − σE(x)
2
]



In practice, the assumption of an elementwise Gaussian likelihood D(x|z) is very restrictive.
Since it is usually not fulfilled, one often sees blurry results. In order to prevent this issue, it
is common practice to return the mean of the decoder distribution during evaluation, instead
of sampling from it. So, usually x̂ ≡ xreco = µD(z) is used. In this thesis this is always the
case, when a Gaussian VAE is used.

Bernoulli decoder An alternative to the Gaussian VAE is the Bernoulli VAE:

D(x|z) = λ(z)x(1− λ(z))1−x.
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For this assumption one has to replace the mean squared error with a binary cross entropy.

⟨logD (x|z)⟩E(z|x) =
1

β

∑

z∼E(z|x)

[x log (λ(z)) + (1− x) log (1− λ(z))] .

We decided to keep the β-parameter from the Gaussian VAE for the Bernoulli VAE as well.
It does not have a probabilistic justification like before but it is still a possibility to control
the importance of the KL term and the likelihood term.
As λ is also the mean of the Bernoulli distribution, it is possible to use x̂ = λ(z) instead of
x̂ ∼ D(x|z), if the problem at hand allows for a continuous reconstruction. In fact, we are
going to use x̂ = λ(z) whenever we are discussing a (discrete) Bernoulli VAE, just like it is
the case for the Gaussian version.
Putting all of this together one ends up with the Bernoulli VAE loss function

LBVAE =
∑

x∈TS

∑

z∼E(z|x)

[x log (λ(z)) + (1− x) log (1− λ(z))]

+ β ·
∑

x∈TS

[
1 + log

(
σE(x)

2
)
− µE(x)

2 − σE(x)
2
]
.

Continuous Bernoulli decoder In [78] the so-called continuous Bernoulli distribution is
introduced. The idea is to sample a continuous random variable from a properly normalized
Bernoulli distribution

D(x|z) = C(λ(z)) · λ(z)x(1− λ(z))1−x.

The normalization constant is chosen such that
∫ 1

0
dx D(x|z) = 1. Loaiza-Ganem and

Cunningham show that it has the following form:

C(λ) =

{
2·artanh (1−2λ)

1−2λ
if λ ̸= 0.5

2 otherwise

This setup also modifies the expectation value of the probability distribution.

⟨x⟩ =
{

λ
2λ−1

+ 1
2 artanh(1−2λ)

if λ ̸= 0.5

0.5 otherwise

This implies that one should not simply use x̂ = λ but x̂ = ⟨x⟩, resulting in a final shift of
the reconstructed sample.

Conditioning Also for the VAE we need the possibility to model a conditional distribution

D(x|z, c)

to sample showers corresponding to different incident energies. Here, we can use the same
approach that we used for the INN. We can simply concatenate the condition — or an em-
bedding of it — to the training data and to the latent space. This way, the encoder and the
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decoder learn the correlation between the sample and its condition. If one wants to generate
the conditional samples, one simply has to append the corresponding condition to the sample
from the latent distribution [79].

3.3.8 Further ML techniques

During this thesis some further common ML techniques are used. These are general “tricks”
that do not correspond to any of the previous architectures, but to model optimization in
general.

Overfitting It is possible that the optimization algorithm is reducing the loss function
on the training set (TS), but not on an independent “validation set” (VS). This process is
called “overfitting” and is generally undesirable. It means that the model is memorizing the
training data instead of interpolating between it and results in a worse model performance
than one might expect from the training loss value. To check for overfitting it is a standard
procedure to always check the loss value corresponding to a VS during the network training.
There are many ways to prevent overfitting. Three of the most popular are “dropout”,
“batch-norm” and “weight decay”.

Dropout Dropout, as introduced in [80], is a technique, where a random subset of the
network parameters is set to zero. The subset is resampled every time the forward pass of
the network is used. The corresponding hyperparameter is the percentage of the weights that
is muted. Usually values between p = 0.1 and p = 0.5 are used. The effect of the dropout
regularization is that the weight-to-weight correlations are weakened. This empirically helps
a network to generalize better.

Batch-norm Batch norm is a different method to counteract overfitting. It also helps to
train networks with more layers as it stabilizes the gradients and increases the numerical
stability [81].
The idea is to compute a running mean µ and a running standard deviation σ over the
batches after every layer. Then, one adds a batch-norm layer at this position that normalizes
the data on a per feature level:

x← α · x− µ√
σ2 + ϵ

+ β.

The parameters α and β are learnable, while the parameter ϵ is a small regularization. The
downside of batch norm is that the network training becomes more dependent on the batch
size. Furthermore, more learnable parameters are added, that slow down the general training
procedure.
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Weight decay Our third method to counteract weight decay is a regularization of our
parameters. If the network is memorizing data, this is usually related to not enough data
or to too much flexibility in our parameters. Meaning, one obvious solution to overfitting
is reducing the number of network parameters. Weight decay achieves this by adding a
L2-regularization to the loss:

L ← L+ d
∑

θi

(θi)
2.

Due to this regularization, the network will always try to keep its weights as small as possible,
which means that it will try to not use too many weights. Here, d is the strength of our
weight decay.

Preprocessing and postprocessing Even though, a NN can approximate arbitrary func-
tions, it is empirically better at learning values of O(1). Furthermore, it is easier to approxi-
mate sums than products using a NN. Therefore, it is common practice to use a handcrafted
preprocessing of the TS before applying the NN to it. After the model evaluation one uses a
corresponding postprocessing to remove these modifications.
Typical preprocessing steps are logarithmic transformations as they transform products into
sums. Furthermore, a standardization of the data to zero mean and unit variance is usually
helpful.

3.4 ML for detector simulations

3.4.1 CaloChallenge

In this section, the domains of detector physics and machine learning are combined to explain
the idea behind the CaloChallenge more precisely.
As mentioned before, the goal is to speed up the detector simulations without reducing their
accuracy. Therefore, generative machine learning models are trained on data generated by
GEANT4. The first task is to find a representation of the detector measurement that our
generative model can predict. Several options are possible. The most intuitive possibility
is to encode the “hits”, the interactions of the particles with the detector, as a point cloud.
Meaning that the model is trained to predict an unordered list of coordinates. However, as
the number of predictions is not fixed, the application of ML is not straightforward, so this
encoding was not used for the challenge. Nevertheless, this is an encoding that will be tested
in the future.
The idea that was chosen by the challenge was to interpret the calorimeter measurement as
a 3D-image, consisting of voxels. This idea is motivated by the cell and layer structure of the
used calorimeters. Thus the combination of the 2D cell index and the layer index result in a
three dimensional grid. In this case the number of energy predictions per shower (=voxels)
is constant and only their value varies.
However, there is no reason to stick with the low resolution of the detector cells. Since
GEANT4 is predicting the energy deposition on an interaction level, the resolution of the
learned grid and thus the number of voxels is arbitrary as long as a mapping from the voxels
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to the detector cells exists.

3.4.2 Performance evaluation

Classifier Test To measure the performance of the trained models two different metrics are
used. The first one was already introduced in subsubsection 3.3.4, the classifier test [39,55,56].
In order to perform the classifier test we were training a classifier to distinguish the GEANT
showers from the ML-generated showers. Our main observables in this context were the
distributions of the classifier weights and the area under the ROC curve. We started in-
vestigating the weight distributions in section 4.3.2, “Classifier weights”. Before that we
investigated only the AUC values. The use classifier was always consisting of 2 hidden linear
layers and 512 neurons per layer. Initially, we used LReLU activation functions with the
default slope of s = 0.01, trained for 150 epochs with an LR of 2 · 10−4 and used the model
with the best validation accuracy for the final evaluation. For the final weight histograms
of dataset 2 and 3 we optimized this classifier by adding dropout with pdropout = 30% and a
LR schedule that reduces the LR by 0.1 if the validation loss was not improving for 10 epochs.

High level observables Our second measure was a collection of high level observables.
They are a collection of observables as introduced in [30, 31, 39, 41]. In this section we state
the full list of all used observable, even though not all observables were always used:

• The total energy

Etot =
∑

l,i,j

xl,i,j

• The total energy E divided by the incident energy Einc

• The total energy deposited in each calorimeter layer

El =
∑

i,j

xl,i,j

• Quotients between the layer energy depositions of different layers

El1,l2 =
El1

El2

• The center of the shower in each layer along the η or the ϕ coordinate

⟨η⟩l =
∑

i,j η(i) · xl,i,j

El

⟨ϕ⟩l =
∑

i,j ϕ(j) · xl,i,j

El

• Differences between the centroid plots of different layers

⟨η⟩l1,l2 = ⟨η⟩l1 − ⟨η⟩l2 ⟨ϕ⟩l1,l2 = ⟨ϕ⟩l1 − ⟨ϕ⟩l2
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• The width of the shower in each layer along the η or the ϕ coordinate

〈
η2
〉
l
=

∑
i,j η(i)

2 · xl,i,j

El

〈
ϕ2
〉
l
=

∑
i,j ϕ(j)

2 · xl,i,j

El

• Differences between the widths plots of different layers

〈
η2
〉
l1,l2

=
〈
η2
〉
l1
−
〈
η2
〉
l2

〈
ϕ2
〉
l1,l2

=
〈
ϕ2
〉
l1
−
〈
ϕ2
〉
l2

• The energy deposited in the Nth brightest voxel per layer

• The activity of the individual layer, meaning the fraction of voxels that have an energy
above a certain threshold t

al =
1

N

∑

i,j

{
1, if xl,i,j ≥ t

0, otherwise

• The energy distribution over all voxels

Here, we used the variable x to denote the energy deposition in the voxel identified by the
three indices l, i and j. l was symbolizing the layer index, i the index along the η axis and
j the index along the ϕ axis. The corresponding coordinates are noted as η(i) and ϕ(j),
respectively. The total number of voxels is labeled N . If the histograms of these observable
for the GEANT4 samples and the generated samples “appeared similar” by eye, we considered
the samples to be good.

3.4.3 Datasets

In this Master’s thesis four different datasets are used to train generative models for detector
simulations. They are increasing in difficulty and size:

1. CaloGAN dataset (https://data.mendeley.com/datasets/pvn3xc3wy5/1)

2. CaloChallenge dataset 1 (https://zenodo.org/records/8099322)

3. CaloChallenge dataset 2 (https://zenodo.org/records/6366271)

4. CaloChallenge dataset 3 (https://zenodo.org/records/6366324)

CaloGAN dataset This dataset was not part of the CaloChallenge, but it was the dataset
that was already used, when I started my thesis. It was introduced in the CaloGAN papers
[30, 31]. In fact it is a collection of three datasets that differ in the particle type of the
incoming particle. The simulations are done for photons, positrons and pions (π+). The
dataset was used to train the CaloGAN, a generative network that was trying to simulate a
simplified version of the ATLAS detector. It describes a sampling calorimeter made out of
several layers of absorbers and active material. As absorber lead and as active material liquid
argon was used. However, all hits in the absorber and the active material are used, and the
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Figure 6: Visualization of the calorimeter setup corresponding to the CaloGAN dataset.
Figure was taken from [31].

corresponding energy depositions are summed to end up in only three effective layers. These
layers have a thickness of 90 mm, 347 mm and 43 mm, respectively. The full calorimeter
has a volume of 480 mm3. The voxelization of the three effective layers is 3 × 96, 12 × 12
and 12× 6, respectively. Resulting in a full dimensionality of 504 voxels. The full setup can
be seen in Figure 6. For each particle there are 100,000 different calorimeter images in the
dataset, corresponding to incident energies uniformly sampled between 1 GeV and 100 GeV.
As we were adding noise for our INN setup, we decided to apply a threshold in a non-physical
region after our generation process to enable zero-energy voxels. For this threshold we were
choosing 0.01 MeV.

CaloChallenge dataset 1 The first CaloChallenge dataset consisted of detector simula-
tions for charged pions and photons. The size was comparable to the CaloGAN dataset,
even a bit smaller, but the dataset was more realistic. In the CaloChallenge, also a sampling
calorimeter is simulated. However, in this case, only the energies of the active layers are
used, making the learning task inherently different to the one of the previous dataset.
The set was used to train the models in the AtlFast3 paper [20] and simulates the ATLAS
detector [82]. As photons and pions belong to different calorimeters, the voxelization and the
number of layers is different for the two different particle types.
For the set, particles between η = 0.2 and η = 0.25 were simulated and local coordinates,
orthogonal to the particle trajectory, were introduced (cf. Figure 7, left). For these local
coordinates a cylindrical system was chosen, as shown in the right plot of Figure 7. This
ensured that our particle is always arriving from the same position and passing through the
center of our images.
For the actual voxelization five and seven layers with different voxelization were used for
photons and pions, respectively. For photons, the voxelization of the active layers was

8× 1, 16× 10, 19× 10, 5× 1, 5× 1
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Figure 7: Visualization of the calorimeter setup corresponding to the CaloChallenge dataset
1. Figure was taken from [41].

resulting in 368 voxels. For pions the corresponding voxelization was

8× 1, 10× 10, 10× 10, 5× 1, 15× 10, 16× 10, 10× 1

resulting in 533 voxels. Here, the first index corresponds to the number of angular bins and
the second index to the number of radial bins (nr × nα).
The incoming particles were simulated at 15 different discrete incident energies between 256
MeV and 4.2 TeV, increasing in powers of two. For the ten lowest incident energies 10000
samples were generated for the five largest incident energies, the following number were used,
going from low incident energy to large incident energy:

Einc [TeV] 0.26 0.52 1.04 2.1 4.2
photons: 10000 5000 3000 2000 1000
pions: 9800 5000 3000 2000 1000

For this dataset, the correct value for our final threshold was not really clear. We found sig-
nificant contributions to the voxel-energy-distribution down to 10−2 keV. However, we found
that our generation accuracy below keV was not very good and the results became worse,
when allowing the network to generate voxel energies lower than that. In the end we chose
a threshold of 2 keV.

CaloChallenge dataset 2 The second dataset of the CaloChallenge is conceptually similar
to the first dataset. The main differences are that no real world detector was used, that
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the incident energies are not discrete and that the number of voxels increased significantly.
However, the coordinate system was chosen just like it was done for the first set
For the voxelization, 45 active layers with a binning of 16× 9 voxels were used, resulting in
6480 voxels in total. The simulated detector was using a sampling calorimeter with 90 layers,
45 layers of 1.4 mm Tungsten (W) absorbers, each followed by an active silicon (Si) layer of
0.3 mm thickness. The incident energies of the simulated electrons were sampled uniformly
between 1 GeV and 1 TeV. Furthermore, the threshold level was given as 15.15 keV.

CaloChallenge dataset 3 For dataset 3 the same setup was used as for dataset 2. Only
the number of voxels per layer was increased. Dataset 3 uses a voxelization that ends up
with 50× 18 voxels per layer, resulting in 40,500 voxels in total.
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4 Experiments

4.1 INN

I started my Master’s thesis with the work on INNs. More precisely, I started understanding
the already working code produced by Luigi Favaro. He was using a conditional INN (sec-
tion 3.3.5, “Conditional INNs”) to describe the CaloGAN dataset. His approach was building
upon the CaloFlow papers [39, 40], replacing the masked autoregressive flow with coupling
blocks.
The used INN, conditioned on the incident energy of the respective event Einc, was using
a coupling block structure with RQS blocks. For each block a fully connected sub-network
with three linear layers and 256 neurons, each, was used.
During his experiments Claudius found out that the energies of each layer are much better
reconstructed if each layer is normalized to a unit layer energy [39]. In this case the actual
layer energies can be learned explicitly and the corresponding predictions can be used to
renormalize each layer in a final postprocessing step. In the following the term “normalized
energies” refers to the elements of a dataset after this initial normalization step, the term
“unnormalized energies” means the elements without this normalization, respectively. The
encoding ui of the layer energies Ei was:

u1 =
Etot

Einc

, ui =
Ei∑L
j=i Ej

, i = 1, . . . , L− 1. (4)

Here, L denotes the total number of calorimeter layers. After the normalization these ui, in
the future called “extra dimensions”, were appended to the data for each event.
The usual noise was chosen to be uniform between 0 and n = 10−6 and added directly after
the normalization, resampled in every batch. The upper limit n will be called “noise width”
in the future.
The noise addition was followed by other preprocessing steps. The condition Einc was trans-
formed using a natural logarithm, the (normalized) input together with the extra dimensions
was preprocessed using an α-regularized logit function:

logit(k) = log

(
k

1− k

)
, k = (1− 2α)x+ α. (5)

(6)

These modifications were needed to prevent calls of logit(0) or logit(1). Several values for α
were tried, the best results were achieved with 10−10 ≤ α ≤ 10−6.
In the logit space the data was standardized using a norm layer that transformed the data
to zero mean and unit variance. A schematic overview over the full preprocessing and post-
processing can be seen in Figure 8.
For the training the ADAM optimizer (cf subsubsection 3.3.2) was used, together with a
batch size of 256. The learning rate was scheduled for 200 epochs according to an one-cycle
LR scheme and confined between 10−4 and 10−5.
A numerical summary of the architectural and training details can be seen in Table 1.
Since the hyperparameters and the training in general were already very optimized, there
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was not much to do besides understanding the preprocessing and the code structure. I was
able to reproduce the results (Figure 9, green line) quickly and moved on to the first real
task, adding an uncertainty estimate to the predicted detector simulations. Therefore, I was
trying to replace the “normal” INN with a Bayesian version of it (cf. subsubsection 3.3.6).

Normalize each layer
by its energy Ei

x0−1 =
(

xi
Ei

)
i∈{1,...,L}

Append the ex-
tra dims to x0−1

Add unifrom
noise of width n

α-regularized logitlogarithm

Normalize to zero
mean and unit variance

Undo normalization

α-regularized sigmoid exponential

Subtract the
noise width n

Split ŷ0−1 into
x̂0−1 and ûi

Revert layer normalization
x̂ =(

x̂0−1∑
x̂0−1,i

· Êi

)
i∈{1,...,L}

Input: x ∈ Rd and Einc ∈ R

Preprocessed
data

Preprocessed
condition

Generation
of the INN

Conditions

Final threshold

x, Einc
Einc

log(Einc) ∈ C

x0−1 ui (Einc, E1, ..., EL)

y0−1 = (x0−1, ui)

ynoise

ylogit

yprep ŷprep

ŷlogit

ŷnoise

ŷ0−1 = ŷnoise − n

x̂0−1 Êi (Einc, û0, ..., ûL−1)

x̂

µ, σ

log(Einc)

log(Einc)

Einc

Figure 8: Summary of the INN-preprocessing

4.2 BINN

4.2.1 First approaches

In the beginning I was trying to use the hyperparameters found by Luigi as a baseline and
just replace the linear layers in the sub-models by Bayesian layers and the INN loss with the
BINN loss. Since the network was doubling its parameter count this way, I decided to start
with 400 epochs instead of 200 epochs. However, as shown in Figure 9 (red line), the results
were significantly worse.

33



Parameter Initial INN/BINN Smaller BINN Final BINN
coupling blocks RQS RQS RQS
# of layers 3 3 3
# of hidden neurons 256 32 256
# of bins 10 10 10
# of blocks 12 12/18 12
# of epochs 200/400 400 250
batch size 256 256 64
lr scheduler “one cycle” “one cycle” “one cycle”
max. lr 1 · 10−4 1 · 10−4 1 · 10−4

n 1 · 10−6 1 · 10−6 1 · 10−6

α 1 · 10−6 1 · 10−6 1 · 10−8

pdropout 5 % 5 % 0 %
log (σ2

init) -9 -9 -15
}
BINN

σ−2
p 1 50 5000

Table 1: Network and training parameters of the INN for the CaloGAN dataset.

The first, obvious approach was to variate basically all the hyperparameters in Table 1.
But these changes did not really improve the results. The approach to train longer or to use
larger learning rates even resulted in unstable training. Usually, between 300 to 600 epochs
the INN loss became noisy. It started to diverge if we trained even longer (cf Figure 10). The
main problem with this observation was that the KL part of the loss did not converge until
then. So, we had to either stop the training before the network was converging, or receive
exploding losses.
In the end, this diverging behavior of the Bayesian network was the main problem that I was
facing during this part of my master’s project.
The first approaches to fix this problem were purely empirical. We thought that it was an
architectural problem and thus tried to change the network structure to fix the instabilities.
Therefore, we tried the following modifications:
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Figure 9: Out-of-the-box results for the pion dataset using the INN and its Bayesian version,
trained with Luigis framework.

• Replace the RQS coupling blocks with affine or cubic spline coupling blocks.

• Change the way the noise was added.

• Clip the corresponding gradients.

• Try to change σp and σinit.

Different coupling blocks This approach did not help at all. In fact the results with
the different coupling blocks were so much worse, that I never tried to move away from RQS
splines afterwards. For all tried coupling blocks the training was unstable but for the cubic
and especially the affine coupling blocks the results before the instabilities were significantly
worse.

Fix the added noise Another idea was to not resample the added noise with each batch
but to sample only once for the whole training set. The motivation was that resampling the
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Figure 10: An example of a diverging INN-loss (top) and the corresponding KL-loss (bottom).
Around 600 epochs, the loss starts spiking. The training settles down afterwards, but the
optimum is worse than before. After 1000 epochs the loss and the gradients diverge. The
corresponding KL loss was not converging until then.

noise would artificially increase the size of the training set and mess with the prefactor of the
KL loss term wkl, resulting in the different speeds of convergence. However, fixing the noise
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did not prevent the instabilities nor did it increase the convergence speed of the KL loss.
However, it reduced the quality of our generations. Because of that went back to resampling
the noise every batch. In this context we also varied the theoretically determined prefactor
of the KL loss term itself. As expected, it made the results only worse.

Clip the gradients At some point we noticed that the diverging loss was always accom-
panied with a strongly increasing gradient. To exclude the possibility that the large gradient
were a reason and not a symptom we started monitoring the maximum of the gradients by
default and tried clip the gradients. However, the clipping was not preventing the instabili-
ties, proving that they were just a symptom.

Modify σp and σinit The most promising approach during the initial empirical test phase
was the modification of the prior width σp and the σq initialization σinit. Changing the
log(σ2

init) mean value from −9 to −25 was enabling a more stable training and results that
were almost comparable to the INN results. However, the latter was only true if we decided
to stop before our σq parameters were able to reach σp, a time just determined by the learning
rate and the number of epochs as all σq parameters were moving towards σp. Once the σq

were of the order of magnitude of σp we were still experiencing the diverging behavior. Since
we were just creating an enforced deterministic limit of the Bayesian network, we decided
to not stay with this pseudo-solution. After all, we had no reason to trust the uncertainty
estimates if the σq parameters did not converge at all.

4.2.2 Reduce the input dimension systematically

At this point we realized that the diverging behavior might be a more fundamental problem.
So, we started to analyze it more systematically by monitoring the σq development closely
during the training and by reducing the input dimensionality to make the training task easier.
To do this we iteratively reduced the input dimensionality. First we reduced the training to
just one calorimeter layer, then to 20 hand chosen voxels, and finally we ended up with only
the extra dimensions.
During this increasing simplification we were able to confirm that the problematic point was
where the σq parameters where reaching σp. We especially observed that almost all σq pa-
rameters were moving closer to σp — an observation that was not obvious (cf Figure 11). In
fact we were expecting that the sigmas would stop at some point, namely when the INN loss
term would start to suffer from the intrinsic uncertainty.
Our interpretation for this phenomenon was (and is) that the network had too many (Bayesian)
parameters. If the network is too large, the only restriction for the majority of its parameters
is the KL loss term. By its structure it is motivating the µq to become 0 and the σq to be
similar to σp. It seems that the network is unable to stop this “internal shutdown” when it is
affecting its generation quality if it has too many parameters. In other words, at some point
the resulting meaningless Gaussian noise is weakening the networks generative power.
This hypothesis is supported by the observation that, after the INN loss term becomes noisy
and when σq → σp, peaks in the INN loss term appear. During this peaks the network seems
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to restructure itself, removing the useless noisy internal pathways from its important neural
connections. But the important thing is that after every peak the INN loss gets worse. (cf
Figure 10, epoch 600).
Our first approach to solve this problem was to simply reduce the number of parameters
in the network until the training became stable. This point was reached when we trained
only on the energy dimensions with 12 blocks, but only 32 neurons per block instead of
256 neurons. However, the generation quality suffered from this reduction in parameters
a lot. We found that the training was also stable when increasing the number of blocks
to 18 without increasing the number of neurons per block. This increase in the number of
blocks improved the results for the three energy dimensions that much that we decided to
slowly increase the dimensionality again. In Figure 12 we show a comparison between the
old setup, with 256 neurons, trained for only 200 epochs due to stability reasons and the new
setup with 32 neurons. For 12 blocks the results are worse than the large network genera-
tions, for 18 blocks we receive comparable results to before while being stable during training.
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Figure 11: Here we show the development of the widths used to sample our Bayesian pa-
rameters. Almost all of the log(σ2

q )-parameters are moving towards the prior width σp and
more than the half of them are reaching it around epoch 200. For this plot we are using
the stable BINN on the three extra dimensions, introduced in subsubsection 4.2.2, as the
unstable BINNs were crashing, before the convergence became obvious.

4.2.3 Going back to the full dimensionality

To increase the dimensionality of the learned data in a meaningful and systematic manner
we decided to “create” three downscaled datasets from the original CaloGAN dataset. In
practice we applied iterative average pooling. We used different pooling kernels for the x-
downscaling and the y-downscaling as we had no square-like data. For the x-downscaling we
used a (2, 1) kernel with a stride of (2, 1) and for the y-downscaling we were using a (1, 2)
kernel and a (1, 2) stride, respectively. These average pooling operations were iteratively ap-
plied until the desired resolution was achieved. Simulating a dataset with a lower resolution.
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Figure 12: Here we show the effect of the reduced internal size, when training only on the
extra dimensions. The green line corresponds to an early stopped Bayesian INN with 256
neurons and 12 blocks. The red line to a stable BINN with 32 neurons and 12 blocks and
the purple line to a BINN that is still stable with 32 neurons and 18 blocks. The green line
is on average the best, but the purple line is almost as good. The small network with fewer
blocks seems to have problems getting some peaks right. For example the main peak around
0.2 in the second extra dim and the maximum close to 1 in the third extra dimensions show
a mismatch between its generation and the corresponding ground truth.

This way we generated three additional smaller datasets that we were using to slowly increase
our input dimensionality.
During the iterative increase we found that the small number of parameters with more blocks
was helping to improve the stability without losing (a lot) expressivity in comparison to the
early stopped large Bayesian INN.
However, as the results were also not improving to the quality of the pure INN, we had to
keep looking for a possibility to reduce the number of Bayesian parameters without going
down in expressivity. At this point we were able to regain our lost expressivity by training
longer. However, being able to do both would be the solution to achieve the same generation
power that the non-Bayesian INN was showing.

4.2.4 Final solution for the unstable training problem

The final solution, that was actually solving the problem, was to not use Bayesian layers
for all layers in the block, but only for the last layer in each block, and normal linear layers
for everything else. This means that the sub-networks of the INN, the networks that were
predicting the splines’ parameters, were sampling their weights only in the end. This is not in
a conflict to our derivation of the Bayesian INN (cf subsubsection 3.3.6). In the derived loss
function we found that it is necessary to sample the network parameters according to their
learned distribution. However, the parameters of the INN are not (directly) the parameters
of the sub-networks, but the parameters in the splines. So, as long as the splines’ parameters
are sampled, the sampling in the Bayesian INN loss function is satisfied. The only possible
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downside is a reduced flexibility in the uncertainty description. Therefore, it is necessary to
verify that the uncertainties are similar to the old uncertainties and to the predicitions of an
ensamble of INNs.
This different approach was enabling us to increase the number of neurons to the amount
of the original INN — 256 — without experiencing instabilities. Furthermore, we found
that the modifications of σp and σinit, described in section 4.2.1, “Modify σp and σinit” were
applicable here as the uncertainty estimates were indeed trustworthy. In Figure 13 we show
that the uncertainties are similar to the predictions of an INN ensemble of ten networks.
We see that the results are surprisingly good. Except for the cut in the upper left plot the
predictions of the new Bayesian version are better than the pure INN and for this failure
mode the uncertainties are raising. This also shows, that the uncertainty predictions work.
We do not show the BINN of the reduced size to keep the figure clear, as it was similar to
the large version, shown before. The generations for photons and electrons are shown in
Figure 14 and Figure 15, respectively. We did not compare this results to an ensemble to
save resources. Since the problem of the unstable Bayesian INN was solved with this new
Bayesian structure we decided to use this “simplified Bayesian structure” in the future to
generate uncertainty estimates with a BINN and to move on to the next problem — the
scaling properties of the INN.
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Figure 13: Final BINN results with only one Bayesian layer per coupling block for the
pion dataset. We also show the uncertainty predictions from an INN-ensemble to verify the
uncertainty estimates.
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Figure 14: Final BINN results with only one Bayesian layer per coupling block for the photon
dataset.
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Figure 15: Final BINN results with only one Bayesian layer per coupling block for the electron
dataset.
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4.3 Gaussian VAE

The next part of my master’s project was motivated by the master’s thesis of Robin Rombach
[83,84] and the recent paper “CaloMan” [85].
As explained before, INNs have a major drawback, namely their difficult applicability to high
dimensional datasets (section 3.3.5, “Final Comments”). The effect is that small amounts
of voxels can be generated with almost unrivaled accuracy but large amounts cannot be
produced at all without new approaches. A viable solution is to project the data onto a lower-
dimensional “latent” space that ideally matches the data manifold’s intrinsic dimensionality.
Operating in this latent space allows the INN to learn and generate data effectively and
accurately, provided that a suitable “upscaling” method can reverse the mapping back to
the original space. This approach offers two advantages: reduced computational complexity
and the elimination of the need for data noise. My master’s thesis primarily focuses on
implementing this concept through the use of VAEs.

4.3.1 CaloGAN dataset

We started our VAE approach with a vanilla Gaussian VAE, consisting of an encoder network
and a decoder network. The encoder was predicting a mean and a sigma and the latent space
was sampled according to those values. For the decoder we found best results by returning
the mean predictions, instead of sampling in the output as well. As loss we were using the
Gaussian VAE loss with β parameter (section 3.3.7, “Gaussian decoder”). Our MSE loss
was comparing the reconstructed and the original showers in the normalized space. We also
tried to apply the MSE to the unnormalized space but found the reconstructions to be worse.
Furthermore, we continued with the CaloGAN dataset for the beginning. More precisely, we
used the pion dataset to optimize our setup and the electron and photon dataset to verify
that the architecture changes generalize to other particle types. In fact, the pion results
appeared to be easier for the VAE setup, a circumstance that is not completely clear to us,
as the pions should be physically more difficult to describe.
As the INN can be trained in the latent space after the VAE training, it is possible to first get
good reconstructions from the VAE and then use the INN to generalize the reconstructions
to generations. Moreover, the INN was usually not the major problem, so we will mostly
focus on the reconstruction quality of the VAE.
We started our experiments with a rather small VAE. Its encoder network consisted of hidden
layers with 450, 300 and 150 neurons, respectively, and a latent space dimensionality of 50.
The decoder was symmetrically designed with layers containing 150, 300, and 450 neurons.
For all of our experiments we were using such a symmetric setup. Because of that we will
only mention the encoder’s neurons in the future. We did not find any improvements when
making the network deeper at this point. However, we did not try to increase the size of
the hidden layer above the input dimensionality, as this inflation was intuitively not the way
towards a compression — a mistake as we realized later.
The training parameters included a learning rate of 5 · 10−4, a β-parameter of 10−9, and 500
training epochs. The low β-value prioritized reconstruction quality over the similarity of the
latent space to a normal distribution, aligning with the INN’s capability to adapt this space
to be Gaussian, anyway.
For the preprocessing we started from the INN version and kept the layer normalization,
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the extra dimensions and the logit preprocessing. For the logit transformation we used an
α-parameter of 10−6. However, we decided to not learn the extra dimensions with the VAE
but with the INN. To achieve this we used the extra dimensions as an additional condition
for the VAE. Furthermore, we initially omitted noise, as its role in data smearing seemed
counterproductive to explicit manifold learning. A schematic overview of our VAE setup and
the corresponding initial preprocessing can be seen in Figure 16 and Figure 17, respectively.
For the no-noise policy, we were choosing n, the noise width, to be zero. A summary of the
initial VAE hyperparameter setup is given in the “Initial VAE parameters” column of Table 2.

Parameter Initial VAE parameters Final VAE parameters
# of hidden neurons 450, 300, 150 4500, 1000, 150
# of epochs 500 500
Dim latent space 50 50
batch size 256 256
lr scheduler Constant LR Constant LR
lr 5 · 10−4 5 · 10−4

n 0 1 · 10−6

α 1 · 10−6 1 · 10−6

β (KL-loss prefactor) 1 · 10−9 1 · 10−5

γ (Data-loss prefactor) 1 1 · 104
δ (Logit-loss prefactor) 0 1

Table 2: Initial and final network and training parameters of the VAE for the CaloGAN
dataset.

Preprocessing Encoder NN Sample from gaussian Decoder NN Postprocessing

Input: x ∈ R Output: x̂ ∈ R

x yprep

Cprep

σi

µi

µi + ϵi · σi x̂prep x̂

Logit, MSE & BCE loss

Sparsity loss

Figure 16: Main pipeline of our VAE setup. Also all losses that are tested in this thesis are
shown for future reference.

Bad activity plots and logit loss Our first problem was that the VAE was not learning
the activity of the detector layers (cf. green line in Figure 18). We came to the conclusion
that this was an effect of the used loss function. The MSE, when applied directly to the
normalized data, cannot see a difference between a 10−5 GeV and 10−4 GeV voxel, if a O(1)
normalized voxel energy deviates by ≈ 1%, as it is just summing up the absolute differences.
This behavior is not what we want as our data spreads over several orders of magnitude. The
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Figure 17: Summary of the first version of the VAE-preprocessing

fact that the activity of our layer is not learned is just a sign that the low energy regions are
not reconstructed faithfully.
The most intuitive solution to this problem is to use a logarithmic or logit preprocessing, for
the data and the loss. However, when using it on its own, this “logit-MSE” is not able to
reconstruct our showers faithfully. Using a MAE instead of a MSE was slightly improving
the results, but the reconstruction quality was still not satisfying. Especially the brightest
voxels were not learned accurately. This makes sense since the logit is trying to get the
orders of magnitude for the data in the normalized space right. This means that the absolute
difference for the brightest voxels may differ the most. This, however, is problematic as we
enforce the total energy to be correct. So the absolute difference in the brightest voxel can
have a negative effect on the other voxels as well, since it might dominate the normalization
procedure (cf. Figure 18, red line).
Our best solution was to simply combine the two loss terms, “data-loss” and “logit-loss”,
weighted by a prefactor that will be called γ in the future. This loss sets a relative boundary
for the data in the normalized space and an absolute boundary for the data in the unnor-
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malized space. The problematic part is that the constant γ has to be chosen such that the
absolute boundary is dominant for the voxels that carry a significant amount of energy. This
“loss tinkering” approach was the best solution that we were able to find for the Gaussian
VAE (cf. Figure 18, yellow line).
As a result we continued with the following loss function:

LELBO = γ ·MSE (x0−1, x̂0−1) + δ ·MAE(xlogit, x̂logit)− β ·
∑

i

(
1 + log(σ2

i )− µ2
i − σ2

i
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Figure 18: Histograms of the brightest voxels and the activity for three different loss setups.
We show the vanilla MSE loss for the unnormalized and the logit space. As a third line we
show the best compromise using a combination of a MAE “logit-loss” and a MSE “data-loss”.
The shower shapes for these approaches were consistently worse than the INN equivalents.
We will focus on this problem later, so we do not show them here to save space. We are using
a Poissonian square root error estimate for the GEANT data, but no error estimate for the
reconstructions. The reconstructions should reproduce the observables per event and should
thus not be affected by a statistical uncertainty.
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Try noise Even though we expected no improvement from the addition of random noise,
we wanted to make sure that it really is not helpful. Surprisingly, we found for the Gaussian
VAE that adding a small amount of noise was actually improving the activity and the shower
shape reconstructions (cf. Figure 19, red line). However, the effect was strongly dependent
on the chosen noise level. In the shown plots we were using a noise level of n = 10−6 GeV.
The noise was added before the normalization. This way we prevented the noise-strength to
depend on the total energy of the shower.
To remove the noise, we first tried to threshold the data after the decoder in the unnormalized
space at 10−6 GeV, as well. However, this implied the need to first do all the postprocessing
and then move back to the logit space for the logit loss. Problematically, we encountered
severe numerical instabilities with the evaluations of the type of logit (sigmoid (logit (x0−1))),
that we were not able to resolve at this point. Later, when we were able to fix this instabilities
the reconstructions got a lot better (cf. section 4.3.2, “Restructured noise layer”).
Our solution at this point was to use the monotonicity of the logit function — if we want
to apply a threshold t in the normalized space, we can just pull it into the logit space by
applying the logit to it:

x0−1 < t⇔ xlogit < logit (t) .

As we want to move our threshold from the unnormalized space to the logit space, we needed a
possibility to apply the normalization to the threshold. The problem was that each layer was
first normalized and then scaled to match the requested layer energy during unnormalization.
This means that the unnormalization effect changes if the data is thresholded, as the sum
over the layer is reduced. This means that the thresholding itself changes the normalization,
even if the threshold is adjusted properly for each voxel.
To resolve this issue we assumed the effect of the thresholding on the total sum to be small
and the resulting self dependency to be negligible. Therefore, we simply divided the threshold
by the true layer energies (corrected by the expected noise added per layer) and pulled this
per-layer-threshold to the logit space. As we were able to threshold in the logit space this
way, we did not need the detour to the unnormalized space for the logit loss anymore.
During our experiments we found the cutoff in the voxel-energy-distribution to be not a
straight line, since we ignored the mentioned self dependency. We were able to fix this
problem by normalizing to the noisy layer energy instead of the noiseless layer energy. This
way we were not able to produce lower layer energies than ≈ 10 MeV in layer 1 and 2 as
each of the O(100) voxels was increasing the normalization goal by O(0.1) MeV. However, at
this point we were believing in the statement that the layer energies below 10 MeV should
be physically less relevant. Interestingly, also the classifier had more trouble distinguishing
showers with the modified norm from real showers, than before. Therefore, we were using
the modified norm until we change the noise structure in section 4.3.2, “Restructured noise
layer”. The final threshold was therefore computed as

t̃l = logit

(
n

El +
n
2
· |L|

)

xlogit ←
{
xlogit, if xlogit > t̃

logit(α), otherwise.

48



Here, El is the incident energy of layer l and L the set of all voxels corresponding to layer l.

One closing remark to the addition of noise in general:
We realized later that for other VAE approaches the noise was not needed at all. So, for the
VAE the noise was probably just “hiding” the difficult information of the data, mainly the
low energetic voxels. This makes the VAE focus on the high energetic voxels, resulting in
data that can be learned better with a MSE.
So, as a conclusion: If the addition of noise helps during the VAE training, something might
be wrong with the model and its assumptions. Nevertheless, this is an insight that we made
much later, such that we kept using the noise until we discarded the Gaussian VAE model.

Attention and larger network Next, we tried to use a kind of attention mechanism
in our VAE to enhance the reconstructions. It was just an exercise for myself as I had to
learn about transformers and we did not find any improvement because of the attention.
However, we found a large improvement because of the resulting inflation of the size of our
first network layer. By increasing our first layer by a factor of ten and our second layer by ≈ 3
we found significantly better histograms for our reconstructions. Mainly the shower shape
variables were profiting from the increased flexibility of our encoder and decoder network.
The improvement can be seen in Figure 19, comparing the yellow and red line. During our
later datasets we observed this behavior frequently and we think that it can be explained the
following way:
Even though we expect our physics to be low dimensional, there is no reason why the mapping
between the simple latent space and the data space should be “simple” as well. In the end
this mapping seems to need a lot of flexibility empirically. Later, we found that this inflation
is mainly needed locally, on a per calorimeter layer level. This means, that we do not need
a big input layer connecting many detector layers, if we have more than just four detector
layers. An important fact as our scaling would have been quadratic otherwise. Meaning, the
VAE would at some point be less efficient than just using an INN in the first place.

Add the INN in the latent space At this point we started investigating the INN and
the generative power of the model. Therefore we encoded our data once and trained our INN
only on the encoded data and the extra dimensions. For the generation we used only the
decoder to translate the samples from the latent space to the data space. For the INN we
used the hyperparameters that are summarized in Table 3. We did not use a preprocessing
for the INN, except a log-preprocessing of the incident energy Einc as everything else was
“preprocessed” by the VAE.

For the INN training we tried three different approaches:

1. Train the INN on the actual latent space, gained after sampling according to the encoder
µ and σ predictions, once.

2. Train the INN directly on the µ and σ predictions of the encoder network.

3. Train the INN on the actual latent space, but do the sampling step every epoch again.
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Figure 19: Histograms of the activity and some shower shape variables for the small and
large network. For the latter we also show the effect of adding noise. All three nets use the
“data-MSE” and the “logit-MAE”.
We found no big differences in the brightest voxel plots and a similar behavior across all
shower shape plots.

The first approach was not working very well. Our explanation for this problem is that
the VAE is storing relevant information in the widths, that are very hard to recover, when
sampling only once in the latent space. One obvious solution is to pass the information stored
in σ to the INN.
The straightforward method, where we simply add the σ to the INN prediction and sample
according to the generated µ and σ values works as well as we were expecting. Using this
setup, the generation histograms in are good agreement with the reconstruction histograms.
However, this approach has the downside, that the input space of the INN is twice as large,
which is not optimal for a compression tool.
The third approach is trying to combine both approaches using the noise setup that was
previously used for INNs as well. If one trains the INN on the latent space after sampling
once, it will not work well. We have seen this problem already during our analysis of the
Bayesian INN (cf. section 4.2.1, “Fix the added noise”). Furthermore, we can interpret the
sampling step of the VAE as the addition of some noise. From this point of view it should
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improve our INN results if we resample the “noise” in the latent space every epoch. As the
encoder network is deterministic, the forward pass has only to be done once, so this approach
is not slower than the other two. But, in contrast to our expectations, the result using the
third approach was not much better than the first approach and significantly inferior to
learning µ and σ.
In the end we kept the second approach as it was working very well. The VAE was always
a bigger problem such that we decided to not invest to much time into the specific INN
implementation. In Figure 20 we show one sample plot for each of the three approaches.
One can clearly see that the INN version that predicts µ and σ is outperforming all other
methods by a large margin. Furthermore, we found that for the small latent space size that
we were using, the INN scaling never was a problem.

1

2

N
o
rm

a
li

ze
d

co
u

n
ts

0.0 0.5 1.0
1. brightest voxel in layer 0

10−1

100

M
o
d

e
l

G
E

A
N

T

1

2

N
o
rm

a
li

ze
d

co
u

n
ts

0.0 0.5 1.0
1. brightest voxel in layer 0

10−1

100

M
o
d

e
l

G
E

A
N

T

1

2

N
o
rm

a
li

ze
d

co
u

n
ts

0.0 0.5 1.0
1. brightest voxel in layer 0

10−1

100

M
o
d

e
l

G
E

A
N

T

GEANT VAE VAE+INN

Figure 20: Different approaches to add the INN.
(left) Train INN on latent space after sampling, (mid) train INN on latent space after sam-
pling, resample in every batch, (right) learn the widths and the means with the INN. Here,
and in the future, we are adding a Poissonian square root error estimate for the generated
data.

High level loss Motivated by [86] we tried to add a “high level” loss to make the VAE
explicitly learn specified physical observables. Therefore, we added a MSE comparison of
some requested high level observables to our total loss. Specifically, we tried the layer activity
and the shower means. The activity did not work as it was not differentiable and thus not
contributing any gradient. The centroid loss was also not very helpful. Obviously it was
improving the mean plots a lot, but at the cost of making some other plots worse. In other
words it was just moving the errors from one plot to another, but not fixing them. Therefore,
we did not use any high level losses for the CaloGAN dataset.
Later we tried a different activity loss, that did not use a step function but a steep sigmoid.
Using this approach we were able to receive a reasonable gradient. Furthermore, this activity
loss was improving all of our histograms. However, it was never able to improve the classifier
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Parameter Internal INN
coupling blocks RQS
# of layers 3
# of hidden neurons 32
# of bins 10
# of blocks 18
# of epochs 200
batch size 256
lr scheduler “one cycle”
max. lr 1 · 10−4

pdropout 0

Table 3: Network and training parameters of the INN trained in our latent space. As the
latent space is low dimensional, we found a small INN to be sufficient.

AUC. It seems that the high level losses introduce artifacts that can be classified easily. More
about this activity loss will follow in section 4.4.1, “Activity loss”

Final results At this point we decided to move on to the “interesting” datasets, the
datasets that were needed for the CaloChallenge. The main reason was that we had a working
VAE framework and mediocre results and we did not see any further obvious improvements.
After all, we used the CaloGAN dataset only because we were familiar with it due to our
previous studies. The final generated VAE+INN results can be seen in Figure 21 (pions),
Figure 22 (photons) and Figure 23 (electrons). One can clearly see, that the electrons and
photons showers are harder for the VAE setup. We are not entirely sure, why this is the case,
but it might be an artifact from the reduced randomness of the VAE. While the INN receives a
random input vector of the same dimensionality as the input, the VAE only receives as many
random variables as the size of the latent space. So, it might be not enough randomness in the
VAE model to describe electromagnetic showers faithfully. The hadronic showers are more
complex and the voxels are probably stronger correlated, the compression might therefore,
counter intuitively, be easier. However, as we were not able to improve the generation quality
by increasing the latent dimensionality, we were not able to confirm this assumption. We also
trained classifiers of the generated showers. The corresponding scores are shown in Table 4.
The final hyperparameters are visible in the right column of Table 2.

Particle type Accuracy AUC
Positrons 0.9876± 0.0007 0.9988± 0.0002
Photons 0.9873± 0.0011 0.9986± 0.0001
Pions 0.8147± 0.0012 0.9096± 0.0012

Table 4: Classifier test results for the generation using VAE and INN. Is is obvious that the
classifier had only “trouble” with the pion dataset. The electron and the photon dataset were
not generated well with our used setup. The uncertainties were estimated as the standard
deviation over five training runs of the classifier.
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Figure 21: Final results for the CaloGAN pion dataset using the VAE+INN setup.

4.3.2 CaloChallenge dataset 1

Once we started with dataset 1, we decided to focus on the photon set. For the CaloGAN
dataset we were expecting the pions to be more difficult, but found that the network had
more trouble with the electrons and photons.
With the CaloChallenge dataset we made this observation again. The pion reconstructions
were consistently better than the photon reconstructions and improving in a similar manner.
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Figure 22: Final results for the CaloGAN photon dataset using the VAE+INN setup.

First Observations When starting with the first dataset of the CaloChallenge, using the
same architectural setup as before, our first observation was that our model was overfitting
for this dataset. We only scaled our data x by 0.5 with respect to the incidence energy Einc
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Figure 23: Final results for the CaloGAN electron dataset using the VAE+INN setup.

to ensure ∑
x < Einc

for almost all of our voxels. This is a necessary step to ensure that our extra dimensions
are between zero and one. For the remaining cases, where

∑
x > Einc (0.9% pions, 0.01%

photons), we clipped our extra dimensions. This factor of 1
2
also explains the oddly-specific

threshold of t = 2 that we used for this dataset (cf section 3.4.3, “CaloChallenge dataset 2”).
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The corresponding model parameter was not fine-tuned, but a simple one.
The validation loss started separating from the training loss, when we were increasing the
network size in section 4.3.1, “Attention and larger network”. However, up to this point,
the validation loss was not increasing, just falling slower than the training loss. Since the
network is “truely” overfitting for this dataset (Figure 24), we investigated the reason for
this generalization deficit.

0 100 200 300 400 500 600 700
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ss

train loss

test loss

Figure 24: Visualization of our reconstruction MSE-loss that is overfitting. The optimum of
the training loss is at the last epoch, but the validation loss rises after epoch 300. Neverthe-
less, we found the validation results of the last epoch to be better according to the histograms
and the classifier test.

The first result from this study was that the number of neurons had rather to be increased
than decreased. Even though the overfitting in the loss became worse, the reconstructions
of the showers became significantly better for a setup of [10 000, 3 000, 500] neurons. The
classifier AUC went down from 0.99 to 0.98 and the high level observables got closer to the
GEANT equivalents (cf Figure 26, red vs green line).
Our ideas to prevent this overfitting did not work. We tried to use dropout and early stopping,
but found that dropout was not helpful and that the reconstructions of the validation set
were still improving during the apparent overfitting.
Our conclusion was that this overfitting was an artifact of a non-physical MSE loss. If our
model is trained on showers with very many sparse voxels and if the model is expressive
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enough to actually model the activity, we expect the VAE to exactly predict the correct
position of every energy deposition of the training set. However, we cannot expect the same
for the validation set because of the following two reasons:

1. We expect our model to learn trajectories of objects (showers, particles, etc.) that
propagate through the layers. If this trajectory is slightly wrong all voxels that were
originally hit by this objects are missed. But additionally, some other voxels receive
this energy. Since they were likely not hit at all due to the generally low activity,
we have two almost equal sized contributions to our loss function. This means that a
trained model that predicts wrong trajectories can have a larger validation loss than
an untrained model that always predicts the correct mean of each layer but only small
voxel to voxel differences. As our layer energies are enforced to be correct, the second
scenario is realistic for an untrained model. An example for this problem is visualized
in Figure 25

2. There are symmetries in our data that are not captured by the MSE. While the network
might be able to break this symmetry for the training set by memorizing something,
it has to purely rely on the physics for the validation showers. This means that every
symmetry will result in possibly wrong trajectories, that increase the validation loss.

True (Toy)

layer 0 layer 1 layer 2 layer 3 layer 4

Wrong trajectory
MSE: 5.99 a.u.

Just return mean
MSE: 4.99 a.u.

10−2 10−1 100

Energy (a.u.)

Figure 25: Visualization of the fundamental problem with a voxel-by-voxel comparison as
it is done by the MSE. The “quality” estimate of random noise can be “better” than the
corresponding estimate with a wrong trajectory.

As a result we tried to make the loss more physics compatible to reduce the punishment for
slightly wrong energy depositions. So far we did not find a truly physical reconstruction loss
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that incorporates all symmetries. If one would find such a loss the resulting reconstructions
would probably be a lot better. However, we found some non perfect approaches that were
helping as well.

10−5

10−3

10−1

N
o
rm

a
li
ze

d
co

u
n
ts

−100 0 100
Center of Energy in
∆η in layer 2 [mm]

10−1

100

M
o
d

e
l

G
E

A
N

T

10−4

10−2

0 25 50 75 100
Width of Center of Energy in

∆η in layer 2 [mm]

10−1

100

100

0.00 0.25 0.50 0.75 1.00
Activity of layer 2

10−1

100

GEANT

Previous default

Larger network

Smearing matrix

Convolutional approach

Figure 26: Visualization of the initial approaches to train the Gaussian VAE on the first
CaloChallenge dataset.

Smearing matrix and convolutional approach To highlight the local properties of our
showers we first tried to apply a slight blurring. After this blurring every energy deposition
affects also the neighboring voxels. This way we are emphasizing the effect of clustered energy
depositions, which should be physically more relevant. Furthermore, an energy deposition
that is just one voxel off, is still overlapping after the blurring with the “correct” voxel. We
found the best results when applying the blurring during training to the reconstruction and
to the original, directly before the MSE loss.
However, as the binning in the first CaloChallenge dataset is not uniform, it was not possible
to define a reasonable neighborhood property across layers. Because of this we applied the
smearing as a 2D 3× 3 convolution in each layer:

xi ← s · xi + n ·
∑

j∈Neighbors(i)

xj.

Here we denote xi as the energy deposition x in voxel i. For the neighborhood we chose
periodic boundaries for the angles. Furthermore, we considered the opposite points in the
innermost layer to be direct neighbors as well (cf. Figure 27). The voxels in the outermost
layer had just 5 neighbors in this scheme. We found the best results for s = 0.6 and n = 0.05.
The improvement, resulting from the smearing matrix is visible in Figure 26. The yellow line
is closer to the ground truth for all used high level observables. Furthermore, the classifier
AUC went down from 0.98 to 0.92 due to the addition of the smearing matrix.
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After the success of this “smearing matrix” approach, we tried a convolutional approach
to learn a more flexible smearing. We used small convolutional networks that operated on the
detector layers with non-degenerate spatial resolution (i.e. layer 1 and layer 2) using the same
neighborhood as before. The other layers and the conditions were processed individually using
small fully connected networks. Afterwards these small networks were concatenated. Then,
the concatenation was processed using the previous setup. The decoding step was designed
analogous. We hoped that this model learns a smarter smearing matrix, however the results
were not satisfying. We found it not only inferior to the simple smearing matrix, but also
to our previous default setup (Figure 26). Therefore, we did not pursue the convolutional
approach much further.

Layer 2

Figure 27: Visualization of the chosen neighborhood in layer 2. The bright voxel is the center,
the dim voxels are its neighbors.

Learn decoder width Our last take on the overfitting was the try to learn a width for the
decoder network. This way the network is forced to output an error estimate for every voxel
of the reconstruction. We were hoping to learn which voxels the network was able to learn
and which not. Checking if some region of our detector is responsible for our overfitting.
During the training we were using only the data MSE-reconstruction loss since the widths
had to belong to a single space. It is not reasonable to assume the same σ in the data and in
the logit space. Furthermore, we had to disable the smearing matrix, as it would harm our
uncertainty estimates by blurring the training space.

In the beginning we found a very unstable training for this setup. During the training
the network was sending the widths to 0 and to ∞, crashing the training around epoch 8,
before learning reasonable shower reconstructions. Therefore, the error estimates appeared
to be not trustworthy. Because of this we continued with the classifier analysis, described in
section 4.3.2, “Classifier weights”.

After some time we revisited this approach and tried to clip the predictions of log(σ2).
For a cutoff of ±10, the training was reasonably stable and the widths were not moving to
∞ or zero anymore. We tried to run the training with no loss weighting and with our old β
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and γ values. We found that the reconstruction quality suffered a lot when not reducing the
weight of the KL-loss. Reasoning, that we need the error estimates for results similar to what
we received before, we decided to keep our β and γ parameters. Since we were not using a
logit loss they represent only one degree of freedom, resulting in an effective suppression of
the KL-term of 10−9. The resulting shower shape reconstructions were actually better than
before, but the activity reconstructions were worse. Both an effect of the absence of the logit
loss term.
The log(σ2) estimates are shown in Figure 28. One can see that the network learns to assign
smaller mean uncertainties to the outer rings in general. This makes sense as the average
energy deposition in these rings is much lower. An interesting outlier in this context is the
layer 2 (the third layer as we use zero-based indexing for the layers). There the mean un-
certainties are in general higher and the outer layer corresponds not to the minimum in the
means.
By looking at the maximum σs we see that the network tends to predict a high possible
uncertainty for the outer layer, that is apparently unusual (as the mean is significant smaller
than that). Our explanation is that the network is sure if it deposits no energy in the corre-
sponding outer voxel, but it expects a large mistake if it does. Here layer 2 is again different,
the network is apparently always certain about the outer ring. We suspect that this is a sign
of mode collapse. The outer ring in the second layer is that sparse that the network does
not populate it at all, therefore it is never very unsure about it. Here, the most uncertain
points correspond to the second-to-last ring. This also explains the relatively large mean: It
can never be really certain, since the network knows, that it is missing something.
This problem also explains the problem with the shower-width observable. If the outer rings
are underpopulated, the width distribution must be shifted towards smaller widths.
So, in the end we did not observe a solution to the overfitting, but a failure mode of our
VAE. However as we were not able to run the setup without crashes at this point, we were
not using this knowledge immediately. Instead, we implemented it in section 4.3.2, “Restruc-
tured noise layer” by using a scaling of the outer rings to make them more relevant in the loss.

As a final comment: Even though we were able to fix the instabilities during the training
by the clipping, they were another hint that a Gaussian probability model is probably not
the best choice for this task. Though, when encountering them we considered them to be
“normal” as we heard that learning the decoder width is unstable in general (cf. section 5.3
in [87]).

Classifier weights Once we investigated the overfitting behavior of the VAE, we started
to analyze its quality in more detail. Therefore, we not only trained a classifier to distinguish
the reconstructions from the original showers but also looked at it weight distributions. Here,
we focus on the smearing matrix approach as it was producing the first reconstructions for
photons that resulted in AUCs significantly different from one. However, as it can be seen in
the upper part of Figure 29, the weight distributions are still clearly separated. Furthermore,
there is a significant amount of showers with weight 0 or ∞, corresponding to an absolutely
certain classifier, that is invisible in our figure.
The bottom part of Figure 29 shows that the classifier is sensitive to the wrong bulk region
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Figure 28: The log(σ2) estimates of the VAE. The black dashed lines indicate the layer
boundaries.

in the widths. Close to 0 mm, the small weight VAE density is significantly larger than the
full VAE density. Implying that the classifier “says” that our network is oversampling the
small width region. Before the classifier weight analysis, we considered this bulk the major
issue as well, so this seems to be a reasonable choice made by the classifier. This also is in
agreement with our (future) observation described in section 4.3.2, “Learn decoder width”.
Since we are under populating the outer rings, the showers are more compact, closer to the
center resulting in a shift of the shower width plots.
Our second most relevant observable was the activity. However, the classifier is not sensitive
towards this feature. The VAE was overpopulating the phase-space region, where all voxels
are active. However, the low weight distribution is very low in this region, indicating that
the classifier considers these showers to be “realistic”.
This seems to be a fundamental problem with our classifier setup, as we made this observa-
tion frequently. The classifier seems to have trouble “seeing” differences in the high-activity
regions. Our only solution so far is to look at a normalized classifier as well. The term nor-
malized classifier refers here to the preprocessing of our data, where each voxel is normalized
by the corresponding incident energy. The normalization seems to emphasize the effect of
the activity, making it more obvious to the classifier. This matches with our observation
that the normalized classifiers usually favor the logit loss term more than the unnormalized
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classifiers: The are more sensitive to the activity and less sensitive to the logit loss induced
small peak shifts.
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Figure 29: Results of the classifier weight analysis.
(Top) Weight distribution of the classifier.
(Bottom) High level observables for large and small weights. Layer 1 and 2 are very similar.

During the weight analysis we also tried to filter the reconstructions by their incident
energy. This revealed an interesting problem with our model. As it can be seen in Figure 30
our network performs much better on higher incident energies. On lower energies, we see
shifted peaks and an increasing bulk in the width plots. This means, that our problem
with the wrong width plots is likely caused by the low energy particles. This makes sense
from a physical perspective as well: The low energy showers have a larger fraction of “noise
voxels”. As our VAE is trying to reduce the dimensionality in a deterministic manner, it
cannot simulate true noise. However, optimistically, we expected to not have reached this
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hard boundary, yet. Therefore we started to analyze the low energy incident energies more
carefully. To achieve higher computational efficiency we decided to reduce our training set
to the relevant incident energies. We realized that the reconstructions got worse this way,
but that the failure modes did not change. Therefore it was not only faster to train this
setup, it was also emphasizing our problem. Furthermore, the training on individual energies
prevented the artifacts from the other energies, enabling us of a more systematic analysis.
Of course one should use the full VAE for final deployment as the increase in training data
will improve the overall results.

Noise and α investigation Since we were looking for a problem related to small energies,
we decided to systematically investigate the behavior of the VAE under modifications of the
noise and the logit regularization parameter α. After all, both correspond to numerically
small values added to our data, that could overshadow small voxel entries. This effect would
be stronger for small incident energies as the average energy depositions would be lower.

We started investigating the effect of the noise on the logit space. We looked at the energy
distribution in one voxel. More precisely, we investigated how the distribution of xlogit for
(x < noise width) and (x > noise width) behaved. These two distributions do not have to be
separated in the logit space because of the event dependent normalization step. In fact we
found the (x > noise width) peak to be completely overshadowed by the (x < noise width)
peak for outer voxels at small incident energies. For larger incident energies or inner voxels
this did not happen.
We tried to reproduce this overshadowing for higher incident energies by masking, discarding
showers in the (x > noise width) peak. However, the effect was only visible for the voxel that
was used to compute the masking, it did not generalize over the full outer ring. However,
we found that the masked high incident energy reconstructions did not became significantly
worse. Even though this approach was not very clean, we were able to conclude that the
voxel-to-voxel correlations were enough to separate the “noise” and the “no-noise” peaks in
the full space. Otherwise at least the reconstruction of the masked basis voxel would have
been worse.

After this we analyzed the effects of our α-regularized logit transformation on the low
energy voxels. In some way we can see α as the scale in the normalized space to which the
logit is sensitive. If an energy deposition is significantly below α, the logit will not return
the order of magnitude of the deposition but log(α + x0−1) ≈ log(α) + x0−1

α
. Implying that

the logit transformation looses its sensitivity to values (significantly) smaller than α. Since
we are adding the α-value in our normalized space its effect is stronger for very active layers
than for very sparse layers.
If only two voxels are active our “accuracy”, determined by α, is not a problem as long as
dim voxel

bright voxel
> α. Meaning that α describes how small the energy deposition of the dim voxels

in relation to the leading voxel is allowed to be in order to be resolved by our setup.
However, if many voxels are active, the norm is affected by many voxels. So, if all voxels are
active, we receive the following inequality constraint for our sensitivity:

dim voxel∑
bright voxels

> α.
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Figure 30: High level features, when looking only at some fixed incidence energy. Here we
show the lowest, one intermediate and the largest one that does not suffer from less statistics.
One sees clearly that the VAE performs better on high incident energies. Additionally we
show the results of a VAE that was only trained on the corresponding incident energy. The
reconstructions are worse, but the failure modes are the same.
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In the worst case scenario of one dim and N−1 equally bright bright voxels this would imply

dim voxel

bright voxel
> (N − 1) · α,

where N is the number of (active, bright) voxels in the layer. This also means that for very
large layers, the possible range between small and large voxel, that can be seen by the net-
work, shrinks.

Because of this observation we realized that it will be necessary to reduce α for the larger
datasets 2 and 3. Therefore, we tried to reduce α as much as possible to learn out about
the low-α effects. We found numerical problems for α < 2.9803 · 10−8. The reason is that
for python numbers (and for float32 PyTorch tensors) the following equation holds due to
numerical reasons for α < 2.9803 · 10−8:

1− α ≡ 1.

This means that the logit is not a true “two-sided logarithm” since it is unable to resolve
values close to one the same way it is resolving them close to zero. It is predicting infinities
to early.
One should note here that this is not an inherent problem of the logit but of the needed
accuracy for the values close to one and thus of the float format itself. It might be possible
to solve the problem by storing 1 − x instead of x as a float, but we found that the values
close to one were not needed to be resolved that well at all.
We tried to split the α parameter in two contributions, a shift α0 and a scaling α1, resulting
in the following regularized logit transformation:

logit(y) = log

(
y

1− y

)
, y = α0 + x · (1− α1).

Empirically, we found that the parameter α0 was very important for our reconstructions.
Using a too large value here was significantly worsening our results. However, the α1 pa-
rameter was not very relevant. We were able to increase it to 0.1 without observing worse
reconstructions. This observation enabled us to reduce the important part of α, the shift, at
will, without creating instabilities because of the scaling.
One immediate success from this investigation was that we were able to understand and
solve the numerical problems that were mentioned in section 4.3.1, “Try noise”. For evalua-
tions of the type of logit (unnormalize (sigmoid (logit (x0−1)))) we can reach values very close
to 1 in the outermost logit call due to our normalization layer. So, it could happen that
this concatenation creates infinities during the gradient computation, even though we chose
α > 2.9803 · 10−8.
To prevent this problem we chose a large value of 0.1 for α1 from now on. Since this change
we did not observe the unstable loss values for the rest of our experiments.

Restructured noise layer Once we understood the reasons for the instabilities described
in section 4.3.1, “Try noise” we tried to use the more straightforward noise implementation
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Figure 31: Summary of the second version of the VAE-preprocessing with the new noise layer
structure.

that was described there. The new preprocessing is depicted in Figure 31.

For stability, we used α0 = 10−6 and α1 = 0.1. Our network is now always using the full
forward pass, consisting of preprocessing, encoder, decoder and postprocessing, except for
the final threshold. Furthermore, we used our knowledge from section 4.3.2, “Learn decoder
width” at this point by using a different normalization for our data loss. Instead of the layer
energy we started to use the mean energy of each voxel, over all showers. This enabled us to
increase the importance of the outer rings, resulting in better overall results.
For the logit loss we applied the normalization and the regularized logit transformation to
the reconstructions and the original showers, before the final thresholding, resulting in the
following loss:
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LELBO = γ ·MSE

(
x

< x >showers

,
x̂

< x >showers

)
+ δ ·MAE(xlogit, x̂logit)

− β ·
∑

i

(
1 + log(σ2

i )− µ2
i − σ2

i

)
.

Additionally, we were using a very small weight decay of 10−7. We did not observe any
different results because of it, but we wanted to prevent a possible degeneracy. Since the
network does not see any effects of the scale of its output - we renormalize it anyway - it
might end up producing very large outputs, which could produce instabilities. A small weight
decay should prevent this degeneracy.
These changes had a significant impact of our reconstruction quality. The most important
effect is the improved energy deposition per layer for low energies. Since we were are not
neglecting any small values in our norm, we were receiving a “clean” cutoff in the voxel energy
distribution by default. So, there was no reason to normalize to the distorted layer energies
anymore. Because of this we were able to reconstruct lower layer energies. Nevertheless, one
should note that the noise thresholding after the normalization results in a global shift of the
layer energy distribution. This could, again, be fixed by normalizing to the distorted layer
energies. However, for this setup it seemed to have a negative overall influence.
Furthermore, we found all plots to benefit from the new structure, at least a bit. Also the
classifier AUC went down from 0.92 to 0.88. Some high level observables, visualizing the
described effects can be seen in Figure 32.

10−4

10−2

N
o
rm

a
li
ze

d
co

u
n
ts

0 50 100
Width of Center of Energy in

∆η in layer 2 [mm]

10−1

100

M
o
d

e
l

G
E

A
N

T

5

10

15

20

0.50 0.75 1.00 1.25 1.50
Etot/Einc

10−1

100

10−9

10−7

10−5

10−3

10−3 100 103 106

Energy deposited in layer 2 [MeV]

10−1

100

GEANT Old layer structure New layer structure

Figure 32: The effect of the new noise structure. The energy related histograms profit the
most, but all other observables seem to benefit from the new setup. Especially the tails are
reconstructed better.

A positive side effect of the new setup is that we found a possibility to estimate γ during
the training. With the new setup we found that the logit loss and the data loss were numer-
ically of the same order of magnitude for a good choice of γ. Driven by this observation we
tried to choose gamma after 20 epochs such that this is the case. This approach was working,
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potentially reducing the γ-dependence a lot.

As we were mainly looking at the individual incident energies at this point, they should
be discussed as well. To reduce the number of plots we will show only the histograms for the
lowest incident energy of 256 MeV (Figure 33), as it was the most problematic one. However,
the experiments were done also for the incident energies of 8 GeV and 262 GeV.
Since we were not thresholding in the logit space anymore, it became possible to not only
threshold, but also to subtract the noise. Doing this improved the shower widths and the
layer activities. However, a similar gain was achieved by just subtracting the average noise.
Since the subtraction was worsening the Etot/Einc histogram, we decided to add a final shift
after our noise subtraction. In this last shift, we enforced this observable to be correct, by
applying a global normalization to the full shower.
The last attempt to improve the results of the Gaussian VAE was to find a way to reduce
the needed noise level. We tried to reduce it from n = 10−6 to n = 10−8. This turned out to
be more difficult than expected. We were only able to receive a stable training, when using
batch normalization. We found that the low-noise batch norm results improved the activity
and the low energy regimes of the individual layers. However, the shower shapes, especially
their tails, were consistently worse. Also the classifier had an easier time with the batch norm
variant. Some high level features for the batch norm approach can be seen in Figure 34
At this point, we thought we were hitting a wall and started looking for alternatives to a
Gaussian VAE. The main reason was that most of our approaches were improving our results
a bit, while none was solving our problems. It felt like we were only fighting symptoms.
Motivated by the results from Dalila Salamani’s thesis [88], we decided to try a Bernoulli
VAE, replacing the MSE loss with a BCE loss (cf section 3.3.7, “Bernoulli decoder”).
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Figure 33: Results of VAEs that were only trained on the lowest incident energy of 256 MeV
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Figure 34: Results of VAEs that were only trained on the lowest incident energy of 256 MeV.
Here, we are comparing a low-noise batch-norm variant to the version with larger noise and
noise subtraction (without final shift).

4.4 Bernoulli VAE

4.4.1 CaloChallenge dataset 1

Activity loss The reconstructions of the Bernoulli VAE without logit loss and without
noise were already better than any reconstruction achieved with a Gaussian model assumption
(Figure 36, green line). In fact, we found that adding noise was not helpful at all. However,
we realized that the thresholding was helpful. Therefore, we decided to use the thresholded
reconstructions for the logit and the BCE loss. Furthermore, it turned out that the underlying
NN can be smaller, when using a Bernoulli approach. Here, we ended up with 5000, 1000,
500 hidden neurons. Resulting in a six times smaller network size. Last, but not least, we
found the smearing matrix to have a much smaller effect on the Bernoulli VAE. Using it was
slightly improving the shower shape observables but worsening the activity observables. This
is reasonable, since the BCE is using the logarithm, internally. This means that it is more
sensitive towards small energy depositions. Adding bin migration from neighboring voxels
weakens this sensitivity towards the low energy regime of our data. Therefore, we decided to
not use the smearing matrix for the Bernoulli VAE.
The only downside was the fact that the activity was not well reconstructed, even without
the smearing matrix. So, we decided to continue with the BCE loss instead of the MSE loss
and tried to enhance the bad activity of our reconstructions. First, we tried to add a logit
loss, computed the same way as before. Using it, we found the best results when the logit
loss was about two orders of magnitude smaller than the BCE loss. Interestingly, this point
corresponds again to γ = 104, the same value as before. The attempt to increase γ beyond
this value was worsening the reconstructions.
Since the activity was still not perfect, we tried to add a sparsity inducing loss as well. Since
we knew already that a naive activity loss would not work (cf section 4.3.1, “High level loss”),
we tried to find a differentiable activity measure: Instead of adding step functions θ(x) we
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Figure 35: Visualization of our activity approximation for one single voxel. For the total
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is not approaching 0 since our x-axis is log-scaled and thus positive.

decided to add up sigmoid functions:

activity =
∑

v∈Voxels V

θ(v > t)

|V | ≈
〈

1

1 + exp
(
−v−t

s·t

)
〉

v∈V

Here, t is the corresponding activity threshold and s the strength of our sigmoid. For our
experiments we used t = 10−1 MeV and s = 0.2. We chose t to be different to the “proper
threshold” as defined in section 3.4.3, “CaloChallenge dataset 1”, as this allows us the ver-
ify the generalization power of the activity loss, beyond the actual point of the threshold.
s was chosen such that our sigmoid was increasing from 0.01 to 0.99 within two orders of
magnitude. To use the activity loss, we added a MSE comparison of the activity estimate of
reconstruction and ground truth. We scaled this activity-loss term by a factor of 1000. We
tried different values for this scaling between 0.1 and 10000 and found the best high level
observables with it.

Even though we found better high level observables for our reconstructions (Figure 36,
yellow line), when learning with activity and logit loss, it seems that these additional loss
terms where also introducing some unseen artifacts. In fact, it was much easier for a classifier
to pick the reconstructions of a VAE that was trained with the additional loss terms, when
using all incident energies. With the extra losses, we were receiving an AUC of 0.92, using
only the BCE this value went down to 0.84.
Because the pure BCE loss is closer to the underlying theory and because of the previous
observation, we decided to keep only the BCE loss and not the logit or activity loss.

Why use a Bernoulli model The next question that we were analyzing, was why the
Bernoulli model was more suited than the Gaussian model. After all, the Bernoulli distribu-
tion is discrete, while our data is continuous. We found two answers to this question.
First of all, one has to consider that also the Gaussian model needs a strong assumption.
Namely, that our energy depositions are following a normal distribution. Apparently, this

70



10−5

10−4

10−3

10−2

N
o
rm

a
li
ze

d
co

u
n
ts

−250 0 250
Center of Energy in
∆η in layer 2 [mm]

10−1

100

M
o
d

e
l

G
E

A
N

T

10−4

10−3

10−2

0 100 200
Width of Center of Energy in

∆η in layer 2 [mm]

10−1

100

10−2

10−1

100

101

0.0 0.2 0.4 0.6
Activity of layer 2

10−1

100

10−4

10−3

10−2

10−1

N
o
rm

a
li
ze

d
co

u
n
ts

0 50
Center of Energy in
∆η in layer 2 [mm]

10−1

100

M
o
d

e
l

G
E

A
N

T

10−4

10−3

10−2

10−1

50 100 150
Width of Center of Energy in

∆η in layer 2 [mm]

10−1

100

10−2

100

0.25 0.50 0.75 1.00
Activity of layer 2

10−1

100

10−3

10−2

10−1

100

N
o
rm

a
li
ze

d
co

u
n
ts

−10 0
Center of Energy in
∆η in layer 2 [mm]

10−1

100

M
o
d

e
l

G
E

A
N

T

10−4

10−3

10−2

10−1

20 40 60
Width of Center of Energy in

∆η in layer 2 [mm]

10−1

100

10−1

100

101

102

0.96 0.98 1.00
Activity of layer 2

10−1

100

GEANT

Pure BCE

BCE and logit loss BCE, logit and sparsity loss

Figure 36: High level features, when looking only at some fixed incidence energy. The loss
setup with activity and logit loss seems to produce better reconstructions for the activity-
observable. However, the shower shapes seems to become slightly worse. The setup with only
activity loss without logit loss is not working at all. It is worse than all the other approaches.
It seems that the activity loss needs the logit loss to generalize beyond the actual point of
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Top: 256 MeV, Mid: 8 GeV, Bottom: 262 GeV.
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assumption is “more” false than the assumption of a discrete Bernoulli distribution. In fact,
our data is very similar to discrete values in the normalized space.
Our second explanation is based on the gradients of the BCE. As one can see in the right plot
of Figure 37, the MSE suffers from stagnating gradients when the prediction is much closer
to zero than to the target. On the other hand, the BCE gradient has a pole of the order x−1

around zero, leading to large gradients in this situation. This means that the BCE has a bias
to produce too active layers, in line with what was previously seen. However, this has an
advantage during training. If most voxels are active, the network receives more information
since fewer voxels are muted by the ReLU. This enables faster and more stable training.
This hypothesis was tested by using a heavily finetuned preprocessing for the Gaussian VAE,
where we were trying to assimilate this gradient behavior of the BCE for the MSE. More
precisely, we used the preprocessing function

f(x) = x− 1

x
− 10 · log(1− x)

and finetuned alpha and noise values for each separate incident energy. The effect on the
MSE loss is visible as the yellow line in Figure 37. In the end we were receiving a similar
reconstruction quality to the Bernoulli VAE. However, this approach is not practical as this
amount of finetuning is unrealistic in any practical scenario and we did not pursue this fine-
tuning possibility further.
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Figure 37: Comparison of the BCE and the MSE loss and of their gradients.

Continuous Bernoulli Even though we argued before, that the discrete Bernoulli dis-
tribution is a better assumption than the normal distribution, it must not be true that
there is no better model one could assume. Proceeding with this thought we were expecting
even better reconstructions using the continuous Bernoulli model (section 3.3.7, “Continu-
ous Bernoulli decoder”). However, using the (pure) corresponding loss function, resulted in
very unstable training. In fact, the network was not learning anything as long as we tried
to learn the normalization constant log(C). The reason for this “muting” of our voxels is
easy to explain by the fact, that we do not want to be discrete, even though we are close
to it. The difference between a 10−1 MeV and a 10−2 MeV voxel is of huge importance for
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us. By making our data discrete we are simply loosing this information. This problem is
made even worse by considering that we are not applying the loss in the unnormalized space
but in the normalized space. Thus, we have to reconstruct faithfully all orders of magnitude
between O(1) and O(10−6), as we want to be at least sensitive down to our α regularization.
Assuming discreteness here is simply not correct.
However, the normalization constant C of the continuous Bernoulli has exactly this effect.
Its gradient has a very strong attractive divergence of strength > 1

x
at zero and one (cf.

Figure 38). Therefore, this the network is just learning to produce zeros as much as it can.
Because of this downside, we are using the discrete Bernoulli model instead of the continuous
Bernoulli model.
In Figure 39 we show the average shower as predicted by a VAE that we trained initially for
50 epochs without log(C). Afterwards, we increased the relative strength of the log(C) loss
over the range of 50 additional epochs linearly to 1. As one can see, only layer 0 was not
collapsing at this point as it has the largest average energy of all the layers, so the log(C)-
divergence has the smallest effect on it. Nevertheless, when training longer it will be “muted”
as well.
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Figure 39: (top) True average shower for 0.256 GeV
(mid) Reconstructed average shower for 0.256 GeV (Without logC)
(bottom) Reconstructed average shower for 0.256 GeV (With logC) in increasing strength
for additional 50 epochs
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Final results dataset 1 At this point we concluded our optimization of dataset 1. We
ended up without noise and with the discrete Bernoulli model. Furthermore, we have decided
to not use any further losses besides the plain BCE. A detailed list of all hyperparameters
for the CaloChallenge dataset 1 setup can be seen in Table 5. In Figure 42 and Figure 43 we
show all interesting high level photon observables for the VAE reconstruction and the VAE
sampling with an INN. Furthermore, we added a comparison to pure INN results, using the
hyperparameters in Table 5, “pure INN (ds 1)”. One can see that everything besides the
layer activity seems comparable. Nevertheless the INN is still “better”, as long as it can be
applied.
The plots in Figure 44, Figure 45 and Figure 46 show the equivalent results for the pion
dataset. Even though, we did not use it to tune the network and its hyperparameters, they
seem to be of equal quality.
The weight distributions can be seen in Figure 40 and Figure 41. We show only the distribu-
tions for the generated samples and not for the reconstructions as we are more interested in
the generation power at this final point. We see that the weight distributions are only “good”
for the photon INN samples. All of the three other cases result in clearly separated weight
distributions. Interestingly, we are almost reaching the generative power of the INN for the
more complex pions samples. Implying, that the VAE approach works better for hadronic
showers than for electromagnetic showers.
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Figure 40: Classifier trained on photon showers.
(top) The results for the pure INN.
(bottom) The results for the combination of VAE and INN.
Weights distribution in linear space (left) and in log-space (center). (right) ROC curve and
relative AUC score.
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Figure 41: Classifier trained on pion showers.
(top) The results for the pure INN.
(bottom) The results for the combination of VAE and INN.
Weights distribution in linear space (left) and in log-space (center). (right) ROC curve and
relative AUC score.
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Parameter Pure INN (ds 1) Pure INN (ds 2) INN (After VAE)
coupling blocks RQS Cubic RQS
# layers 4 3 3
# of hidden neurons 256 256 32
# of bins 10 10 10
# of blocks 12 14 18
# of epochs 450 200 200
batch size 512 256 256
lr scheduler ”one cycle” ”one cycle” ”one cycle”
max. lr 1 · 10−4 1 · 10−4 1 · 10−4

n 5 · 10−6 5 · 10−6 0
α 1 · 10−8 1 · 10−8 1 · 10−6 (Set 1)

1 · 10−8 (Set 2,3)

Parameter VAE
lr scheduler Constant LR





Inner VAE

lr 1 · 10−4

hidden dimension 5000, 1000, 500 (Set 1)
1500, 1000, 500 (Set 2)
2000, 1000, 500 (Set 3)

latent dimension 50 (Set 1,2) / 300 (Set 3)
# of epochs 1000
batch size 256
γ 1 · 104
β 1 · 10−5

hidden dimension 1500, 800, 300


Kernelkernel size 7

kernel stride 3 (Set 2), 5 (Set 3)

Table 5: Network and training parameters for the different models used for the CaloChallenge.
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Figure 42: Our final results for the photons in the CaloChallenge dataset 1. In this figure,
we show the corresponding shower shape observables.
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Figure 43: Our final results for the photons in the CaloChallenge dataset 1. In this figure,
we show the layer activities and the energy distributions.
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Figure 44: Our final results for the pions in the CaloChallenge dataset 1. In this figure, we
show the corresponding shower shape observables.
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Figure 45: Our final results for the pions in the CaloChallenge dataset 1. In this figure, we
show the corresponding shower shape observables and the layer activities.
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Figure 46: Our final results for the pions in the CaloChallenge dataset 1. In this figure, we
show the corresponding energy distributions.
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4.4.2 CaloChallenge dataset 2

Moving on to dataset 2 of the CaloChallenge, we realized that our current approach was
not practical for large input dimensions. Since we used a fully connected architecture, the
number of our model’s parameters scaled primarily with the product of input dimensionality
ninput and the neurons in the first layer n0:

#parameters = O(ninput · n0) = O(n2
input)

The last equality holds as we are scaling our input layer such that it is five to ten times the
input dimensionality.
Nevertheless, we tried to apply this setup directly to the CaloChallenge dataset 2. In order
to store the model on the GPU memory, we had to reduce the first layer’s size significantly
below the input dimensionality. In fact, the constraint to keep the same network architecture
as before resulted in 5000 neurons in the first layer. Furthermore, we tried to use the pure
BCE loss and the setup with additional activity and logit loss. The high level observables
were better for the additional loss terms (Figure 47), but the classifier AUC was 0.99. Since
the AUC of the pure BCE setup was 0.97, we were assuming that the additional losses had
to introduce some artifacts that were invisible in the plots. As both results are, as expected,
not acceptable, we do not investigate the classifier weights here further.

To improve our scaling behavior, we developed a different architecture that we call the
kernel-VAE, short KVAE. It is a mixture of a fully connected setup and a convolutional
one. The main assumption that we made is that the inflation of our first layer is not needed
relative to the full input, but to the size of a single layer. We think that the inflation in the
first layer enables the model to describe highly correlated features better, for example the
activity. However, these correlations should only be strong in a local area. For example we
expect the first layer and the last layer to not be strongly correlated.
Building on this assumption, and the observation that the reconstruction was working for
fewer layers before, we decided to split the problem into parts: Every l layers are compressed
individually in a fully connected sub-network. The first layer of each block has a distance
of s from the previous one. The parameters l and s were inspired by the kernel size and
the stride of a convolutional network. However, for our setup we learn each of these kernels,
instead of shifting the same kernel over the input space.
In the next step the overlapping compressed layer groups are gathered by an inner network,
a usual VAE.
After the decoding of the inner VAE, we use the kernels again, to upscale the data to the
original data space. We handle the overlapping regions by summing over all predictions for
each layer. A visualization of the KVAE architecture can be seen in Figure 49.
The application of the KVAE was greatly improving the quality of our reconstructions as
one can see in Figure 47. We chose l = 7 and s = 3 to have at least two kernels seeing
every layer. We also tried different variations for the kernel size and the stride, but did not
experience huge differences between them, as long as the stride was not to large with respect
to the size. Furthermore, we found the pure BCE loss to be better than the additional losses
in all our metrics, when using the KVAE.
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A second important improvement was found by coincidence. Because of a bug in the
preprocessing step that scales and shifts the data to zero mean and unit variance, we realized
that this fixed norm layer was not optimal. When we added an element wise learnable linear
layer in the preprocessing and its analytical inverse in the postprocessing, we were able to
improve the reconstructions further. Interestingly, this was only helping for our results with
the KVAE, meaning dataset 2 (and dataset 3). For dataset 1 and the normal VAE we found
it inferior to the fixed standardization.
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Figure 47: Improvements for dataset 2. The red and green line represent the “normal” VAE
results. The KVAE reconstructions are superior in almost every aspect. Only the extra losses
setup is slightly superior for the activities. By making our standardization layer learnable
we were able to improve the results even further. The pink line is closer to the ground truth
than the yellow line for all shower shape related observables.

The corresponding final histograms for dataset 2, using the KVAE with the learnable
norm, can be seen in Figure 50, Figure 51 and Figure 52. The results of a classifier weight
analysis are given in Figure 48. Again, the pure INN results are much better. However, the
gap between the VAE+INN samples and the pure INN samples is closing, implying that the
VAE is better in working with high dimensional datasets. When looking at the electromag-
netic shower generations of dataset 1 (photons) and dataset 2 (positrons), we see that the
VAE based generation results in a “better” AUC, while the pure INN generation results in a
worse “AUC”. Also the histograms seem to be more similar. Only the layer activity is still a
major issue. A full list of all hyperparameters can be seen in Table 5
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Figure 48: Classifier trained on dataset 2 showers.
(top) The results for the pure INN.
(bottom) The results for the combination of VAE and INN.
Weights distribution in linear space (left) and in log-space (center). (right) ROC curve and
relative AUC score.
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Figure 49: Schematic visualization of the KVAE architecture
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Figure 50: Our final results for the CaloChallenge dataset 2. In this figure, we show the
voxel energy distribution and the ratio between Etot and Einc
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Figure 51: Our final results for the CaloChallenge dataset 2. In this figure, we show some
shower shape observables.
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Figure 52: Our final results for the CaloChallenge dataset 2. In this figure, we show further
shower shape observables, some activities and some layer energy distributions.
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4.4.3 CaloChallenge dataset 3

The third dataset of the CaloChallenge was mainly a challenge because of its sheer size.
However, after some memory optimizations of our training routine and an increase of the
stride from s = 3 to s = 5, we were able to run the KVAE setup also for this dataset. Ad-
ditionally, it turned out to be beneficial to increase all the latent spaces. Further parameter
optimizations were not possible due to computational resources. We mainly use the config-
uration from dataset 2. The final high level observables can be seen in Figure 54, Figure 55
and Figure 56 and the classifier weights are depicted in Figure 53. The classifier results are
better than for dataset 2. However, we believe that this is only the case since the classifier
with 512 neurons was not expressive enough. However, this architecture was defined by the
CaloChallenge and we did not want to modify it too much. This time, no INN comparison
can be given, as the INN was not trainable due to the size of dataset 3. All hyperparameters
are listed in Table 5.
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Figure 53: Classifier trained on dataset 3 showers, generated by our VAE+INN architecture.
Weights distribution in linear space (left) and in log-space (center). (right) ROC curve and
relative AUC score.
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Figure 54: Our final results for the CaloChallenge dataset 3. In this figure, we show the
voxel energy distribution and the ratio between Etot and Einc
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Figure 55: Our final results for the CaloChallenge dataset 3. In this figure, we show some
shower shape observables.
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Figure 56: Our final results for the CaloChallenge dataset 3. In this figure, we show further
shower shape observables, some activities and some layer energy distributions.
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5 Conclusion

We investigated different possibilities to enhance detector simulations in terms of speed. This
is necessary as we expect the GEANT based calorimeter simulations to be a major bottle-
neck in future collider runs. Our focus was on invertible neural networks and variational
autoencoders. The exact approach was to use the VAE as a flexible preprocessing step that
reduces the dimensionality of the data for the accurate INN. However, we found the VAE
to be a major limiting factor in the overall generation quality of the VAE+INN setup and
investigated several possibilities to improve accuracy of the VAE. Our first major improve-
ment was the addition of a physics motivated “smearing matrix” before the loss function,
to enhance the importance of the spatial neighborhood in a layer. Afterwards we were re-
placing the Gaussian VAE with a Bernoulli VAE, improving the reconstruction quality even
further. However, we found that the sensitivity of the BCE loss towards low energies was so
good, that the smearing matrix was resulting in a negligible effect as it was weakening the
low energy sensitivity. For the larger datasets 2 and 3 were were developing a new model
architecture, the KVAE, that is able to handle the large input dimensionality by using a
locality assumption. With the KVAE we were able to improve our results significantly, for a
third time.
However, after all this improvements, the (K)VAE’s reconstructions are still inferior to the
pure INN generations, making the VAE the bottleneck in the VAE+INN approach. For
hadronic showers, we were able to receive similar weight distributions and high level observ-
ables for the VAE+INN and the pure INN setup, for electromagnetic showers, the VAE was
not able to reach the level of an INN. So, as long as the INN is applicable, it is reasonable to
use it on its own. If the INN is not applicable, due to the size of the input, adding VAE can be
a viable alternative for hadronic showers. For electromagnetic showers, however, it might be
reasonable to use other approaches like diffusion models. By the end of the CaloChallenge we
will learn more about the different alternatives to INNs and VAEs and it will be interesting
to see the corresponding advantages and disadvantages.

6 Next steps

If it turns out that the VAE+INN approach is competitive against the other state of the art
models, after the CaloChallenge, the next step is to add uncertainty estimates. It is not as
easy as for the INN, where we could just the Bayesian NN loss. In the Bayesian NN loss, we
are using the likelihood of our dataset given our model, a value that we know for the INN,
but not for the VAE. The VAE is assuming a joint probability p(x, z), and trying to use
the corresponding conditional probabilities to find a probabilistic mapping between latent
space and data space. The INN, on the other hand, is trying to find a transformation of
the variable x itself, such that the probability distribution after this variable change is equal
to the latent distribution. So, the INN is learning a deterministic reparameterization of our
random variable. This difference has the consequence that the INN learns the likelihood of
the dataset explicitly but the VAE does not. Therefore, it is not straightforward to turn
the VAE into a Bayesian version of itself. However, as the formalism of the VAE and the
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Bayesian NN, variational inference, is similar, it might be possible to combine these two
approaches. In any case further research would be needed in this area.
Alternatively to the VAE+INN approach, one could use a fully convolutional approach for
the INN as it would solve its scaling problems as well. However, this will be difficult as
well as we saw that the convolutional results were inferior to the fully connected results, so
far. Especially, single active voxels are difficult to generate with convolutional networks, so a
solution to prevent bad activities and blurry reconstructions is needed for this setup as well.
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