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ZUSAMMENFASSUNG

Typischerweise erwartet man, dass die elektroschwachen Korrekturen relativ klein
sind. Das andert sich allerdings bei gewissen hohen Energien. Bei diesen En-
ergien werden die Korrekturen durch so genannte Sudakov-Logarithmen verstéarkt.
In dieser Arbeit werden wir untersuchen, welche Topologien bzw. welche Struk-
turen, diese groflen Sudakov-Logarithmen hervorrufen. Um das zu beobachten wer-
den wir den Prozess der Higgs-W-Produktion am LHC, qg — HW analysieren.
Anschlieffend fithren wir ein Born-modifiziertes quadriertes Matrixelement ein, das
ausschliefllich die Sudakov-Beitrage, die von den Dreieckskorrekturen kommen,
enthélt. Dieses vergleichen wir dann mit dem LO-Prozess und der kompletten elek-
troschwachen Korrektur. Am Ende wenden wir uns noch den Box Diagrammen und
ihren Sudakov Logarithmen zu.

ABSTRACT

Typically, one expects that the electroweak (EW) one-loop corrections are relatively
small. However, this changes in certain high energy limits where these corrections
are enhanced through the so-called Sudakov logarithms. We will investigate what
topologies give rise to these large, Sudakov logarithms. For this study we analyse
the process of associated-Higgs production at the LHC, gg — HW. We introduce a
Born-improved matrix-element-squared which contains only the Sudakov corrections
coming from the triangle corrections. We compare this to both the leading-order
and the full NLO Electroweak results. We will also discuss the box diagrams and
the Sudakov logarithms appearing there.
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1. Introduction

q
Figure 1.1.: Associated W H-production

With current and future colliders in mind the evaluation of electroweak corrections has become
an important part in the search for new physics signals. At the TeV scale the electroweak
corrections are enhanced by large, negative, double (or, squared) logarithmic terms. This
thesis will search for the origin of those factors inside the EW one-loop corrections of the
process of associated-Higgs production at the LHC, gqg — HW.

In this section we briefly introduce the Standard Model (SM) and then move to the Higgs
mechanism, thereby describing the origin of mass in the SM. In Section 2 we give a general
overview of the calculation of a full hadronic cross-section within this model. In Section 3
we then outline the general features of the large Sudakov logarithms and how they arise in
the large-energy limit of the scalar integrals Cy and Dg. We then give the standard matrix
elements of the triangle and box diagrams arising in associated W H production at the LHC
with focus on the Sudakov logarithms only.

1.1. Standard Model

Modern particle physics is the theory of the smallest particles we know so far, the elementary
particles and their interactions with the electromagnetic, weak and strong forces. The ele-
mentary particles are split up into two different types, the matter particles, fermions - which
are further divided into quarks and leptons, and the force-carrier particles, the bosons.

The quarks and leptons consist of six particles each, which are grouped into pairs, or ‘gen-
erations’. The electromagnetic force has infinite range and therefore is measurable on a
macroscopic level. Conversely, the weak and strong forces each have small ranges and domi-
nate only at the subatomic level. It is precisely to study these forces that large, high-energy
colliders must be built.

The strong force is mediated by the gluon, of which there are eight types, or ‘colors’. The
photon is the carrier particle of the electromagnetic force. Both the gluons and photons are
massless. The W', W, and Z bosons carry the weak force and are massive. The mass
is acquired through a mechanism known as Electroweak symmetry breaking. This will be
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explained later in more detail.

The Standard Model is a theory which quantifies, to very high precision, the strength and
types of interactions which can occur between the fermions and boson. We note that the
gravitaitonal force, the most familar force on our macroscopic level, is not included in the
Standard Model. Attempts to describe the gravitational force as being mediated by a particle-
like boson (the graviton) are so far not physically consistent. That is, predictions for the rates
and strengths of gravitational interactions in the framework of the Standard Model give di-
vergent results. At the energies involved with stuying the subatomic level the effect of the
gravity is negligible. [17]

We close this brief overview of the Standard Model with a tabulation of all known fermions
and bosons:

mass = =2.3 MeV/c* =1.275 GeW/c® =173.07 GeV/c* 0 =126 GeVie?

charge = 203 u 213 C 23 t 0

spin = 112 12 12

@

up charm top gluon Higgs

=4.8 MeVic? =95 MeV/c? =4.18 GeVic? 0
3 d -113 S -3 I 0
12 112 12 1

down strange bottom photon

&

0.511 MeV/c? 105.7 MeVic? 1.777 GeVic? 91.2 GeVic?
4 e 2 8 0
12 112 l"l 12 [ 1

electron muon tau Z boson

o

<22 eVic? <0.17 MeVie® <15.5 MeV/c* 80.4 GeV/c®

. De L Do
12 € 112 -I)}l 12 1

electron muon tau

neutrino neutrino neutrino W boson

Figure 1.2.: The Standard Model[18]

1.2. Higgs Mechanism

The Higgs mechanism is considered by many to be the most straightforward way to account
for masses for the fundamental particles. This mechanism is essentially nothing more than
considering that there is another fundamental field, namely the Higgs field, which, upon
interactions with another fundamental field convey a mass to it. As the implementation of
the Higgs mechanism into the Standard Model is quite lengthy, we consider in the subsection
below a toy model which would give rise to a massive photon field. We then discuss how
one could extend this to assign masses to the fields with known mass. The discussion of this
section is based on [7] and [8].

1.2.1. Abelian Higgs Model

First we apply the Higgs mechanism to an abelian, U(1) gauge theory to get a better under-
standing of where the mass of the corresponding gauge boson (here the photon) comes from.
The kinetic term of the photon is given by,
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1
Ekin = _ZF,U,VFMV7 (11)
where F,, = 0,A, — 0,A,, (1.2)

with A, representing the photon field.

This Lagrangian is invariant under a local gauge transformation of the photon field, A,(x) —
Au(x) — Oyn(zx) for any n and z#. To impart mass to the photon we can simply add an
additional kinetic term to our Lagrangian,

1 1
L=— FuF"+ §m2ANA“. (1.3)

The problem is that this new Lagrangian clearly breaks local gauge invariance. We can fix
this and still obtain a massive photon field by extending the model and introducing a complex
scalar field with charge —e that couples to itself and to the photon.

1
L= =1Fu k" + (D) (D!6) = V(9), (14)
where D, = 0, —ieA,

and  V(¢) = —p°¢'o + A(¢'9)%.

This V(¢) is the most general, renormalizable potential allowed by U(1) gauge invariance.
This Lagrangian is now invariant under global U(1) rotations, ¢ — ¢4, and local gauge
transformations of both fields,

Ay — Ap(x) = Oun(z),
$(x) — e 1) g ().

The next step towards incorporating mass is crucial. We must consider the sign of the pa-
rameter 42 that we have introduced into the potential. We could choose p? > 0 or p? < 0. If
p? > 0 is chosen, the state of lowest energy equals ¢ = 0, the vacuum state. This therefore
describes a simple Quantum Electrodynamics (QED) model with a massless photon and an
extra charged scalar field ¢ with mass pu.

However, if y? > 0, the vaccum expectation value (VEV) is nonzero and equals

v
2 V2

To make the Higgs boson field manifest, let us now parameterize ¢ as
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v+ heil
\/Q y

o=

where h and x (the Higgs boson and the Goldsone boson) are real scalar fields which have no
VEV. The Lagrangian (1.4) then transforms into

1 " " e2v? 1
L= _ZFWF —evA, 0ty + TANA

1 1
+ 5(6muh8“h — 2p*h?) + 5(‘3“)(8“)( + (h, x-interactions). (1.5)

This is now a theory with a photon of mass m4 = ev, a Higgs boson h with mass mp = v2\v,
and a massless Goldstone x. We can get rid of the nonphysical x — A mixing by making the
following gauge transformation:

1
A= Ay = Ay = 0

This is the so called unitary gauge. The Goldstone y will then disappear from the theory, [7].

1.2.2. Electroweak Standard Model

We now bring the elements of the toy model of the previous section to life by describing how
to embed it into the portion of the Standard Model which describes Electroweak interactions.
Formally, the Electroweak Standard Model is a SU(2)r ® U(1)y gauge theory with three
SU(2)r gauge bosons fields, W;(z = 1,2,3), and one U(1l)y gauge boson field, B,. The
Lagrangian of this model is neatly divided into four subsets, each dealing with a unique class
of interactions involving the fermion and the gauge boson fields,

L= Eferm + Egauge + EHiggs + EYuk- (1'6)

We now examine in turn each of the four subsets, moving from left to right in equation
(1.6) above, beginning with the fermion portion of the Lagrangian which describes only the
interactions between the fermions and the gauge boson fields. It reads,

L= i@L]?\I/L + iaRlD‘l}R- (17)

The L and R refer to the left and right chiral projections onto the fermion fields,

1
\IJLJDL = 5(1 F ’)/5)\11. (18)
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Furthermore, the left-handed fermion fields (V) are arranged into separate doublets for the

quark and lepton fields,
A ;o= Ve
(IL - d 9 L — e 9

of which for each there are three generations. The right-handed fermion fields (Vg)

UR, de VeR, 6;%

are singlets, of which there are also three, one for each generation of fermions.
These fields are invariant under the gauge transformations

Uy — U, =M@y,

Up — W = RO g,

where U, = TP (@) ig the SU (2) 1, transformation which only acts on the doublet fields. T% =

%Z(Ti are the three Pauli matrices) denote the generators of the fundamental representation

of the SU(2), Lie algebra with the identity
[T, T9) = ik T,
The covariant derivative operates on ¥y and ¥y as

DH\IJL = (8“ + Z-gW# + ig,YLBM)\IJL,
D“\IJR = (8“ + Z'g/YRBH)\IJR.

The transformation properties of B, and W, = W,T" are fixed by the gauge symmetry of
the fermion Lagrangian,

By B, =By~ ~0,0,
g
1
W, — W, = UW,U} + ~(8,U1)U}.

g

The three SU(2);, gauge bosons W couple to the weak-isospin 7" and the one U(1)y gauge
boson B couples to the hypercharge. The electroweak symmetry will turn out to be sponta-
neously broken. This will generate masses for the physical gauge bosons W+ and Z.

Note that the electric charge is defined as the sum of the hypercharge and the third component
of the weak-isospin,
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X (3 +Y)
2

=73 =
Q + 5

with T3 = 5 for left-handed doublets and T' 3 = 0 for right-handed singlets. Hence we get the
following eigenvalues for the leptons and quarks:
Y(ip) =-1 Y(lg) = -2

Y(qr)

W —

Y(ur) = % Y(dr) = —5

When all the dust settles, we can simply interpret L, m as quantifying the strength of inter-
action between each fermion field with each boson field. This concludes the discussion of Leerm .

We turn next to the second term in (1.6). This term describes the self-interactions of the
gauge boson fields.

1o
Looge = — 3 Wi, W = 2B, B, (1.9)

where
, . i
W, = 0,W,, + ge""WiW,,
B,, =0,B, —0,B,. (1.10)

The first term of (1.9) gives rise to cubic and quardic self-interactions among the gauge fields.
For the fermions it is quite simple to add a mass term such as the Dirac mass term,

mipp = m(Py, + ) (WL + ¥r) = MW LYr + YiL)

We can’t do that in the case of the gauge bosons. This is the step where the spontaneous
symmetry breaking gives rise to the massive physical gauge bosons.

Spontaneous Symmetry Breaking

We now have a complex scalar SU(2) doublet ® which is coupled to the gauge fields
¢+
o (%)

ve) = pete A (jae)” (1> 0). (1.11)

with a scalar potential
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Again we have chosen the most general renormalizable potential. Addionally the term is
SU(2)y, invariant. Once more we look at the state of minimum energy. For u? < 0 it develops
a VEV as before in the Abelian model. We can choose

- 5(2).

because the direction of the minimum in SU(2) is not fixed since the potential only depends
on terms with ®T®. The scalar doublet has now U(1)y charge (hypercharge) Yo = 1 and the
electromagnetic charge is hence

Q(®) =0. (1.12)

The electromagnetism is then unbroken by the scalar VEV. This means that the VEV from
above provides the wanted symmetry breaking scheme,

SU(Q)L X U(l)y — U(l)EM (1.13)

We will now see how the higgs mechanism generates masses for the gauge bosons W and Z.
It works in the same way as in the Abelian model. The contribution of the scalar doublet to
the Lagrangian is

Ls = (D*®)(D,®) — V(®), (1.14)

where

D o—o 1Y g
w = M+Z§TWM+Z§BMY'

If we choose the unitary gauge again, only the physical Higgs remains in the spectrum after
the spontaneous symmetry breaking. All the Goldstone bosons will disappear. As a result
the scalar doublet in unitary gauge can be written as

@:é(vih) (1.15)

This will lead to the following masses for the gauge bosons from the scalar kinetic energy
term of eq. 1.14. The physical gauge fields are then two charged fields W and two neutral
gauge bosons, Z and A. It is

1
+ _ 1 2
Wi = i(W“ FiW,),

w
g —g'By+ gW}
=TI
Vg2 +g"?
B + lw3
A =929 W (1.16)

SN
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The masses then are

1
M3, = 1921)2,
1 2
M3 = 1(92 +g7 )0,
My = 0. (1.17)

Notice that the massless photon has to couple with the electromagnetic force e. Therefore
the coupling constants define the weak mixing angle Oy,

e = gsin Oy,
e = g cos By . (1.18)

Like in the Abelian system if we go into another gauge other than the unitary, there will be
Goldstone bosons and the scalar field can be written as

@fii% 0
— 2 T \u+h

with the three Standard Model Goldstone bosons & = (w*,2) having the masses M, and
M. We now have to include the last missing piece of the final Lagrangian of the Electroweak
Standard Model, the Yukawa Lagrangian

Lk = Z T . @t R + T G 1 P R (1.19)

m,n

+ an,anLfI)en,R + Fzmnzmlfi)l/n,R + h.c. (1.20)

This also shows where the fermion mass comes from. The matrices I',,, are the Yukawa
couplings between the single Higgs doublet ® and the fermions. The combinations of L®R
are SU(2)r, singlets. This means that the Yukawa Lagrangian is gauge invariant. The mass
terms should be hyperchargeless. Therefore we introduce two representations of the Higgs
fields. Those will give mass to the down quarks and electrons, and to the up quarks and
neutrinos. The neutrino has no right-handed partner in the SM, so it can not be acquired
through Yukawa coupling. The representations are

¢+
P = ( & ) with Y(®) = +1

s
and ¢; = Ezj@j, where

P = < _(25; ) with Y (®) = —1.
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Under SU(2) they transform as

(I)i — (I)/,L' = Uij(I)ja él — (I),' = Uij(I)j

Note that
(UT)ln(UT)klé‘kj = det(UT)slk = (UT)kjﬁij = Ul

With this the transformation properties of ® is indeed true,

(I)g = Eij(I); = &ij ;k(bz = (UT>kl<€ij(I)]t = Uilglkq)z-

We can now generate all of the fermion masses with a single Higgs-doublet by making use of
® and P, as shown in the following for the first family.

(o) (0)
(0)

Choose
d —

P =

G-l

The Lagrangian then looks like

fov

Lyuk = o (eérer +eger) + {;;(ULUR +TRrur) + fdf;}(deR + drdp).

We can now read off the fermion masses as

fw
\/57

m; =

i=-e,u,d. (1.21)

This finishes the discussion of the Electroweak Standard Model. We can now move on to the
general definition of the cross section.



2. Calculation Framework

In this section we provide an overview of the tools necessary for performing a full numerical
calculation of the associated W H production cross section. This includes a description of the
hadronic cross section formula as well as how to solve it numerically with a Monte Carlo algo-
rithm. We conclude this section by outlining the general features of the Sudakov logarithms
arising in the large-energy limit of the triangle and box diagrams of this process.

2.1. The Hadronic Cross Section Formula

The general cross section for two incoming particles p,, pp and n outgoing particles can be
written as the product of two terms [2]

0= =T, (2.1)

The term in the denominator is the so-called ‘flux factor’
F =222 (s,m2,m2)(2r)*" 4, (2.3)
and depends on the triangle function
A(s,m2,m2) = Aa,b,c) = s — 25(m> +m?) + (m2 — m3?)? (2.5)

The numerator term contains all the information about the probability of the process to
occur.

In = / pz54 (Pa+ s — Y _ i) [Matsnl?. (2.6)

The general definition for the Lorentz invariant phase space with m incoming and n outgoing
paticles is

n n d3k/
7T

'L:l = 2:1

With our phase space definition (2.7) we can write the cross section as

10
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~ dq)n’
222 (

2
s,m2,my)

At a hadron collider, this equation is not sufficient to quantify the probability for a certain
interaction to occur. To acheive this we must account for the probability of finding a certain
initial-state particle a or b inside each proton. At or below the so-called factorisation scale
(~ 1GeV) the hadronic cross section can be written as products of each parton distribution
function (pdf) for each incoming particle of the proton times the above expression for the
cross section.

7= [dnr [ den 3 [fu o1, @2) 02, Q)] IMasi (2.9)

q1,42

where f(z1,Q?) are the pdf’s with the energy scale Q = My of the process.

2.1.1. Massive Two-Particle Phase Space

We will now calculate the phase for two massive particles. We define the momentum-sum of
two incoming partons as P and calculate the system in the rest frame P = (\/§, 0,0,0)

d*py d’po 4.4
[ awatorm) = [ G S om) 5P~ 1 = )

&’pr dPpo ) o
~ | (2n)%2E, (27)%2E, (2m)70(V/s — E1 — E)3(p1 + p2)

3
_ / (27‘3)%&2;2(2@5(\/; — E\E,)

_/dp dcos do p?
N (2m)32E1 2F,

(2m)0(v/'s — EyEy) (2.10)

where we simplify the notation a bit by writing |pi| = p, as we have chosen to solve the |p3]
integral above.

The next step is to use the d-function to solve the integral over p. We know that in the center
of momentum system (CMS), 5§ = (p1 +p2)? = (E1 + E3)%. We first look at the following two
equations:

p1(p1 + p2) = pi + pip2 = mi + E1Fy + p* = B1(Ey + Es) (2.11)
1 1 1
pi(p1 +p2) = Pt + pip2 = mi + 51 +p2)? — §m% - §m§ (2.12)

Now we set these two equations equal and solve for Fj.

11
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1 1 1
Ei (BEy + B») = mi + = (p1 + p2)? 3 5
—_———

Vs 52
1
E1y/s = 3 (s+ m3 — m%) (2.14)
By = —(s+m2—md) (2.15)
25
Inserting |p| = v E? — m? into the above expression yields:
s
bl = \2[5 (2.16)
with
2(mf+mj3) | (mi-m3)’
6 = [1 5 ]2
s s
1
_ Az(s,m%,m%)’ (2.17)
s

where \(a, b, c) = a® —2a(b+ c) + (b—c)? is the triangle function. The J-function from before
now looks like

A
(Vs — By — By) = ((S(p) f(%))- (2.18)

Inserting this back into the expression for the phase space integral, we finally get

_ [dcosfdo p? 27
/d@2<P17P2) - / (271')3 4E1E2 (ELI) + (L)

E27 Ap=pp2
B /dcosﬁ d¢p p
N (27‘()2 FEi1+ Es
N——
Vs p:6§

I3 dcosf do
_B do 2.19

8 2 27 ( )

The final step is to write down the four-momenta of all particles. To this end we need to
calculate the value of the energies F1, Es and the three-momenta |p] = |p1| = |pal.

12
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§= (El + E2)2
§=E} + E3 + 2B, E
§— F2=E? 4 2F B,
P12 — |p1* + 5 — E3 + Ef = 2E7 + 2E, E,

§—|—m%—mg =2k (El—l-Eg)

~———
V3

If we identify particle 1 with the W boson and particle 2 with the Higgs then we can write

A 2 2
S+ my —my

Ew = 2.20
e (220)
Next, we simply square this and use the triangle function,
2 (3 +mw —mpy)?
W 43
43(|p1* + miy) = 8 + (miy —miy)* + 28(miy — mi)
45|15’]2 =5+ (m%v — m%{)2 + 2s(m%v —my — 2m12/V)
48|p1* = A(8, miy, m¥)
‘We now have the results we desired
1
A2 (§ 2 2
71 = 2208y ) (2.21)
2V
and
§— m%v + qu
Ey=Vs—Ey="—W__"H (2.22)

2V/3

It is best to use a spherical coordinate system with polar angle (—7 < 6 < 7) and azimuthal
angle (0 < ¢ < 27) to express the four-momenta of the incoming and outgoing particles in
the CMS.

13
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Out of these four-momenta one can construct the so called Mandelstam variables 3, ¢ and .
§ is the already introduced square of the CMS energy.

§=(p1+p2)” = (p3+ps)° (2.23)
t=(p1 —p3)* = (p2 — p1)* (2.24)
@ = (p1 —p1)® = (p2 — p3)* (2.25)

One can express all Lorentz invariant combinations of the 4 external momenta in terms of
the particles masses and the three Mandelstam varables above. Two out of these variables
are independent while their sum has the fixed value

3
SHt+a=>) m; (2.26)
1=0

There is however a caveat...

2.1.2. Boost procedure

It has not been stated explicitly, but it is perhaps obvious that the above expressions for the
four-momenta are not Lorentz invariant. Above, they were calculated specifically in the CMS
frame; a frame that is defined such that the initial-state particles have equal energy and equal,
yet opposite three-momentum components. Many of the observable quantities constructed
from the four-momenta are actually not Lorentz invariant. Note that the products for these
momenta and combination of those (Mandelstam variables) are indeed Lorentz invariant. But
the Mandelstam variable are not ,,real “observables we want to study.

For instance some common observables are:

n=—ln [tan <Z)} (2.27)
pr = \/m (2.28)

Er =m? + p% (2.29)

where 7 is the pseudorapidity which decribes the angle of a particle relative to the beam axis.
pr is the momentum transverse to the beam line. Fp is the energy of it.

As these are not Lorentz invariant, they will take different values in so-called ‘boosted’ refer-
ence frames. These are reference frames translated in space, and having a non-zero relative
velocity with respect to each other. The boost concept is extremely important for hadron
collider observables as this is exactly the situation for the initial state partons whose four-
momenta can each be some fraction of the incoming protons four-momenta. Hence, the lab

14
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frame is not the CMS frame and if we are observing non-Lorentz invariant quantities then we
had better transform the four-momenta to this frame. We outline the simple boost procedure
below.

Before we can boost our process we have to remind ourself that we don’t have single particles
with energy S but single quarks with just a fraction of the total energy coming from the
protons. We now perform the boost procedure general momenta p, and p, and then get the
boosted coordinate of 2.23.

Assume you have the following incoming momenta.

Pa = (Eav 0,0, Pa)
Db = (Eba 07 07 _Pa)

We are in the boosted frame so p, = 21 P, and p, = z9P>. Where x1 and x5 are the fraction
of the total energy S. The massless on-shell conditions

(pa)2:E2_Pc?:0
= F, =P,

(m)? = Ej — P7 =0
=Lk =P, =E,

yields then to the following expression

pl = (E,,0,0,ED),

T L2 1 L2 1
=(—FE;,0,0,—FE;).

Py (5131 a 71 a)

We now have to find boost parameters. These parameters contain all information from viewing
one frame from the other [9]. First the relative velocity between the frames

g Do PatB, w2
Eiot ET + EbT 1+ T2

Next is the Lorentz factor v for the frame we want to boost to.

’y:EtOt— E21+Eg :$1+$2
m Etht - p%ot 2 V122

To boost the system along the z-direction we have to perform the LT (Lorenz Transformation)
in that direction. For our general four-momentum vector we have then

15



2. Calculation Framework

0

Vo =7(a” —va’),
3

pa” =(a® —va®).

After doing that our momenta look like

VI
Pa = $17,0,0,$17 5

V'S V'S
Py = 1'27,0,0,—21?27 .

The coordinates 2.23 then result in the form

== @ 0.0. —x @
2 9 2 9 )
k= (7 (Ew —vPw), éﬁ sin 6 cos ¢, 785 sin @ sin ¢,y (P — UEw)> ,
PH = (7 (Eg —vPp), —fﬁ sin 6 cos ¢, —\fﬂ sin @ sin ¢,y (Pg — ’UEH)> (2.30)
with
Py = \ggﬁcose,
P 84 my, —my,
w — 2\/5 )
Py = —\fﬂcosﬁ,
§—m124/+m%]
By =2""w Ty
2y/s

We can now move to the main part of the calculation of the cross-section, the calculation of
the matrix element squared.

16



2.2. Calculation of the Tree-level process

2.2. Calculation of the Tree-level process

Figure 2.1.: Tree-level process

First we consider the tree-level process
alp,7) +7 (', 7') = V(k,A\v) + H(pn). (2.31)

where V = W*/~. For the WtH production we include ¢ = u,c and ¢ = d,s. We neglect
the fermion masses mgy, my, S0 as a consequence, the fermion helicities are conserved in lowest
order which means the matrix elements vanish unless 7, = -7y =7 = £1/2.

The matrix element M obtained with the feynman rule in section (A) is the following:

62 T ,
IaVIVVH ok (v wru(p). (2.32)

6_
- 2
s — M2

where s = (p+p')? = (pg + k)%, we = 3(1£75) and €}, (A\v) is the polarization vector of the
boson V. The coupling factor are given by

Goa W = Var (2.33)
= o )
“ \@SW
Mw
IWWH = —— (2.34)
Sw
2
The weak mixing angle s,, is defined by s%, = sinfy =1—¢c2 =1— %—Vg’ Vyq is the CKM
zZ

matrix element. .,
We now go through the calculation of ‘./\/l‘ .
(Just to shorten the formulas: 7 = v(p’) and u = u(p).)

‘MO_‘Q = a®V'Fyw_uutyw_'
= aP6Fel 1 tr(T (1 — (L + 35 )u)
= etel (T30 — 5 (1~ 35))
= etel tr((F — m(L—15)(+ mn(1 —75))

m=0 a%*vue;%tr((ﬁ%m) — (Fystn)

17



2. Calculation Framework

2,7
€
99q'vIVVH

with a = SCME

We use (d is the dimension)

tr(ys) = tr(yuvwys) =0
tr(y' Py = —diet?
tr(v'y"uyPy?) = d(g" g — 9" 9" + g/ g"")
1
a? v“ 2757“(19'” D7 (VoY Yorr) — 2707 (VoY Yo o Vs))

d :
- G‘QGV“ﬁVV 2( ,upl/ - plapagﬂv + plz/p,u + 2p/ppafp,ual/)

We now form the sum over the polarizations of the boson V. The summation over the color
and the spin is included later because it is just an overall factor of %

Z ‘MO | - CL2 Z 6\/ 6V2 ,upl/ - plapaguv +p/yp,u + 2.plppo-ﬁp,ucrl/)

d ngv ,
- §a2(—g’“’ + =)W P = PP G + PP+ 0D €ppion)
d
= =500 0" — " Vo V0 + 0P,
1 .
— 2 (R k) = P op KR + (W) (k) + i D R K €y ))

Now we will use, that (—g"” + kZ’g”)gW = 3 to get rid of the second term in the first and
second line.

1 : o v
7(2(])/]?)(])]{) + Zp/pp Kk 6p,ucrz/))

d . (o2 vV
> Wo| =50 2((p'p) — 3(0'p) + W'p) + i D7 € pov g’ — p

da2 . g v . g v
= —@(—(p’p)k2 + i 7 k" kpepuon g™ — 2(0'k) (pk) — ip" p7 k' ke puov g™

The e-Terms cancel each other and in order to get the final result we use

18



2.2. Calculation of the Tree-level process

2
(SMV + (t — M) (u— M)

The result for |./\/l+\2 is the same, except for Gyqv 18 replaced by g; v The entire matrix
element is then given by

(Mol = [M )+ (Mg |

Now we can use the definition of the phase space (2.19) and the definition of the cross section
(2.8) to finally get to the differential cross section for the tree level

(sMF + (t = M§)(u — M7))

do  oa?g? - 1
o - 478]\‘4/‘;:;((9;21‘/)2 + (gq’qV) JAZ (M, M, 5)

with a = %. This is the same result as the one published in the paper of Coiccolini [3].

Now we put everything together to get the full matrix element squared.

1
o= /dxl/dm/d% 37 [far (w1, Q%) iy (w2, Q7)) Vy3NE (M, M, 5)
q1,92
az Gova (sM{ + (t = M) (u — M)

48 M282(\fsw) (S_M‘Q/)Q (2.36)

The written-out sum over the quarks looks like:

> [far (21, Q) fay (22, QD] Vi = (fulr, Q) f(w2, Q) + f5(21, Q) fulw2, Q)
a2 + fa(w2, Q) falw1, Q) + falws, Q) fal1, Q))V;2
+(fs(x17Q)fE(x27Q>+fs($17 )fc(x% )
+ fo(2, Q) fo(a1, Q) + fs(w2, Q) fe(w1, Q))VA
+ (fe(21, Q) fz(22, Q) + fe(21, Q) fa(z2, Q)
+ fe(z2, Q) f3(21,Q) + fa(z,Q) fa(x1,Q)) Vi
+ (fulz1, Q) fs(x2, Q) + falz1, Q) fs(x2, Q)
+ fu(e1, Q) fs(@1,Q) + falr2, Q) fo(x1,Q)Vis  (2.37)

This sum includes all combination possible for W=.

To actually integrate our cross section we will use the Monte Carlo method. We will now give
a short introduction of this technique.
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2. Calculation Framework

2.3. Monte Carlo integration

The basic idea behind the Monte Carlo method is to basically evaluate as much points of the
function we wish to integrate and sum all these values and average it by the number of points
calculated.

To illustrate the method we demonstrate it for one dimension. We regard the integral

b
7= / f(z)dx (2.38)
where f(x) can be any arbitrary function. The average value of f(z) is

1
b—a

f= T. (2.39)

So we can write the integral as

I=(b—-a)f (2.40)
We now choose n random points inside the interval of integral [a, b] to estimate f
Fr 3 fw) (2.41)
- Z;). .
i z

With this we can now approximate our wanted integral,

7~ 0= > Flw). (2.42)
=1

n

That is the fundamental Monte Carlo method.
We now want to estimate the standard error of the Monte Carlo method. The variance can
be expressed as,

N

% > Var(f(@) = L2 > (flz) — () (2.43)
=1 ;

f2> - <f>2) ) (244)

Because of the independence of the variables the appearing covariance is zero. The (f?) and
(f) are given below

(f) =3 2 Fl@) (2.45)
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2.3. Monte Carlo integration

and
1 N
2\ _ 2.
() =5 ;f (7). (2.46)

In our Monte Carlo integration we will use the Monte Carlo algorithm Vegas [13] which uses
importance sampling as a variance-reduction technique.
With the cross-section fully computed we now arrive at the discussion of the NLO corrections.
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3. Sudakov logarithm

In the explicit one-loop calculation of our process we encounter the so-called Sudakov loga-
rithms. They are normally negligibly small, but in the high energy limit they are large enough
to require more careful investigation [19]. We will find the following Sudakov logarithms:

As(M2) = 2% In? <_‘jw_2“> (3.1)
A(M2) = 21£1n2 (_’jw_f) (3.2)
Ag(M?) = 22 In? (W) (3.3)
As(M2, M2) = éln <_i\4_fi€> In <_i\4_22i6> (3.4)

where we also include the Sudakov logs with ¢ and w.

In the high-energy limit, s > My, and we effectively have My, ~ 0. Here, the Sudakov logs
are at the infrared (IR) limit of EW corrections. We will now try to find out how they appear
and what the origin of them is. This search begins with an examination of all scalar integrals
appearing in the Passorino-Veltman reduction of the tensor integrals encountered at one-loop
(see Appendix C). We will neglect the discussion of the Ay integral because it is relatively
clear that no Sudakov logarithms come from that integral.

Note that we will later use the identities

3.1. High-Energy Limit of the B, Integral

In Appendix C.1.2 we introduced the general solution of the By integral

2

% +2 —In(p?) + Z [% ln(% _ 1) —In(vy; — 1)} + 2ln,u] (3.8)
i=1

Bo(p*, Mo, M) =

(2
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3.2. High-Energy Limit of the Cy integral

with

p? — ME+ M2 £+ \/(p2 — M? + M3)% — 4p2(My)
2p? '

V1,2 =

The interesting case for the By integral is when p? = §,%, 4. If we take that limit the scalar
integral reads

. L
Bo(, Mo, My) = = +2~In < S;ﬂ “) . (3.9)

This shows that no Sudakov logarithms appear so we can safely neglect By for the rest of the
calculation.

3.2. High-Energy Limit of the (), integral

As shown in Appendix C.1.1 and Section 3.1, the Ay and By integrals contain no Sudakov
logarithms. The next logical step is to take a closer look at the Cy integral to identify the
Sudakov logarithms hidden inside. Therefore, we assume the limit § > m; where ¢ = 0, 1, 2.
We also assume that all the masses are real and that the momenta are on-shell. With these
conditions all the n-functions in D.1 vanish. The only terms left are the dilogaritmic func-
tions. The best way to handle the big arguments inside the dilogarithm is to look at the
separate parts first.

With our assumption for the Cy function, D.1 becomes

2
510D 1 . (Yoi —1 . [ Joi
Co (P10, P20, Mo, mima) = az [Z [L12 <y0y‘ > — Liy <zo )H : (3.10)

i=0 Lo==%

Again, we have used the variables

1

N 2 2 2 9 2 2 2
Yoi = m [ij(ij — Dji — Dij +2m; —mj —mg) ,
j
9 o 9 2\ | Afn2 2 2
— (Pei — Pij)(mj —my) + &(pj, — mj + mi)]
zix = [Ph — m) +mi £ &,

Uit = Yoi — Ti+,
(22 A2 A2
o = “(Plo’Pmapzo)

Q; = m(ﬁ?k,m?,mi)(l + ieﬁ?k).

We use our limit p3; = (Po—p1)? = 8 > (m?2, [p3,, [P30]) on the arguments of the dilogarithmic
functions.
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3. Sudakov logarithm

= K(p %0 5 p20)
do = k(8,m3,m3) ~ (s — (m? +m2))(1 + ies)
a1 = K(pg, m3, mg) (1 + iepy) ~ 0
ba = K(Pio, mp, m7) (1 + iepiy) ~ 0

For:=0,7=1and k =2 we get

[§ — P53 — Bt + m§ — m]]

Cn>\|—l

Yoo ~

—mi —m3 F (8 = (mi +m3))]

P:\H

Yor N — [§— P53 — pr +2m}

m

Yo+ 6
Yoo § 2 1 S 2 7'['2
Lo [ — |~ |In| — Lio(l) =—=In | — —.
<t () = (n () +ma =3 ((55)) +%

The first term in the final equality is the searched-for Sudakov logarithm. We have used the
following identity of the dilogarithmic function for z > 1:

~1
=Lip <y°0 > ~ Lis(1) 4 Lig(0) =

2

. Y
Lig(2) = 373 ln Z k222

We also also check the other two cases i =1,j =2x,k=0and i =2, =0,k = 1.

L 12 o .o 2 2 2 52 a2 2 2 2
Yo = 5 5 [530 (B30 — Plo + 2mi —m3 —mg) — (io — 8)(m3 — mg) + a(—m3 +mg)]
20
LS JUC S 2 2 2 52 a2 2
Y1£ = 5 52 [920 (D30 — BTo — 8 + 2mi — mj —mg) — (Pip — 8)(m3 — mp) F aen]
P30
. (Yor —1 : 217
=Lig (y > ~ Lig [AQ 20 5 5 5
Yi+ Do t mo mj + k(D39 M3, M)

=Li, <y°1> ~ Liz(0) = 0
Y1+

The result for the last case is the same as for the second under exchange of pog with p1g and
mo — mi, my — mg. The complicated Cjy functions are now in such a simplified form that
we can directly see the Sudakov logarithm.

R 1 —5—ie\\? . .
Co (P10, P20, Mo, M1M2) = % <1n <mg>> + L(p20, m2,mo) + L(pro, m1,mo) (3.11)
0
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3.3. High-Energy Limit of the Dy Integral

with
2p2
L(p,mb,m):LiQ[A a = :|
¢ ¢ P2+ mi —m2 + k(p2, mZ, m?)
2p2
+ Lip | = a
’ [pz +mj —m2 — n(pg,mz,m@]

This is the same result as presented in [5]. Now we have the most general result for the high
energy limit. However, we still have to consider the case where m3 = 0, m? # p? and m3 # p3.
We simply just present the result introduced in [6].

A 1 —5 — 1€ —5 — i€
ol 58,0 mtom) ~ 5 (1n (222 (25

1 my
2 2
UV R B A ) R
The next step is now to organize the different Cjy functions according to the different arguments
appearing. By changing the arguments in 3.12 and using the identities

Co(Pbs Dby Pes May M, Me) = Co (P Pes Pas M, Me; Ma),
CO(paa Db, Pc, Mg, My, mc) = CO(paa Dc, Py, Mp, Mg, TTLC), (3-13)

we can find nearly all Sudakov logarithms. We encounter some C functions where we cannot
use equation 3.12 but those will be explained when they appear. The Mandelstam variable §
in these Cy functions can also be simply exchanged with other two variables ¢ and .

3.3. High-Energy Limit of the D, Integral

In the calculation of the box diagrams we will encounter the scalar four-point integral, Dy
where we will only use the high-energy limit. The general definition of Dy is

2 2 2 2
DO(p107p127p237p307p207p137 m07 m17 m37 m4) =

D
1
u4—D/d a . (3.14)

ir? (@® = mg)((¢+ pr0)? — m])((q+ p20)* — m3)((q+ pso)* — m3)
Again we want a result for the limit

8,%,1 > p1o, P12, P23, P30-

We won’t go through the calculation step by step but use the result presented in the Roth
paper [6]:

Do(k$, k3, k3, k3, (k1 — k2)?, (k2 — ks)?, m§, mi, m3, m3) =

5 [ln <—§ - ie> +7 } (3.15)
1 1
+ ;Co(k%, (k1 + k2)?, (—k2)?, my, mg, ma) + gco(kg, (ko + k3)?, (—k3)?, ma, my, m3)

1 1
+ gOo(k%, (k3 + k)2, (—k4)?, m3, ma, mg) + gCo(k?Z, (kg + k1)?, (—k1)?, mo, m3, my)
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3. Sudakov logarithm

Later we will choose that

This expression holds for all non-singular cases, in particular for arbitrary masses. The other

cases can be done at the level of 3-point functions.

It is also quite useful to know that we can change the order of the arguments in Dy again
DO(p%7p37p§7p4217 512, 523, mga m%7 mg7 m?‘)) - DO(pgapgvp?pp%7 523, 512, m%a m%v m%a mg)a

2 .2 2 2 2 2 2 2 2 .2 2 2 2 2 2 2
DO(p1,p2,p3,p4, S12, 8237m07m1>m27m3) = DO(p4ap37p27p17 512, 523, My, m37m27m1) (316)

with

s12 = (p1 +p2)27
_ 2
s93 = (p2 + p3)”~.
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4. NLO Triangle Corrections and Their
Sudakov Formfactors

T1 G1 N1 T1C1 N2 T2G1 N3

T2 C1 N4 T3 G1 N5 T3 C1 N6

Figure 4.1.: 5-, t- and @- channels of the tree level process

In this section we will examine the triangle topology of the one-loop corrections. We have
the process u(p1) + d(p2) — H(p3) + W*(ps). As always we can arrange the 2-to-2 process
into the standard §, f, or @-channel. We will now go through each of those channels and
discuss its NLO triangle corrections. All the results are given after the Passarino reduction
and inserting the scalar integrals where we set Ay and By to zero because they don’t give rise
to Sudakov logarithms (as shown in C.1.1 and 3.1). Addionally, we set all quark and lepton
masses to zero. In the last step all the particles are put on-shell but we leave pg = Mg and
p? = M}. This way we can either choose to set the masses of the Higgs and W-boson on-shell
or to study the process with the further decay of the Higgs and/or the W-boson. For this
study appendix B can be used.

For the loop calculation we used the Mathematica [10] package FeynCalc [11]. The end results

are always given in polynomials of the so-called standard matrix elements [1].
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4. NLO Triangle Corrections and Their Sudakov Formfactors

Standard Matrix Elements

*

(v € (pa)) " ulpr)
(v pa) A ulpr)-(p3 - £* (pa))
(v p3)-(v - pa)-(v - € (pa)) 7" ulpr)
p2)-(7 - p3)y"ulpr)-(p2 - € (pa))
( )
(

u(p1)-(p2 - € (pa))
7

Y P4 7

p4)v(p2)-(v - p3).y"-u(p1)

In total there are 66 possibilities for triangle diagrams whereas ‘triangle diagrams’ are defined
as Feynman diagrams containing a loop with a three particle vertice. We will go through all
8 topologies and point out the emerging Sudakov logarithms coming from the Cj functions.
It is important to point out that most of the diagrams vanish because of the zero quark/lepton
masses. This is because the vertex factor of the ffH is proportional to the lepton mass [1],

e my

9ffH = — (4.1)

2sw Mw

4.1. s-channel

4.1.1. Topology |

In the first topology the correction of the WW H vertex is treated. After setting the quark
and lepton masses to zero, five different diagrams remain.

Figure 4.2.: Non-vanishing triangle diagram of the §-channel first topology

In all of these diagrams we get the following Cy function:

CO(p;Z)?p?h §7 M127 M227 ME?) - CO(p?b '§7p§7 M227 M??u M12)

= — |[In
23 M2

) - 2L(p3, M2 M) + L3, MyMS)

28

25

just Sud log 1 ] 2 (—g—iE
= — 1n

M3

) 1= Ag(M3)

(4.2)



4.1. $-channel

Here we used the high energy assumption of the Cy function 3.12. The total matrix element
for the first topology is then

Mj = [AiAs(Miy) + A1 oAs(M3) + Ay sAs(M) + Ara] My
+ [AQJAg(M%V) + AQQAg(M%) + A273A§(M12_I) + A2’4] Mo,
—+ [A6’1A§(M‘%V) =+ AG,QAg(M%) + A6’3A§(M12{) —+ A674] M6 (43)

with the following formfactors:

Aig = (PMw Vi (cfy (—5MS + 2M5 (TM7 + Mg, + 6MZ +75) — M3 (13M}
+2M7 (TMf, + TMZ — 23) — 10Myy, + 2M7, (10MZ + 78) — 10My + 14M3Z5 + 135%)
+2 (M3 = 5)" (2M3 + 6MF, + M3 +25) ) — 5MSsy + 203 (7shy (M7 + 3)
+MP, (shy — 1)) + M3 (—13Ms}, + M7 (Mg, (4 — 14s}y,) + 43s%y,) + 10M;, s3,
F2MF3 (2 Tsty) — 135%3) + 2 (MF - 3)° (28 (M} +3) + My (65F — 1)) ))

/ (2f23%V (M2, — 3) (Mgf — M2 (M} +8) + (M2 - §)2>>

Aip = (P My Vi (—5MS$ + 2Mg (TMF + 6Myj, + My + 78) — M3 (13M}
+2M7 (TMf, + TMZ — 238) — 10Myy + 2M7, (10MZ + 78) — 10My + 14M3Z5 + 135%)
+2 (M7 - 8)® (2M? + MPy + 6M3 + 2§)))

/ (2v/sty (M —3) (30— 2043 (13 + 8) + (45— 5)°))

A 3a?MH* My Vi,
1,3=— -
2\/55%[, (MI%V — 5)
o? My (¢, + st +1) VY
A1y =

YT T e, (M 9)
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4. NLO Triangle Corrections and Their Sudakov Formfactors

Agy = — (PMw Vi (cfy (4M5 — MS (22M7 — TMy, + 17 (M3 + 3)) + M3 (32M}
+M7 (31M7, + 3 (3 — TM3)) — 30Myy, + M3, (60M% + §) — 30My + 29M%5 + 2757)
—M3 (14MJ + M7 (23M7, — 33M% + §) + M3 (30Myy, — 2M7, (30M3 + 235) + 30M7
+26M%38 — 348%) + § (—30Myy, + My, (60M7 + 233) — 30My + TM33 + 195%))
=5 (M} = 5)" (3M3 — M +8) ) + sfy (AM5 + M§ (~22MF + TMF, — 175)
+M5 (32M} + M7 (3LMG, + 38) — 30Myh, + My, 8 + 275%) — M3 (14MJ + Mj (23M7, + 3)
M3 (30Miy — A6MF,§ — 343%) + 5 (~30Miy, + 2305 +195%)) — 5 (MF — 5)° (3MF, +3) ) ) )
/ <\/§sév (M, — 3) (M§ —2M3 (M] +38) + (M} — §)2)2>
Agy = (PMyw V) (—AMS + M$ (22M3 + 1TM2, — TM + 178) — M (320}
+M7 (—21M, + 31M7 + 33) — 30Myy, + My, (60M7 + 298) — 30My + M358 + 275%)

+M3 (14M5 + My (—33Mj, + 23M7 + 3) + M7 (30Myy, + My, (265 — 60M3) + 30My
—46M338 — 345%) + 8 (—30Myy, + My, (60M7 + 78) — 30Mz + 23M 338 + 195%))

+5 (M3 = 8)° (~ My +3M +3)) ) / <\/§sév (M — ) (M —2M3 (M +5) + (M3 — §)2)2>
Azs =0

502 Vg (M3 (3 (B + s +1) + Misiy) + (M3 — 8) (3 (e + 53y + 1) — Miysiy))

2.4
V2ssty (M3, — 8) (Mf —2M3 (M7 +8) + (M7 - 5)°)

Agx = (50 Myw Vg (cly (Mg (M7 — My, + M3) — My (Mj + M (3Myy, — TM7 + )
— (M, — M) (M, — 2M3 + 33)) — M3 (MJ + My (3My, + 5M% — 65)
+ M7 (—8Mjy, + 2M7, (8M3 + §) — 8M7 + 6M35 + %) + & (M7, — M3)
(AMZ, — AM3 +35)) + (M2 — 8)° (M} + MZ (TM7, — 3M% + 8) + (M3, — M3)
(2M3, — 2M2% + 38))) + sty (MS (M} — M3,) — M3 (M} + M7 (3MF, + 3)
—2Myy — 3Mpy3) — M3 (MS + 3M{ (M, — 28) + Mg (—8My, + 2M, s + 3)
M5 (AMF, +35)) + (MF = 5)° (MY + M7 (TM, +8) + My (205 +5)) ) ))

/ <f28‘év (M7, — 5) (M3 = 2M3 (M3 + ) + (MF — §)2)2>
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4.1. $-channel

Aga = (50” My Vi (Mg (MF + My, — Mz) — Mg (M + M (=7Mg, +3M3 + 3)
— (M3, — M) (2M§, — 2M7 — 38)) — M3 (M + M (5My +3M3 — 65)
+M (—8My + 2Mf, (8M7 + 33) — 8M + 2M35 + 8) + 5 (Mg, — M3)
(4My — 4ME - 38)) + (M} — 3)" (M + M3 (—3M3, + TM3 + 3) + (M — M3)

(2M2, — 2ME — 3)))) / (\/is%V (M3 — 8) (M — 203 (M3 + 5) + (M3 - §)2)2)

50’ M Vi (M3 (M sy — 23 (6l + sy + 1)) + M3 sW (38— M3))
7 fss%v( s) (M§1—2M§ (M42+s ) )

4.1.2. Topology Il

The second topology of the §-channel is the NLO correction of the qqW vetex. Again just
five diagrams remain.

Figure 4.3.: Non-vanishing triangle diagrams of the $-channel second topology

Unlike before we don’t end up with just one type of Cy function. We will first discuss all
types and then present the results and give the matrix element with the relevant formfactors.

The first diagram in figure 4.3 gives

1
Co(0, 3,0, M2,0,0) = —— In’ <M2> = As(01?). (4.4)

Again we used equation 3.12. The next two diagrams give the scalar integrals

Co(0,5,0,0, M>,0),
Cy(0,5,0,0,0, M?). (4.5)
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4. NLO Triangle Corrections and Their Sudakov Formfactors

Both of these Cy functions are divergent. They also don’t give rise to Sudakov logarithms so

will neglect them.

For the last two diagrams we have used the solution of the Cj function with m% =0,
1 3 8
C(OSOOMl,Mz) —In W In ﬁ%

= As(M?E, M?2). (4.6)

Now the total matrix element is

(4.7)

with the following Sudakov formfactors:
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4.1. $-channel

Q2 M3 (85t — 182, +9) Vi, (~MZ — M2 + M3+ +)°
18V2c2,sh, (M2, — §) (M2 + M2 —f —a)?

Bi1 =

Bia = (&®Mw (12 (sfy — 1) M$ + (36 (s — 1) M7 + 9MZ — 10MZsjy, + 125s7, — 125

+M§, (9 — 8sfy) — 365yt + 36t — 365,01 + 360) M3 + (36 (sfy, — 1) M}
((SS%V —9) M, + M7 (10s3, — 9) — 12 (sfy — 1) (8 — 3(f +4))) M7 + 6M
—4Mp sty + 2MZ3s7y + 367yt — 361 + 3657, 4° — 360% — 3MZ5 + My (6 — 8sjy)
—18M2E + 20M2si,t — 24855, 1 + 2451 — 18MZ 10 + 20M 2 s34 — 24883, 0 + 2450
+72s3 b0 — 7200 + My (12 (s — 1) Mz + § (4sy — 3) +2 (8siy — 9) (4 0))) M3
—125%,8% +128% — 125,03 + 1203 — SMi 553, — AM}35%, + OME, 42 + 9M 22
—8Mp sht? — 10MEs3 12 + 1255382 — 1258 + OME, 42 + IMZ0? — SM7, sy a2
—10M2s%,02 + 1285302 — 12502 — 3653, 0% + 36t0% + 6 My} 8 + 6 M35 + 12M4 (st — 1)
—6 Myt — 6 Myt + 12M3, M2t + 8Myy sty t + AMy syt — 12M3, Mz st
—AMZ 853t — 2M 2353t + 3MZ 5t + 3ME5t — 6 M4 — 6Myi + 12M3, M2
+8 M syt + AM syt — 12M2, M2 syt — AME, 853,40 — 2M 25531 — 3655121
+361%0 + 3MF, 50 + 3M350 + 18 M3, ta + 18 Math — 16 M7, 53,10 — 20M% sy ta
124853t — 24500 4+ M ((9 — 8812/[/) M3, + M3 (9 — 1OSW)
+12 (sfy — 1) (8 = 3(t+@))) + M7 ((6 — 8siy) My + (12 (s — 1) Mz + § (4sfy — 3)
+2 (853, —9) (£ +0)) M7, + M% (6 — 4shy) + 12 (s3, — 1) (£ + @) (3(F + @) — 25)
+M7 (3 (253, — 3) +2(10s5, — 9) (£ +2)))) Vi)
/(6\f(MW—s)sW (M2 + M} — - )2)

a? My (83%[, — 183124, =+ 9) Vi
18\/50%,3%1, (MI%, — §)

B3 =

o? My M% (8shy, — 18s3, +9) Vir, (—M3Z — M} + M% +1+4)

BQ,l - N 5
V2, sty (ME, — 8) (M3 + MZ — 1 —a)

By = (o Mw Vyq (Mg (M (3 — 4siy) + M7 (3 = 2siy)) + MZ (Myyy (3 — 4siy) + M7 (3 — 257y ))
—8Myy sty + 6 My, + AME, st + AMG, 830 — 3M, 1t — 3M7, 4 — AMysh, + 6 M
+2ME sl + 2M sty — 3MBE - 3M3a)) / (3V2sly (M - 5) (MG + ME — i —a)°)

Bys = (> My Vi (M35 (8syy — 1857, +9) — 6ciy (M, (253 (M3 + Mj — — ) + 3 (253 +3))
M35 (3 - 4s%y)))) / (18V2cR ssty (M7, — 8) (M3 + MF — @) (MF + M} 45—~ @)
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4. NLO Triangle Corrections and Their Sudakov Formfactors

Buy = = (* M (8siy — 18syy +9) Vg (M + 2M (M — 2M7 — £ — i) + My
—2M3 (2M7 + 1+ @) + 3My + AMGE + AMZa + % + 200 + 0?))
/ (9v3eh sty (383 — 5) (043 + a3 — i - 0)")

By = (o®Mw (=6 (sjy — 1) M$ + (=18 (s — 1) M7 — IMZ + 8Ms3y, — 63sjy + 65
+ M7, (1083, — 9) + 18sfy,t — 18 + 18sfy, 4 — 18a) Mg — 2 (9 (sfy — 1) My
+ ((9 — 10s3y,) M3, + M2 (9 — 8sy) + 6 (s3y — 1) (8 — 3(f + 1)) M7 + 6M
—4M3 sy — 2MZ3s5y + 9syt® — 982 + 9sfya® — 90% + 3MZ38 + My, (6 — 8siy)
—OMZt + 8MZ syt — 65531 + 63t — IME0 + SME sty i — 635,04 + 630 + 1853t
—18t0 + Mg, (12 (sjy — 1) Mz + 8 (3 — 4siy) + (10s3y, — 9) (E+2))) M3 + 65yt
—6% 4 65%4,0° — 60° + 24M, 85%, + 12M %553, — OME 2 — OM2E% + 10ME, 5%,
+8ME st — 655,12 + 6512 — OME, 4% — OMZa> + 10M7, 83,02 + 8MEséya?
—65s3, 0% + 6507 + 18sh, 10 — 18t4% — 18 My 8 — 18M 45 — 6MY (sfy, — 1) + 12M ¢
+12MAE — 24M2, M2T — 16 M7, 52,1 — 8M 5%, + 24 M2, M2s%, & — 8 M2, 5551
—AM% syt + 6Ma, 5t + 6 M2 5t + 12Mya + 12Mza — 24ME, MZa — 16 My, s34
—8My st 0+ 24M7, M2 st i — 8Mp, 5530 — AM%8sy 0 + 18siy, 420 — 18120 + 6 M3, 50
+6MZ 50 — 18 M3t — 18MEta + 20 M, sttt + 16 M2 sty ti — 12585, 10 + 125t0
+M7 ((10sfy, — 9) M, + M7 (8s3y, —9) — 6 (sfy — 1) (8 — 3( +2)))
+2M7 ((8sfy — 6) My + (=12 (s — 1) M3 + § (4siy — 3) — (10sy — 9) (t + @) My
+M7 (453, — 6) +3 (shy — 1) (£ +@)(28 — 3(f + )
+MZ (5 (253 — 3) — (8s% —9) (P +1)))) Vi) / (3\/5 (M3, — §) sty (M2 + M2 — 1 — a)3)

Byz = (a®Mw Vi (M3 (— (36¢, + 8sjy — 1857y, +9)) + M3 (—2M7 (36¢f, + sy — 1853y, +9)

+6ciy (Miy (4sfy +3) + Mz (3 — 4sjy) — 6(3 — 2( +2)))
— (8syy — 18sfy +9) (Mz + 5 —2(f+))) — M{ (36¢fy, + 8syy — 185y, +9)
+M§Z (6¢5, (Mg, (455 +3) + MZ (3 — 4sy) — 6(3 — 2(f +2)))
— (8syy — 18sjy +9) (MZ + 8 — 2(f + @) ) + 24cqy My 3sty + 36¢5y M8
—24¢}, M, st — 24ck, M3, sty — 18¢h, Mt — 18¢3, M, 4 — 48ch, M2 35y,
+36¢2, M25 + 24¢3, M2 st + 243, M2 shyt — 18ch, M2t — 18¢h, M + 36¢3, 5t
+36¢2 50 — 36¢5 12 — T2ch 0 — 36¢h,0°2 — 16 M2 555, + 36 M 2353, — 18M 25
+8MZ syt + 8ME sty — 18M2s¥,t — 18 M2 siy i + OMat + IM20 + 85s5y,t
+83s7y 1 — 18355, 1 — 183s%,1 + 95t + 950 — 8siy 2 — 1654yt — 8s§y4° + 185312
+36siyta + 18s,4° — 9% — 18ta — 947%))

/ (18\/56%4/3%[, (M2, — ) (M2 + M2 —f—a)* (M2 + M2 +5—1— a))
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4.1. $-channel

Bs1 = — (o®Mws (8syy — 18sqy + 9) Vi (M3 + 2M3 (M} — 2M% —t —4) + M}

—2M3 (2M7 + 1+ @) + 3M7 + AMGE + AMa + % + 200 + 0?))
/ (9\/§c%VséV (M3, —3) (M3 + M} —1— a)f”)

Bsg = (o®Mw (=6 (sjy — 1) M$ + (=18 (s — 1) M7 — IMZ + 8Ms3y, — 63sjy + 65
+ M7, (1083, — 9) + 18sfy,t — 18 + 18sfy, 4 — 18a) Mg — 2 (9 (sfy — 1) My
+ ((9 — 10s3y,) M3, + M2 (9 — 8sy) + 6 (s3y — 1) (8 — 3(f + 1)) M7 + 6M
—4M3 sy — 2MZ3s5y + 9syt® — 982 + 9sfya® — 90% + 3MZ38 + My, (6 — 8siy)
—OMZt + 8MZ syt — 6553yt + 63t — IME0 + SME sty it — 63551 + 630
+18sjytt — 1810 + My (12 (sfy — 1) Mz + 8 (3 — 4siy) + (10sfy, — 9) (E+4))) M3
+65%,1° — 615 + 653,0° — 60° + 24My, 855, + 12M 3553, — IMZ 2 — 9M2E2
+10ME, 382 + 8 M2 s, 1% — 635342 + 6512 — OMP, 4% — OMZa* + 10M3, s3y 02
+8MEs?, 0% — 63s%,4° + 650° + 1853, 0% — 18ta* — 18 My, 5 — 18 M55
—6M} (3, — 1) + 12Myy ¢ + 12M 3¢ — 24M7, M4t — 16 My, syt — 8My st
+24ME, M2 5%t — 8MR, 55yt — AMZ3s%,t + 6 M7, 5t + 6M25t + 12My 4+ 12M i
—24 M3, M%ia — 16 My, syt — 8My sty i+ 24M7, M sty i — 8Mi, s34 — AM2 55,4
+18s3, 120 — 18820 + 6 M7, 50 + 6 M2 50 — 18 M 0 — 18 M2ta 4+ 20M7, 5%t
+16MZ sy ta — 128s5y,t + 128ta + My ((10s5, — 9) My, + M7 (8sfy — 9)
—6 (sfy — 1) (5 — 3(f+ 1)) +2M7 ((8sfy — 6) My, + (=12 (sfyy — 1) Mz + 5 (4s3y — 3)
— (1083, — 9) (t + @) MA, + My (45, — 6) + 3 (sfy — 1) (£ +0) (28 — 3(f + 0))
+MZ (5 (253 — 3) — (8s% —9) (P +1)))) Vi) / (3\/5 (M3, — §) sty (M2 + M2 — 1 — a)3)

Bs s = (a®Mw Vi (M3 (— (36¢, + 8syy — 18s7y, +9)) + M3 (—2M7 (36¢f, + sy — 1853y, +9)

+6ciy (Miy (4sfy +3) + Mz (3 — 4sjy) — 6(3 — 2( +2)))
— (8syy — 18sfy +9) (Mz + 5 —2(f+))) — M{ (36¢fy, + 8syy — 185y, +9)
+M§Z (6¢5, (Mg, (455 +3) + MZ (3 — 4sy) — 6(3 — 2(f +2)))
— (8syy — 18sjy +9) (MZ + 8 — 2(f + @) ) + 24cqy My 3sty + 36¢5y M8
—24¢}, M, st — 24ck, M3, sty — 18¢h, Mt — 18¢3, M, 4 — 48ch, M2 35y,
+36¢2, M25 + 24¢3, M2 st + 243, M2 shyt — 18ch, M2t — 18¢h, M + 36¢3, 5t
+36¢2 50 — 36¢5 12 — T2ch 0 — 36¢h,0°2 — 16 M2 555, + 36 M 2353, — 18M 25
+8MZ syt + 8ME sty — 18M2s¥,t — 18 M2 siy i + OMat + IM20 + 85s5y,t
+83syy 1 — 18353t — 183s%,4 + 95t + 950 — 8sfy 12 — 16sfy T — 8spy i
+18s3 8% + 365y ta + 18sf,4” — 92 — 18ta — 947))

/ (18\/56%4/3%[, (M2, — ) (M2 + M2 —f—a)* (M2 + M2 +5—1— a))
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4. NLO Triangle Corrections and Their Sudakov Formfactors

o? My M% (8shy, — 18s%, +9) Vir, (M3 — M7 + MZ + i+ 4)
9V2chy sty (Mf, —5) (M} + M} — i - a)°

Bg1 =

Byz = (o My Vg (M3 (M, (3 — 4siy) + M7 (3 = 2siy)) + My (M, (3 — 4siy) + M7 (3 — 2s3y))
—8M 5%, + 6 M, + AMZ, 53t + AME s34 — 3MEE — 3M2-1 — 4AM 4 s, + 60
+2ME sl + 2M sty - BMEE — 3M3a)) / (3V2sly (M - 5) (M3 + ME — i —)°)

Bgsg = (®Mw Vg (M35 (8syy — 18spy +9) — 6¢y (M (285 (M3 + M7 — 1t —a) + § (253 +3))
+M35 (3 - 45%y)))) / (18V2ch ssty (M7, — ) (M3 + MF — £ — @) (MF + M} +5 — @)

4.1.3. Topology IlI

In the third topology only three non-vanishing diagrams appear. The first one will be ignored
because only the Ay and By functions occur in its loops. The other two give constant factors.
We will add these terms because of the Sudakov terms appearing inside the mixed terms
within the matrix element squared.

Figure 4.4.: Non-vanishing triangle diagram of the s-channel third topology

2a2MWde
\/53%,[, (—§ + M‘%V)

2a2MWv;d
\/ﬁs%‘, (—§ + M%,)

2nd diagram = 1

3rd diagram = 1

Then the matrix element for the third topology looks like

4042MWVJd

M, =
= \ash, (=5 + M2)

My (4.8)
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4.2. t-channel

4.1.4. Topologies IV and V

For completeness we present the fourth and fifth topology of the s-channel. They vanish for
the same reason as in the third topology.

H”/

Figure 4.5.: Triangle diagram of the s-channel fourth and fifth topology

4.2. i-channel

4.2.1. Topology |

Figure 4.6.: Triangle diagram of the t-channel first topology

This diagram is just an example for the first topology of the t-channel because the vertex qqH
4.1 always appears inside these diagrams. We can immediately move to the second topology.

4.2.2. Topology Il

Figure 4.7.: Non-vanishing triangle diagram of the t-channel second topology

These two diagrams are the ones left after setting our masses to zero. Those two give rise to
a new Cj type,

Co(p3,p3,t,0,m*,m?) = Cy(p3, ,p3, m*,m?,0)
= Co(pg,f,(),mQ,mQ,O)

1 —t — e 1 2p2
= —_In?( ——— | + =Li 3 4.9
2t < m2 ) P [p% + k(p3, m2,m?) (4.9)

just Sud log AA(M2)
= ; .
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4. NLO Triangle Corrections and Their Sudakov Formfactors

Now the total matrix element is

+ Co 3] M
+ Cs 3]
+ Ca 3] M4 (4.10)

with the following formfactors:

Ci1 = — (®VoxmMw (M3 (2 — AM7) + M3 (8M + M7 (—3Mg7, — 8t + 44)
F M (=8 + 20 + @) 4+ 28(E — @) + (M] — § + a) (M7 (M, — 24) — M8 +1a)))
/ (Vasty (23 — 1) (M3 (4 - 8M3) + (M} -5 +)°) )

Cro=— (a2MW (3 — 452,) 2 Vi, (M3 (28 — AM2) + M2 (SM + M2 (—3M2 — 8f + 44)
+MZ(—5+ 2t + ) + 2£(f — 4)) + (MF — s+ a) (M (MZ —24) — Mz5 +ta)))
/(18chsW (2M2 — 1) ( (4 — 8M2) + (M2 —§+a)2))

01,3 =0
. V202 VexmMw (M3 (AM7F — 28) — (2MF + ME, — ) (M} — 5+ 1))
2,1 = A ~
sty (2M3 — ) (M3 (41— 8M3) + (MF — 5+ 0)*)
(o QPMuw (3= 4sh)* Vi (M3 (4MF — 20) — (2M3 + MF — ) (M3 — 5 + 1))
2,2 = ~ ~
Ov/2cly sty (207 — §) (M3 (46— 8MF) + (MF - 5 + @)
C2,3 =0
o o?VoxmMw (M2 (AM7 — 2t) — (2MZ + M3, — 1) (M7 — 8+ 1))
3,1 = ~ A
V2st, (207 — ) (M3 (41— 8MF) + (M} — 5+ 0)%)
o a2 My (3 — 4s%,) Ve, (M2 (4M2 — 28) — (2M7 + ME —§) (M} — 5+ 1))
32— A A
18v2ef sty (2M3 — 0) (M3 (40 — 8M3) + (MF — 5+ @)
03,3 =0
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4.3. u-channel

V202 Vexni My (M3 (21 — AM) + (2043 + M, — i) (M} — 5+ )

Cyn = - " 2
sty (207 — ) (M3 (41 - 8M3) + (M - 5+ 0)°)
oo _ 0P M (3 4s3)2 v, (M2 (20 — 4M2) + (2M2 + ME — i) (M2 — 5+ 1))
4,2 = ~ ~
9v/2chyshy (207 — §) (M3 (48 - 8MF) + (MF - 5+ @)°)
C4 3 = 0

)

with

CKMSum = V,de(Vdiqu + Vd’c CTd) + V'L:':s(VS,UVJ,d + ‘/:s,c‘/z:d).

4.3. u-channel

4.3.1. Topology |

Figure 4.8.: Triangle diagram of the u-channel first topology

Again this kind of diagram vanishes because of the qgH vertex 4.1. We can once more move
directly to the second topology.

4.3.2. Topology Il

Figure 4.9.: Non-vanishing triangle diagram of the @-channel second topology

The two non-vanishing diagrams of the @ channel give rise to a Sudakov logarithm with the
Mandelstam variable u inside,
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4. NLO Triangle Corrections and Their Sudakov Formfactors

CO(pgvpgaﬂv Oam27m2) = CO(p§7a7p%7m2a m27 0)

= Co(pg,ﬁ,o,m2,m2,0)

1 —U — 1€ 1_. 2p2
= —In? L 3 4.11
20 < m?2 ) + a2 [p%i/{(p%,mz,mQ) ( )
just S:ud log Aa(MQ)
The matrix element looks like:
M?I = [Dl,lAﬂ(MI%V) + DLQA@(M%)] My (412)
with
2V M3
Dy = — o CMEW (4.13)
\/§SW (Ms - u)
— o? My M (3-253,)° Vi, 14
1,2 = 4 A 2 _ - (4.14)
18\@CWSW (M3 — u)
again with

VoM = Vi aVauVia + VaeVea) + Vis(VsuVia + Vs Vea)-

4.4. Modified Born Process

Finally we can introduce a modified Born process which only includes the triangle diagrams
discussed in this chapter.

MytodBorm = Mo + M} + M}, + M + M;AI + Mf, (4.15)

Later on we will present the result of this matrix element squared.
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4.5. Overview of the | Functions

In this section we will give a schedular summary of all different types of the Cy integral used. Everything in the high energy limit and
with constant factors but we will also ppoint out the Sudakov structure.

Diagram Co ‘ p? p3; ps m3 m? mi Sudakov Log Structure ‘ constant term
s-channel 1 p: p; & M} M3 M3 Ag(M?) 2 [L(p3, M?, M3) + L(pa, M3, M3)]
s-channel 2 0 5 0 M?2 0 O As(M?) 0
s-channel 3 no Sudakov terms

s-channel 4 0 8 0 0 M? 0 no Sudakov terms

s-channel 5 0 S 0 0 0 M? no Sudakov terms

s-channel 6 0 & 0 0 ME M2 Ag(ME, M2) \ 0
t-channel 1 no Sudakov terms

t-channel 2 lp3 &t 0 M2 M?* 0 A (M?) \ +L(p3, M?, M?)
u-channel 1 no Sudakov terms

u-channel 2 |0 p3 a 0 M* M? Ag(M?) \ +L(p3, M?, M?)

suoryoun,y 0, oy} Jo MIIAIOA() G'F



5. NLO Box Corrections and Their Sudakov
Formfactors

As before we will go through the different topologies and introduce all non-vanishing diagrams
and sort them by their topologies. In our calculation we will use the high energy limit of the
Dg scalar integral shown in section 3.3. We will list all different types of Cy and Dy and
give the chosen result, but not the analytic expression of the formfactors. In total there are
around 144 formfactors and 18 constant terms which are each at least half a page long. Since
this would definitely go beyond the scope of this thesis, we just give the general structure of
the matrix elements.

5.1. Topology |

Figure 5.1.: Diagram of the first topology type

As before we can neglect this kind of topology because we set the masses of the quarks to
zero. We move directly to the second topology.

5.2. Topology Il

Figure 5.2.: Non-vanishing box diagrams of the second topology
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5.2. Topology 11

In the second topology we encounter the following Cj integrals:

Co(p*,5.0%,0,m?,m3) = Ag(m?, m3),

Co(p,1,p%,m3,m3,0) = Ay(m3),
Cop*,p'*, 5, md,m},md) = As(m?),

Co(p®,p'%,1,0,m3,m3) = Ay(m?),

where p and p’ are a combination of our momenta p1, p2, p3 and ps. The same holds true for
the masses m;.

The Dy integral are

2 2 .2 2 7 4 2 2 2\ _
DO(p27p4ap37p17t75707m1>m27m ) -

1 A 1
— ;{ R( ,8) + 7T2 — 5 [Af(m%) + Ag(m%) + Af(mg) + Ag(mg, m%)] s (51)
D0(£7p§7 §7p§7p%7p4217 07m%7m%7m§) = Di7£(07m%7m%’m§). (5'2)

With these functions we can solve the scalar integrals from the first and the third diagram
of the second topology. In the second diagram however, we encounter the fact that there are
two zero masses. We therefore have to solve the integrals inside them seperately:

Co<p27p/27t70707m) == dZ’U
C()(p2, §7p/27070,m) = div.

As for those kind of Cj cases before (see 4.5), these functions are divergent and won’t give
Sudakov logarithms so we will neglect them again.
The Dy function appearing in the second diagram then becomes

DO(p%’pZapgap%aﬂ ‘§7 07 Oam%7m§) =
1

~ L RG8) + 2 — % [As(m2) + As(ms)] | . (5.3)

The results are found again by using the equations of sections 3.2 and 3.3. Note that there
are some Dy integrals we haven’t calculated yet,

210, mF, m3, m3). (5.4)

P2 A2 2 2 2 2 2
DO(t7p3a 5>p27p1ap4707m17m2>m3) =D
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5. NLO Box Corrections and Their Sudakov Formfactors

With these arguments of the Dy integral we can’t use the high energy limit

8,%,4 > p1o, P12, P23, P30-

To solve this integral we have to start from scratch and calculate the Dy integral with that
combination of momenta and then of course perform the high energy limit. We will leave that
calculation for later discussion outside of this thesis and move on with the general structure
of matrix element appearing in the box diagrams,

6
MPex = Z (ki1 As(My, MZ) + kioAs (M) + kisAs(M3)
i=1

+k‘i,4Ag(M5V) + ki,5A{(M%) + /ﬁ,GR[f, 8]+ kmDi’f +¢l. (5.5)

5.3. Topology Il

Figure 5.3.: Non-vanishing box diagrams of the third topology

For the third topology we have for the first and third diagram the following Cj functions:

~ 2
Cﬁ(p2a87p/ 707m%7m% = §(m%ﬂm%)
2
ms)

>
/ST/‘\

[\
~—

S5
—

3
el
N—

The Dy integrals are

Dy(p3,p3, 3, P3, 0, 8,0,m3, m3, m3) =
1 A 1
- = R(a, 8) + w2 3 [Au(m%) + As(mg) + Ay(ms3) + As(mg,m%)] , (5.6)
Do(i, p3, 8,3, p1,p3, 0,mi, m3, m3) = Dy*(0,m3,m3, m3). (5.7)
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5.4. Topology IV

The second Dy integral is of the same type as equation 5.4 in the second topology. Once

again we will leave that for later discussions.

As before, the second diagram has two zero masses. Hence, we encounter divergent functions

once again and we will neglect them.

C()(ﬁ7p2,p,27 07 m, 0) = div.
Co(p?, 3,p'%,0,m,0) = div.

The result of the Dy integral also changes to

Finally we can write our matrix element as

6
MPF =" [oihs(Miy, MZ) + 0i2As (M) + 05, 3M5(M3)
i=1

+oraha(M2) + 05 5Aa(M2) + 05 6R (i, §) + 05,7 D5 + c] .

5.4. Topology IV

The fourth topology has just one non-vanishing diagram.

Figure 5.4.: Non-vanishing box diagram of the fourth topology

Again we encounter divergent C functions.

Co(ii, p, p'%,0,0,m) = div.
Co(p2,p/27 tAa m, 0, 0) = div.

We also find Cy and Dy functions of the type
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5. NLO Box Corrections and Their Sudakov Formfactors

2 2
Co(P?,,p",md, m?,0) = A;(mf)

2 .
CO(p2ap, ,u,O,m%,mQ) = Aﬂ(m%)

Do(p3,p3, 03,03, 4, t,0,m3, m3,0) =

1 .2 1
— o |R(@d) + 7 = 3 [Aa(md) + Ag(md)]

Do(@, p3, 1, p3, p3, p3, m2,0,m3,0) = D% (m3,0,m3,0)

The matrix element then looks like

6
M}B‘?x = Z [TZ‘71A@(M3V) + Ti,QAﬁ(M%)

=1

+Ti,3A£(MI%V) + T‘@4A£(M%) + T’Z‘75R(£, §) + 7‘,‘76D§C’a + ¢ .

5.5. Overview over the D, functions

In this section we give a short recap over the used Dy integrals.

Do(p3.p3. 03, 3, ¢, 8,0,m7, m3,m3) =
1 . 1
-5 [R(t, 8)+ P 3 [At(m%) + As(m%) + Aj(ms) + As(mg,m%)]] ,

2 2 2 2 A A 2 2 2
Do(p21p47p37p1>u78701m17m27m3) =

2
DO(p%7p§7p%7p4217a7£707m%am%70) =
1 . g 1
~ i [Rea D+ = J [amd) + Ag0n)]

All Dg integral of the type
2 2)

A =2 A =2 X2 XD 2 2
DO(Tlap17T2ap2ap37p4am07m17m2>m3

with 71,79 = §,¢, 4 and p; < 1,72, still have to be calculated.
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6. Results

In this thesis we have explored the origin of the Sudakov logarithms appearing in the high-
energy limit of the loop corrections of associated W H production at the LHC. To this end, we
studied in detail the scalar integrals arising from the Passorino Veltman reduction. It became
clear that only certain subsets of the three-point function, Cy, and the four-point function
give rise to Sudakov logarithms. With that in mind we continued with the discussion of the
triangle and box corrections.

We introduced a modified Born matrix element 4.15 where we only included the Sudakov terms
of the triangle diagrams. The modified born process essentially consists of the sum of all ma-
trix elements determined in Chapter 4 overall squared. When we calculated the total cross
sections with the procedure introduced in Chapter 2, we get a result of opeq = 1.293 £0.242
pb whereas for the LO we get the result o, = 1.195 4+ 0.223 pb. This gives a k-factor of
k = 1.082.

This indicates that the Sudakov corrections have an overall positive effect at the level of the
total cross-section. On the other hand, the full NLO electroweak corrections have an overall
negative effect on the total cross-section [3] on the order of 1-13% depending on the choice of
the scheme for a, o[, () = 0.8114(2) pb, UO|a(M§) = 0.9166(2) pb and og|g, = 0.8673(2) pb.

In the end we also gave a rough overview of the structures of the boxes. In order to advance
further this point has to be finished. Overall, we have completed most of the first steps
involved with a resummation of the electroweak Sudakov logarithms arising in this process.
An interesting next step would be to finish extracting the Sudakov logarithms from the box
diagrams and explore the possiblity of resumming them.

This will be very relevant to future measurements of the Higgs boson at the LHC, mainly
the measurements of the WW H vertex. Also, it should be noted, that this entire procedure
can be performed also for associated ZH production, following the same plan outlined in this
thesis.

47



A. Feynman rules

Here is a table of all Feynman rules used in the Treelevel Calculation.
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o----o

incoming fermion

outgoing fermion

incoming antifermion

outgoing antifermion

incoming, outgoing vector boson
fermion propagator

Higgs boson propagator

W boson propagator

W f f vertex

Zf f vertex

HWW vertex

HZZ vertex

Hff vertex

Zeglﬂj SWCw

_te Mf
28W MW

13
g 5r_>
CWSW
73
g 5T_>
CWSwW



B. Calculations

B.1. Next-to-leading order process (2 to 3)

W+ f

q H
Figure B.1.: 2 to 3 process

Now we consider the Next-to-leading order
q1(p1) +G(p2) = V + H — 11(p3) + l2(ps) + H(pm)

The matrix element for the 2 to 3 process is:

M = b2y Wt Ug Yy ws U4 (B.1)

with u; = u(p;) (same vor v) and b = e‘gg;(12‘/9\/‘/Hgfl,l2vD(512)D(s;),z;)7 where D(s) = ﬁ

The coupling factors g7 .y and gyypm are the same as in equation (2.33) to (?7). The
definition for the coupling factor for the 111V vertex (ngl/bV) is the same as for g; ..\ just

with adjusted T and Q.

(MA)T = bl ofwhy Iy tugulwhfn e

= b10l7"1%uw 707071y T uguly Oyl Oy Oy s

= bl Tgw_g YHusztw_qy,v2

‘M”'dd’ = 0 (V2" wrun ) (Wsypwrr0) (Va7 us) (Ww—ay,2)

=D VP @2avep(Wr)betiie) (@satude (e e svap) ag (Woar) gn Vhstuas) (T (W-a) jiYukiva)
a—l

= B [varT2a 7y (Wr ettt (W) i Vi) [UsiTsaVode (Wrr)esvag) Tag(w—ar)gn V]
a—l

2 _ _ _ _
= b tr{vaUay” wrui Wrw_ gy, |tr[ustis Yy we valaw_ g y"]

A B
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B. Calculations

d=1and d =71/

AT = tr{vatoy  w_uiTiwi 7y,
= tr{pay ' w_prw1v,l
= tr{p2y ' w_w_p1v,]

= il (1~ 25)hi]
_ z[tr[m%m] — tr[py Vs B17]]
2 o p v v
= Zprl [tT‘[’YU’Y ’Yp'Vu] - tr['Ya'Y 7/)7#75]]

= Zpgp,igﬂ/ [gaTgpu — 9opGru + Gopgrp + Z'Gm-pu]

8 ,
= ZQTV [p27'p1u - (P2P1)9m + p2ubir + Zpgpfﬁarpu}

B™7 = trlususy,wr vaUgw_y]
= tr{pzypw_pawi "]

= St (1 = )i

2 .
= 1p3lp4mgau [glagm” - glmga“ + gl“go‘m + ZElamu]
— § M (e97) no o . lamp
= 49ay[p3p4 (p3pa) g™ + p5DY + iD31Pame ]

If we change the helicity from - to + term with the € get an - instead a + infront!
We now calculate all possible of helicity combinations.

ATT BT = 49" gaw [p2rP1p — (P201) g7 + P2uDir + DS DT €orpp)
x PSP — (p3pa) g™ + DY + ipsipame ™)
= 467 [(p1p4)p2rP§ — P2-DS (P3P4) + P2rDS (P1P3) + iD2rP1uP3DAmE ™
— [(p2p1)ParD§ — (P201) (P3Da) 0L + P3-D§ (P2p1) + i (D2P1) P3P AMGr e ™)
+ (p2pa)p1rD§ — P1r05 (P3pa) + PLepf (D2D3) + P2pD1D3IPamE ™
+ ipI PP P €oron — 103 D] (D3D4) 9™ €arpp + D3PI DSIPRAE G r oy — DS D D3IDAMEor pru€ ]
= des eine zwischen schritt noch rein? oder nur sagen was benutzt wurde..?
= 4[2(p1p4) (p2p3) — 4(p2p1)(p3p4) + 4(p2p1)(P3ps) + 2(p2pa) (P1p3)
— 2((p1p3)(p2p4) — (P1pa)(P2p3))]
= 4[2(p1pa) (p2p3)] = 4t1atas
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B.2. Next-to-Leading Order Process (2 to 4)

where we have used, that €yq,, €@ = (525;” - 52‘62), dg = 4 in 4 dimensions. We also use
that any permutaion of the e-tensor change the sign of it. Using the same method we get for

__ . -0
A B++ = 424t13 Wlth tij = (pi — pj)Q m: 2pipj~
We now immediatly jump to the 2 to 4 process calculation.

B.2. Next-to-Leading Order Process (2 to 4)

Wj: H\\r [_)
q b
Figure B.2.: 2 to 4 process

For the 2 to 4 process the Matrix element is

M = A2y wrur) (Ur1Yywe vr2) (Ur3vra) 2
with

A= (i)' g7 pvgvi gl prvgm g D(s12, My ) D(sp12, My ) D(sp3a, M) (B.3)

rrdd |2 = A2(Ton” m m
M = (U2'7 w‘rul)(url'YVWT’Ur2)(UT3U7“4)

X (Uraurs) (Uraw—a v e ) (W1 w—g7,02)
= A2tr[va Ty uw w1 T W_ g7,
X A7 (U1 U1 Yo W Vr2Or2W @ Y]

X T [VpaUraUy3Tyg)

We can see that the first two traces are exactly the same as before in the 2 to 3 process. This
means that we just have to calculate the third trace.

tr o aBatrsins) = 1r(bra — 1) (s + )]

1
= Ztr[ﬁﬂl]érS - mg]

= (pr4pr3) - mlg
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B. Calculations

Now we put everything together

IM|? = g8 gt D (512, My)|? [D(s712, My )| | D(5p30, M)
X [G__M__ + G_y M_] X [(praprs) — mj]

with
2 2 2 2
Ve wr vV wr
G- = ’gq_ ! )97 + ’gi ! ‘g+
2 2 2 2
vy wr Ve wr
Gy = ‘g‘i ! )g+ + ’gi ! ‘g_
M__ = dtyoton

M = dtyatar

B.2.1. 4 particle phase space

The phase space for 4 outgoing particles is

4
d?’p'
P, = (27T)4§4(P —P1— P2 —PpP3 — p4) H (27‘(’)732].E (B4)
1 J

We will now insert two times ,,one“, with new momenta g5 = p1 + p2 and q34 = p3 + p4:

diqi2 diq

= / )1 {2y 20 0@z = p1 = p2)O(dhn) (2m) (s —ps —p1)O(a3)),  (BD)
dsia ds

- / L2 S o (12 — a3a)2m6 (531 — ) (B.6)

with ©(z) = 1z > 0;0x < 0. We can now simplify these delta functions in the following way

dlqiz d
/ q12 As12 (2m)26(q12 — p1 — P2)O(q)) 270 (512 — ¢%)

(2m)* 27
d3qo dsyz 1 4
= 2m)*0 — — B.7
by using
Q%z = Ey2 — ‘ﬁz (B.8)
= 812 — qfy = (512 + Gla) — By =0
= E1p = ¢} (B.9)
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B.2. Next-to-Leading Order Process (2 to 4)

with ¢¥5 > 0 (because of ©(q),).
The phase space now is of the following form:

/d@ _ /H dPp; dsiz d3qia dssd dPgs
T 21)32E; 21 (27)32Eys 21 (27)32Es,
x (2m)26(P — q12 — q34) (2m)*0(qu2 — p1 — p2)(27)*6(q34 — 3 — pa) (B.10)

We know that the term (Qd)w

integrals in any frame. So we can take the ,rest frame®“ of g;3. And in this frame we know
that the 2-particle phase space (2.19) holds,

is Lorenz invariant, which means that we can carry out these

/d<1>2(291 p2) = / Cpr po (27)26(E12 — E1 — E2)6(Py + pa)
’ (27’[‘)32E1 (271’)32E2

_ @ / d cos 912 d(f)m (B 11)
8 2 2 ’
with
A3 (s12,m3, m3)
B2 = :
S12
The same applies for g34. So the only integrals left are the integrals over s;; and g;;,
/(I) / dsip gy dszd  digy
17 ] Tor (20)32E1, 27 (27)32FEs
. Bz / dcos 12 dgr2 534/ d cos 034 dgsa (B.12)
- 2 2m 8w 2 2 ’

The integrals over g2 and g34 can be solved by assuming each of them is a ,,particle” of mass
v/$12 and ,/S34. So we can choose the ,rest frame“ of P,

d*qi2 d®q34 4
do = 25 (P — —
/ 2(012, 434) / (27)32E1, (277)32E34( ) O(P = 12— g34)

_E dcos@%
- 87 2 27

(B.13)
with

1
A2 (s, S12, S34)
s

8=

Finally we get the following equation for the 4 particle phase space:
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B. Calculations

/d@4: sﬁsﬁﬁ dCOSH@

21 27w 81 2 27
5 d cos élg d(ilgﬁ d cos é34 d(£34
2 2 87 2 2T
S12 S
/uMd% q12, q34)d P2 (p1, p2)dPa(p3, Pa), (B.14)

where the momenta labelled with = are covered in the rest frame of s12 or s3y. What we
obmitted up until now are the borders of the si15 and s34 integrals or in other words the
physical region of the energies. In order to solve these integrals, consider the following:

s12 = (p1 +p2)? = M7,
s34 = (p3 + pa)* = M3,

and

Mo > mq + mo
Mszy > m3 + my.

Hence we conclude, that my + mq respectively ms + m4 have to be the lower borders for the
integrals. Additionally we know

Vs = Mg + may
= M < s —m3—my
Msq < /s —mi — ma.

This (physical) region is called Goldhaber plot or Goldhaber triangle.
We can generalize this procedure for a n particle final state. For that we first assume two

groups of invariant masses squared M? = (p1 + ... + p;)? and M?_, = (pi41 + ... +pn)?. For
illustration, the Feynman diagram of the process is shown in figure B.3.

Figure B.3.: Tree diagram [2]
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B.2. Next-to-Leading Order Process (2 to 4)

The corresponding cross section is

D, (s) = /dMZQdMHQ_lfbg(s;MIQ,M,%_I)@l(MlQ;m%, ceeym})
X O, (M2_j;miyq,.ym?)  [2,p.182 eq.4.7] (B.15)
with the physical region

Ml >mi+ ... +my
My >2mp1+ ...+ my
M+ M, > /s. (B.16)

In order to get a better understanding for the conditions we look at the physical region of the
phase space which is shown in figure B.4.

Mn—l' ?

rnl#f}”'+ mn

My ey

Figure B.4.: Physical region in the invariants M; = [(p1 + ... + p)?|Y%, My = [(pie1 +
o) 12 12)
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C. Passarino-Veltman Reduction of Tensor
Integrals

When we want to calculate the NL order of process we get to oneloop tensor integrals with
power of the loop momentum in the nominator. With the technique introduced by Passarino
and Veltman [14] we reduce these tensor integral to scalar n-point functions. Ine this work
we used FeynCalc [11] to simplify the NL order process to scalar integrals.

In this section we give the general definition of the integrals and momentas in the Denner no-
tation [1]. We use the Denner notation because it is principally the same as used in FeynCalc
[11].

471_)471) q - q
TV DNt gy ) = L [ gDy e 1
Ui bp (p17 PN—-1,M0,..,MMN 1) P2 / qDOD1 e DN—l ( )

With the denominator parts coming from the propagators in the Feynman diagrams
— 42 24 C )2 2 -
Dy =q*—mg+ie, D;=(q+pi)"—mj, i=1...N-—1 (C.2)

The momentas are

pio = p; and p;; = p; — pj.

Figure C.1.: Conventions for the N-point-integral
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The tensor integrals are invariant under arbitrary permutations of the propagators D; and
totally symmetric in the Lorentz indices pg. The infinitesimal imaginary part, e, is needed
to regulate the singularities of the integrand. The parameter p has the dimension of mass
and serves to keep the dimension of the integrals fixed for varying D.

The standard way of denoting the tensor integrals is the with the N-th charachter of the
alphabet, i.e. T! = A, T? = B. The scalar integral carries the index zero.

Knowing the Lorentz covarince of the integrals, the decomposition of the lowest order integrals
reads

B,u = pl,LLBla (03)
B/w = guuBOO ‘|‘p1,upluB1b
2
C,u = Zpi,ucia (04)
=1
2
Cyw = 900Co0 + »_, PippjuCij
i,7=1
2 2
C,uup = Z(guupip + GvpDip + guppiu)COOi + Z piupjupkpcijk
i1 ijk=1
3
Du = ZpiuD’ia (05)
=1

3
Dy = gooDoo + Y piupivDij,
ij=1
2 3
Dywp = Z(g;wpip + GupPip + GupPiv)Dooi + Z PiuPjvPkpDijk
=1 igk=1
Duupa = (g,uugpa + 9up9vo + guagup)DOODO
3
+ Z (g;wpippja + GupPipPjo + GupPivPjo
2,7=1
+GuoPivPip + GuoPiplip + GpoPipPiv) Eooij
3

+ > DipDjuPrpPro (C.6)
,7,k,l=1

o7



C. Passarino-Veltman Reduction of Tensor Integrals
C.1. Scalar Integrals
In this section are presented the results for the scalar integrals in D-dimensions.

C.1.1. Ay(M)

dPq (4m)t 1
_ ,4-D
ao(an) =0 [ S

:M4—D/qu 1
ins ¢ — M?

d
4-D 71+2F(1 —5)
- _ M 2
g G

Do 2 M2 (M?) T (~1 + )
= — (14 2eln(p))M?(1 - eln(Mz))_l—!l [1 — e +1+0(e)
20 pp2 % — In(M?) + 21In(u) + 1] (C.7)

In the last step we only get rid of the terms proportional to e. We can clearly see that the
Ap function contains no Sudakov logarithms.

C.1.2. Bo(pQ, M(), M1>

We turn next to the scalar one-point function, By.

dPq 1
irs (@ — MZ)((q+p)? — M)

Bo(p?, Mo, M) = [
The solution after Feynman parameterization and Wick rotation is (from [16]):

D=4-2
Bo(p*, Mo, My) ==~ p*

v

2
% + 2 —In(p?) + Z [%’ ln(% 7 1) —In(yi — 1)“
i=1 !

1 - v — 1
+2—1In(p”) + Z [%- In( ) — In(yi — 1)] +2In ,u] (C.9)

€ - 1
=1

e—0

7

with

p? — M} + M2+ \/(p* — M2 + M2)? — 4p*(M?)
2p?

7,2 =

In Section 3 we take a closer look at this result in the high-energy limit to check if there are
Sudakov logarithms appearing.
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C.1. Scalar Integrals

C.1.3. Co(p1, p2, Mo, My, Ms)

We move now to the general solution of the Cj integral where we give the result of Cy(p1, p2, Mo, Ma, Ms3).
A detailed calculation is in Appendix D. The general definition of the Cy integral is

dPq 1
Co(pl)p27M07Ml7M2) == ,Uz4_D/
ire (4% — Mg)(( q+p1) — M2)((q + pa2)? — M3)

= 4D/m2/dx/ dyq+D*

1 T
D=4-2¢ 9 _(4a (I +e€
= ,u?// (D*) (1+)(2)

/ / 2D* (14 2eln(p))(1 — eln(D*))(1 + evg)

e—0
N /0 /0 2D (C.10)
with

D* = [~(=apa + yp1 +p2)* + @' (=p3 — MG + M3) +y(pi + M§ — M?) + p; — M3]

For the end result we need several variables listed below:

a=—pj
b= —pi
¢ = 2pap

d = p5 —mg +m3

2 2 2
e =pj] +my=m7 — 2pap1
f=—m3—ie

ac+ 2a +d+ ae

bor = c+ 2ab
_ d—+ ae
y02_0+2ab+ac+2a
_d+tae
yog_ozc—l—Qa
1
a fry
! c+ 2ab
11—«
Qa =
2 c+ 2ab+ ac+ 2a
o
as =
ac—+ 2a
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C. Passarino-Veltman Reduction of Tensor Integrals

y11 and yo; are the roots of 0 = by* + y(e +¢) +a+d+ f
y12 and yao are the roots of 0 = y*(a +b+c¢) +yle +¢) + f
y13 and ya3 are the roots of 0 = ay? + yd + f

and « which is the real solution of 0 = a?b + ac+ a

The final result is written as the following equation.

1
Co(p1,p2, Mo, My, Ms) = 3 [a153(yo1, Y11, y21) — a253(yoz, Y12, Y22)
—a353(Y03, Y13, Y23)] (C.11)

S3(y0, Y1, y2) = R(yo, y1) + R(Yo, y2)+

1 1-
[n(—yl, —y2) = n(yo — y1, 90 — y2) — nla —ie, — 15)} In < yo)

Yo
. -1 . 1-—
R(yo,y1) = Lio ( L ) — Lio ( Ll ) +In < Yo > (In(1 —y1) — In(yo — v1))
Yr — Yo Yr — Yo Y1 — Yo
—Y0
—1In In(— —In -
(5720 ) ) = It = )

This result is not very handy so for further calculations we use the symmetric form from the
denner paper [1]. First we give the result in the Denner notation and give the translation the
our FeynCalc [11] notation later.

2
S 1 . Yoi — 1 . Yo
Co(pro, P20, Mo, mamz) = —~ > 1D [le(yOA, ) — LZ2('7{9 )
i=0 o=+ Yio Yio
1 Yoi — 1 1 Yoi
+ (1 — zje, — ) In(Z— —n(—Tjo, — ) In(=—
( 10 ) ( Yio ) ( Yio ) (yio )]
N . . A 1 — o
— (=i, —wi=) = 0(Jir, Gim) — 27O (=p%)O(—Im(GirJi-))] In( . )]

with (4,7,k = 0,1,2 and cyclic)

I L2 — 52— g2 2 2 2
Yoi = Wﬁzk [ij(l?jk — Dki — Pi; + 2m; — mj — my)
J
~2 ~2 2 2 ) 2 9
- (pki - pij)(mj — mk) + a(pjk —m; + mk)]
zix = [P — mj +mi £ ]
Uit = Joi — Ti+
&= “(ﬁ%mﬁ%uﬁ%o)

Q; = K(ﬁ?kvmg’m%)(l + ZEﬁ?k)
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and with Kallén-Lehmann function

K(z,y,2) = \/$2+y2+z2—2(:ry—|—yz:zx.

The dilogarithm or Spence function is defined as the integral

1
at
Lia(x) = / L) Jars(1—at) <7
0

C.1. Scalar Integrals
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D. Detailed calculation of the (| integral

In the following section we introduce a detailed calculation of the Cj integral which appears
mostly in the vertex corrections. We include all masses and momenta to get the most general
result.

D
Clp) = 4D d~q 1 '
) =n / i (g —md) ((q+p1)* — m})((qg +p2)?> — m3) (b1

The first step is again introducing Feynman parameters and performing a Wick rotation.
After this we get:

0\M1, P2, 0 1, 2) — D M.
) ?( 2 )2 22)
D

!

o 1 x r(1
D*: 2 ,u2€/ dl’,/ dy(D*)—(l+e) ( 2+ 6)
0 0

—1 ! / ¥ 1 *
= /0 dm/o dy2D*(1+261n(,u))(1—eln(D )1+ evE)

with

D* = [—(=2'pa + yp1 + p2)® + @' (—p3 — M§ + M3) + y(p} + Mg — M?) + p3 — M3]

We now have to integrate the expression twice whereas the integration variable y depends on
the other variable z’.
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-1
Co = dy [—(—ZEIPQ +yp1 + p2)? + 2 (—p3 — Mg + M3) + y(p] + Mg — M7) + p3 — MQQ]

2
dy [—a:’ p3 — ¥°pt + 22'ypapr + 2’ (p3 — m + m3)
+y (p} +mj — mi — 2pop1) —mj —ie]

1 x’ -1

—1
dy [ax'2 + (f + ax)?b+ 2/ (v + ax’)e+ da’ + (v + ax')e + f

1 [t (1—a)
= 2/ dgj’/ dy’ 22 ((l+aC+ba2) —|—by’2—|—:U’y'(2ab+c)+x'(d+ae)+y'e+f
0 —ax’ —_——
=0

In the last two steps we performed a shift with 3’ = y + oz’ where we defined « in a way that
it solves the equation ba? + ca + a = 0. With that definition of a the integration of the z’
variable becomes a easy to solve linear integral. For now we assume that a, b and ¢ such that
« is real. This means f ist the only variable with an negative imaginary part.

To perform the 2’ integration we have to manipulate the integration borders and introduce a
/

second shift with ' = (1 — a)2/.

1 1 (1—-a)z’ 1 —a)z’
Co== / da’ / dy’ — / da’ / dy/
2 \Jo 0 0 0

[by'2 + 2y (2ab + ¢) + 2'(d + ae) + y'e + f} -
—(1—a)’ 1 11—« 1 —Q 1
2 \Jo = o )z

m’(d+ae+y(2ab+c))+(by2+ye+f)

S st

1
4+
B y B
|:11’l <1+A> (_a+A

-1

\V] \

s
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D. Detailed calculation of the Cy integral

1
CO—M|:

1

ARG =) AT C e ]
- (d+ae+y2ab+c) +by* +ye+ f)(1 - a)

1
d 1
Vit ae +y(2ab+¢) " <y(d—|—ae +y(2ab+c)) + (by? +ye + f)(1 — a)>
(d+ ae+y(2ab+c) + by? + ye + fa >

—y(d+ ae+y(2ab+c)) + (by?> + ye + f)a

N
o

1 —
—~ [ a
2/0 yd+ae+y(2ab+c)n<

Now we shift the integration limits for the two integrals. The first one gets the shift y =
/

(1 — a)y’. The second one performs the shift y = —ay

11—«

IR
00_2/0 dyd+ae+y’(1—a)(2ab+c)
b(1—a)2y? + /(1 —a)(c+2ab+e)+d+ea+ f
b(1—a)2+ (2ab+c)(1 — )y + (d+ae+ (1 —a)e)y + f

bay? + 9/ (—a)(c+2ab+¢€) +d+ea+ f

b(a? + (2ab+ c)(—a)y? + (d + ae — ae)y’ + f
(D.2)

-In

/

+1/1d .
2 Jo yd+ae—y’a(2ab—|—c)

11—«

Again we shift the limits with 3’ = ;%= (first integral) and ' = —%. Additionally we define

the variable N = d + ae + y(2ab + ¢).
by  +ye+ f+ N

I |
Co== dy—1
0 2/0 INT by? +ey+ f+ 4N
1 [ 1 by’ +ye+f+ N
—/ Y— 5 — (D.3)
2 Jo N by* +ey+ f— 4N

I |
/ dyﬁln[byQ—l—ye%—f—l—N}

2

—

2

1 =1 Y
| [62 ——N}
t35 ; | by +ey+ f .

1 17041 y
— In |by? -2 N
/0 Nn[y +ey+f+1_a ]
(D.4)

Notice that 1/N has a singularity at yo = —Cdjﬁeb. To make sure that the residual at yg is
zero we add to every integral the term

—In [byo2 + eyo + f} .

It can be done in the way that totally we add zero. Cy looks then like
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L[ 1
0025[/ dyﬁ[ln[by2+ye+f+N]—ln[by02+ey0+f]]

lal
_/ — [m [by2+ey+f+LN] —In [by02+eyo+f]]
0 N ]_—Oé

—a q
-I-/ —[ln [byz-{-ey-l—f—g]\f} —1In [by02+6y0+f]i|:| (D.5)
0 N [0
This additional term allows us to study the integral with complex «. Now we substitute
Y =y—a,y='5andy=—L,

n by’ +yle+c)+a+d+ f]

1

1
Cy = d 1
0 [/0 yy(c—&—Zab)—i—ac—i—Qa—i—d—i—ae[

N | =

—In [byo® + eyo + f]]

1 ;
1—a 5
— In|ly“(a+b+c)+yle+d —In |¢
/() !z/((1+2(111+(\,(r+2(1,)+(1’,+u(i[H[U (a+b+c)+yle+d) + f] —In[byo® + eyo + f]]

1
_/0 y(ac+2ao)é+d+ea [ln [ay2+dy+f] —In [by02+ey0+f]] (D.6)

To get the denominators in front back to zero we define 1 = yo +a, 1o = 7.

1
= Uo dyy(c+2ab) 1 [In [by® +y(e+¢c) +a+d+ f]

1
2 +oac+2a+d+ ae
—ln[by12+y1(e+c)+a+d+f“

1
1—a 5 ,
In |y“(a + : >+ d
/(, (c+2ab+ ac+ 2a) + d + «e [“ ['I/ (a+b+c)+yletd)+ ﬂ

—In {,{/22((1 +b+c)+y(e+d) + f“

1
/0 y(ac+2a )+d+ea [In [ay® + dy + f] — In [ays® + dy; + f]] (D.7)

1
dy————— [In [by? d
|:C-|‘201b0 Y 7y01[n[y +yle+c)+a+ Jrﬂ

l\DI»—\

—ln[by12+y1(e+c)+a+d+f]]

1« 11 _a .
- In [7/? b+c >+ d :
c+2ab+ac+2a,/(, Y — Yo2 [H [‘[/ <([ - )+() —H/(( +()+ ﬂ

—1In {;{/22((1 +b+c)t+y(et+d) + ]‘H

1
e i 2a/0 , ayos [In [ay® + dy + ] — In [ays® + dys + f]] (D.8)

To write it in a nicer way we define some more variables and introduce the function

1
S3(yo,y1,42,) = / d@/y " [In(ay® + by + ¢) — In(ayo® + byo + ¢)]
) _
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D. Detailed calculation of the Cy integral

ac+ 2a +d+ ae

Yor = —

c—+ 2ab
B d+ ac
yOZ__c+2ab+ozc+2a
_ d+ae
y03__ac+2a
B 1
“= c+ 2ab
_ 11—«
a2 = c+ 2ab+ ac+ 2a
o
a3 = ac—+ 2a

y11 and yo; are the roots of 0 = by? +y(e+¢) +a+d+ f
y12 and g0 are the roots of 0 = y*(a +b+c¢) +yle+¢) + f
y13 and ya3 are the roots of 0 = ay® + yd + f

The solution reads now

1
Co = 3 [a153(yo1, Y11, y21) — a253(yoz, Y12, Y22) — a3S3(yos, Y13, Y23)]

The next step is to solve the S3 integral. For that we first look at the following function:

1
Ryo, 1) = /0 dy—L— [in(y — y1) — In(y — yo)

Y—Yo
If we use that

U oln(l—=
Liy(x) = —/0 dtl(ltt)

2

Lis(z) = —Liy(1 — a) + % ~In(z)In(1 — z)

and In(ab) = In(a) + In(b) + n(a, b)
with n(a,b) = 2mi [0(=S(a))0(=3(b))0(S(ab)) — 0(3(a))0(S(b))0(—S(ad))]

then we get
. -1 ) 1—
R(yo,y1) = Lis ( £ ) — Liy ( £ ) +1n (yo) (In(1 —y1) —In(yo — v1))
Y1 — Yo Y1 — Yo Y1 — Yo
(D.9)
—Y0
() () ~ o — ). (D.10)
Y1 — Yo
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For the general calculation of the

1
S3(Y0, Y1, Y2, ) = / dy [In(ay® + by + ¢) — In(ayo® + byo + ¢)]
0

Y—Yo

function we assume that

1) a is real

2) b, ¢, yo may be complex

3) S(ay? + by + ¢) has the same sign in the range [0, 1]
We know that

) —b+Vb% — 4ac
ay® + by +c=aly — y1)(y — y2) with y1 2 = 2o

Notice that

b c
—(y1 +y2) = — and y1y2 = —
a a

So the imaginary part for y = 0 reads

a3 (y1y2)

fory=11itis
—aS(y1 + y2) + aSS(y1y2).

The sign of —aS(y1 + y2) + aS(y1y2) must be the same as in aS(y1y2) as claimed in our third
assumption.The third condition also implies either

yS(b) + 3(b) > 0= —3(b) > 0,J(c) >0
or
yS(b) + (b)) < 0= —3(b) < 0,3(c) <0
We now introduce the infinitesimal parameters € and § with opposite signs then (a(y —
y1)(y —y2)) and (a(yo — y1)(yo — y2)) have also opposite signs.
Now,

n(a(y —v1)(y — y2)) = In((a —ie)(y — y1)(y — y2)) = In((a —ie) n((y — y1)(y — ¥2))-

If we use In(ab) = In(a) + In(b) + n(a, b) again for the case that a(y — y1)(y — y2) and (a — i¢)
have the same signs of the imaginary parts. Therefore

In(a(yo — y1)(yo — y2)) = In((a@ —i0)(yo — y1)(yo — y2)) = In((a — i) In((yo — y1)(yo — y2))
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D. Detailed calculation of the Cy integral

With these properties we can write
1
Y—%
—In((yo — y1)(yo — y2)) + In(a — i) — In(a — i4)]

1 1
_ /0 dy In((y — y1)(y — v2))

Y—1Y0

—In((yo —y1)(yo — y2)) —n (a ~ e, a —1 Z5>]

1
S (3o, v, y2) = /0 dy—— Iy — 1) (v — v2))

1
= [y il = ) - ) ~ (o0 — 1) w0 — 92))
0 Y—1Yo
1 1 , 1
_/0 dyy—yon<a_%’a—i5>
1
= [y il = ) - ) ~ (o0 — )00 — 92)
0 Y=Y

(0=t itz m (52
—n|a—1ie — | In
a— 10 %0

= R(yo,y1) + R(yo, y2)
. 1 1—y
+ {n(yl, y2)n(Yoy1, Yoy2) — 1 (a — e, M)} In ( 0)

This finishes the caculation of the Cy integral. In our case we assume that all masses and
momenta squared are real so all n functions disappear and just dilogaritmic functions are left.
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