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Abstract

Generative neural networks have various applications in LHC physics, for both fast
simulations and precise inference. We first show that normalizing flows can be used
to generate reconstruction-level events with percent-level precision. To estimate their
generation uncertainties, we apply Bayesian neural networks. Further, we study the
weight distribution from a classifier network which can be used for reweighting, as a
performance metric and as a diagnostic tool. Next, we introduce the MadNIS framework
for neural importance sampling. It improves classical methods for phase-space integration
and sampling using adaptive multi-channel weights and normalizing flows as learnable
channel mappings. We show that it leads to significant performance gains for several
realistic LHC processes implemented in the MadGraph event generator. Generative
networks can also improve analyses by maximizing the amount of extracted information.
The matrix element method uses the full kinematic information, making it the tool of
choice for small event numbers. It relies on a transfer function to model the shower,
detector and acceptance effects. We show how three networks can be used to encode
these effects, and for efficient phase-space integration. We use normalizing flows for fast
sampling, diffusion models for precise density estimation, and solve jet combinatorics
with a transformer.

Zusammenfassung

Generative neuronale Netze haben zahlreiche Anwendungen in der LHC-Physik, sowohl
für schnelle Simulationen als auch für präzise Messungen. Wir zeigen zunächst, wie
rekonstruierte Events mithilfe von Normalizing Flows mit einer Präzision von einem
Prozent generiert werden können. Desweiteren extrahieren wir mit einem Classifier Event-
Gewichte, die zum Umgewichten der generierten Events, als Performancemetrik und als
diagnostisches Hilfsmittel verwendet werden können. Danach führen wir MadNIS, ein
Framework für neuronales Multi-Channel Importance Sampling, ein. Dieses verbessert
klassische Phasenraumintegrations- und Samplingmethoden, indem es adaptive Channel-
gewichte mit Normalizing Flows als lernbare Transformationen kombiniert. Wir wenden
unsere Methode mithilfe des MadGraph-Eventgenerators auf realistische LHC-Prozesse
an, wo sie zu einer signifikanten Effizienzsteigerung führt. Generative Netzwerke können
auch für verbesserte Analysemethoden verwendet werden, die die aus gemessenen Daten
extrahierte Informationsmenge maximieren. Die Matrixelementmethode ist solch eine
Inferenzmethode, die alle verfügbaren kinematischen Informationen nutzt. Daher ist sie
gut für Prozesse mit sehr wenigen gemessenen Events geeignet. Sie benötigt jedoch eine
Transferfunktion, die die Effekte von Partonshower, Detektor und Akzeptanz beschreibt.
Wir verwenden drei neuronale Netze zum Modellieren dieser Effekte sowie zur effizienten
Phasenraumintegration. Wir nutzen Normalizing Flows für schnelles Sampling, Diffusion-
smodelle für präzise Extraktion der Phasenraumdichte und lösen die Jet-Kombinatorik
mithilfe eines Transformers.
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Chapter 1
Introduction

The Standard Model of particle physics (SM) describes the fundamental particles and
interactions of nature, except for gravity. It was completed with the discovery of the Higgs
boson at the Large Hadron Collider (LHC) in 2012 [9, 10]. Since then, the predictions of
the Standard Model have been confirmed at the LHC with higher and higher precision.
However, there is clear evidence for physics beyond the Standard Model. Results from
astrophysics and cosmology indicate that there is dark matter which cannot be made up
of Standard Model particles. Also, the Standard Model does not explain phenomena like
the baryon asymmetry and neutrino oscillations. Yet, evidence for physics beyond the
Standard Model from collider experiments is still missing. The upcoming high-luminosity
LHC upgrade will increase its integrated luminosity by a factor of ten compared to
the total from the first three runs [11]. This will provide an unprecedented amount of
scattering data that will facilitate measurements with even higher precision, and might
lead us to the discovery of physics beyond the Standard Model.

Meanwhile, artificial intelligence is transforming society. The continuous progress in the
development of powerful hardware like graphics processing units (GPUs) has made it
possible to build more and more complex neural networks, causing a rise in research interest
in machine learning (ML) methods. Starting with the area of image recognition [12],
machine learning methods have been applied to many different domains. The development
of generative ML architectures has proven to be especially impactful. Powerful models
for text [13] and image [14] generation have become easily available to end users and
are starting to fundamentally change many aspects of our lives. The success of these
ML models was facilitated by the availability of vast amounts of training data. This
is a parallel to particle physics, where we not only have a large number of measured
scattering events, but also have precise simulations based on first principles [15]. Hence,
there are many possible applications of ML methods to various aspects of LHC physics.

Applications of ML in collider physics can be broadly split up into two categories. The
first type of application uses ML to improve the way the measured data is analyzed. ML
makes it possible to use high-dimensional data instead of a low number of hand-crafted
summary statistics. Moreover, ML methods are often more computationally efficient.
This way, they enhance established analysis techniques, or open up new ways to extract
information from data. Examples for this type of ML application include jet tagging [16],
anomaly detection [17–22], simulation-based inference [23,24] and unfolding [25–32]. A
better overview can be found in Ref. [33].

Most classical and ML-based data analysis techniques in particle physics rely on pre-
cise Monte-Carlo simulations. At the LHC, there is a chain of standard simulation
tools [34–40]. Starting from the hard process, the effects of initial state radiation, parton
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1 Introduction

showering, hadronization, detector interactions and reconstruction are simulated to arrive
at reconstruction-level events. The second type of ML application aims to enhance
or replace parts of this simulation chain. Event generation needs to be accelerated to
prevent it from becoming a computational bottleneck at the high-luminosity LHC [41].
Further, some parts of the simulations are based on phenomenological models instead of
first-principle predictions, and ML might be able to improve these parts of the simulations
by learning directly from collider data. Examples for ML applied to event generation
include phase-space integration and sampling [42–50], amplitude surrogates [51–56], loop
integration [57], end-to-end event generation [58–64], hadronization models [65,66], parton
shower generation [67–74] and detector simulation [75–98].

There are multiple different generative neural network architectures that have been used
in particle physics, including generative adversarial networks (GANs) [99], diffusion
models [100–104], generative transformers [105] and normalizing flows [106]. Most of
the work in this thesis is based on the latter, especially its invertible neural network
(INN) variant [107–110]. INNs implement a bijective mapping between a simple latent
distribution and a complex data distribution. This mapping has a tractable Jacobian and
is equally fast in both the density estimation and sampling direction. Even though it has
been shown that improved precision can be achieved with other generative architectures in
event generation [64], INNs provide an excellent balance between fast and stable training,
computationally cheap sampling and density estimation, as well as high precision. This
makes them a good choice for many applications. In this thesis, we use generative networks
both to accelerate event generation and as a tool for precision measurements. Independent
of the choice of generative architecture, it is crucial to understand the uncertainties
introduced by the use of neural networks. Bayesian neural networks (BNNs) [111–114]
can be used to extract the uncertainties from limited training statistics. They can be
applied to various network architectures, and are used in several of the ML applications
presented in the following chapters.

This thesis is organized as follows: we start with an introduction to LHC event generation
in Ch. 2. We discuss the generation of hard-scattering events using importance sampling
in detail, and briefly review the other parts of the LHC event generation chain. After a
short introduction to deep learning, we discuss the various network architectures used
in this thesis in Ch. 3. Next, we present three applications of generative networks in
LHC physics. In Ch. 4, we use invertible neural networks to generate reconstruction-level
events for the example of leptonically decaying Z bosons associated with a variable
number of jets. We show how Bayesian neural networks and classifier weights [115] can
be used to control the uncertainties of the generated events. We then move to hard-
scattering events in Ch. 5 where the exact likelihood is known from the matrix elements.
We present MadNIS, a framework for neural multi-channel importance sampling. It
combines channel mappings based on normalizing flows with adaptive channel weights
to replace established importance sampling algorithms like Vegas [116–120]. After
discussing several methods to improve the training stability and speed, as well as the
integration and sampling performance, we benchmark our method for toy examples and
realistic LHC processes. The knowledge of the exact likelihood is not only useful for
event generation, but also for precision measurements of theory parameters using the
matrix element method (MEM) [121, 122]. In Ch. 6, we show how the MEM can be
combined with three networks to encode shower, detector and acceptance effects, and for
efficient phase-space integration. As an example process, we use associated Higgs and
single-top production to measure the CP-violating phase of the top Yukawa coupling.
We summarize our results and discuss future research directions in Ch. 7.
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Chapter 2
Collider physics and event generation

We describe the particles and interactions that make up our universe using quantum
field theory (QFT). Such a theory is formulated in terms of symmetries, a set of particles
and their corresponding quantum fields, a set of parameters like masses of particles and
coupling strengths, and a Lagrangian that defines the dynamics of these quantum fields.
The most successful model is the Standard Model of particle physics (SM) [123–127],
which is symmetric under global Poincaré transformations, i.e. rotations, translations
and boosts, and under local gauge transformations with the gauge group

SU(3)C × SU(2)W ×U(1)Y . (2.1)

For a more detailed introduction, see Ref. [128]. The Standard Model has 18 free
parameters. For instance, it can be parameterized in terms of

• 10 masses of quarks, charged leptons, the weak gauge bosons and the Higgs boson,

• 4 parameters of the CKM matrix, defining the mixing between the three generations
of fermions through the weak interaction and the amount of CP violation,

• 3 coupling constants for the strength of the gauge coupling,

• the vacuum expectation value of the Higgs field.

Based on the fundamental theory we can make predictions, often using perturbation
theory. For instance, we can predict the rates and kinematics of scattering processes.
The goal of particle physics at colliders is to test the predictions of the Standard Model,
provide precise measurements of the parameters of the theory, and – most importantly –
look for signs for physics beyond the Standard Model (BSM). All of these things are done
by colliding particles at high energies, measuring the particles produced in the collisions,
and comparing them to the theory prediction. This approach relies on fast and precise
simulations that predict the outcome of an experiment given a fundamental theory.

This chapter covers the basics of LHC event generation and the underlying physics. It
starts with a brief discussion of the way from a Lagrangian to a prediction of a differential
cross section at a hadron collider like the LHC in Sec. 2.1. This is followed by a description
of the Monte Carlo methods necessary to integrate and sample from these differential
cross sections in Sec. 2.2. We then outline the subsequent steps needed to simulate events,
like parton showers, hadronization, detector effects and reconstruction in Sec. 2.3.
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2 Collider physics and event generation

2.1 Collider physics

There are several different types of colliders. Lepton colliders like LEP are based on
electron-positron collisions. As electrons are fundamental particles, they provide a very
clean environment that is ideal for precision measurements. The main disadvantage
of electron colliders is the large energy loss through synchrotron radiation because of
the low mass of the electron. This limits the available center of mass energy. Because
the proton mass is roughly 2000 times larger than the electron mass, this problem is
much smaller for hadron colliders that collide (anti-)protons like Tevatron or the LHC.
However, protons are not fundamental particles, so precise measurements at hadron
colliders require a detailed understanding of the proton substructure, described by parton
distribution functions.

2.1.1 Parton distribution functions

Protons are composed of fundamental particles, most importantly quarks and gluons.
These are referred to as partons. In a collision between two protons, interactions take
place between partons carrying a part of the total proton momentum. This is described
by the parton model. It assumes an infinite momentum frame where the masses and
transverse momenta of the partons (quarks and gluons) can be neglected. The probability
density to find a given type of parton a in a scattering process involving a proton,

fa(x,Q2) , (2.2)

was originally assumed to only depend on the momentum fraction x carried by the
parton [129]. The model was later refined to also consider the dependence on the energy
scale Q2 given by the momentum transfer during the scattering. This function is called a
parton distribution function (PDF). PDFs are normalized such that the total momentum
fraction for the sum of all types of partons is one,∑

a

∫
dx x fa(x,Q2) = 1 . (2.3)

PDFs cannot be computed using perturbative QCD. While precise first-principles pre-
dictions of PDFs using lattice QCD might become possible in the future [130], current
methods extract the PDFs by performing fits to measured data. These fits combine
measurements from deep inelastic scattering experiments and from hadron colliders to
cover a wide range of momentum fractions and energy scales. The choice of functional
shape of the PDFs depends on the methodology used in the fit. For instance, the NNPDF
collaboration [131] uses neural network for precise PDF fits – one of the earliest successful
applications of neural networks in particle physics.

While the functional form of the PDFs cannot be determined perturbatively, the evolution
of the PDFs with the momentum scale Q2 is described by the DGLAP equations [132–134]

dfb(x,Q2)
d logQ2 =

∑
a,c

∫ 1

x

dz
z

αs(Q2)
2π fa(x/z,Q2)Pa→bc(z) . (2.4)

The functions Pa→bc(z) are universal splitting kernels describing the splitting of a parton
a into partons b and c in the soft and collinear limit. They only depend on the momentum
fraction z and on the type of the partons a, b and c (quarks or gluons). They are not
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2 Collider physics and event generation

only relevant to describe the proton substructure, but are also used to simulate parton
showers, see Sec. 2.3.1.

2.1.2 Differential cross sections

Consider a 2→ n scattering process at a proton-proton collider with a center-of-mass
energy

√
s. Neglecting the proton mass, the momenta of the two protons in the lab frame

are given by

pA =
(√

s

2 , 0, 0,
√
s

2

)
and pB =

(√
s

2 , 0, 0,−
√
s

2

)
. (2.5)

The scattering process itself will happen between constituents of these protons, with
momenta

pa =
(
xa

√
s

2 , 0, 0, xa
√
s

2

)
and pb =

(
xb

√
s

2 , 0, 0,−xb
√
s

2

)
, (2.6)

where xa and xb are the momentum fractions carried by the partons. The squared
center-of-mass energy of the partonic system is then given by

ŝ = sxaxb . (2.7)

The first step to find the rate for a process with given initial and final state particles is
to compute its matrix element M. To this end, Feynman diagrams are constructed to
the desired order in perturbation theory and the Feynman rules are used to compute
the matrix element as a function of the initial state momenta (pa, pb) and the final state
momenta (p1, . . . , pn). The next step is to compute the squared matrix element ⟨|M|2⟩.
The brackets ⟨⟩ indicate that the squared matrix element is averaged over the the possible
spins and colors of the incoming partons (corresponding to an unpolarized beam), and
summed over the spins and colors of the outgoing particles. Furthermore, we have to
introduce a symmetry factor to avoid double-counting from final states with two or more
identical particles which we absorb into the averaging in the following. By combining the
proton PDFs, the squared matrix element, the flux factor 1/(2ŝ) (where we again assume
massless initial state particles) and the Lorentz-invariant phase-space element dΦ, we get
the full expression for the differential cross section,

dσ(pa, pb; p1, . . . , pn) = fa(xa)fb(xb)
2sxaxb

⟨|M(pa, pb; p1, . . . , pn)2|⟩dΦ(pa, pb; p1, . . . , pn) .
(2.8)

The phase-space element enforces the momentum conservation

pa + pb = p1 + . . .+ pn , (2.9)

as well as the on-shell conditions of the particles and the positivity of their energies. It is
given by

dΦ(pa, pb; p1, . . . , pn) =
n∏
i=1

(
d3pi

2π3Ei

)
(2π)2δ(4)

(
pa + pb −

n∑
i=1

pi

)
. (2.10)

Hence, there are two degrees of freedom of the initial state momenta corresponding to
the momentum fractions xa and xb, and there are 3n− 4 degrees of freedom of the final
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2 Collider physics and event generation

state momenta. In total, the phase space has 3n− 2 dimensions.

Integrating the differential cross section over the full phase space yields the total cross
section

σ =
∫

dΦ dσ
dΦ , (2.11)

from which we can compute the expected rate at a collider with luminosity L,

dN
dt = Lσ . (2.12)

We can also understand the differential cross section as a probability distribution by
normalizing it with the total cross section,

p(x) = 1
σ

dσ
dx with

∫
dx p(x) = 1 . (2.13)

Here we used x instead of Φ to denote the hard-scattering phase space, which will be used
as a convention throughout the rest of this thesis. To generate hard-scattering events, we
need to sample from this probability distribution. In Sec. 2.2, we will discuss how the
integration in Eq. (2.11) and the sampling from Eq. (2.13) is done in practice.

2.1.3 Kinematic observables

The momenta of particles can be written as four-vectors

pµ = (E,p) = (E, px, py, pz) with gµν = diag(1,−1,−1,−1) . (2.14)

Often it is useful to express the momenta in a way that takes the symmetries of particle
collisions and the geometry of typical detectors into account. Differential cross sections
are invariant under a global rotation around the beam axis. Therefore, momenta are
often parameterized in terms of the azimuthal angle ϕ around the beam axis and the
transverse momentum

pT =
√
p2
x + p2

y (2.15)

perpendicular to the beam axis. A second important symmetry is that the matrix element
is invariant under Lorentz boosts along the beam axis. This is no longer true for the
differential cross section as it also includes parton densities. Both the azimuthal angle ϕ
and the transverse momentum pT are invariant under such boosts. The invariant mass

m =
√
E2 − |p|2 (2.16)

is another example for a Lorentz-invariant quantity. The rapidity

y = 1
2 log

(
E + pz
E − pz

)
(2.17)

is Lorentz-boosted by applying a simple additive shift. As the rapidity depends both on
the spatial components of the momentum and the energy, it is often replaced with the
pseudo-rapidity

η = 1
2 log

( |p|+ pz
|p| − pz

)
= arctanh

(
pz
|p|

)
= − log tan

(
θ

2

)
, (2.18)
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2 Collider physics and event generation

which does not depend on the energy. The pseudo-rapidity can be expressed as a function
of the polar angle

θ = arccos
(
pz
|p|

)
. (2.19)

For massless particles or in the limit of high energies E ≫ m, the pseudo-rapidity and
rapidity are equal. These properties make (m, pT , η, ϕ) a convenient parameterization for
momenta. The transformation back into four-momenta is given by

px = pT sinϕ , py = pT cosϕ , pz = pT sinh η , E =
√
m2 + |p|2 . (2.20)

2.2 Generating hard-scattering events

In this section, we will first review the basics of Monte Carlo integration and then show
how they can be applied to Monte Carlo event generation, as implemented in event
generators like MG5aMC [135], Sherpa [35] or Pythia8 [34]. This short introduction
uses the notation conventions and some of the equations from Refs. [3, 6].

Starting from a Lagrangian and the parameters of a model, we can use QFT to predict
the matrix elements for processes described by the model. To find the expected rate of
such a process at a collider and to determine the kinematics of the events, we have to
compute the total cross section defined in Eq. (2.11) and sample from the probability
distribution defined by the differential cross section, Eq. (2.13). For most processes, it is
infeasible or impossible to solve this integral analytically, and no closed-form expression
for sampling from the distribution is known. Instead, both of these tasks can be solved
numerically using importance sampling [136].

2.2.1 Importance sampling

Let f be a function of D-dimensional phase space and let I be the integral of that function
over phase space,

I =
∫

dDx f(x) . (2.21)

Deterministic numerical integration methods typically compute such integrals by discretiz-
ing space and then applying quadrature rules like the trapezoidal rule. While this works
well for low-dimensional integrands, it quickly becomes prohibitive for higher-dimensional
functions because these methods scale with O(nD) with the number of grid nodes n.

This problem can be solved with Monte Carlo integration. We define a normalized
proposal distribution q(x) that has to be non-zero over the entire phase space and that
we can sample from. We can then rewrite Eq. (2.21) as

I =
∫

dDx q(x)f(x)
q(x) =

〈
f(x)
q(x)

〉
x∼q(x)

. (2.22)

This expectation value can then be approximated as the mean of the reweighted integrand
computed for N samples {xi} from the proposal distribution,

I ≈ IN ≡
1
N

N∑
i=1

f(xi)
q(xi)

with xi ∼ q(xi) . (2.23)

7
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We also refer to the ratio between the integrand and the sampling probability, normalized
by the integral, as weights

w(x) ≡ 1
I

f(x)
q(x) and wi = 1

IN

f(xi)
q(xi)

. (2.24)

The variance of the integral is given by

∆2
N = σ2

N
, (2.25)

where σ2 is the variance of the unnormalized weights,

σ2 ≡ Var
(
f(x)
q(x)

)
x∼q(x)

=
〈(

f(x)
q(x) − I

)2〉
x∼q(x)

=
〈
f(x)2

q(x)2

〉
x∼q(x)

−
〈
f(x)
q(x)

〉2

x∼q(x)

=
∫

dDx f(x)2

q(x) −
(∫

dDx f(x)
)2

.

(2.26)

In practice, we estimate σ2 as the sample variance from the samples {xi}. To make
the sample variance an unbiased estimator, we have to introduce the correction factor
N/(N − 1) (often referred to as Bessel’s correction), resulting in

σ2 ≈ σ2
N ≡

N

N − 1

N∑
i=1

(
f(xi)
q(xi)

− IN
)2

. (2.27)

Note that the form of the variance in the last two lines of Eq. (2.26) should not be used
in practical computations because the two terms are often of very similar size and their
cancellation can lead to numerical problems. Instead, the form in Eq. (2.27) should be
used.

As seen in Eq. (2.25), we can reduce the error of our integral estimate either by increasing
the sampling statistics, resulting in an O(

√
N) scaling of the error with the number of

samples, or by reducing the variance of the integrand, σ2. We can see from Eq. (2.26)
that the variance becomes zero if

qopt(x) = f(x)
I(x) ≡ p(x) ⇐⇒ w(x) = 1 , (2.28)

where p(x) is the normalized probability distribution defined by the integrand. This
implies that we want to choose our sampling distribution in a way that is as close to p
as possible. However, it is not always possible to efficiently draw samples distributed
according to some arbitrary function. Instead, we typically can only generate uniformly
distributed random numbers and have to define a mapping between the unit hypercube
and phase space,

x ∈ RD G(x)→←−−−−−−→
←G(y)

y ∈ [0, 1]D . (2.29)

The distribution of samples obtained by mapping uniform random numbers into phase

8



2 Collider physics and event generation

space is then given by the Jacobian determinant of the mapping,

q(x) = g(x) ≡
∣∣∣∣∂G(x)
∂x

∣∣∣∣ with
∫

dDx g(x) = 1 . (2.30)

The expression for the integral from Eq. (2.22) then becomes

I =
∫

[0,1]D
dDy f(x)

g(x)

∣∣∣∣
x=G(y)

=
〈
f(x)
g(x)

∣∣∣∣
x=G(y)

〉
y∼u(y)

=
〈
f(x)
g(x)

〉
x∼g(x)

,

(2.31)

where u(y) denotes a uniform distribution over the unit hypercube. In the following
sections, we not explicitly write down the mapping G for the sake of brevity.

2.2.2 Vegas algorithm

In many cases we have some knowledge about the shape of the integrand that can be
used to construct mappings. We will discuss some examples in LHC physics in Sec. 2.2.3.
However, the exact mapping to reproduce the shape of f is typically not known. This
problem can be tackled with algorithms for adaptive importance sampling, the most
common one in particle physics being Vegas [116–120].

The challenge of coming up with an adaptive integrator for high-dimensional integrands
is to beat the curse of dimensionality, i.e. the method has to be built in a way that does
not scale as a power law of the phase-space dimension. The central assumption in Vegas
is that the high-dimensional phase-space distribution p(x) can be approximated as a
product of one-dimensional distributions,

p(x) ≈ g(x) = g(x1, . . . , xD) ≈ g1(x1) · . . . · gD(xD) . (2.32)

An adaptive mapping is then defined to approximate these one-dimension distributions,
resulting in a linear scaling with the number of dimensions. The integration domain of
the Vegas algorithm is the unit hypercube, so in this section we will assume x ∈ [0, 1]D.
To use the algorithm for other integration domains like phase space, it has to be combined
with an analytic mapping. This mapping can also be used to encode prior knowledge
about the integrand.

For each individual dimension, the integration interval [0, 1] is divided into K bins with
boundaries W0, . . . ,WK that satisfy

W0 = 0 , WK = 1 , and Wk < Wk+1 . (2.33)

The widths of these bins are

wk = Wk −Wk−1 such that
K∑
k=1

wk = 1 . (2.34)

The probability density is then defined as a piecewise-constant function with

g(x) = 1
Kwk

for x ∈ [Wk−1,Wk] . (2.35)

9
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Consequently, all bins have the same total probability

Pk =
Wk∫

Wk−1

dx g(x) = 1
K

, (2.36)

and the integral over the full integration domain is normalized,

1∫
0

dx g(x) =
K∑
k=1

Pk = 1 . (2.37)

The corresponding mapping G is a piecewise-linear function, or linear spline,

G(x) = 1
K

(
k − 1 + x−Wk−1

wk

)
for x ∈ [Wk−1,Wk] , (2.38)

with g(x) = ∂G(x)/∂x. Inserting Eq. (2.35) into the formula for the integral variance,
Eq. (2.26), yields

σ2 =
K∑
k=1

Kwk Wk∫
Wk−1

dx f(x)2

−
 1∫

0

dx f(x)

2

. (2.39)

This is minimized if [120]

(Kwk)2

wk

Wk∫
Wk−1

dx f(x)2 = C for k = 1, . . . ,K (2.40)

for some constant C that is the same for all bins. The optimization of the Vegas grid is
done iteratively by sampling points x(i)

k for i = 1, . . . , Nk and for each bin k to estimate
the training objective from Eq. (2.40),

dk ≡
(Kwk)2

wk

wk
Nk

Nk∑
i=1

f
(
x

(i)
k

)2
. (2.41)

The bin boundaries are then adapted such that all dk are as close to the same value
as possible. In practice, a smoothing kernel and a damping function with the damping
parameter α are applied to dk first for a more stable convergence [120]. Then, new
samples are drawn and the steps are repeated.

While Vegas is extremely efficient in finding mappings for distributions that factorize,
it is not able to model correlations between the integral dimensions. A simple example
for such a case is a two-dimensional Gaussian mixture model (GMM) with two modes
that are located along the diagonal. In this case, each marginal distribution is a GMM
with two modes and their product is a GMM with four modes. Only two of those
modes are found in the distribution while the other two modes will be detrimental to
the convergence of the integral. Furthermore, it is hard for Vegas to map out sharp
peaks in the integrand due to its limited resolution. Consequently, simple adaptive MC
integration algorithms like Vegas are typically combined with analytic mappings that
align the structures of the integrand with the integration axes and make use about prior
knowledge about narrow structures in the integrand.
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2.2.3 Phase-space mappings

Phase-space mappings fulfill two important tasks in phase-space integration. Firstly,
they provide a mapping from the unit hypercube, where it is simple to define adaptive
integration algorithms, to phase space, where they enforce momentum conservation and
phase-space boundaries like the largest available center-of-mass energy. Secondly, they
are useful to encode physics knowledge into the sampling and therefore make it more
efficient. For instance, for processes with an s-channel resonance, the position and shape
of the resonance is known. A phase-space mapping can then be constructed to map out
this resonance.

For a single Feynman diagram of a given process, phase-space mappings can be constructed
automatically. There are several ways how this construction can be done in practice.
The common idea behind most of these approaches is to factorize the full phase space
into multiple mappings according to the structure of the Feynman diagram. Tree-level
diagrams are decomposed into 1→ 2-decays, time-like invariants s, and 2→ 2 or 2→ n
scattering processes with t-channel propagators [36,50,137].

A propagator with momentum transfer q appears in the squared matrix element as

|M|2 ∝ 1
(q2 −M2)2 +M2Γ2 (2.42)

where M is the mass and Γ is the decay width of the propagating particle. A mapping
from uniform random numbers z to q2 following this Breit-Wigner distribution is given
by [137]

q2 = G(z) = MΓ tan(y1 + (y2 − y1)z) +M2 with

y1,2 = arctan
(
q2

min,max −M2

MΓ

)
(2.43)

and the corresponding Jacobian is

g(q2) = MΓ
(y2 − y1)((q2 −M2)2 +M2Γ2) . (2.44)

The above mapping is only defined for massive particles. The momentum transfer for a
massless propagator can be mapped out with

q2 = G(z) =
[
z(q2

max)1−ν + (1− r)(q2
min)1−ν

] 1
1−ν

g(q2) = 1− ν
(q2)ν

[
(q2

max)(1− ν)− (q2
min)1−ν] , (2.45)

with a parameter ν ̸= 1, where ν = 2 recovers the 1/q2 scaling of the propagator. Still,
ν ≲ 1 is often a good choice in practice due to partial cancellation of the propagator
poles in the collinear limit [137].

A 1 → 2-decay is best described in the rest frame of the decaying particle, where the
only two degrees of freedom parameterize the angular direction of the decay. It can be
parameterized in terms of the azimuthal angle ϕ and polar angle θ. A uniform distribution
of these angles on a sphere can be achieved by sampling ϕ ∈ [−π, π] and cos θ ∈ [−1, 1]
uniformly. Similar to the decay, a 2→ 2-scattering with given incoming momenta also
has 2 degrees of freedom in its center of mass frame. In the case of a t-channel propagator,
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2 Collider physics and event generation

they can be parameterized in terms of the uniformly sampled azimuthal angle ϕ and the
momentum transfer q2 = −t. A phase-space mapping for the latter can be constructed
using Eq. (2.43) or Eq. (2.45). Finally, it is also possible to perform flat sampling of
the n-particle phase space. RAMBO on diet [138] is an algorithm to construct such a
mapping that is flat for massless particles in the final state, and approximately flat for
massive particles.

2.2.4 Multi-channel integration

For simple integrands, the combination of analytic mappings encoding knowledge about
the structure of the integrand and an adaptive importance sampling algorithm like Vegas
is sufficient to get a good convergence of the integral. However, it is not always possible
to find a mapping that captures the full structure of the integrand. It is often easier to
find mappings that encode a part of the structure. As described in Sec. 2.2.3, we can
systematically build phase-space mappings that reflect the squared matrix element of a
single Feynman diagram. Since the full process is typically described by more than one
diagram and there can be interference effects between the diagrams, a single mapping is
not sufficient for efficient importance sampling.

This problem can be addressed with multi-channel integration, where the integrand is
split up into multiple channels [139–141]. Following the multi-channel integration setup
used in MG5aMC [142], we define channel weights αi(x) as functions over phase space
with the channel index i = 1, . . . , nc. They satisfy the normalization condition

nc∑
i=1

αi(x) = 1 . (2.46)

We can use this partition of unity to rewrite the integral as

I =
nc∑
i=1

αi(x) I =
nc∑
i=1

∫
dDx αi(x)f(x) ≡

nc∑
i=1

Ii . (2.47)

In analogy to Eqs. (2.29) to (2.31), we introduce mappings

x ∈ RD Gi(x)→←−−−−−−−→
←Gi(y)

y ∈ [0, 1]D (2.48)

with Jacobians
gi(x) =

∣∣∣∣∂Gi(x)
∂x

∣∣∣∣ with
∫

dDx gi(x) = 1 (2.49)

to write the full integral as

I =
nc∑
i=1

∫
[0,1]D

dDy αi(x)f(x)
gi(x)

∣∣∣∣
x=Gi(y)

=
nc∑
i=1

〈
αi(x)f(x)
gi(x)

〉
x∼gi(x)

.

(2.50)
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The variance for a single channel with Ni samples can be computed using Eq. (2.26),

∆2
i,Ni

= 1
Ni
σ2
i = 1

Ni

〈αi(x)2f(x)2

gi(x)2

〉
x∼gi(x)

−
〈
αi(x)f(x)
gi(x)

〉2

x∼gi(x)

 . (2.51)

For a single channel i with channel weights αi(x), the variance becomes zero if

gi,opt(x) = αi(x)f(x)
Ii

. (2.52)

The variance of the combined integral is given by

∆2
N =

nc∑
i=1

∆2
i,Ni

=
nc∑
i=1

σ2
i

Ni
with N =

nc∑
i=1

Ni . (2.53)

The combined variance ∆2
N for a given total number of samples N can be minimized

through the choice of the Ni. We can find the optimal Ni using the method of Lagrangian
multipliers with the Lagrange function

L =
nc∑
i=1

σ2
i

Ni
− λ

(
N −

nc∑
i=1

Ni

)
(2.54)

We then minimize L by setting its derivative to zero and recover the result known from
stratified sampling [136],

∂L
∂Ni

= − σ
2
i

N2
i

+ λ
!= 0

=⇒ Ni = λ−1/2 σi

=⇒ Ni = N
σi∑nc
i=1 σi

.

(2.55)

Multi-channel integration in MG5aMC

The construction of channels in MG5aMC is based on the single diagram enhancement
method [142], where a channel is constructed for each Feynman diagram of the process.
The channel weight is then defined as the matrix element squared for this Feynman
diagram, normalized by the sum of all matrix elements squared,

αMG
i (x) = |Mi(x)|2∑

j |Mj(x)|2 . (2.56)

This channel decomposition works best if the interference between diagrams is small,

|M(x)|2 =
∑
i

|Mi(x)|2 +
∑
i ̸=j
Mi(x)Mj(x) ≈

∑
i

|Mi(x)|2 . (2.57)

At leading order, differential cross sections are given by a function fPS(x) of phase space
containing the flux factor and parton distribution functions, and the squared matrix
element,

dσ
dx = fPS(x)|M(x)|2 . (2.58)
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Under the assumption of vanishing interference terms, the integrands for the individual
channels are given by

αi(x)dσ
dx = fPS(x) |Mi(x)|2∑

j |Mj(x)|2 |M(x)|2 ≈ fPS(x)|Mi(x)|2 . (2.59)

That means that the phase-space mappings only have to model the dynamics of one
Feynman diagram, which makes it possible to construct phase-space mappings from the
propagator structure of the diagram as described above.

Neglecting the interference terms is not always a good assumption and can be detrimental
to the convergence of the phase-space integration. There is a second method to construct
the channel weights in MG5aMC which is based on the propagators of the Feynman
diagrams instead of their squared matrix elements [143]. There, the channels weights are
defined as

αMG
i (x) = Pi(x)∑

j Pj(x) with Pi(x) =
∏

k∈prop

1
|qk(x)2 −m2

k − imkΓk|2
, (2.60)

where the product encompasses all the propagators in a given Feynman diagram, with
momenta qk(x), masses mk and widths Γk. MG5aMC chooses between the two methods
in a process-dependent way.

Standard multi-channel integration

The standard method to define multi-channel importance sampling [136, 144], as im-
plemented in Sherpa, is not based on a physics-informed partition of unity like the
single-diagram enhancement method. Instead, it defines a total probability from a
weighted combination from the channel mappings,

g(x) =
nc∑
i=1

βigi(x) with
nc∑
i=1

βi = 1 and 0 ≤ βi ≤ 1 , (2.61)

with phase-space independent channel weights βi. The integral is then written as

I =
nc∑
i=1

βi

〈
f(x)
g(x)

〉
x∼gi(x)

. (2.62)

The weights βi are optimized during the integration to minimize the total variance. Al-
ternatively, we can express this channel decomposition in terms of phase-space dependent
channel weights

αi(x) = βi
gi(x)
g(x) . (2.63)

The disadvantage of this method is that to recover g(x) it is necessary to evaluate all the
channel mappings gi(x) for every sample x. This makes it more expensive compared to the
channel decomposition from Eqs. (2.56) and (2.60) where it is sufficient to evaluate gi(x)
for the single channel used to generate the sample. Further, it is less flexible compared
to a method with arbitrary αi(x) as the functional form of the channel partitioning is
fixed by the choice of mappings.
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2.2.5 Generating unweighted events

So far, we have only discussed Monte Carlo integration as a tool to compute the total cross
section for a process of interest. However, we are often interested in event generation,
i.e. randomly drawing momenta x from the probability distribution p(x) defined by
the differential cross section, see Eq. (2.13). As Monte Carlo integration aims to find
mappings that approximate this probability distribution, integration and event generation
are closely related problems.

The mapping found during integration is usually not perfect. Hence the generated events
follow some sample distribution x ∼ q(x) that is related to the truth distribution through
known weights w(x), as defined in Eq. (2.24). For samples xi, we have

p(xi) = wi q(xi) . (2.64)

In some cases, it is sufficient to work with weighted events. In that case, the weights wi
have to be taken into account in downstream tasks like making histograms of kinematic
observables. However, typically we are interested in events that follow the distribution
p(x) exactly in the limit of infinite statistics. This is because there are subsequent,
computationally expensive simulation steps like the simulation of detector effects. In
cases with a wide distribution of the weights wi we would have to perform these simulations
for a large number of events with low weights, which would make event generation very
costly.

Events that exactly follow the distribution p(x) are referred to as unweighted events.
They are obtained from a larger set of weighted events through unweighting, which is
done by rejection sampling (also known as the hit-or-miss method). We start with the
assumption that there is a wmax such that

p(x) ≤ wmax q(x) (2.65)

Then samples can be drawn from p(x) with the following algorithm:

1. Draw a sample xi ∼ q(xi) and a uniform random number r ∈ [0, 1].

2. Compute the weight of the sample, wi = p(xi)/q(xi).

3. Accept the sample if r < wi/wmax.

4. Repeat until the required number of samples have been accepted.

In practice, wmax is not known analytically in MC event generation and has to be
estimated from samples. It is often dominated by a few events with very high weights,
resulting in low acceptance rates. Also, determining wmax from a large number of samples
requires storing all of them until events are rejected, leading to a high memory usage.
These problems can be addressed by replacing the rejection sampling algorithm with
partial unweighting, where it is allowed to have some events with w > wmax. The
algorithm above is modified by assigning accepted events the weight

w̃i = max
(

wi
wmax

, 1
)
. (2.66)

Then there will be some events with overweight w̃i > 1 that are kept as weighted events.
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The acceptance rate of events during unweighting, also called unweighting efficiency ϵ, is
given by

ϵ = ⟨wi⟩
wmax

. (2.67)

It is useful as a quality metric for the mapping constructed by the importance sampling
algorithm as it is related to the average time to generate an unweighted event. Improving
the mapping will lead to a narrower weight distribution, and therefore a larger unweighting
efficiency, resulting in less time to generate a fixed number of unweighted events. Note
that this is not an exactly proportional relation. For example, there may be events
rejected because of phase-space cuts. Then the matrix element does not have to be
evaluated, making it cheap to reject these events.

For practical use as a performance metric, the unweighting efficiency has to be defined
in a way that is robust to outliers in the weight distribution. In Ref. [47], the authors
propose to use a bootstrapping procedure, where from a set of n ·N events with weights
wi, m replicas with N events each are resampled. For each replica r, the maximum
weight wrmax is computed. Next, the value of wmax is defined as the median over the wrmax
of the replicas. The unweighting efficiency is then computed using Eq. (2.67), averaging
over all replicas and events. N is chosen based of the number of samples during the
last optimization step. m and n have to be chosen sufficiently large to ensure a stable
estimate of the unweighting efficiency.

2.3 Event generation toolchain

So far, we have discussed the sampling of hard-scattering events in detail. These
are however not directly observed in experiments. First, we have to consider QCD
effects where quarks and gluons will undergo soft and collinear splittings, as well as
photon radiation. This applies both to partons in the initial and final state, leading to
initial state radiation (ISR) and final state radiation (FSR). As a consequence, we see
collimated showers of particles, called jets, instead of observing the partons produced in
the hard process. The soft and collinear splittings are simulated using parton shower
algorithms. Furthermore, we do not observe quarks and gluons as free particles because
of confinement [145]. Instead, they form hadrons which are potentially unstable and
decay further. This process is described by hadronization models. Moreover, there can be
interactions between more than one parton of the incoming protons in a hadron collider,
leading to multi-parton interaction (MPI). There can also be collisions between more
than one proton, as bunches of multiple protons are collided at the same time. This
effect is referred to as pileup. In the end, events observed in colliders typically consist
of a large number of hadrons, leptons and photons (and unobserved neutrinos). These
particles interact with the material of the detector, and their type and momenta have to
be reconstructed from the raw detector data. All of these effects have to be considered
for accurate simulations of LHC data. This means a whole chain of simulation tools is
needed, with dedicated simulators for the various steps outlined above. In the following,
we will discuss parts of this chain in more detail.

2.3.1 Parton shower

Computing matrix elements and sampling events for very large numbers of final state
particles quickly becomes prohibitive because the number of Feynman diagrams explodes.
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Most of these particles are the result of soft or collinear QCD radiation, which can be
treated separately with parton shower algorithms. They are based on the fact that in the
soft and collinear limit, the (n+1)-particle cross-section factorizes into the n-particle cross
section and a universal splitting kernel [132]. Consider a parton a with momentum pa,
splitting up into b and c with energy fractions z and 1− z, respectively. The cross-section
can then be factorized as

σn+1 ≈ σn
∫

dzdp2

p2
αs
2πPa→bc(z) . (2.68)

The form of the splitting kernels is only dependent on whether the particles a, b and c
are quarks or gluons, so there are three kernels Pq→qg(z), Pg→gg(z) and Pg→qq̄(z). These
splitting kernels are the same as in the DGLAP equations, see Eq. (2.4). For final state
radiation, the differential probability for a splitting with momentum fraction z to occur
can be derived from Eq. (2.68),

dPa(z,Q2) = dQ2

Q2
αs(Q2)

2π
∑
b,c

Pa→bc(z)dz . (2.69)

There are multiple choices for the evolution scale Q2, such as mass or transverse mo-
mentum [146]. Eq. (2.69) is used to generate an ordered sequence of splittings that
starts from the scale of the hard process and ends at the scale where QCD becomes
non-perturbative. A similar equation can be derived for initial state radiation, where the
parton distribution functions have to be taken into account,

dPb(x,Q2) = dQ2

Q2
αs(Q2)

2π
∑
a

∫ dz
z

fa(x/z,Q2)
fb(x,Q2) Pa→bc(z) . (2.70)

The differential probabilities from Eqs. (2.69) and (2.70) can be integrated to get the
probability that no splitting occurs between two scales Q2

1 and Q2
2, known as the Sudakov

form factor. This can be turned into a Monte Carlo simulation through the Sudakov veto
algorithm, which iteratively samples the scale Q for the next splitting until a cutoff scale
is reached [146]. As one-to-two splittings between massless particles are not possible
without violating four-momentum conservation, the change in momentum has to be
compensated by recoiling against other constituents of the shower [147]. Parton shower
algorithms differ in their choice of evolution scale and recoil scheme as well as their
potential treatment of higher-order effects [146,148]. Different implementations of parton
shower algorithms are included in Pythia8 [146], Sherpa [35] and Herwig [37].

2.3.2 Hadronization

Simulations of the hard process and parton showers are derived from first principles
using perturbation theory. However, we do not have a good theoretical understanding
of non-perturbative QCD. Therefore the hadronization of the partons below the cutoff
scale of the parton shower can be only simulated using phenomenological models that
are fitted to measured data.

The Lund string model [149, 150] is based on the assumption that the field of the
strong force between two colored partons is a narrow flux tube, or string, resulting in a
linear increase of the potential energy of the system as a function of the distance with
approximately 1 GeV/fm. As particles move apart, more and more of their kinetic energy
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is transferred to the string. At some point, the string snaps and a new qq̄ pair is created.
Once a cutoff scale is reached, each pair of quarks connected by a string forms a meson.
In this basic form, no baryons are formed during hadronization. This problem can be
solved by allowing strings to also break into pairs of diquarks [151, 152]. As a result,
baryons can then be formed by strings that connect three quarks. Pythia8 [146] as well
as recent versions of Herwig [37, 153] are examples for event generators that implement
the Lund string model.

Alternatively, Sherpa [35] and Herwig implement the cluster model. It works by
clustering color-connected quarks after letting the remaining gluons from the parton
shower decay into quark pairs. These clusters then decay further through the creation of
quark pairs [154].

Finally, the decays of unstable hadrons have to be simulated, for example neutral pions
decaying into two photons. The output of this part of the event generation pipeline is
called “particle level” or “truth level”

2.3.3 Detector simulation and reconstruction

Detectors are needed to identify the particles produced in a collision, and measure their
momenta. Detectors typically consist of multiple components responsible for different
types of particles. The main components of general purpose detectors like ATLAS or
CMS are the tracking system, electromagnetic and hadronic calorimeters and a muon
spectrometer [155,156]. The tracking system detects charged particles with high angular
resolution and measures their momentum from the curvature of the tracks in a magnetic
field. Calorimeters measure the energy that both charged and neutral particles deposit
in the detector material. The electromagnetic calorimeter focuses on the measurement of
the energies of electrons and photons, whereas the typically larger hadronic calorimeter
measures the energy of hadrons like protons, neutrons and pions. Note that these hadrons
also deposit energy in the electromagnetic calorimeter, but more stopping power is
required to absorb all of their energy. Finally, muons do not deposit a significant part of
their energy in the calorimeters. Hence, a dedicated tracking system for muons is placed
outside of the calorimeters to allow for a more precise measurement of their momenta.
The measured data from the various detector components is then used to reconstruct
the type and momenta of the particles entering the detector. One important method
that combines the information from the tracker and the calorimeter is the Particle Flow
algorithm, described in detail in Refs. [157,158].

A detailed description of detector effects is an important part of precise simulations
of LHC events. This involves, among other things, modeling the geometry of the
detector, the interactions of particles with the detector material and the response of the
detector electronic. The software used to simulate the detector effects in most particle
physics experiments is Geant4 [40]. The disadvantage of such highly detailed detector
simulations is that they are very computationally expensive. This is especially the
case for particles with a high energy that cause a shower with a large multiplicity of
daughter particles in the calorimeter. Consequently, detector simulation is one of the
most expensive steps in the LHC simulation chain. In practice, not every LHC analysis
requires such expensive simulations. Fast detector simulations [84,159] are an alternative
that make simplifying assumptions about the detector geometry and the interactions
with the material to achieve a large speedup. Fast simulations of calorimeter showers
are also a natural application of generative machine learning methods, and they have
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recently become a part of the ATLAS fast simulation software [84]. For phenomenological
studies, even more simplified simulations of the detector effect are often sufficient. In
Delphes, the detector geometry, calorimeter effects and reconstruction are modeled
using simple smearing functions [39]. This results in a further speedup compared to the
fast simulation packages used by ATLAS and CMS.

2.3.4 Jet algorithms

In many cases we are not interested in the large number of hadrons produced due to
QCD effects, but in the final state of the hard process from which the shower originated.
Based on the observation that the QCD effects result in collimated sprays of particles,
jet algorithms find clusters of particles to reconstruct the outgoing momenta of the hard
process. There are different ways to construct a jet algorithm. Most of them rely on a
distance measure between particles. The distance measure for an important family of jet
algorithms is given by [160]

dij = min
(
k2p
ti , k

2p
tj

) (∆Rij)2

R2

diB = k2p
ti ,

(2.71)

with the angular separation ∆R and the transverse momentum kt. dij denotes the
distance between two particles and diB the distance between a particle and the beam. R
is the jet radius which is a parameter of the jet algorithm. This distance measure is used
by the kt algorithm [161] (p = 1), the Cambridge/Aachen algorithm [162] (p = 0) and
the anti-kt algorithm [160] (p = −1). These algorithms start with a list of the momenta
of all detected particles and compute their pairwise distances and distances to the beam.
If the smallest distance is between two momenta i and j, they are combined, reducing
the length of the list by one. If the smallest distance is between momentum i and the
beam, it is classified as a jet and removed from the list. This procedure is repeated until
the list is empty.

The shape of the jet depends on the choice of distance measure. The kt algorithm can be
understood as reconstructing the history of collinear splittings from the parton shower,
starting from soft momenta. This leads to irregular shapes of the jets. In contrast, the
anti-kt algorithm starts by combining hard momenta with close-by soft momenta. This
leads to a more regular, conical shape of the jets [160]. After reconstructing jets, cuts are
often imposed that only select events with at least a certain number of jets that fulfill
some kinematic constraints. Often, there is a threshold for the transverse momentum of
the jets to reject very soft jets, and a maximum pseudo-rapidity to reject jets that are
very close to the beam.
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Chapter 3
Machine learning

This chapter starts with a short introduction to deep learning in Sec. 3.1. We then
describe the network architectures used in this thesis in detail. We introduce normalizing
flows with a focus on invertible neural networks (INNs) in Sec. 3.2. We then show how
the uncertainties from limited training statistics can be quantified with Bayesian neural
networks in Sec. 3.3. Lastly, we describe transformers and how they can be used to build
generative networks in Sec. 3.4.

3.1 Introduction to deep learning

In this section, we briefly review the basics of deep learning. We then discuss classifier
networks with a focus on their probabilistic interpretation of extracting a weight function
between two probability distributions.

3.1.1 Fully connected networks

The core of deep learning is to approximate complex high-dimensional functions as a
series of linear functions combined with simple non-linearities, called activation functions.
As every input feature is linked to every output feature through these linear functions,
the resulting function is called a fully connected network. A single layer of such a network
can be written as

y = Φ(Wx+ b) . (3.1)

where x is a dx-dimensional vector, y is a dy-dimensional vector, W is a (dy × dx)-
dimensional matrix, b is a dy-dimensional vector and Φ is the activation function. The
components of the matrix W and bias vector b are called the trainable parameters of
the network, as they have to be adapted to fit the network to a target function. Popular
choices for the activation function [163] include component-wise functions such as

ReLU(x) =
{

0 for x ≤ 0
x for x > 0

(3.2)

LeakyReLU(x) =
{
αx for x ≤ 0
x for x > 0

(3.3)

Softplus(x) = log(1 + expx) (3.4)

Sigmoid(x) = 1
1 + exp(−x) (3.5)
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and functions operating on vectors,

Softmax(xi) = expxi∑
j expxj

such that
∑
i

Softmax(xi) = 1 . (3.6)

Often, no activation function is applied in the last layer of a network, for example in
regression tasks where the output needs to be unconstrained.

3.1.2 Loss functions and optimization

To optimize a neural network, the training objective has to be expressed as a function
of its trainable parameters and the training data. The network parameters are then
adapted to minimize this loss function. A simple example for a such a function is the
mean squared error (MSE) loss used in regression, where a network fθ with parameters θ
is applied to input vectors xi and the output is then compared to a truth label yi. It can
be written as

L = 1
N

N∑
i=1

(yi − fθ(xi))2 . (3.7)

The minimization of the loss function can then be performed using the gradient descent
algorithm, where the network parameters are updated in small steps, in the direction of
the gradient of the loss function with respect to the network parameters,

θ ← θ − λ∇θL , (3.8)

where λ is called the learning rate. Gradient descent is prone to get stuck in local
minima of the loss function. It can be improved by randomly splitting up the training
dataset into smaller batches (also called mini-batches), and performing the optimizations
steps batch-wise. This method is referred to as stochastic gradient descent (SGD). More
sophisticated optimization algorithms implement further improvements to SGD. For
instance, the Adam optimizer [164] is used for all network trainings discussed in this
thesis. It tracks running means and variances of the gradients and computes the update
step based on these instead of the raw gradients, leading to a faster and more stable
convergence. Moreover, the learning rate is often adapted over the course of the training
through a learning rate schedule. Large learning rates at the beginning of the training
allow for a faster convergence and make it less likely to converge to a local minimum of
the loss function. Small learning rates make the training more stable and increase the
precision in the final stages of the training.

The MSE loss function given in Eq. (3.7) belongs to the category of likelihood losses.
They are based on assuming some form of the likelihood pθ(s) of a training point s given
the network parameters θ. The training objective is to minimize the Kullback-Leibler
(KL) divergence [165] between the truth distribution p(s) and the learned distribution
pθ(s),

L = KL(p(s), pθ(s))

=
∫

ds p(s) log p(s)
pθ(s)

= −
∫

ds p(s) log pθ(s) + const. .

(3.9)

22



3 Machine learning

As shown in the last line, this is equivalent to maximizing the log-likelihood. Neglecting
the constant offset, the integral can also be rewritten as an expectation value

L = −⟨log pθ(s)⟩s∼p(s) . (3.10)

It can then be approximated as a mean over the training samples {si},

L ≈ − 1
N

N∑
i=1

log pθ(si) , (3.11)

where N is the size of the training dataset. Consider labeled training data s = (x, y) with
inputs x and truth labels y. Under the assumption of a Gaussian shape of the conditional
probability pθ(y|x), the joint probability is

pθ(x, y) = pθ(y|x)p(x) ∝ exp
(

(y − fθ(x))2

2

)
p(x) . (3.12)

By inserting this into Eq. (3.10) and neglecting the constant offset, the MSE loss from
Eq. (3.7) is recovered. Further examples for likelihood losses include the binary cross
entropy loss for classification discussed in Sec. 3.1.3 and the normalizing flow loss discussed
in Sec. 3.2.1.

3.1.3 Classification

A common application of deep learning is to categorize input samples into two or more
classes in a probabilistic way, i.e. the outputs of the network are the probabilities for
each class. In the following, we will discuss the special case of binary classifiers and its
applications beyond classification.

The training data of a binary classifier consists of tuples (x, y), where x is the input
vector and y ∈ {0, 1} is the truth label. In general, both classes may contain samples in a
certain region of input space, so it is not always possible to a assign an input x to a single
class. Let p0(x) = p(x|y = 0) be the probability distribution of class 0, p1(x) = p(x|y = 1)
the distribution of class 1, and P (y) the probabilities for samples to be in each category,
i.e. P (y = 0) + P (y = 1) = 1. Then the joint distribution is given by

p(x, y) = p(x|y)P (y) = py(x)P (y) . (3.13)

For classification, we model this as a conditional Bernoulli distribution of the two
categories where the probability of each category is a learnable function of x,

Pθ(y = 1|x) = fθ(x) and Pθ(y = 0|x) = 1− fθ(x) with 0 ≤ fθ(x) ≤ 1. , (3.14)

with trainable parameters θ. We can then write the joint distribution modeled by the
network as

pθ(x, y) = Pθ(y|x)p(x) with p(x) = p0(x)P (y = 0) + p1(x)P (y = 1) . (3.15)

Because y can only be 0 or 1, we can rewrite Eq. (3.14) as

logPθ(y|x) = y log fθ(x) + (1− y) log(1− fθ(x)) . (3.16)
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The function fθ(x) can be implemented as a simple fully-connected network with a
sigmoid activation function in the final layer to guarantee outputs between 0 and 1.
Depending on the application, more complex architectures can be beneficial for the
performance. The network objective now is to minimize the KL divergence between
p(x, y) and pθ(x, y),

L = KL(p(x, y), pθ(x, y))

=
1∑
y=0

∫
dx p(x, y) log p(x, y)

pθ(x, y)

=
1∑
y=0

∫
dx p(x, y) log p(x, y)

Pθ(y|x)p(x)

= −
1∑
y=0

∫
dx p(x, y) logPθ(y|x) + const.

= −
1∑
y=0

∫
dx p(x, y)

[
y log fθ(x) + (1− y) log(1− fθ(x))

]
+ const.

= −
〈
y log fθ(x) + (1− y) log(1− fθ(x))

〉
(x,y)∼p(x,y)

+ const. .

(3.17)

The resulting loss function is known as binary cross-entropy.

In addition to the interpretation of fθ(x) as the probability for a point x to be in class 1,
we can also use the classifier to obtain a weight function w(x) that relates the probability
distributions of the two classes as

p1(x) = w(x)p0(x) . (3.18)

First, we assume a training dataset in which both classes are present in equal proportions,
i.e. P (y = 0) = P (y = 1) = 0.5. For a trained classifier network fθ, we can use Eqs. (3.13)
to (3.15) to show that

fθ(x) ≈ P (y = 1|x) = p1(x)
p0(x) + p1(x) . (3.19)

Inserting Eq. (3.18) results in

fθ(x) ≈ w(x)p0(x)
p0(x) + w(x)p0(x) = w(x)

1 + w(x) . (3.20)

Solving this for w leaves us with

wθ(x) ≡ fθ(x)
1− fθ(x) ≈ w(x) . (3.21)

Note that, if the network is implemented with a sigmoid activation in the final layer, the
weight can be directly obtained by taking the exponential of the output of the final layer
without an activation function.

This result means that classifier networks are not only useful for classification. They
are also a powerful tool that allows us to learn reweighting factors between probability
distributions. In Ch. 4, we will discuss how they can be used to reweight samples obtained
from generative networks and to evaluate their performance.
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3.2 Normalizing flows

Normalizing flows are a type of deep neural networks that defines a bijective mapping
between two probability distributions and has a tractable Jacobian [106,166]. Typically,
a normalizing flow is built by chaining multiple simple transformations. Let z1, . . . , zn+1
be vectors in the spaces that these transformations map between. Let G1, . . . , Gn be
bijective mappings such that

zi+1 = Gi(zi) . (3.22)

Then the full transformation is

zn+1 = G(z1) ≡ (Gn ◦ · · · ◦G1)(z1) . (3.23)

We can use the change of variables formula to obtain the Jacobian of the full transforma-
tion,

g(z1) =
∣∣∣∣∂G(z1)
∂z1

∣∣∣∣ =
n∏
i=1

∣∣∣∣∂Gi(zi)∂zi

∣∣∣∣ =
n∏
i=1

gi(zi) . (3.24)

Assuming that zn+1 is distributed according to some probability distribution p(zn+1), we
can use this result to write

log p(z1) = log p(zn+1) +
n∑
i=1

log
∣∣∣∣∂Gi(zi)∂zi

∣∣∣∣ . (3.25)

Normalizing flows are often used to learn a mapping between a complicated distribution
of interest and a simple latent distribution, like a normal or uniform distribution. Once
trained, they can be used for density estimation by transforming from the complex data
distribution into the latent space, and for sampling, by drawing a sample from the latent
distribution and transforming it to the data space. This is also the motivation for the
name “normalizing flows”. In this thesis, the following conventions for naming these
different spaces and transformations will be used:

• The latent space (zn+1 ∼ p(zn+1) in the equations above) follows a distribution for
which we can compute the probability and that we can easily sample from.

• The data space (z1 ∼ p(z1) in the equations above) follows the distribution of
interest that we want to capture with the normalizing flow to perform density
estimation, or to sample from it.

• The forward transformation (G = Gn ◦ · · · ◦G1 in the equations above) maps from
the data space into the latent space. It is used to train the normalizing flows on
samples. Once the network is trained, the forward direction can be used to estimate
the density of data points.

• The inverse transformation (Ḡ = Ḡ1 ◦ · · · ◦ Ḡn in the equations above) maps from
the latent space into the data space. It is used for sampling from the learned data
distribution.

While mapping between a data distribution and a simple latent distribution is the most
common use case for normalizing flows, they can also be used to learn mappings between
different data distributions [19,109]. If neither of these data distributions have a tractable
likelihood and both distributions can only be inferred from data, training these networks

25



3 Machine learning

is more challenging. In this thesis, we will only use normalizing flows with simple latent
distributions. The two most important examples are Gaussian latent spaces with

log p(z) = −∥z∥
2

2 − D

2 log(2π) = −∥z∥
2

2 + const. , (3.26)

and uniform latent spaces over an interval [a, b] with

log p(z) = −D log(b− a) = const. , (3.27)

where D is the number of dimensions.

The definitions above can be easily generalized to allow for conditional probability
distributions. In this case, the data space distribution is a conditional probability p(z1|c).
By defining the forward transformations zi+1 = Gi(zi; c) and inverse transformations
zi = Ḡi(zi+1; c) as functions of the condition c, we obtain a conditional version of
Eq. (3.25),

log p(z1|c) = log p(zn+1) +
n∑
i=1

log
∣∣∣∣∂Gi(zi; c)∂zi

∣∣∣∣ . (3.28)

3.2.1 Loss functions

The training objective for normalizing flows is to approximate the truth distribution as
close as possible. The truth distribution can be either given in the form of weighted or
unweighted samples, or it can have a known analytic form. In both cases, we have to
define some measure of similarity between the truth and learned distribution to express
the objective as a minimization problem. In the following, we discuss several options
for such divergences. We denote the data space as x, the truth distribution as p(x),
and the flow distribution as gθ(x). The latter includes both the Jacobian and the latent
space distribution. The subscript θ indicates the dependence on the trainable network
parameters. In the most general case, the training samples x do not have to follow the
truth distribution p(x). We denote their distribution as q(x).

Written in the most general way, the training objective is to minimize some divergence
D between p(x) and gθ(x),

L = D(p(x), gθ(x)) . (3.29)

Two important options for the divergence D are the KL divergence and the variance.
These will be discussed in greater detail below. However, in general there are many other
options, for example arbitrary f -divergences, including the reverse KL divergence and
the Jensen-Shannon divergence [106].

KL divergence

The KL divergence between gθ and p is defined as

KL(p(x), gθ(x)) =
∫

dx p(x) log p(x)
gθ(x)

=
〈
p(x)
q(x) log p(x)

gθ(x)

〉
x∼q(x)

,
(3.30)
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where we expressed the integral as an expectation value over the sample distribution q(x)
in the second line. By absorbing terms that do not depend on the trainable parameters θ
into an additive constant, we can further simplify this equation to get

KL(p(x), gθ(x)) = −
〈
p(x)
q(x) log gθ(x)

〉
x∼q(x)

+ const. . (3.31)

There is one important special case of the KL divergence loss. If the network is trained
directly on samples from the truth distribution, we have

q(x) = p(x) . (3.32)

Then we recover the usual form of a likelihood loss from Eq. (3.10),

L = −⟨log gθ(x)⟩x∼p(x) . (3.33)

The main advantage of this loss function is that the truth distribution does not have to
be known as long as samples from it are available. The log-likelihood loss for cINNs with
a Gaussian latent space is the most-used loss function in this thesis. Given a forward
transformation Gθ(x|c) with trainable parameters θ and a training distribution p(x, c),
we can combine Eqs. (3.26), (3.28) and (3.33) to get the loss function

L =
〈
∥Gθ(x|c)∥2

2 − log
∣∣∣∣∂Gθ(x|c)∂x

∣∣∣∣
〉

(x,c)∼p(x,c)
. (3.34)

If the distributions p and q are not the same, we can define weights in analogy to
Eq. (2.24),

w(x) ≡ p(x)
q(x) . (3.35)

The KL divergence loss then has the form

L = −⟨w(x) log gθ(x)⟩x∼q(x) + const. . (3.36)

This can be understood as a weighted log-likelihood loss. The network can again be
trained without knowing the truth or sample distributions as long as their relative weight
w(x) is known and samples x ∼ q(x) are available.

Variance

One advantage of normalizing flows over other generative architectures is that the exact
likelihood for every generated sample is available without additional computational cost.
This makes them perfect candidates for importance sampling proposal distributions
as introduced in Sec. 2.2.1. The training objective then is to minimize the integral
variance [45,167] defined in Eq. (2.26),

L = Var
(
f(x)
gθ(x)

)
x∼gθ(x)

=
〈
f(x)2

gθ(x)2

〉
x∼gθ(x)

−
〈
f(x)
gθ(x)

〉2

x∼gθ(x)
.

(3.37)
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Note that the training samples are drawn from the learned distribution gθ(x) itself, so the
training does not rely on a pre-generated dataset. Furthermore, while the target function
f(x) needs to be known, it does not have to be a normalized probability distribution.
The variance loss and its application to neural multi-channel importance sampling will
be discussed in detail in Ch. 5.

3.2.2 Architectures

So far we have only discussed how to define normalizing flows and their training objective.
Next, we need a neural network architecture that provides expressive bijective transfor-
mations with tractable Jacobians. This is achieved by breaking up the transformation
into a chain of smaller, invertible blocks. There are two important options how these
blocks can be constructed.

Coupling blocks

The first option are normalizing flows based on coupling blocks [107,108]. Let C(xi|c) be
a transformation that is invertible with respect to a scalar input xi under a condition c.
C̄(yi|c) is the inverse of that transformation. Let x be a d-dimensional input vector.
Coupling blocks first split the input vector into two halves x = (xA, xB). The first half
is then used as the input of a fully-connected neural network ψ(xA). This network is
called the sub-network of the coupling block. Crucially, this network does not have to be
invertible itself. The second half of the input vector is then transformed component-wise
using the output of the sub-network as the condition to the transformation C. The
output of the full coupling block is then given by

yAi = xAi

yBj = C(xBj |ψ(xA)) ,
(3.38)

with the inverse

xAi = yAi

xBj = C̄(yBj |ψ(xA)) .
(3.39)

The Jacobian of the transformation is

∂y

∂x
=
(

1 0
∂yB

∂xA
∂yB

∂xB

)
with (3.40)

∂yB

∂xA
=
∂C(xBj |ψ(xA))

∂xA
and (3.41)

∂yB

∂xB
= diagj

(
∂C(xBj |ψ(xA))

∂xBj

)
. (3.42)

Because of the diagonal form of Eq. (3.42), the Jacobian in Eq. (3.40) is a lower triangular
matrix and its determinant is given by∣∣∣∣∂y∂x

∣∣∣∣ =
∏
j

∂C(xBj |ψ(xA))
∂xBj

. (3.43)
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The complexity of computing the determinant is therefore linear with the number of
dimensions, making it computationally tractable even for high-dimensional input vectors.
The transformation can be made conditional by concatenating a condition vector with
the sub-network input,

yBj = C(xBj |ψ(xA, c)) and xBj = C̄(yBj |ψ(xA, c)) . (3.44)

The main advantage of coupling blocks is that they are equally fast in both directions.
In the following, we will refer to this type of normalizing flow as an Invertible Neural
Network (INN) or conditional Invertible Neural Network (cINN).

Autoregressive flows

The other important way to implement normalizing flows is based on factorizing the
probability autoregressively,

g(x) = g(x1) g(x2|x1) · · · g(xd|x1, . . . , xd−1) . (3.45)

This allows the network to model correlation between all dimensions while only performing
one-dimensional transformations C. Similar to coupling blocks, autoregressive flows can
be implemented using conditional transformations, where the condition is computed by a
neural network. The autoregressive structure, like coupling blocks, guarantees that the
Jacobian of the transformation is a triangular matrix. Therefore, its determinant is fast
to compute. One example how such an autoregressive structure can be implemented is
to use sub-networks with an autoregressive mask of the network weights [168]. g(x) can
be computed efficiently in the forward direction, because all g(xi| . . .) in Eq. (3.45) are
independent, allowing for parallelization. However, in the inverse direction the terms can
only be evaluated sequentially because every term depends on the results of the previous
terms. This is in contrast to coupling block-based architectures, where both directions
have the same computational cost. To solve this problem, it has been proposed to use
the fast density estimation network to train a fast sampling network in a second step in
a teacher-student or distillation setup [85,169]. While this accelerates the sampling, it
also makes the training more complex.

Permutations and rotations

A single coupling block only transforms one half of the input features. Also, it does
not allow for correlations between the features being transformed. This problem can
be solved by chaining multiple coupling blocks and permuting the features between the
blocks [107,108]. While a single autoregressive block would theoretically be sufficient to
model arbitrary correlations, practical implementations of such blocks are typically not
expressive enough. Therefore, permuting the features is also necessary for autoregressive
flows.

There are several ways to construct these permutations. One option is to sample the
permutations randomly when the network is constructed. This approach can lead to
problems for low numbers of coupling blocks since it is not guaranteed that every feature
is conditioned on every other feature at least once. A more systematic approach to
construct the permutations is proposed in Ref. [45]. It guarantees that correlations
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between all features can be modeled, leading to a number of coupling blocks nb that
scales logarithmically with the input dimension D,

nb = 2 ⌈log2D⌉ . (3.46)

An even simpler approach is to just keep exchanging the first and the second half of
the features. This approach can work for highly correlated data like images, where the
locations of features in the first and second half can be arranged in a checkerboard
pattern [108]. However, correlations between some features can then only be learned
indirectly. For normalizing flows operating on a Gaussian latent space, the random
permutations can be generalized and replaced with random O(d) rotations matrices [170].
To increase the flexibility of this approach, the fixed rotations can be replaced with
trainable rotations that are constructed using trainable Euler angles [3].

3.2.3 Coupling transformations

Both INNs and autoregressive flows are based on one-dimensional, invertible mappings
C that can be conditioned on the output of a neural network.

Affine transformations

A simple way to define an invertible mapping is to multiply the input with a positive
number exp(r) and then add an offset s, where both r and s are the output of a neural
network [107,108]. The transformation and its Jacobian then have the form

y = C(x|r, s) = exp(r) x+ s

x = C̄(y|r, s) = exp(−r) (y − s)

c(x|r, s) = ∂C(x|r, s)
∂x

= exp(r) .
(3.47)

This transformation is often combined with a soft, invertible clamping function, for
instance

y = 2α
π

arctan
(
s

α

)
, (3.48)

with a hyperparameter α, to improve the training stability and prevent exploding values
especially in the early stages of the training [170]. Affine coupling blocks are easy to
implement and fast to evaluate. They are however not very expressive, so it is necessary
to chain many coupling blocks to model complex distributions.

Neural spline flows

The expressivity can be improved by replacing the affine transformation with a spline-
based transformation. Spline flows are defined by splitting up the input interval into
bins. Within each bin, the transformation is modelled by a simple function, for example
linear [167], quadratic [167], cubic [171] or rational-quadratic [110] functions. We will
discuss the latter option in more detail as it combines high expressivity with good
numerical stability.
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For simplicity, we will restrict our discussion to splines where both input and output
are defined on the unit interval [0, 1]. The interval is split up into K bins with K + 1
boundaries. These bins are defined by their widths w, heights h, and the derivatives d at
the boundaries. Ref. [110] proposes to set the derivative at the outer boundaries of the
unit interval to 1. Then the transformation can be smoothly continued as the identity
function outside of the unit interval. In cases where the feature being transformed is
restricted to be within the unit interval, this limits the expressivity close to the boundaries.
This can be solved by also making the outer derivatives free parameters of the spline [6].
Depending on that choice, there are 3n− 1 or 3n+ 1 parameters of the spline which have
to be predicted by a trainable sub-network. Starting from unnormalized network outputs

(Θw,Θh,Θd) (3.49)

the normalized widths, heights and derivatives are given by

w = Softmax Θw

h = Softmax Θh

d = Softplus Θd

log 2 ≡
log

(
1 + exp Θd

)
log 2 .

(3.50)

These fulfill the normalization conditions
K∑
k=1

wk = 1 ,
K∑
k=1

hk = 1 and dk > 0 . (3.51)

The factor log 2 in Eq. (3.50) is introduced to make the spline equal to the identity
transformation if Θw = Θh = Θd = 0. This makes it easy to initialize the sub-
networks such that the normalizing flow training starts from the identity mapping. The
transformation within each bin is a monotonic rational-quadratic function, i.e. the ratio
between two quadratic polynomials. The inverse and derivative of this function can be
computed analytically. The details on how to construct this function can be found in
Ref. [110].

In many cases where generative models are used, there are periodic features like azimuthal
angles. Spline coupling transformations can be easily extended such that they ensure
periodicity by setting d0 = dK [172]. While this makes the transformation periodic, its
flexibility is limited because there is still a fixed boundary at 0 and 1. This problem can
be solved by introducing an additive shift [8].

3.2.4 Continuous flows

INNs and autoregressive flows are based on transformations that are restricted such that
the Jacobian is a triangular matrix and therefore computationally tractable. A different
approach is to transform all dimensions simultaneously by making the transformation a
continuous function of time [173]. Its dynamics are written as an ordinary differential
equation (ODE) with a function vθ encoded by a neural network and the vector of features
x(t) at time t,

dx(t)
dt = vθ(x(t), t) . (3.52)
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In analogy to fluid dynamics, the function vθ is called velocity field. The ODE can be
turned into a normalizing flow by imposing the boundary conditions for the probability
density of x at two points in time,

p(x, t = 0) = platent(x) and p(x, t = 1) = pmodel(x) . (3.53)

Again in analogy to fluid dynamics, the probability density p(x, t) is described by the
continuity equation,

∂p(x, t)
∂t

+∇x ·
[
p(x, t)vθ(x, t)

]
= 0 . (3.54)

Given x(t0) at one point in time, t0, the ODE can be used to determine x(t) at all other
times. Hence, it defines an invertible mapping between the latent space and the data
space. Solving the continuity equation for a given trajectory yields the Jacobian of this
transformation,

p(x, t = 1) = p(x, t = 0) exp
[∫ 1

0
dt tr

(
∇xvθ(x(t), t)

)]
. (3.55)

The mapping and the Jacobian are computed by integrating out t with an ODE solver.
Numerically, this is done by splitting up the time into smaller steps. The network vθ and
its gradients with respect to x (if the Jacobian is needed) have to be evaluated for every
time step. The main advantage of continuous flows is that there are no restrictions for
the architecture of the network vθ. This can increase the expressivity of continuous flows
compared to other types of normalizing flows.

The first proposed training method for continuous flows was to directly use the probability
from Eq. (3.55) in a log-likelihood loss [173]. The ODE over the gradients of the velocity
field then has to be evaluated for every weight update during the training, making it slow
and unstable. Several improvements have been proposed to increase the training speed
and stability [174,175].

Conditional Flow Matching (CFM) is a different way to train continuous flows where
the ODE does not have to be solved during training [102–104]. It combines the basic
structure of continuous flows with a pre-defined time evolution between the latent and
data distribution. This approach combines the invertible setup of continuous flows with
the training method used for diffusion models [100, 101]. A simple choice for such a
target trajectory is linear interpolation between the target distribution and a normal
distribution [104],

p(x, t) =
∫

dx0 p(x, t|x0) pdata(x0) with p(x, t|x0) = N (x; (1− t)x0, t) . (3.56)

By construction, p(x, t) fulfills the boundary conditions. The corresponding velocity field
can be found by inserting it into the continuity equation. The training objective is now
to minimize the difference between v(x, t) and vθ(x, t) with a MSE loss function,

L =
〈[
vθ(x, t)− v(x, t)

]2〉
(x,t)∼p(x,t)

. (3.57)

While both sampling from p(x, t) and the target velocity field v(x, t) are intractable,
it can be shown that the loss function can be rephrased in terms of the conditional
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probability p(x, t|x0). The loss function then becomes [102]

LCFM =
〈[
vθ((1− t)x0 + tϵ, t)− (ϵ− x0)

]2〉
t∼u,x0∼pdata,ϵ∼N

, (3.58)

where x0 is sampled from training dataset, t is sampled uniformly from the interval [0, 1]
and ϵ is sampled from a normal distribution. This way, the complex continuous flow
training has been replaced with a simple regression task. For a detailed derivation of this
loss function, we refer to Ref. [102]. CFMs can be easily adapted to learn conditional
distributions by giving the condition as an additional input to the network encoding the
velocity field.

3.3 Bayesian neural networks

One of the first lessons that a physicist learns is that a measurement is only complete
when it comes with an uncertainty estimate. When neural networks are applied in physics,
we have to extend this rigorous treatment of uncertainties to deep learning. In this
section, we will review the different types of uncertainties that arise when neural networks
are used and then discuss Bayesian neural networks (BNNs), a type of network that
allows us to estimate a part of these uncertainties.

3.3.1 Types of uncertainties

When we train a neural network, we have to distinguish between three types of un-
certainties. Firstly, there are intrinsic uncertainties in the data. For example, when a
classifier is trained, multiple labels can have non-zero probabilities. Because it is intrinsic,
this uncertainty cannot be overcome by constructing a better network or improving the
training.

Secondly, networks are usually trained on a limited amount of training samples. Even
for a network that is expressive enough to exactly model the target, this will lead to
an uncertainty on the weights of the network. This uncertainty vanishes in the limit of
infinite training data.

Lastly, real-world neural networks might not be expressive enough to perfectly model the
truth. But even if they are, the training might get stuck in a local minimum or might
not be fully converged. This will lead to uncertainties that are neither intrinsic to the
data nor go away in the limit of infinite training data.

The first uncertainty is often referred to as epistemic or systematic uncertainty, and the
second one is called aleatoric or statistical uncertainty [113]. The names statistical and
systematic uncertainty are problematic in a physics context because they usually refer to
uncertainties that do or do not scale with the number of observations, whereas here, these
names are used to describe the scaling with respect to the number of training samples.
In this thesis, we will only use the terms statistical and systematic in the way that they
are understood in physics, and refer to the uncertainty arising from the limited training
statistics as predictive uncertainty.

Note that our discussion of the different types of uncertainties was based on the assumption
that we can trust the distribution of the training data. If this is not the case, there are
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additional uncertainties from the simulations used to generate the training data. These
systematic uncertainties are often addressed with nuisance parameters in particle physics.

3.3.2 Building a BNN

Bayesian neural networks [111–114] can be constructed for any model with a likelihood
loss that is trained on a fixed training dataset. Examples for likelihood losses include
regression (see Sec. 3.1.2), classification (see Sec. 3.1.3) and (conditional) normalizing
flows (see Sec. 3.2). Consider a training dataset D of N paired points (xi, ci). Likelihood
losses assume some functional form of the likelihood p(x|c, θ) of these points, where
we make the conditional dependence on the network parameters explicit. The training
objective then is to minimize the loss function

L = − log p(D|c, θ) = −
N∑
i=1

log p(x|c, θ) . (3.59)

The following derivation can be easily applied to non-conditional models by omitting the
condition c.

Even if the exact form of the likelihood of the training data was known, we could only get
an estimate of the parameters θ due to the limited number of points in the training dataset.
To capture the resulting uncertainty, we assume some prior distribution of the network
weights p(θ), and ask for the posterior distribution of the network weights given the
training data, p(θ|D). While Markov Chain Monte Carlo methods can be used to sample
from the posterior for small models [176], this is intractable for models with millions
of parameters. An alternative approach is variational inference (VI) [177] where the
true posterior is approximated by a simpler, tractable distribution qϕ(θ) with trainable
parameters ϕ. The training objective then becomes to minimize the KL divergence
between this approximation and the true posterior,

ϕopt = arg min
ϕ

KL(qϕ(θ), p(θ|D)) . (3.60)

We can express this in terms of the prior and likelihood using Bayes’ theorem,

KL(qϕ(θ), p(θ|D)) =
∫

dθ qϕ(θ) log qϕ(θ)
p(θ|D)

=
∫

dθ qϕ(θ) log qϕ(θ)p(D)
p(D|θ)p(θ)

= −
∫

dθ qϕ(θ) log p(D|θ) +
∫

dθ qϕ(θ) log qϕ(θ)
p(θ) +

∫
dθ qϕ(θ) log p(D)

= −⟨log p(D|θ)⟩θ∼qϕ(θ) + KL(qϕ(θ), p(θ)) + log p(D) .
(3.61)

The log-likelihood of the full dataset can written as a sum over the log-likelihoods for the
single points, giving us

log p(D|θ) =
N∑
i=0

(log p(xi|ci, θ) + log p(ci)) . (3.62)
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By splitting up the dataset into mini-batches of size M , we can approximate this likelihood
as

log p(D|θ) ≈ N

M

M∑
i=0

(log p(xi|ci, θ) + log p(ci)) . (3.63)

The evidence p(D) does not depend on the trainable weights ϕ, so we do not have to
include it in the loss function. The same is true for the distribution of the condition,
p(c). The expectation value of the likelihood with respect to the parameters θ can be
approximated by drawing a single sample from p(θ) per training batch. Then the BNN
loss function is

L = − 1
M

M∑
i=0

log p(yi|xi, θ) + 1
N

KL(qϕ(θ), p(θ)) with θ ∼ qϕ(θ) , (3.64)

where we divided Eq. (3.61) by N to recover the usual log-likelihood loss in the first term.
The second term effectively acts like a regularization of the network weights.

A common choice for the form of the prior and posterior is to assume uncorrelated
Gaussians. While this is a very restrictive assumption, it is still able to model complex
uncertainties. Because the network is deep, varying parameters in early layers of the
network can lead to complex, non-linear effects on the network output [113]. In some cases,
it is even sufficient to only use VI for the first layer of the network and use deterministic
layers for the rest of the network [178]. The prior is often chosen to have a mean µp = 0
and a standard deviation σp. The approximated posterior for a network parameter θj has
means µj and standard deviations σj . Going from a deterministic network with trainable
parameters θj to a Bayesian network with parameters ϕj = (µj , σj) therefore doubles
the number of parameters. For this choice of prior, the KL divergence can be computed
analytically,

KL(qϕ(θ), p(θ)) =
∑
j

(
log σp

σj
+
σ2
j + µ2

j

2σ2
p

− 1
2

)
. (3.65)

Sampling from qϕ(θ) while still allowing to compute gradients is possible using the local
reparameterization trick, where the sampling is expressed as

θ = µ+ σϵ with ϵ ∼ N (0, 1) . (3.66)

Then the gradients of the loss with respect to µ and σ can be computed through
backpropagation as the gradients ∂θ/∂µ and ∂θ/∂σ are available.

We give the loss function for Bayesian cINNs [179] explicitly, because they are used
several times throughout this thesis. By combining Eqs. (3.34) and (3.64), we get

L = 1
M

M∑
i=0

(
∥Gθ(xi|ci)∥2

2 − log
∣∣∣∣∂Gθ(xi|ci)∂x

∣∣∣∣
)

+ 1
N

KL(qϕ(θ), p(θ)) , (3.67)

with θ ∼ qϕ(θ).

3.4 Transformers

Transformer networks were originally proposed as an architecture for translation tasks
where a sequence of words in one language is generated, conditioned on a sequence
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of words in another language [105]. Since then, they have been applied to various
applications in language processing and beyond [180,181]. In particle physics, examples
for the use of transformers include jet tagging [182], representation learning [183], and
generative tasks [64,184].

Transformers consist of two parts, the transformer encoder and decoder. The encoder
transforms an input sequence of length NE into an output sequence of length NE . The
decoder takes a sequence of length ND and the output sequence of the encoder as
inputs. Its output is a sequence of length ND. Each sequence consists of d-dimensional
vectors. Both encoder and decoder are permutation-equivariant with respect to their
input sequences. In cases where the order of the sequence is relevant, positional encoding
can be used to embed this information into the vectors encoding the sequence elements.

3.4.1 Attention mechanism

The core of transformers is the scaled dot-product attention mechanism [105]. Let xKi , xVi
and xQi be d-dimensional vectors, where the index i indicates that they are elements of a
sequence. First, trainable matrices WK ,W V ,WQ ∈ Rm×d are applied to those vectors,
resulting in m-dimensional vectors

ki = WKxKi , vi = W V xVi , qi = WQxQi . (3.68)

These vectors are often called key, value and query. Next, the attention matrix Aij is
constructed from the keys and queries,

Aij = Softmaxj
(
qi · kj√
m

)
. (3.69)

Finally, the attention matrix is multiplied with the value vectors, yielding a sequence of
output vectors

yi = Aijvj . (3.70)

The attention matrix can be interpreted as learning the relationships between sequence
elements. Since there might be multiple different meaningful ways to construct these
relationships, the simple attention can be extended to a multi-head attention mechanism.
Let h be the number of heads. For each head, an independent attention matrix is
computed and the resulting yi are concatenated. For the choice m = d/h, this results in
a d-dimensional output vector

yi = Concat(y1
i , . . . , y

h
i ) , (3.71)

where the yki denote the outputs of the individual attention heads from Eqs. (3.69)
and (3.70). The attention transformation is then followed by one or more fully-connected
layers applied to each sequence element. These layers are the same for all elements,
therefore preserving the permutation-equivariance. The transformer encoder and decoder
are built from a chain of multiple attention blocks. In the case of the encoder, all inputs
are chosen to be the same,

xKi = xVi = xQi = xi . (3.72)

This is referred to as self-attention. The decoder contains both self-attention and cross-
attention blocks. The latter construct their attention matrix from the output of the
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previous attention block in the decoder xi and the output of the encoder ei,

xQi = xi and xKi = xVi = ei . (3.73)

3.4.2 Generative transformer

Transformers were introduced as a generative language model for translation [105]. The
inputs to transformer encoder and decoder are words embedded into a vector space
combined with a positional encoding. The original sequence is passed as the input of the
transformer encoder while the decoder generates the translated sequence word by word,
using the previously generated words as its input. Hence, the generative transformer is
an example for an autoregressive generative architecture. While the original transformer
was built to predict discretized tokens (words), it can be easily generalized to support
continuous distributions. To build a non-conditional generative model, it is sufficient
to use a series of self-attention blocks similar to the transformer encoder defined above.
It can be easily replaced with a full transformer, including an encoder and decoder, to
make the generation conditional on another sequence.

Generative transformers are built from three components. Firstly, we need to assume
a form of the likelihood of a single sequence item xi given some condition ci, pθ(xi|ci).
Secondly, we need an embedding of the sequence items into vectors of size d where d is the
internal number of features of the transformer, eϕ(xi). Lastly, we have the transformer
tξ itself with the sequence of embeddings shifted by one as its input and the conditions
ci as its output. In the most general case, all three components are neural networks with
trainable parameters θ, ϕ and ξ. The full likelihood for a sequence (x1, . . . , xn) is then
given by

p(x1, . . . , xn) =
n∏
i=1

pθ(xi | ci)

=
n∏
i=1

pθ(xi | tξ(eϕ(x0), . . . , eϕ(xi−1))) .
(3.74)

Here, x0 acts as a starting token. Its specific definition depends on the type of sequence.

The generic structure of Eq. (3.74) allows for many different types of likelihoods to be used
for the items in the sequence. In the case of a finite set of tokens, pθ can be implemented
as a fully-connected network with a categorical cross-entropy loss [105]. If the sequence
consists of one-dimensional continuous features, a fully-connected network that predicts
the parameters of a Gaussian Mixture Model can be used [64, 185]. To model more
complex, multidimensional likelihoods, transformers can be combined with normalizing
flows. We will discuss the latter variant of generative transformers in Sec. 6.5.2.
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Chapter 4
Precision event generation

The research presented in this chapter is based on work in collaboration with Anja
Butter, Ranit Das, Luigi Favaro, Sander Hummerich, Claudius Krause, Tobias Krebs,
Tilman Plehn, Armand Rousselot, David Shih and Sophia Vent, and has been previously
published in Ref. [1] and Ref. [4]. All tables and figures as well as parts of the text are
similar or identical to the content of these articles. In particular, Secs. 4.1 and 4.3 are
based on Ref. [1], Sec. 4.4 is based on Ref. [4].

Having introduced the basics of machine learning and LHC event generation, we can now
combine the two. Often, ML-applications focus on one specific part of the event generation
chain. We will discuss one such example in Ch. 5, where we accelerate the generation of
hard scattering events with neural importance sampling. A different approach is to build
a generative network surrogate for the entire LHC event generation chain that directly
generates reconstructed events. This is also referred to as an end-to-end model. Various
network architectures have been applied to this task, including generative adversarial
networks (GANs) [61], variational autoencoders [63], diffusion models and generative
transformers [64]. This work focuses on invertible neural networks, as they provide a
good balance between high precision, fast and stable trainings, and fast generation of new
samples. We first describe our benchmark dataset, leptonically decaying Z-bosons with a
variable number of jets, in Sec. 4.1. We then present the architecture of our precision
INN generator and discuss its performance as a surrogate for the full simulation chain in
Sec. 4.2.

Compared to a more fine-grained approach where generative models replace smaller parts
of the event generation chain, an end-to-end model has the potential to provide the largest
speed-up. It skips various high-dimensional intermediate representations like the particle
level or hits in calorimeter cells. It however also reduces the amount of control that
we have, as the entire simulation chain is now distilled into a single neural network. A
thorough understanding of the uncertainties involved with the training of such a network
is therefore crucial. There are two key sources of uncertainties that we investigate in this
work. The first one is caused by the limited amount of training statistics of the network.
The second one is caused by the lack of expressiveness or the training of the ML model
itself.

Generative models have been shown to amplify their trainings statistics [186, 187], i.e.
they can be used to generate more events than they were trained on until the effective
sample size becomes limited. This is because neural networks behave similar to parametric
fits [179,188] and are powerful tools to smoothly approximate high-dimensional probability
distributions. In practice, this means that we need to understand the uncertainties arising
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from the limited training statistics. We discuss how these uncertainties can be extracted
using Bayesian Neural Networks [111–114,179,189,190] in Sec. 4.3.

Second, we show in Sec. 4.4 how classifiers discriminating between generated and truth
data can be used both as a performance metric and diagnostic tool to find the failure
modes of generative networks. When classifiers are used as a performance metric, the
area under the ROC curve is often used to reduce the generator performance to a single
number. We instead show how the local structures picked up by the classifier can help us
to better understand the shortcomings of the generative model. Further, we demonstrate
that the precision of the generated samples can be improved by reweighting them using
the weights from the classifier [115]. In addition to reweighting and its use as a diagnostic
tool, there are also ways to use the discriminator feedback to improve the generator
directly, which are not the focus of this thesis. Examples include the DiscFlow method,
where the discriminator feedback is used during the training of an INN [1], and latent
space refinement [191,192]. Lastly, we show how the error estimates from the classifier
and Bayesian network are related.

4.1 Dataset

We choose the production of leptonically decaying Z-bosons with a variable number of
jets as our benchmark process,

pp→ Zµµ + {1, 2, 3} jets . (4.1)

The events are simulated with Sherpa2.2.10 [35] at 13 TeV. We use CKKW merging [193]
to get a merged sample with one to three hard jets. We include initial state radiation,
parton shower and hadronization, but exclude detector effects. This is because detector
effects lead to a smearing of sharp features in phase space. Not including them makes
the generation task more challenging, and we expect that the performance of our method
would be equal or better for reconstructed objects at the detector level. Moreover, there
are detector-specific artifacts, for instance from the calorimeter geometry, that we neglect
to focus on the underlying physics.

We use Fastjet3.3.4 [194] to reconstruct anti-kT jets [195] with

pT,j > pT,min = 20 GeV and ∆Rjj > Rmin = 0.4 . (4.2)

The input of the jet algorithm comprises all particles at the hadronization-level, excluding
neutrinos, the two muons from the Z-decay as well as photons radiated by these muons.
Because of the variable number of hard jets and QCD effects like initial and final state
radiation, there will be a variable number of jets. We sort the jets by pT and include up
to three jets in our dataset. The resulting dataset contains 5.4M events in total, with
4.0M one-jet events, 1.1M two-jet events, and 300k three-jet events. It is further split up
into a training and a test dataset of equal sizes. The momenta of the two muons have
three degrees of freedom, while the invariant mass is an additional degree of freedom for
the jets. Consequently, the phase-space dimensions for one-, two- and three-jet events
are 10, 14 and 18.

This process has two features that are difficult to learn for generative networks. The
Z-boson decaying into two muons causes a sharp resonance in the combined invariant
mass of the two muons, Mµµ. For a network trained on the momenta of the two muons,
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Figure 4.1: Generative flow architecture for events with two muons and one to
three jets. The INNs relate the latent space (left) to the physical phase space
(right), conditioned on the one-hot encoded jet multiplicity.

this mass peak is a complex correlation between multiple input features, making it
challenging to learn. Secondly, for events with more than one jet, QCD effects cause
an enhancement of the rate when the two jets are close to collinear. At the same time,
there is a cutoff in the angular separation ∆Rjj imposed in the jet algorithm. This again
leads to a very sharp feature that is hidden in the correlation of the momenta of two jets.
Furthermore, the cutoff leads to a hole in phase space which can cause problems with
generative architectures like normalizing flows that preserve the topology of their latent
space distribution [191].

4.2 INN generator

4.2.1 Network architecture

We use an INN with the architecture and loss function described in Sec. 3.2.2. It is
implemented in PyTorch [196] with the Adam optimizer [164], and a one-cycle learning-
rate scheduler [197]. The coupling blocks are based on cubic spline transformations [171].
The network uses a Gaussian latent space and we ensure that almost all points stay within
the bounds of the spline transformations by setting the limits of the transformations to
[−10, 10]. Values outside of the bounds are mapped onto themselves. After each coupling
block, a random, but fixed rotation matrix is applied to the features, so that correlations
between all input variables can be modeled.

Invertible neural networks without any modifications are restricted to datasets with a
fixed input dimension. The simplest way to account for a variable jet multiplicity would
be to train a separate generative network for every multiplicity. This approach has several
disadvantages. There are structures that are similar for all different multiplicities like the
decay of the Z into two muons, or basic QCD patterns. These structures would have to
be relearned by every generator. As the number of jets increases, the number of training
events gets smaller while the size of the generator networks gets larger, making the
training more unstable. A better way to account for the variable multiplicity is to train
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a common network that generates the momenta of the two muons and the first jet, as
these are present in all events in our training data. Then a smaller network is trained for
each additional jet to generate the jet momentum conditioned on all previously generated
momenta. This makes the architecture autoregressive at the level of particles. This chain
of conditional generators is illustrated in Fig. 4.1. As the first two network are trained on
mixed multiplicities, the information about the multiplicity is passed to the network as an
additional condition in one-hot encoded form. Moreover, the multiplicities are balanced
during training, such that every training batch contains events with the three different
multiplicities in equal proportions. All three networks are trained separately, and they
are combined to generate samples. We list the hyperparameters for our networks in
Tab. A.1.

Preprocessing

The choice of an appropriate preprocessing is crucial for a successful network training.
This is especially true for generative models because sharp features are difficult to model
from a smooth latent distribution. For INNs with a Gaussian latent space, the input
data should be preprocessed in a way that brings it as close to a Gaussian as possible.
Each muon or jet is represented by

{ pT , η, ϕ,m } , (4.3)

where the mass is only present for jets as the muons are on the mass-shell. The pT
distribution has a sharp cutoff at pT,min from the cuts imposed during reconstruction. It
can be turned into an approximately Gaussian distribution with

p̃T = log(pT − pT,min) . (4.4)

The phase space distribution is invariant under rotations around the beam axis, so we
can remove a degree of freedom by training the networks on azimuthal angles relative to
the muon with the largest transverse momentum. We take into account the periodicity
of the azimuthal angle, resulting in the range ∆ϕ ∈ [−π, π]. We transform these angle
differences into a distribution close to a Gaussian using

∆̃ϕ = arctanh
(∆ϕ
π

)
. (4.5)

We then centralize and normalize the phase-space variables qi as

q̃i = qi − ⟨qi⟩
σ(qi)

. (4.6)

In Ref. [1], we then used a multiplicity-wise PCA/whitening transformation. We later
found that this preprocessing led to hard to learn correlations between different multiplic-
ities and removing it improves the network performance. We implemented these changes
in Ref. [4]. In the following, we will refer to the model using the original preprocessing as
“standard generator” and to the improved version as “state-of-the-art generator”.
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Magic transformation

While preprocessing is effective in removing some challenging features like the hard cut in
the pT distribution, it is not always possible to find a simple mapping that addresses such
challenges. One of the major challenges of the Z+ jets final state is the the correlation
between ∆ϕ and ∆η of the jets. We illustrate this for the exclusive 2-jet final state in
Fig. 4.2. In most events, the two jets have a back-to-back topology, but there are events
where the two jets recoil against the Z. Collinear enhancement leads to a local maximum
close to the cutoff from the jet algorithm at ∆Rjj > 0.4. This sharp feature is difficult
for the network to learn for several reasons. There is a low number of training events in
this phase-space region, compared to events with a back-to-back topology. Further, to
correctly model this feature, the network has to learn the correct correlation between
several input variables. As a consequence, the network smoothly interpolates through
this ring-hole structure. While the main difficulty is the lack of precision of the network,
the non-trivial topology of the phase-space distribution might give the network further
incentive to smoothly interpolate through the hole in phase space [191].

We can exploit the tendency of neural networks to interpolate through sharp structures
by defining a weighting function that smooths the sharply peaked distribution into a
distribution that is easier to learn for the network. In the case of the ring-hole structure,
the complicated shape of the distribution is the most apparent in the observable ∆Rjj .
Therefore, we reweight the training data with a simple linear smoothing function,

f(∆R) =


0 for ∆R < R−

∆R−R−
R+ −R−

for ∆R ∈ [R−, R+]

1 for ∆R > R+ ,

(4.7)

where the lower cutoff R− < Rmin = 0.4 ensures non vanishing weights for all training
events, and the upper boundary R+ is in a phase-space region without complicated
features. We use the values R− = 0.2 and R+ = 1.5. The same procedure can be easily
applied to events with more than two jets and multiple critical ∆Rjj-distributions by
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Figure 4.2: Correlations of the difference in pseudorapidity and azimuthal angle
between jets for events with two jets. We show truth (left) and INN-generated
events (right).
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defining the weights

w(1-jet) = 1
w(2-jet) = f(∆Rj1,j2)
w(3-jet) = f(∆Rj1,j2)f(∆Rj2,j3)f(∆Rj1,j3) .

The ∆Rjj-distributions for Z + 2-jet events before and after reweighting are shown in
the left panel of Fig. 4.3. The reweighted distribution no longer has a local maximum at
∆Rjj ≈ 0.6 and is less steep close to Rmin = 0.4. The INN is trained on weighted events
using the weighted version of the standard INN loss from Eq. (3.36) with a batch-wise
normalization of the weights from Eq. (4.8),

LG = 1
B

B∑
i=1

w(xi)∑B
j=1w(xj)

log gϕ(xi|ci) , (4.8)

where B is the batch size. The magic transformation has to be inverted for events
generated by an INN trained on reweighted training data. The inverse weights are

f̄(∆R) =


0 for ∆R < Rmin

R+ −R−
∆R−R−

for ∆R ∈ [Rmin, R+]

1 for ∆R > R+

, (4.9)

where we set the weights of events with ∆R < Rmin to zero to enforce the jet separation.
We show the ∆ϕ and ∆η correlation of events generated using the magic transformation
in the right panel of Fig. 4.2. It can be seen that the network has captured the ring-hole
structure. The main disadvantage of the magic transformation is that the resulting events
are now weighted. We show the weight distribution of the generated events in the right
panel of Fig. 4.3. Most events have weights between one and seven, so an unweighted
sample could be obtained efficiently through rejection sampling as described in Sec. 2.2.5.
The advantages of the method are its versatility, as it could be easily applied to other
localized structures that are difficult to learn for a generative network, and that it is
complementary to other approaches like improving phase-space mappings or latent space
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Figure 4.3: Left: ∆Rj1j2-distribution for Z + 2 jets events before and after the
transformation of Eq. (4.8). Right: histogram of the weights of the generated
events.
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refinement. Note that the magic transformation is different from the standard approach
used in Monte Carlo integration, where phase-space mappings are used to remove the
leading features of a distribution and an adaptive model is used to learn a small but
non-trivial difference. Instead, our approach relies on the tendency of INNs to smoothly
interpolate, as their training behaves similarly to a fit [179].

4.2.2 Results

We train an INN generator with the setup, preprocessing and magic transformation
described above. We then use it to generate samples. In Fig. 4.4, we show histograms of
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Figure 4.4: INN distributions for Z+1 jet (upper), Z+2 jets (middle), Z+3 jets
(lower left) and an inclusive distribution (lower right) from a combined Z + jets
generation. We show weighted events using the magic transformation of Eq. (4.8)
to improve the ∆R distributions.

45



4 Precision event generation

kinematic distributions for our training data (“Train”), generated data (“INN”) and test
data (“Truth”). We show exclusive distributions for Z + {1, 2, 3} jets samples as well as
one inclusive distribution. Each histogram also contains the relative deviation between
the generated and truth data, expressed as a ratio and as the percentage of deviation,

δ[%] = 100 |Model− Truth|
Truth . (4.10)

As seen in the top row, the pT of the jets is learned with high precision, and the network
is able to extract the challenging peak in the intermediate Z mass with only a small
amount of smearing. In the second row, we can see distributions for events with two jets.
Again, the pT distribution of the second jet is learned with high precision, comparable to
that of the first jet. For two-jet events, the network now also has to learn the structure
of ∆Rj1j2 . With the help of the magic transformation, the network is able to map out
this structure well. This is still true after adding a third jet in the final state. Lastly, we
also show an inclusive distribution, the scalar sum of all jet pT . Like the exclusive pT
distributions, it is in excellent agreement with the truth distribution.

We find that the network agrees with the truth data at the percent level or better in
the bulk of the distributions of many kinematic observables, like in the pT distribution
shown in Fig. 4.4. It is close or only slightly worse than the agreement between the truth
data and the statistically independent training data. In the tails of the distributions,
there are larger fluctuations. These are however also present in the training data due to
the limited size of the training dataset. For more complicated observables like Mµµ and
∆Rjj , we find a lower precision between one and ten percent in the bulk.

4.3 Uncertainties from Bayesian networks

We can extend the INN from Sec. 4.2 to a Bayesian INN as introduced in Sec. 3.3.2. To
this end, we train a network with the same architecture as in Sec. 4.2. We adjust the
hyperparameters as given in Tab. A.1. The result of the training can be understood as the
uncertainties of the phase-space density arising from the limiting amount of training data.
These uncertainties can be evaluated in the forward direction where for a given point in
phase space, multiple samples from the distribution of possible densities can be drawn,
or in the inverse direction, resulting in an uncertainty of the generated phase-space
distributions. In this section, we focus on the latter interpretation. We extract the
uncertainties by repeatedly sampling a set of events for different network replicas drawn
from the the Bayesian network posterior distribution. For a given observable and each
set of events, a histogram is created. The bin-wise means and standard deviations of
these histograms then define the error bands for the observable.

We show histograms for different phase-space observables including the BINN error bars
in Fig. 4.5. In the pT distribution of the first jet in the upper left panel, we can see that
the deviation between the generated and true distribution is covered by the error bands
from the Bayesian network. These are especially large in the tail of the distribution,
indicating that estimating the density in this region of phase space is harder due to
the lower amount of training statistics. In contrast, we can see that the deviation from
the truth distribution is not covered by the uncertainty bands for the smeared peak
from the intermediate Z resonance in the upper right panel. This highlights that BNNs
only find the uncertainties from a lack of training statistics, but not from a sub-optimal
training procedure or a lack of network expressivity. In the central left panel, we show
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Figure 4.5: BINN densities and uncertainties for Z + 1 jet (upper), Z + 2 jets
(middle), and Z + 3 jets (lower) from a combined Z + jets generation. The
architecture and training data correspond to the deterministic network results
shown in Fig. 4.4, including the magic transformation of Eq. (4.8).

the pT distribution of the second jet for Z + 2-jet events. The slightly larger error bars
in the bulk are caused by the lower number of training events with two or more jets.
Finally, the ∆Rjj distributions for events with two or three jets are still learned well
thanks to the magic transformation and deviations from the truth distribution are mostly
covered by the Bayesian network uncertainties. Overall, there is some degradation of the
performance compared to the deterministic network. This is caused by the more difficult
training of a BNN compared to a deterministic network because of a larger number of
trainable parameters and noise from the stochastic network weights. An improved version
of the Bayesian generator, similar to the improved version of the deterministic generator
will be discussed in Sec. 4.4.3.
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Figure 4.6: Correlation between event count and BINN uncertainty for 1000
(left) and 1M (right) generated events. The diagonal line shows the Poissonian
scaling for a statistically limited sample.

Decomposition of bin-wise uncertainties

Bin-wise means and standard deviations are a simple way to visualize the uncertainties
found by a BINN. The resulting error bars do however not only contain the uncertainty
of the distribution itself, but also the Poissonian noise from sampling. We can decompose
the error bars into these two components. In the following, we will look at the mean µ
and standard deviation σ of the number of events in a single histogram bin. The mean is
given by

µ ≡ ⟨n⟩ =
∑
n

nPN (n) , (4.11)

with the Poissonian probability PN (n) to observe n events in that bin. In the case of a
generative neural network, PN (n) depends on the the probability to generate events in
that bin, which in turn depends on the network’s trainable parameters θ. Consequently,
it is a conditional distribution PN (n|θ). As we are also averaging over the distribution of
network parameters by making several histograms with different sampled θ, the mean
from Eq. (4.11) becomes

⟨n⟩ =
∫
dθ q(θ)

∑
n

nPN (n|θ) ≡
∫
dθ q(θ) ⟨n⟩θ . (4.12)

We can now compute the corresponding standard deviation, and decompose it into two
terms,

σ2
tot = ⟨(n− ⟨n⟩)2⟩

=
∫
dθ q(θ)

[
⟨n2⟩θ − 2⟨n⟩θ⟨n⟩+ ⟨n⟩2

]
=
∫
dθ q(θ)

[
⟨n2⟩θ − ⟨n⟩2θ + (⟨n⟩θ − ⟨n⟩)2

]
≡ σ2

stoch + σ2
pred .

(4.13)

following the argument given in Ref. [190]. The first term is the variance of the Poissonian
noise,

σ2
stoch =

∫
dθ q(θ)

[
⟨n2⟩θ − ⟨n⟩2θ

]
= ⟨n⟩ . (4.14)
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Figure 4.7: Relative uncertainty from the BINN for the Z + 1 jet sample, as a
function of the size of the training sample.

The second term is the variance of the network prediction due to the limited number of
training points, extracted by the Bayesian network,

σ2
pred =

∫
dθ q(θ) (⟨n⟩θ − ⟨n⟩)2 . (4.15)

Note that this decomposition of the uncertainties is specific to the histogram-based
approach. A strategy to define uncertainties as a continuous function of phase space by
using the network for density estimation will be discussed in Sec. 4.4.3.

We demonstrate this decomposition of the uncertainties for a histogram of the pT,j-
distribution for Z + 1 jet events in Fig. 4.6. Each dot in the figure denotes the mean and
standard deviation of the events count for one of the 60 histogram bins. The black line
shows the Poisson scaling σ ∝ √µ, which is the minimum of the total uncertainty. We
show this plot for a histogram of 1000 and 1M events. Neglecting statistical fluctuations,
the point follow the Poisson line in the low statistics case. That means that σstoch is the
dominant contribution to the total uncertainty. In the high statistics case, the predictive
uncertainty of the BINN, σpred, becomes more important.

Effect of training statistics

As the purpose of a Bayesian network is to capture the uncertainties caused by the
limited amount of training data, we can test the BINN by varying the size of the training
dataset. We train the network with dataset sizes between 3072 and 2.7M and show the
relative uncertainty of two pT distributions for one-jet events in Fig. 4.7. It can be seen
that the uncertainty is reduced for trainings on larger dataset compared to smaller sizes.
The uncertainty of pT,µ1 is no longer estimated correctly in the training with the smallest
dataset. This shows that uncertainty estimate becomes unreliable in situations when it
becomes hard for the network to learn the phase-space density due to a very low amount
of training data.

4.4 Classifier metric

So far, we have discussed how specific challenges and failure modes of a generative
network, like washed out sharp features, wrongly learned phase-space boundaries and
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underpopulated kinematic tails, can be addressed through problem-specific measures such
as preprocessing, reweighting of the training data or changes to the architecture. These
problems are typically identified by constructing high-level observables and looking at
their distributions. However, problematic features can sometimes be hidden in complex
correlations. In this section, we will show how classifier networks can be used to identify
such failure modes in a systematic way, making them a powerful quality metric for
generative models. Moreover, the classifier feedback can be used to refine the generated
events through reweighting.

According to the Neyman-Pearson lemma, the likelihood ratio is the optimal discriminant
between two different hypotheses. As explained in Sec. 3.1.3, the training objective of
a binary classifier trained with a binary cross-entropy loss is to extract the likelihood
ratio from the training data. An optimal classifier trained on samples from a generative
network (label C = 0) and samples from the truth distribution (label C = 1) can therefore
extract the reweighting factor between these two distributions. Given the classifier output
C(x) as a function of phase space, these weights can be written as

w(x) = pdata(x)
pmodel(x) = C(x)

1− C(x) . (4.16)

For a good generative model the distribution of these weights will be peaked close to one.
Phase-space regions where the generator is overestimating the density lead to tails on
the left side of the weight distribution (w ≪ 1) and regions where it is overestimating
will lead to tails on the right side of the distribution (w ≫ 1). For instance, a missed tail
will result in large weights, whereas in a case where the network interpolates through a
phase-space boundary there will be weights close to zero. A smoothed out peak leads to
low weights w < 1 in phase-space regions close to the peak, and to weights w > 1 further
away from the peak.

To be able to use a classifier as a tool for reweighting, it has to reach a higher precision
than the generative network to which it is applied. As demonstrated above, INNs applied
to LHC event generation reach percent-level accuracy. GANs are a different example
for generative networks that have been applied to similar data. They reach accuracies
around 10% [61]. Regression networks, which are conceptually more similar to classifiers,
have been shown to reach per-mille level accuracies when they were applied to amplitude
regression [55]. The reason for this difference in performance is that generative networks
typically are more constrained or require a special mode of training. For example, INNs
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standard generator. The weights are evaluated separately on the truth dataset
and the generated dataset.
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Figure 4.9: Z-peak distributions for Z+2 jets events from the standard generator.
We show the agreement between the generated events with the truth data (left)
and events in different weight ranges (right). The events with small weights are
taken from the generated distribution, the events with large weights are taken
from the truth distribution.

have a constrained architecture to make them invertible with a tractable Jacobian. GANs
need to find an equilibrium between two networks during the training, and models based
on flow matching learn a velocity field instead of directly estimating the density.

We train a classifier on INN-generated events with the same parameterization as for the
INN training. Because classifiers do not have an invertibility constraint, we can add
further training observables that correspond to known failure modes. This enables the
classifier to extract the weights with higher accuracy. In this case, we know that the
peak in the Mµµ correlation and the ∆Rjj distributions are challenging to learn, so we
append these features to the classifier inputs. The input variables are then given by{

pT,i, ηi,∆ϕ1,i,Mi

}
∪
{
Mµµ

}
∪
{

∆Rj1,j2
}
∪
{

∆Rj2,j3 ,∆Rj1,j3
}
, (4.17)

with no ∆ϕ input for the first particle because of the symmetry in the azimuthal
angle and no mass inputs for the muons. We take the inverse of ∆R and apply a
cutoff as preprocessing steps to help the classifier focus on small values of ∆R. The
hyperparameters of our classifier networks are given in Tab. A.2. We train classifiers for
both the standard generator discussed above as well as the state-of-the-art generator with
improved preprocessing to highlight the impact of the changes on the classifier weight
distribution. In both cases, we do not use the magic transformation to investigate the
performance of the classifier near the ∆R cutoff.

4.4.1 Standard generator and mass peak

We first train a classifier on events generated with the old network architecture and
show the resulting ROC curves and weight distributions in Fig. 4.8. As discussed in
the previous sections, one of the main difficulties of this generator is to reproduce the
Z mass peak in the Mµµ distribution, especially for events with two or three jets. We
demonstrate this for the example of Z + 2 jets in the left panel of Fig. 4.9. It can be
seen that the network correctly extracted the position of the mass peak, but the width is
larger than in the truth dataset with relative deviations up to 50% between the learned
and truth distributions. This failure mode can be interpreted as a smearing of the mass
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Figure 4.10: Left to right: Z + {1, 2, 3} jets using the state-of-the-art generator.
Top to bottom: ROC curve, weight distribution on a linear scale, and weight
distribution on a logarithmic scale. The weights are evaluated separately on the
truth dataset and the generated dataset.

distribution due to a lack of precision of the generative network. This smearing means
that the phase space close to the peak is underpopulated, and it is overpopulated on the
sides of the peak. The green line is a histogram of the distribution after reweighting the
generated samples with the weights learned by the classifier. The marginalized weights
are shown in the lower sub-panel. The smeared mass peak leads to weights up to 1.5
at MZ and weights in the range w = 0.6 ... 0.8 on the shoulders of the peak. After the
reweighting, the distributions match at the percent level, indicating that the classifier
has successfully extracted the difference between the generated and truth samples. This
leads to a characteristic structure in the weight distribution, best seen in the middle
panel of Fig. 4.8. Instead of peaking close to w = 1, the weight distribution is shifted
to w < 1 because of the overpopulated shoulders of the Mµµ distribution. Due to
the underpopulated peak, a second shoulder appears in the weight distribution around
w ≈ 1.5. To confirm this, we show the distribution of Mµµ for events with large and
small weights in the right panel of Fig. 4.9.
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Figure 4.11: Kinematic distributions for Z+3 jets events from the state-of-the-art
generator in different weight ranges, to see if events with large corrections cluster
in phase space. The events with small weights are taken from the generated
distribution, the events with large weights are taken from the truth distribution.

4.4.2 State-of-the-art generator and feature scan

Next, we look at the state-of-the-art version of the Z+jets event generator, for which
we show the weight distributions in Fig. 4.10. The modeling of the mass peak is
significantly improved in the updated version, so this failure mode is no longer the
dominant contribution to the classifier weight distribution. Overall, the central peaks
of the weight distribution are much narrower compared to the distributions shown in
Fig. 4.8. The width of these peaks is similar for one- and two-jet events. There are
however still tails of the weight distributions that hint at further failure modes of the
network. The tail towards small weights is best evaluated for generated events, as the
corresponding phase-space regions will be more populated compared to the training
events. Similarly, the tail towards large weights is best studied using training events.

We search for clustering in phase space by looking at the phase-space distributions of
events with anomalous weights. Because the weight distribution for Z + 3 jets has the
most sizeable tails, both towards small and large weights, we show the clustering plots
for these events in Fig. 4.11. ηµ2 and pT,j1 are examples for distributions where almost
no clustering in phase space is visible. Only in the tail of the pT -distribution, there are
some fluctuations caused by low statistics. This is also true for the distribution of Mµµ,
as there is only very little smearing compared to the truth distribution. In contrast,
there is strong clustering visible for the observable ∆Rjj due to the mismodeling of the
collinear enhancement and cutoff. Events with ∆Rjj < 0.4 only appear in the generated
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Figure 4.12: Critical kinematic distributions for Z + 3 jets events from the state-
of-the-art generator in different weight ranges (upper panels) and comparing
generated data with truth (lower panels). The events with small weights are
taken from the generated distribution, the events with large weights are taken
from the truth distribution.

dataset and have weights close to 0. This can be confirmed by looking at the events in
the leftmost bin in the weight histograms for three-jet events in Fig. 4.10, corresponding
to weights 0 < w < 0.06. Indeed, 95% of the events in this bin have at ∆Rjj < 0.4 for
one pair of jets.

The classifier weights can also be used to identify unexpected failure modes that are not
clearly visible by just plotting histograms of the generated events. Two examples for
observables where this is the case are shown in Fig. 4.12. The upper panels show a strong
clustering of events with large weights in one tail of the distribution. The reweighted
distributions in the lower panels confirms that the classifier extracts the correct weights.

4.4.3 Classifier metric for Bayesian generators

As discussed in Sec. 3.3, INNs can be trained as a Bayesian network to extract the
uncertainty of the network parameters arising from limited availability of training statistics.
This uncertainty can be propagated to find the uncertainty of the predicted phase-space
density. Similarly, we can understand classifiers as a tool to find the deviation of the
predicted and true phase-space density. We can compare these two types of uncertainty
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Figure 4.13: Top: correlation between the classifier weights and the relative
standard deviation of the event weights from the Bayesian generator. Center:
medians over the w-bins. Bottom: pulls combining the standard deviation of the
event weight distribution with the error estimate from the Bayesian generator.

estimate by defining the mixed ratio

t(xi) = µ(xi)[1− w(xi)]
σ(xi)

, (4.18)

where µ(xi) and σ(xi) are the mean and standard deviation of the estimated density of a
sample xi, and w(xi) is the classifier weight.

We train a Bayesian version of the state-of-the-art generator, again without the use of
the magic transformation. As a further improvement to the Bayesian training used in
Sec. 4.3, we choose a smaller initial standard deviation of the network parameters. This
results in a more stable training and an improvement in the precision of the learned
densities. To get the uncertainty estimate of the density for a set of generated samples,
we first generate the samples by setting the network parameters to the maximum of the
posterior distribution learned by the Bayesian generator. As the next step, we use the
network as a density estimator and compute the density for different networks sampled
from the parameter posterior distribution. The width of this distribution then gives us
σ(xi).

The quantity defined in Eq. (4.18) superficially looks like a pull between the learned
density and true density,

t(xi) = µ(xi)− µ(xi)w(xi)
σ(xi)

≈ pmodel(xi)− pdata(xi)
σ(xi)

, (4.19)
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Figure 4.14: Kinematic distributions for Z + 3 jets events from the Bayesian
state-of-the-art generator, with bin-wise error bars on the generated events. We
include the distributions from Fig. 4.11 as well as the challenging distributions
from Fig. 4.12.

and one would therefore expect t(xi) to follow a standard normal distribution. However,
this interpretation assumes that the densities are independently distributed in every
point. This is not true because of correlations between points, especially if they are in
close proximity. The lower panels of Fig. 4.13 show the distributions of t(xi) for the
three different jet multiplicities. While the distributions roughly have a Gaussian shape,
the width is much smaller than one, confirming that the uncertainties are overestimated
when their correlations are neglected.

The upper panels of Fig. 4.13 show the correlation between the classifier weight w(x) and
the relative error σ(pmodel)/µ(model). These two quantities are correlated for events with
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one and two jets, with the lowest median relative errors for events with weights close
to one. This indicates that the generator performs worst in phase-space regions with
low training statistics in these cases. The situation changes for Z + 3 jet events, where
the correlation is less clear. For these events missing features are the dominant failure
mode of the generator, which is not detected by Bayesian networks. We can confirm
this observation by looking at observable histograms again. Fig. 4.14 shows the same
observables as in Fig. 4.11 and Fig. 4.12. Like in Sec. 4.3, we obtain uncertainty bands
by taking the bin-wise means and standard deviations of the histograms for different
samples from the network parameter distribution. In the upper two panels, there is a
good agreement between the generated and truth distribution, so the classifier weights
are close to one. The uncertainties from the BNN are over-conservative in the tails of
these distributions and both the deviations from the truth as well as the reweighting are
covered by them.

In the two middle panels, we show the histograms of Mµµ and ∆Rjj , as these are examples
for distributions with missing or smoothed out features. As expected, we can see that
these missing features are not found by the BNN, but the classifier is able to correctly
reweight the missing collinear enhancement. This is an example where the predictions of
the BNN and the classifier are not correlated. They can be understood as orthogonal
because the classifier focuses on missing features and the BNN focuses on regions of low
training statistics. Lastly, we look at the distributions from Fig. 4.12. We can see that the
reweighted distributions are covered by the Bayesian uncertainty bands, indicating that
these issues might be caused by a lack of training statistics in the 3-jet dataset. These
observables are an example where the combination of the information from the classifier
and from the BINN can be used to better understand the behavior of the generative
network.

4.5 Conclusion

There are two crucial steps to establish generative models as tools for LHC event
generation. First, we need architectures that estimate the phase-space density with the
required precision. Second, we need tools to understand the uncertainties introduced by
these generative networks. We showed that invertible neural networks are able to reach
percent-level precision in the bulk of important phase-space distributions for LHC events
with a leptonically decaying Z boson and a variable number of jets.

We first described how a chain of conditional INNs can be used to model events with
variable numbers of jets without having to train a separate model for every multiplicity.
Then we showed how preprocessing and weighting of the training data can be used to
help the network extract challenging features from the training data for the example of
the collinear enhancement and cutoff in ∆Rjj between two jets. As shown in Fig. 4.4,
this allowed us to learn the phase-space density with a precision close to that of the
training dataset in the bulk of many phase-space distributions. To better understand the
uncertainty arising from the limited size of the training dataset, we then moved from a
deterministic to a Bayesian INN setup with the results shown in Fig. 4.5. We checked
the extracted uncertainties by varying the size of the training dataset and the number of
samples generated by the network.

Finally, we showed that classifier networks are able to identify typical failure modes of
generative models, for example missing features, underpopulated tails or sharp features
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learned with a reduced resolution. These failure modes and their clustering in phase
space can be understood from the classifier weight distribution. Furthermore, we showed
that reweighting the generated data with the classifier weights successfully improved the
challenging ∆Rjj and Mγγ phase-space distributions. We ended our discussion by showing
that the uncertainties found by classifiers and Bayesian networks are complementary,
especially in cases where the performance of the generator is limited by its lack of
expressivity and not primarily by the size of the training dataset.

To sum up, our study shows that INNs are a promising architecture for fast surrogate
networks for LHC event generation, and that Bayesian neural networks and classifiers are
a key ingredients to understand and reduce the uncertainties associated with generative
networks.
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Chapter 5
Neural importance sampling

The research presented in this chapter is based on work in collaboration with Anja Butter,
Nathan Huetsch, Joshua Isaacson, Claudius Krause, Fabio Maltoni, Olivier Mattelaer,
Tilman Plehn and Ramon Winterhalder, and has been previously published in Ref. [3]
and Ref. [6]. All tables and figures as well as parts of the text are similar or identical to
the content of these articles. In particular, Sec. 5.2 is based on Ref. [3], Sec. 5.3 is based
on Ref. [6], and Sec. 5.1 is based on both articles.

In the last chapter, we discussed how generative networks can be used as a fast and
precise surrogate for LHC simulations. However, these generative networks still rely
on Monte Carlo training data from the established LHC event generation chain. We
should therefore also ask the question: How can ML help to speed up these simulation
tools without relying on pre-generated training data or making compromises in terms of
their precision? In this chapter, we will show how this can be done for the sampling of
hard-scattering events, where the exact likelihood is known from first principles.

The generation of hard-scattering events in tools like MadGraph5_aMC@NLO [135],
Sherpa [35], Pythia8 [34] or Whizard [119] is based on adaptive multi-channel
importance sampling, described in detail in Sec. 2.2.1. The basic principle of this
method is to find a mapping from random numbers to phase space that approximates
the probability distribution defined by the differential cross section as closely as possible.
Finding such a mapping is also the training objective of normalizing flows. Because
the Jacobian of this mapping is tractable, the most desirable property of importance
sampling, exact sampling from the target distribution, is preserved. These properties
make normalizing flows the perfect ML architecture for hard-scattering event generation.
Neural importance sampling [167] was first applied to LHC physics in the Sherpa
event generator [45,47,48]. It was shown that normalizing flows can be used to replace
the standard Vegas algorithm [116–120] for phase-space integration and importance
sampling, and lead to improvements in the unweighting efficiency.

These early applications of neural importance sampling have two key limitations. First,
they only focus on training phase-space mappings for individual channels of the multi-
channel integral without improving the channel decomposition itself. Second, they rely on
an online training mode, where the training data is generated by the network during the
training, used once, and then discarded. While this makes the training less susceptible to
overfitting, it is also more costly compared to a regular neural network training where
each sample is used multiple times. This is especially problematic for processes with high
multiplicities where the matrix element computation is expensive.
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In this chapter, we present MadNIS – MadGraph Neural Importance Sampling, a tool
that addresses these limitations. Based on the local phase-space weights implemented
in MG5aMC, we show how a simple feed-forward network can be used to improve the
multi-channel decomposition. Furthermore, we introduce buffered training which allows
to reuse samples generated during the online training multiple times, resulting in faster
trainings.

This chapter is organized as follows. In Sec. 5.1 we present the basic MadNIS setup,
including trainable channel mappings and weights. Next, we introduce buffered training
and additional improvements to the training. This includes using the Vegas algorithm
for the initialization of the networks, and using stratified sampling and channel dropping
to make the training more stable and efficient. We then study the MadNIS approach for
one- and two-dimensional toy examples and a simple physics process in Sec. 5.2, before
we interface MadNIS with MG5aMC to apply it to more complicated LHC examples in
Sec. 5.3.

5.1 MadNIS

Repeating the results from Sec. 2.2, multi-channel Monte Carlo phase-space integrals are
computed by decomposing the integrand f using local, normalized channel weights αi(x)
as

f(x) =
nc∑
i=1

αi(x) f(x) with
nc∑
i=1

αi(x) = 1 and αi(x) ≥ 0 , (5.1)

and defining phase-space mappings for every channel,

x ∈ RD Gi(x)→←−−−−−−−→
←Gi(z)

z ∈ [0, 1]D , (5.2)

with corresponding densities

gi(x) =
∣∣∣∣∂Gi(x)

∂x

∣∣∣∣ with
∫

dDx gi(x) = 1 . (5.3)

The full multi-channel phase-space integral then becomes

I =
nc∑
i=1

∫
[0,1]D

dDy αi(x)f(x)
gi(x)

∣∣∣∣
x=Gi(y)

=
nc∑
i=1

〈
αi(x)f(x)
gi(x)

〉
x∼gi(x)

,

(5.4)

with a channel variance

σ2
i ≡ σ2

i

[
αif

gi

]
=
〈
αi(x)2f(x)2

gi(x)2

〉
x∼gi(x)

− Ii[f ]2 . (5.5)

Given a fixed set of channel weights αi(x), this variance is minimized by choosing the
optimal mapping with

gi(x)
∣∣
opt = αi(x)f(x)

Ii[f ] . (5.6)
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In the following, we will describe how both channel weights and mappings can be encoded
in neural networks, and how these networks can be trained to minimize the variance of
the integral.

5.1.1 Neural multi-channel importance sampling

Trainable channel weights

Trainable channel weights are implemented in MadNIS by expressing the channel weights
from Eq. (5.1) as a neural network (CWnet) with trainable parameters ξ,

αi(x) ≡ αiξ(x) . (5.7)

The normalization condition from Eq. (5.1) can be implemented using a Softmax activation
function, as defined in Eq. (3.6). To improve the convergence of the training, it is often
useful to use a prior assumption about the form of the channel weights, encoding our
knowledge about the integrand and channel decomposition. An example for such a prior is
the single-diagram enhanced multi-channel method implemented in MG5aMC [142, 143]
and described in Sec. 2.2.4. We denote the channel weight prior as αMG. The channel
weight is then computed using the network prediction as a multiplicative correction to
the prior weight,

αiξ(x) = Softmax
[
logαMG

i (x) + ∆iξ(x)
]

= αMG
i (x) exp ∆iξ(x)∑

j [αMG
j (x) exp ∆jξ(x)]

. (5.8)

The network predicting ∆jξ(x) is implemented as a simple feed-forward network. By
initializing the weights and biases of the last layer to zeros, we make the prior weights
the starting point of the network training .

Trainable channel mappings

The next step is to combine the analytic channel mappings from the unit hypercube into
phase space with an invertible neural network mapping between two unit hypercubes,

x ∈ RD analytic←−−−−→ y ∈ [0, 1]D INN←−−−−→ z ∈ [0, 1]D . (5.9)

This is similar to the way the Vegas algorithm would normally be used to refine the
analytic channel mappings. We denote the full mapping including the analytic part and
the part parameterized by an INN as

z = Giθ(x) or x = Giθ(z) , (5.10)

with trainable parameters θ. Like for the channel weights, this allows as to combine our
physics knowledge with the flexibility of a neural network.

Like in the previous chapter, we use an INN architecture based on rational quadratic
spline coupling blocks [110], as it combines a high expressivity with fast sampling and
density estimation. We use a modified version of the RQ spline transformations with
learnable derivatives at the boundaries to increase the flexibility. Further, we normalize
the derivatives such that the spline is the identity transformation if all conditional inputs
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are zeros. This modified version of RQ splines is described in Sec. 3.2.3, and a detailed
description of coupling-block based normalizing flows is given in Sec. 3.2.2. To build
an INN with a minimal number of coupling blocks while ensuring that every feature
is conditioned on every other feature at least once, we construct the permutations of
the features based on a logarithmic decomposition of the integral dimension [45]. The
number of coupling blocks then scales with logD.

5.1.2 Training and loss function

Combining the neural multi-channel weights and mappings, the integral from Eq. (5.4) is
given by

I[f ] =
nc∑
i=1

〈
αiξ(x)f(x)
giθ(x)

〉
x∼giθ(x)

. (5.11)

The goal of the training is to find channel weights and mappings that minimize the
variance of this integral. The optimality criterion from Eq. (5.6) alone is not sufficient
to perform this optimization as it yields a solution for the channel mappings given a
specific choice of channel weights, but cannot be used to optimize the channel weights
itself. This means we cannot use an f -divergence like the KL divergence to optimize the
channel mappings. Instead, we run a joint training of the weights and mappings with
the variance of the integral as our loss function. Given a total number of samples N ,
and Ni samples in channel i, we can use the variance of multi-channel integration from
Eqs. (2.51) and (2.53) to define the variance loss

Lvariance =
nc∑
i=1

N

Ni
σ2
i

=
nc∑
i=1

N

Ni

〈αiξ(x)2f(x)2

giθ(x)2

〉
x∼giθ(x)

−
〈
αiξ(x)f(x)
giθ(x)

〉2

x∼giθ(x)

 .

(5.12)

Buffered and online training

This loss was derived under the assumption that both the generation of the samples and
the optimization are done with the same network and identical trainable parameters
(θ, ξ). We refer to this way of training as online training. The online training algorithm
is as follows:

1. Draw samples z from the uniform latent space distribution;

2. Evaluate the inverse mapping Giθ(z) to get phase-space samples x, without keeping
track of gradients;

3. Evaluate the integrand fi(x) for these samples;

4. Compute the density giθ(x) by evaluating the forward mapping;

5. Compute the loss function and its gradients ∇θ,ξLvariance. Update the network
parameters.

The algorithm is illustrated in 5.1. Note that in principle it is possible to evaluate the
density giθ(x) during the sampling pass, and naively, one would expect that it is possible
to already compute the gradients for the network optimization during the sampling pass

62



5 Neural importance sampling

Giθ(x)
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Figure 5.1: Workflow of the online training of the INN. The discontinuous line
from (1) to (2) indicates that it only allows forward sampling but no gradient
backpropagation.

to reduce the number of network evaluations. However, the samples x then have non-zero
gradients with respect to the network parameters. To get the correct gradients of the
loss functions, it then becomes necessary to also differentiate the target function f(x).
This alternative training strategy is explained in more detail in Ref. [3]. As the gradients
of f are not always available, this thesis focuses on the standard online training outlined
above.

The above algorithm requires two evaluations of the neural channel mappings, and
one evaluation of the neural channel weights and target density in every optimization
step. This can become costly if f is computationally expensive, for instance if it is the
differential cross-section for a process with high multiplicity. It is possible to accelerate
the training by sampling x and evaluating f(x) once, and then updating the network
multiple times using this sample. To this end, we generalize the loss function from
Eq. (5.12),

Lvariance =
nc∑
i=1

N

Ni

〈αiξ(x)2f(x)2

giθ(x) qi(x)

〉
x∼qi(x)

−
〈
αiξ(x)f(x)
qi(x)

〉2

x∼qi(x)

 . (5.13)

In this generalized version, we distinguish between the network density giθ(x) and the
sampling density qi(x). It can be understood as a reweighted version of the online training
loss with weights

giθ(x)
qi(x) . (5.14)

For online training, we have qi(x) = giθ(x). If the sample was generated by an earlier
version of the network with parameters θ̂, we have qi(x) = giθ̂(x). The training is most
stable for qi(x) ≈ giθ(x). Therefore, every sample should only be reused a limited amount
of times before it is replaced with a new sample. We refer to this training mode as
buffered training. The training workflow, illustrated in Fig. 5.2, is as follows:

1. Start with a buffered phase-space point x with integrand f(x) and sampling density
qi(x);

2. Compute the density giθ(x) by evaluating the forward mapping;

3. Compute the loss function and its gradients ∇θ,ξLvariance. Update the network
parameters.

Because new samples need to be generated to replace older buffered samples, there is
no pure buffered training, and we need to switch between the two training modes. The
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Figure 5.2: Workflow of the buffered training of the INN.

schedule that determines when to switch between the training modes is a hyperparameter
of the training.

There is a trade-off between the reduction in training statistics through buffered training
and the number of network weight updates within a given time. Let r@ be the fraction of
the total training time T used for online training. The times Tbuff for buffered training
and T@ for online training are

Tbuff = T · (1− r@) and T@ = T · r@ . (5.15)

Let tbuff and t@ be the times for a single weight update in buffered and online mode,
excluding the integrand evaluation, and let tf be the time for the integrand evaluation.
tbuff is larger than t@ because of the additional network evaluation for sampling, with
t@/tbuff ≈ 4/3. The total time for a weight update in online training including the
integrand evaluation is t@ + tf . For a fixed training time T , the total number of weight
updates is

n = nbuff + n@ = Tbuff
tbuff

+ T@
t@ + tf

. (5.16)

We compare this with the number of weight updates in a pure online training,

nbase = T

t@ + tf
. (5.17)

We can use Eqs. (5.15) to (5.17) to compute the increase in the number of weight updates
for a fixed training time,

n

nbase
=
(

1− 1
R@

)
t@ + tf
tbuff

+ 1
R@

with R@ = nbase
n@

= 1
r@

, (5.18)

where we introduced the reduction in training statistics R@. In the left panel of Fig. 5.3,
we show the increase in weight update as a function of R@ for values of tbuff and t@
extracted from a test run on a CPU and different values of tf . In the right panel we show
the change in training time for a fixed number of weight updates. It can be seen that
buffered training leads to a considerable speedup for costly integrands.

There are different ways to implement a buffered training schedule with a given R@. For
the toy physics example shown in Sec. 5.2.3, we choose a simple schedule where the buffer
is filled up with 500k samples, corresponding to one online training epoch. These samples
are then reused kbuff times for a reduction in training statistics of R@ = kbuff + 1. While
this schedule works well for simple integrands, it has relatively long intervals between
updates of the buffered samples. For the results presented in Sec. 5.3, we instead use a
buffer size of 1000 batches and first fill the buffer using online training. Then we alternate
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Figure 5.3: Hypothetical change in weight updates (left panel) and training
time (right panel) as a function of the reduction in training statistics R@ for
integrands with different computational costs.

between online and buffered training and replace quarter or half of the buffer in each
online training epoch, resulting in gain factors of R@ = 5 and R@ = 3 respectively.

A major challenge of buffered training is that the memory consumption of the buffer can
quickly become prohibitive. This is mainly caused by the prior channel weights which
have to be stored for all channels to compute the normalization of the channel weights
during the training. Saving the complete set of weights quickly becomes prohibitive, as
O(1M) phase-space points with O(1k) channels require several gigabytes of memory.
Based on the observation that for any given sample most channels weights are close
to zero, we can choose a more efficient way to store them. We store the indices and
weights (i, αMG

i ) of the m < nc channels with the largest weights, and make sure to
always include the channel used to generate the sample in that list. We then set the
other weights to zero during buffered training and adjust the normalization accordingly.
This approximation does not introduce a bias as it only affects the buffered training but
not online training, integration or sampling.

Stratified loss and training

So far we have not specified how the number of samples per channel Ni has to be chosen.
This choice affects the optimal channel weights and mappings, so the Ni used for integral
evaluation and sampling have to be known at training time. As derived in Sec. 2.2.4, the
optimal choice of Ni known from stratified sampling [136,198] is given by

Ni = N
σi∑
j σj

⇔ N

Ni
=
∑
j σj

σi
. (5.19)

Inserting this into the variance loss from Eq. (5.13) results in the MadNIS loss

LMadNIS =
nc∑
i=1

 nc∑
j=1

σj

σi =
[
nc∑
i=1

σi

]2

=

 nc∑
i=1

〈αiξ(x)2f(x)2

giθ(x) qi(x)

〉
x∼qi(x)

−
〈
αiξ(x)f(x)
qi(x)

〉2

x∼qi(x)

1/2


2

.

(5.20)
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Note that even though we derived the loss function based on the choice of Ni for
integration and sampling, the number of samples per channel during training can be
chosen independently. In the simplest case, we choose a uniform distribution of the Ni

during training. However, when MadNIS is applied for physical processes, the variance
of the channels scales with their cross sections and can therefore be very imbalanced.
This will lead to noisy gradients from channels with a large variance and a small number
of training samples. This problem can be solved by adjusting the number of samples per
channel, and, optionally, dropping channels with a very low contribution to the total
integral.

The variance of the channels depends on the channel mappings and weights, so we
compute them using running means during the training. Channels with a very small
number of points can also cause unstable trainings, so we choose a fraction r of points
that is distributed evenly, and distribute the rest of the points using stratified sampling
as given in Eq. (5.19). The fraction r can then be used to interpolate between uniform
sampling (r = 0) and stratified sampling (r = 1). While it is not guaranteed that every
channel will contain samples with non-zero weights because of phase-space cuts, this
method is sufficient to ensure stable trainings. Also note that the estimates of the channel
variances from running means will be unstable in the beginning of the training, so we
start the training with uniform Ni for 1000 batches for the results shown in Sec. 5.3. We
refer to this training mode as stratified training.

Some channels only have a tiny contribution to the total cross section. Such channels
can be dropped altogether such that no training time is invested for channels with no
significant contribution. We identify these channels by tracking a running mean over the
channel-wise integrals Ii. We then specify a small fraction of the total cross section as a
threshold, for example 10−3 · I. Starting with the lowest Ii, we drop channels until the
sum of the dropped Ii reaches the threshold. Dropped channels are also removed from
the sample buffer, and the normalization of the channel weights αiξ is adjusted to ensure
an unbiased integral.

Symmetries between channels

For multi-channel integration of differential cross sections, the channels are constructed
from the Feynman diagrams of the process. Some of these diagrams have identical
matrix elements up to permutations of the final-state particles. While this is also true
for initial-state particles, there could be PDF effects that cause the differential cross
section to be different. Similar to the approach implemented in MG5aMC, we combine
the channels mappings for such symmetry-related channels. Further, we also combine
them in the loss function such that there is only one σi for each group of channels in the
MadNIS loss in Eq. (5.20). This effectively reduces the number of channels, and leads
to less noisy gradients and an improved training stability.

5.1.3 Vegas initialization

The Vegas algorithm [116,117,120] is used to refine the phase-space mappings in most
LHC event generators. It is very efficient and converges much faster than a neural network
trained with gradient descent. However, it assumes that the integrand factorizes and
is therefore not able to model any correlations. To combine the advantages of Vegas
with the much better expressivity of normalizing flows, we use Vegas to initialize our
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Figure 5.4: Top: learned Vegas density g(x) with 20 bins (left) and its transfor-
mation G(x) (right). Bottom: the RQS density g(x) after embedding the Vegas
grid and performing bin reduction to 7 bins (left). The right plot shows the
corresponding mapping G(x) including a zoom-in box illustrating the definition
of the widths wi, heights hi of the bins and the derivatives di on the bin edges.

flow networks. In contrast to simply inserting a fixed Vegas grid as an additional
analytical mapping, this procedure allows the network to freely move away from its
initialization while still using the advantages of the fast Vegas training. As introduced
in Sec. 2.2.2, the Vegas algorithm divides the unit interval for each dimension into
K bins with widths wk. The density of the target distribution is then modeled as a
piecewise-constant function g(y) and the corresponding CDF is a piecewise-linear function
G(y). We illustrate g and G with K = 20 bins for a Gaussian mixture model in the
upper panels of Fig. 5.4.

To initialize an INN with a pre-trained Vegas mapping, we need to turn the Vegas
grid defined in terms of the widths wk into a rational quadratic spline as introduced in
Sec. 3.2.3. RQ splines are defined in terms of bin widths wk, bin heights hk and the
derivatives dk at the bin edges. Because of their higher expressivity, fewer bins are needed
for the RQS grid than for the Vegas grid. While the most accurate results could be
achieved by fitting the RQ spline transformation to the transformation given by Vegas,
we find that results with sufficient precision can also be achieved with the following simple
algorithm. First, we initialize the bin widths to be the same as in Vegas, the heights to
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be equal for all bins, and estimate the derivatives as the ratio of bin heights and widths,

widths: wk for k = 1, . . . ,K

heights: hk = 1
K

for k = 1, . . . ,K

endpoints: d0 = h1
w1

= 1
Kw1

dK = hK
wK

= 1
KwK

internal points: dk = hk+1 + hk
wk+1 + wk

= 2
K(wk+1 + wk)

for k = 1, . . . ,K − 1 .

(5.21)
We then iteratively reduce the number of bins by merging adjacent bins until the desired
number is reached:

1. Calculate the difference between the average slopes of adjacent bins,

∆k =
∣∣∣∣wkhk − wk+1

hk+1

∣∣∣∣ . (5.22)

2. Choose k with the lowest ∆k, corresponding to the two bins k and k + 1 with the
most similar average slopes. This can lead to inaccuracies for very large bins as
there can be considerable derivations of the derivative from the average slope. We
prevent this by introducing a cutoff that stops very large bins from forming until
all smaller bins are merged.

3. Reduce the number of bins by one,

w ← (w1, . . . , wk−1, wk + wk+1, wk+2, . . . , wK) ,
h← (h1, . . . , hk−1, hk + hk+1, hk+2, . . . , hK) ,
d← (d0, . . . , dk−1, dk+1, . . . , dK) ,
K ← K − 1 .

(5.23)

We illustrate the result of this algorithm in the lower panels of Fig. 5.4. The number
of bins of the example Vegas grid from above is reduced from K = 20 to K = 7. We
show w, h and d for one bin. As the last step, we inject the RQS grid into the INN as its
initialization. The bin widths, heights and derivatives are encoded by a fully-connected
trainable sub-network. We initialize the transformations of all coupling blocks except for
the last two to the identity transformation by setting the weights and biases of the final
sub-network layer to zero. Each of the last two coupling blocks transforms half of the
input features. We invert the normalization from Eq. (3.50) to get Θw, Θh and Θd from
the w, h and d yielded by the bin reduction algorithm. These values are then assigned to
the bias vectors of the final sub-network layers, while the the weight matrices are set to
zero. The resulting INN then encodes a transformation very similar to the pre-trained
Vegas grid that was used as a starting point.

5.2 Toy examples

We start by testing the basic functionality of the MadNIS integrator for simple toy
distributions. The first example is a one-dimensional camel back for which we examine
the learned channel weights without trainable channel mappings. The second example is a
two-dimensional crossed ring, where we combine trainable channel weights and mappings.
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We end the discussion with a simple LHC example where we benchmark the buffered
training.

In all these tests, we use a simplified version of the MadNIS integrator. We assume a flat
distribution of the counts per channel instead of the stratified loss function from Eq. (5.20).
We do not use Vegas initialization, stratified training and channel dropping. These
features are only necessary for more complicated examples, and will be benchmarked in
Sec. 5.3.

5.2.1 One-dimensional camel back

We first illustrate the effect of the trainable channel weights combined with fixed, analytical
mappings for a one-dimensional bi-modal Gaussian mixture model, or camel back. The
target function is given by

fGM(x) = a1√
2πσ1

exp
[
−(x− µ1)2

2σ2
1

]
+ 1− a1√

2πσ2
exp

[
−(x− µ2)2

2σ2
2

]
with µ1 = 2 σ1 = 0.5 µ2 = 5 σ2 = 0.1 a1 = 0.35 .

(5.24)

In this simple example, we could use two channels with a Gaussian distribution to exactly
recover the truth distribution. To bring the example closer to actual applications where
the integrand is not modeled exactly by the channel mappings, we choose Cauchy or
Breit-Wigner mappings instead,

x = Gi(y) = µi +
√

2σi tan
[
π

(
y − 1

2

)]
gi(x) = 1

π

√
2σi

(x− µi)2 + 2σ2
i

.

(5.25)

While these distributions look similar to the ideal Gaussian distributions close to the
peak, they decay much slower in the tails. The full multi-channel integral from Eq. (5.4)
is then given by

I[fGM] =
∫ ∞
−∞

dx fGM(x)

=
2∑
i=1

∫ ∞
−∞

dxαiξ(x) fGM(x)

=
2∑
i=1

∫ 1

0
dy αiξ(x) fGM(x)

gi(x)

∣∣∣∣
x=Gi(y)

.

(5.26)

We train MadNIS with the fixed channel mappings from Eq. (5.25) and with a small
fully-connected network to learn the channel weights αiξ. The hyperparameters are given
in Tab. A.3. We repeat the training ten times to test the training stability. In Tab. 5.1
we compare the relative error of the integral as a metric of convergence for different
choices of αi(x). For constant αi(x) = 0.5, the error is relatively large. It is much smaller
for the nearly optimal choice

αopt
i (x) = gi(x)∑

i gi(x) . (5.27)
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Function αi(x) Rel. Error [%]

Camel back Uniform 2.553± 0.017
Optimal 0.769± 0.006
NN (flat prior) 0.770± 0.005
NN (opt. prior) 0.767± 0.006

Cut camel back Uniform 3.412± 0.048
Optimal 1.031± 0.006
NN (flat prior) 1.032± 0.017
NN (opt. prior) 1.030± 0.009

Based on 104 events

Table 5.1: Relative errors of the camel back integrals using the trained channel
weights (means and standard deviations from ten runs).

The result with trained channel weights is similar to the results for the optimal weights.
We do not see a significant difference between training runs that start from flat prior
weights compared to runs starting from optimal prior weights. We show the target
function, the distributions from the two analytical channel mappings, the prior channel
weights and the learned channel weights in Fig. 5.5. In the left panel, αopt

i was used as
a prior. It can be seen that the learned αiξ remain close to αopt

i . This is consistent for
multiple trainings of the network. There are only deviations from αopt

i in the exponentially
suppressed tails of the Gaussians where they have a low contribution to the variance
loss. Consequently, these deviations also have no impact on the relative error shown
in Tab. A.3. The right panel shows the result of the training starting from flat prior
weights. Compared to the results starting from the optimal prior, there is more variation
between runs in the suppressed regions. Near the peaks, the weights are similar to the
ones shown in the left panel. Again, there is no significant difference in the relative error
of the integral.
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Figure 5.5: Learned channel weights for the camel back function for ten different
trainings. We train NN-weights starting from a near-optimal (left) or flat (right)
prior. The prior weights are illustrated as dotted lines.
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Figure 5.6: Learned channel weights for the cut camel back function for ten
different trainings. We train NN-weights starting from a near-optimal (left) or
flat (right) prior. The prior weights are illustrated as dotted lines.

Camel back with cut

Our channel mappings gi(x) for the camel-back function were relatively close to the
target distribution. We can look at a variation of the function from Eq. (5.24) with a cut
in the left peak,

fGM(x) →
{
fGM(x) x ≥ µ1 + σ1

0 x < µ1 + σ1
, (5.28)

with µ1 + σ1 = 2.5. We use the same mappings as before to study the effect of a larger
deviation between the mappings and the target function. Again, we show the relative
error in Tab. 5.1. All relative errors are now slightly larger than for the perfect camel
back, but the errors for the integration with αopt

i and learned weight αiξ are still similar.
There is however a larger variation between runs when the network is trained from scratch.
This is also confirmed by Fig. 5.6 where we show the learned weights starting from αopt

i

or a flat prior.

5.2.2 Two-dimensional crossed ring

For our next toy example, we combine the trained channel weights with trained channel
mappings. The integrand is a two-dimensional Gaussian ring crossed by a diagonal
Gaussian line,

fno-parking(x) = 1
2 [fring(x) + fline(x)]

fline(x) = N1 exp
[
−(x̃1 − µ1)2

2σ2
1

]
exp

[
−(x̃2 − µ2)2

2σ2
2

]

fring(x) = N2 exp

−
(√

x2
1 + x2

2 − r0

)2

2σ2
0


with r0 = 1 σ0 = 0.05 µ1 = 0 σ1 = 3 µ2 = 0 σ2 = 0.05

and x̃1,2 = (x1 ∓ x2)/
√

2 ,

(5.29)
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and with normalization constants N0 and N1 chosen such that the integrals of fline, fring
and fno-parking are one.

Channel mappings

Even though we know that the target function is constructed using Gaussian distri-
butions, we build analytic channel mappings based on Breit-Wigner distributions to
give the network a non-trivial learning task. We construct two different mappings, one
corresponding to the diagonal line and one to the ring. We build the mappings in two
steps. For the line, we start with a transformation x→ y = G1(x) that aligns the first
axis with the diagonal line,

x1,2 = y2 ± y1√
2

with g1(x) =
∣∣∣∣∂G1(x)

∂x

∣∣∣∣ = 1 . (5.30)

Note that here and for the following transformations, we give the expression for the
inverse direction, y → x = G1(y). As the second step, we use a similar mapping as for the
camel back, Eq. (5.25), to get a Breit-Wigner distribution. The second transformation
y → z = G2(y) is then given by

y1,2 = µ1,2 + γ1,2 tan
[
π

(
z1,2 −

1
2

)]
with g2(y) = 1

π2

2∏
j=1

γj
γ2
j + (yj − µj)2 ,

(5.31)

resulting in the combined density

gline(x) = 1 · g2(G1(x)) . (5.32)

The first step of the ring mapping is a transformation x → (r, θ) = G3(x) into polar
coordinates,

x1 = r cos θ and x2 = r sin θ with g3(x) = r . (5.33)

Again, the second step (r, θ) → z = G4(r, θ) is a transformation to a Breit-Wigner
distribution,

r = r0 + γ0 tan [π (ω0z1 − C0)]

θ = 2πz2 with g4(r) = 1
2π

1
ω0π

γ0
γ2

0 + (r − r0)2 .
(5.34)

We have to ensure the positivity of the radius r, so we set πC0 = arctan(r0/γ0) and
ω0 = (1 + 2C0)/2. The combined Jacobian is

gring(x) = r g4(G3(x)) . (5.35)

These analytic mappings simplify the training by aligning the structures of the distribu-
tions with the integration variables, and they resolve the topologically challenging ring
structure. When they are combined with learnable channel mappings, we still want to
make the training challenging. Therefore, we choose large widths of the Breit-Wigner
mappings,

γ0,1,2 =
√

40σ0,1,2 . (5.36)
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Figure 5.7: Combined and channel-wise (the latter not weighted by channel
weights) distributions learned by a one-, two- and three-channel integrator with
flat mappings and a mode-specific prior. Note that the splitting in the three-
channel case is not unique and learned differently by the network for each run.

Results

As a first experiment, we investigate whether the MadNIS approach is able to find a
sensible channel partitioning in an unsupervised way. As INNs based on spline coupling
blocks are easily able to learn the crossed ring distribution without the need for multiple
channels, we replace them with the less expressive affine coupling blocks, see Sec. 3.2.3.

Fig. Analytic Mappings Rel. Error [%]

5.7 flat 1.17± 0.13
5.7 flat, flat 0.71± 0.15
5.7 flat, flat, flat 0.50± 0.15
5.8 ring, flat 0.30± 0.11

ring, line 0.14± 0.06
ring, line, flat 0.29± 0.14

Based on 104 events

Table 5.2: Relative integration errors for different numbers of channels and
choices of analytic mappings. We show the means and standard deviations for
ten independent trainings.
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Figure 5.8: Distribution learned by a 2-channel integrator with a ring mapping
and a flat mapping and flat prior. Top: individual channels, not weighted by
channel weights. Bottom: combined distribution and channel weight of the ring
channel.

The hyperparameters of our setup are given in Tab. A.4. We use one, two or three
channels with flat analytic mappings combined with learnable INN mappings. We find
that trainings with a flat prior of the channel weights tend to only make use of a single
channel, while the channel weights of the other channels are close to zero. We can
improve this by choosing the channel weight prior such that ring-shaped distributions
are encouraged in one or two channels, and a line-shaped distribution is encouraged in
the last channel. We show examples for the distributions learned by one, two or three
channels in Fig. 5.7. There are large variations between multiple runs but we find that
using two or three channels improves the performance. This is also confirmed by the
relative integration errors shown in Tab. 5.2. As seen in the lower panels, the network
is able to partition the distribution in a way that makes the topology in each channel
easier to learn by removing holes. However, the setup is very sensitive to the choice of
hyperparameters and channel weight priors, so an unsupervised approach to channel
partitioning is not sufficiently reliable for practical use in phase-space integrators.

A better approach is to use analytic channel mappings specifically constructed to map
out the structure of the integrand. In the case of the crossed ring, a mapping based on
polar coordinates is especially helpful because it removes the challenging topology. When
a ring mapping is used, the training task is much easier and an INN with fewer trainable
parameters is sufficient. We show the learned distributions and channel weights for a
training with a ring mapping and a flat mapping in Fig. 5.8. In this setup the channel
with the flat mapping acts as an overflow channel that captures all features that the ring
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mapping missed. The combined distribution is a closer match to the truth distribution
than in a training with only flat mappings. We find that the distribution learned by the
overflow channel only captures the diagonal line as expected. The channel weights cleanly
separate between the two channels with weights close to 0.5 in the two points where the
ring and line cross. The relative integral error for this setup is lower than for trainings
with only flat mappings, as shown in Tab. 5.2. Replacing the flat mapping in the overflow
channel with a line mapping leads to another improvement of the relative error. Adding
a third channel as an overflow channel does not lead to further improvements as it makes
the training more complex, and two channels are already sufficient to capture the target
distribution.

5.2.3 Drell-Yan plus Z′ at the LHC

Next, we look at a Drell-Yan process with an additional Z′-resonance as a simple example
for an LHC process,

pp→ γ,Z∗,Z′∗ → e+e− , (5.37)

with 13 TeV center-of-mass energy and

MZ = 91.19 GeV ΓZ = 2.44 GeV ,

MZ′ = 400.0 GeV ΓZ′ = 0.5 GeV .
(5.38)

The Feynman diagrams for this process are shown in Fig. 5.9. We use the leading-order
NNPDF4.0 PDF set [131] via LHAPDF6 [199] with a fixed factorization scale µF = MZ
and αs(MZ) = 0.118, and neglect b quarks in the initial state. We require all events to
have

me+e− > 15 GeV . (5.39)

We use a hand-written implementation of the differential cross section to have full control
over the integrand. The squared and spin-color averaged leading order matrix element is

⟨|M|2⟩ = 1
4Nc

∑
spins
|Mγ +MZ +MZ′ |2 , (5.40)

with Nc = 3. The hadronic differential cross section can then be computed using Eq. (2.8)
as a function of (x1, x2, cos θ, ϕ). Lastly, we define phase-space mappings from the unit
hypercube U = [0, 1]4 to the two-particle phase space in two steps

G1 : {y1, y2, y3, y4} → {s, y2, y3, y4}
G2 : {s, y2, y3, y4} → {x1, x2, cos θ, ϕ} .

(5.41)

ū

u

e−

e+

γ/Z

ū

u

e−

e+

Z′

Figure 5.9: Leading-order Feynman diagrams contributing to the Z′-extended
Drell-Yan process pp→ e+e− for one partonic channel.
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the variance for three priors of the network weights α. Right: integration error
as a function of ΓZ′ for two and three channels, with and without trained channel
weights. We give means and standard deviations for ten runs, or the individual
results in case of large variation. For very narrow peaks, the two-channel
integrator misses the Z′ peak entirely.

We construct three channels, one for each possible propagator, that differ only in the
mapping y1 → s. We use the Breit-Wigner mapping defined in Eq. (2.43) for the Z and
Z′ resonance. For the photon, we use the mapping for massless propagators defined in
Eq. (2.45) with ν = 2. The mapping G2 is the same for all channels and is given by

x1 =
(

s

smax

)y2

x2 =
(

s

smax

)1−y2

cos θ = 2y3 − 1 ϕ = 2πy4 − π with g2 = − smax
4π log(x1x2) .

(5.42)

We integrate the differential cross section and confirm that it is in agreement to the stan-
dard MG5aMC prediction of σ = (4349.7± 0.32) pb within the integration uncertainties.
Our MadNIS setup uses the hyperparameters given in Tab. A.5.

Results

As seen for the crossed ring, the choice of mappings and channel weight priors has a large
impact on the performance of the MadNIS integrator. The most challenging features of
our Drell-Yan process are the two narrow resonances in Me+e− . These are best addressed
by constructing appropriate channels and phase-space mappings. As a first check we
use a three-channel setup as described above. We test three different choices for the
channel weight prior: a flat prior, a Sherpa-like prior as defined in Eq. (2.63), and a
MG5aMC-like prior as defined in Eq. (2.56). Figure 5.10 shows the variance of the
integrand extracted from 25 batches of generated samples over the course of a 60-epoch
training in intervals of 2 epochs. It can be seen that the variance is stable and quickly
converges for both the MG5aMC-like and the Sherpa-like prior. However, there is
a huge spread in the variance for the training with a flat prior, and the training only
converges slowly. This again demonstrates that the choice of prior is crucial for successful
training. In the following tests, we use the MG5aMC-like prior of Eq. (2.56).

Second, we study the impact of the physics-informed Breit-Wigner mapping for different
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Figure 5.11: Learned pT and Me+e− distributions for the Z′-extended Drell-Yan
process. In the lower panels we show the learned and prior channel weights.

widths of the Z′ peak,

Γ̃Z′ = ΓZ′ · {10−3, 10−2, 10−1, 100, 101, 102} , (5.43)

while keeping the Z width constant. We train a MadNIS integrator with two channels for
the Z and photon propagators and trainable channel mappings, and with three channels
including a Z′ mapping with the appropriate width. We run the latter training with and
without trainable channel weights. The relative errors of the phase-space integral are
shown in the right panel of Fig. 5.10. It can be seen that the integration including a
Z′ mapping consistently outperforms the two-channel integration, and that the relative
error for the three-channel integrators is roughly constant for the different Z′ widths
spanning five orders of magnitude. There is only a very small improvement from the
trainable channel weights. This is because interferences are negligible for this process
and the MG5aMC channel weights are already close to optimal. The relative error of
the two channel integrator gets larger for smaller widths of the Z′ peak, until the peak is
so narrow that it is missed during sampling. This leads to an overconfident estimate of
the integration error and a large spread of the relative error between multiple MadNIS
trainings.

Next, we show the learned distributions and local channel weights for a three-channel
integrator starting from the MG5aMC prior as a function of the two phase-space
observables pT and Me+e− in Fig. 5.11. The stacked histograms show the contributions of
each channel without reweighting. The dashed line for the truth distribution is a weighted
histogram of the combined samples from all three channels. The learned distribution
is close to the truth distribution even when the weights are neglected. The channel
weight network only learns small corrections to the MG5aMC prior. Note that instead
of spreading across the full phase space, every channel is active in one region of Me+e− .

Lastly, we add buffered training to our MadNIS setup. Note that our modified Drell-Yan
process is computationally cheap. Hence, buffered training will only lead to a small
reduction of the training time of about 20% because of the smaller number of network
evaluations during buffered training. Still, we can study whether the buffered training
slows down the convergence of the training, or if it is detrimental to the integration
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Figure 5.12: Relative integration error (from 106 events), relative deviation from
the mean R@ = 1 result, and weight distributions for different reduction factors
R@ in training statistics for the Z′-extended Drell-Yan process. The points/lines
and error bars/bands show means and standard deviations over ten runs.

performance. We use a simple schedule for the buffered training where we first train the
network online for one epoch, and save all samples generated during that epoch. Next,
we run kbuff epochs of buffered training using the saved samples, shuffling them at the
beginning of each epoch. Then, we discard the samples and start with the next online
training epoch. We repeat this schedule 60/(kbuff + 1) times for a total of 60 epochs and
run trainings with five different values of kbuff. The corresponding reductions in training
statistics are

R@ = kbuff + 1 with kbuff = 0, 1, 2, 3, 4 . (5.44)

The relative integration error, the relative deviation from the mean result for R@ = 1 and
the weight distributions for the three channels are shown in Fig. 5.12. The error bands
are extracted by running ten independent MadNIS trainings for each value of R@. Even
for R@ = 5, we find no significant deviations in the relative error or weight distributions
compared to the pure online training. This shows that buffered training is a simple and
effective measure to accelerate the training without compromising its performance.
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5.3 Boosting MG5aMC

So far, we have only studied the MadNIS performance for simple and low-dimensional
toy examples. As the next step, we move to the matrix elements and multi-channel setup
implemented in MG5aMC. To this end, we implement an API that allows us to call
MG5aMC from MadNIS. The inputs to this API are vectors of random numbers rs
with s = 1 . . . D and the index i = 1 . . . nc of the channel used to sample the event. For
each event, MG5aMC returns its four-momenta p, the event weight w, and a vector of
channel weights αMG

j with j = 1 . . . nc. At the time of writing this thesis, this API is not
yet fully optimized as MG5aMC was not originally intended to allow for fast switching
between channels. Hence, we do not show runtime comparisons, but compare unweighting
efficiencies instead. Furthermore, we only look at processes with fixed partonic initial
states for simplicity. We move from the simplified MadNIS setup used in the previous
section to the stratified loss function from Eq. (5.20). The hyperparameters used for our
benchmark study are given in Tab. A.6.

5.3.1 Reference processes

We benchmark the MadNIS performance for a set of LHC processes,

Triple-W ud̄→W+W+W−

VBS uc→W+W+ ds
W+jets gg→W+dū gg→W+dūg gg→W+dūgg
tt̄+jets gg→ tt̄g gg→ tt̄gg gg→ tt̄ggg ,

(5.45)

where we do not consider further decays of the heavy particles. Triple-W production
and vector-boson scattering (VBS) are included because they have a large number of
gauge-related Feynman diagrams with potentially large interferences. These are especially
challenging when a multi-channel decomposition based on the assumption of small
interference terms is used, see Sec. 2.2.4. In such cases, there could be a large potential
for improvements from trainable channel weights. Furthermore, we include W+jets and
tt̄+jets production to study the scaling with additional jets. We show the number of
Feynman diagrams and the number of channels constructed by MG5aMC in Tab. 5.3.
The number of channels is lower than the number of diagrams because MG5aMC does
not build a separate channel for every diagram. Examples for diagrams where no channel
is constructed include t-channel Z propagators (as there always is a similar diagram with
a photon), and diagrams with four-point vertices. The number of independent channels
is further reduced by grouping channels that only differ by a permutation of the final
state momenta. The last column shows the number of channels that remain active after
a MadNIS training with channel dropping, as discussed in Sec. 5.3.3.

5.3.2 Benchmarking MadNIS features

We benchmark the various MadNIS features introduced in Sec. 5.1 by applying them to
our reference processes. Our two metrics for this comparison are the relative standard
deviation σ/I minimized by stratified sampling and the unweighting efficiency ϵ as defined
in Ref. [47], see Sec. 2.2.5. Note that the relative standard deviation differs from the
relative integration error used in a previous section as it is independent of the number of
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Process # diagrams # channels # channel groups # active channels

Triple-W ud̄ → W+W+W− 17 16 8 2 . . . 4
VBS uc → W+W+ ds 51 30 15 4 . . . 6
W+jets gg → W+ dū 8 8 4 6

gg → W+ dūg 50 48 24 12 . . . 16
gg → W+ dūgg 428 384 108 28 . . . 51

tt̄+jets gg → tt̄ + g 16 15 9 4 . . . 6
gg → tt̄ + gg 123 105 35 12
gg → tt̄ + ggg 1240 945 119 60 . . . 72

Table 5.3: Number of Feynman diagrams, channels and channel groups after
accounting for symmetries. The last column shows the number of channels
that remain active after MadNIS channel dropping. Its range reflects ten
independent trainings.

samples used to compute the integral. We capture the variations between trainings by
running ten independent trainings for each setup and computing the means and standard
deviations of the two performance metrics. Further, we confirm that the cross section
computed by the integrator, as well as the phase-space distribution of the generated
samples, are compatible with the MG5aMC output.

We show the results for W+2jets, W+3jets, VBS and Triple-W in Fig. 5.13. The leftmost
point shows the result of a Vegas training. To ensure a fair comparison, we use a longer
Vegas training with more training statistics than used in MG5aMC. We use this point
as a baseline for the following results. Because Vegas assumes a factorized integrand and
does not rely on gradient descent, its training is much faster than a MadNIS training.
Choosing between the two methods is a tradeoff between a fast training and efficient
sampling. For cheap integrands and low numbers of samples, Vegas-based importance
sampling will be faster overall. Also note that the cost of training networks is not
amortized for the integration alone, as the training requires more samples than needed
for a precise estimate of the integral. In situations where the upfront cost of the training
and integration becomes negligible, the unweighting efficiency is proportional to the total
run time. MadNIS is best applied in such situations, so we focus on the unweighting
efficiency as a performance metric.

The following points in Fig. 5.13 successively include more MadNIS features. In analogy
to the results shown for the Drell-Yan process in Fig. 5.10, we start with a training of
the channel mappings where the channel weights are kept fixed to the MG5aMC output.
We observe a large gain both in unweighting efficiency and relative standard deviation for
all processes compared to the Vegas baseline. The gain for the unweighting efficiency is
much larger than for the relative standard deviation. We observe this for most processes
except for Triple-W production. The reason for this effect is the higher sensitivity of the
unweighting efficiency to the tails of the weight distribution. As a next step, we run joint
trainings of channel mappings and weights, and observe a further large improvement.
For instance, the unweighting efficiency for VBS is around 8 times larger than for the
standard method without trained channel weights and more than 10 times larger if the
weight training is enabled.

Next, we study the impact of the Vegas-initialization from Sec. 5.1.3. For all processes,
there are some improvements compared to the trainings starting from a uniform initializa-
tion, both with and without adaptive channel weights. We see a much larger performance
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Figure 5.13: Relative standard deviation and unweighting efficiency for W+2jets,
W+3jets, VBS and Triple-W for various combinations of MadNIS features.

gain when we also use stratified training (see Sec. 5.1.2) instead of evenly distributing
the training samples among channels. Stratified training has the strongest effect when it
is combined with adaptive channel mappings. In this setup, the unweighting efficiency
for VBS increases by a factor 15 compared to the Vegas baseline.

In Fig. 5.12, we saw that buffered training had no negative impact on the performance for
our Drell-Yan toy process. To confirm that this is still true for more challenging processes,
we test our setup with two different reductions in training statistics, R@ = 3 and R@ = 5.
We see that the training remains stable, even for large R@. Furthermore, we also show
the effect of channel dropping, as introduced in Sec. 5.1.2, on the performance. For
all processes, there is no significant performance difference from channel dropping. For
processes with an even larger number of channels, we find that channel dropping leads to
a significant improvement in training stability. Hence, we use the full MadNIS setup
including adaptive channel weights, Vegas initialization, stratified training, channel
dropping and buffered training with R@ = 5 for the following results.
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Figure 5.14: Relative contributions of the channels for W+2jets and Triple-W
production, and for the channel groups for W+3jets and VBS. We show the
channel weights defined by MG5aMC, and the learned channel weights from
MadNIS. Empty circles indicate dropped channels.

5.3.3 Trained channel weights

In the previous section, we saw that using trainable channel weights led to a large
performance gain. To take a closer look at these channel weights, we compute the
contribution of each channel to the total cross section,

Ii
I

=
∫

dDx αi(x) f(x)∫
dDx f(x) , (5.46)

While the weights of channels within a group connected by permutations of the final
state have different behaviors locally, we find that their contributions to the total cross
section change coherently. For W+3jets and VBS, where the number of channels is larger,
we therefore compute the group-wise sums of the channel contributions. We show the
contributions for four processes in Fig. 5.14. The blue circles show the results using the
initial channel weights from MG5aMC. The red circles show the contributions after
the channel weights were adapted by MadNIS, with empty circles indicating dropped
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Figure 5.15: Feynman diagrams corresponding to the dominant channels after
training MadNIS for VBS (left) and Triple-W production (right).

channels. We find that MadNIS prefers fewer channels, illustrating the benefit of our
channel dropping feature.

For VBS and Triple-W production, MadNIS even chooses to adapt the channel weights
such that the cross section is almost completely made up from a single group of symmetry-
related channels. The choice of channels is consistent between repetitions of the training,
and the corresponding Feynman diagrams are shown in Fig. 5.15. The diagram shown in
the left panel corresponds to one of the five groups of channels that significantly contribute
to the cross section for VBS. Four of those channels have a t-channel gluon propagator
and one has a t-channel photon propagator. The diagram enhanced by MadNIS does not
have an s-channel quark propagator. For Triple-W production, the diagram shown in the
right panel corresponds to the channel group with the largest contribution in MG5aMC,
and it is further enhanced by MadNIS.

5.3.4 Scaling with jet multiplicity

Neural importance sampling is most beneficial for very costly integrands. The computa-
tional cost of matrix elements scales with the number of Feynman diagrams, which in turn
increases when additional jets are included in the final state. We study the performance
scaling of MadNIS for W+jets and tt̄+jets production by adding gluons to the final
state. We show the relative standard deviation σ/I and the unweighting efficiency ϵ for
trainings with the full MadNIS setup and compare it to the Vegas baseline in Fig. 5.16.
For both Vegas and MadNIS, the unweighting efficiency decreases and the integration
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Figure 5.16: Relative standard deviation and unweighting efficiency for W+jets
and tt̄+jets with different numbers of gluons in the final state. The final MadNIS
performance gain is illustrated in the lower panels, just as in Fig. 5.13.
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error increases towards higher multiplicities. However, we can see that the gain from
MadNIS over Vegas stays roughly constant between 7 and 8 for W+jets. While we see
a decrease in gain going from tt̄+2 jets to tt̄+3 jets, a gain of 5 is still a very promising
result as it directly translates to a speed-up for expensive processes like tt̄+3 jets.

5.4 Conclusion

In this chapter we introduced MadNIS, a tool for neural importance sampling and
multi-channel integration. It is based on invertible neural networks that replace the
simpler adaptive transformations used in conventional phase-space generators. This is
combined with a multi-channel strategy where the channel decomposition is refined using
trainable channel weights encoded by a fully-connected network. The training samples
for the networks are generated during the training process, but we proposed buffered
training as an approach to reuse these samples and reduce the number of costly integrand
evaluations. In addition, we introduced several features to improve the training process,
like Vegas initialization, stratified training and channel dropping.

We first studied the performance of the MadNIS method for simple toy examples and
found that the network was able to extract the optimal channel mappings and split a
complicated topological structure into easy-to-learn substructures. However, the best
results were achieved in combination with problem-specific analytic mappings. We
confirmed this for a simple physics example, a Drell-Yan process with an additional Z′
resonance. Further, we showed that buffered training can be used to reduce the number
of matrix element evaluations without degrading the integration performance.

Next, we implemented an interface between MadNIS and MG5aMC that allows us to use
the matrix elements, channel mappings and channel weights constructed by MG5aMC.
We benchmarked the performance gain from MadNIS compared to the standard Vegas
algorithm for W+2,3,4 jets, VBS, Triple-W and tt̄+1,2,3 jets. They combine large
numbers of gauge-related Feynman diagrams with a large number of particles in the
final state. We showed that the trained channel weights, Vegas initialization and
stratified trainings each led to a improvement in the integration error and unweighting
efficiency. Buffered training and channel dropping made the training efficient and stable
for complicated processes with many channels. We found improvements in unweighting
efficiency between 5 and 15 compared to the standard approach.
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Chapter 6
ML for the matrix element method

The research presented in this chapter is based on work in collaboration with Anja Butter,
Nathan Huetsch, Till Martini, Sascha Peitzsch, Tilman Plehn and Ramon Winterhalder,
and has been previously published in Ref. [2] and Ref. [5]. Most of the tables and figures
as well as parts of the text are similar or identical to the content of these articles. In
particular, Secs. 6.1 and 6.3 are based on Ref. [2], and Secs. 6.2, 6.4 and 6.5 are based on
Ref. [5].

In this chapter, we turn from event generation to ML-assisted measurements of theory
parameters. One of the disadvantages of classical analysis strategies at the LHC is
that they typically rely on binned data from a small number of hand-crafted high-
level observables. This can lead to a loss of information. Machine learning can help
to make better use of the available data, as it is able to work with high-dimensional
inputs and extract complex correlations. These techniques are summarized under the
term simulation-based inference [200] (SBI). Some SBI-methods are based on Bayesian
inference, and use neural networks for posterior estimation. Example applications include
measuring theory parameters of parton showers [24] or kinematic reconstruction [30]. A
different class of SBI-methods learns the likelihood ratio using classifier or regression
networks [23]. According to the Neyman-Pearson lemma, the likelihood ratio is the
optimal test statistic to decide between two hypotheses. Hence, these methods make
optimal use of the available data in the limit of a perfectly trained and sufficiently
expressive network.

One common disadvantage of most SBI methods is that they do not make use of any
theory knowledge at inference time. For a theory parameter that enters the Lagrangian,
the likelihood at the hard-scattering level is given by the differential cross-section and
therefore, the matrix element. Hence, the likelihood ratio for the theory parameter can
be computed from first principles. This is the idea behind the matrix element method
(MEM) [121,122]. It was used in the top mass measurement [201–204] and the discovery
of single-top production [205] at the Tevatron. There are also several studies [206–212]
and analysis applications [211, 213–216] at the LHC. As the likelihood is only known
analytically at the hard-scattering level, the matrix element method uses transfer functions
that model the effects of shower, hadronization, detector and reconstruction. This makes
it necessary to integrate out the space of possible parton-level configurations for every
measured event to obtain the likelihood at the reconstruction level. This integral has
to be computed for all possible combinatorics from the hard and reconstructed objects,
making the MEM computationally costly. Furthermore, the form of the transfer function
is not known from first principles, so simple smearing functions are often assumed.
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It the following we show how machine learning can be used to address these problems.
Previous work on ML-applications for the matrix element method was focused on neural
network surrogates to replace the slow phase-space integration [217] while still relying
on a simple transfer function. We demonstrate that generative models can be used to
learn the transfer function from data, and keep the phase-space integration efficient using
neural importance sampling. Furthermore, we show how acceptance effects can be learned
with classifier networks. As our benchmark LHC process, we use associated Higgs and
single-top production.

We start with the description of our reference process in Sec. 6.1. Next, we describe how
ML can be applied in the matrix element method in Sec. 6.2. We then first look at a
simplified ML-MEM setup based on two invertible neural networks to model the transfer
function and for importance sampling in Sec. 6.3. We start with the simple case of a
leptonically decaying top and then move on to hadronic decays with and without initial
state radiation. There are three main issues with this simple approach. The first issue is
the missing treatment of acceptance effects, which we solve with classifier networks in
Sec. 6.4.2. Second, the simple INN does not provide a sufficient level of precision to learn
the transfer function, so we replace it with a diffusion model in Sec. 6.5.1. Finally, we
show how transformer networks can be used to tackle jet combinatorics in Sec. 6.5.2.

6.1 LHC process

As a reference process to benchmark our machine learned matrix element method, we
choose associated single-top and Higgs production

pp→ tHj , (6.1)

as it will allow us to measure the CP phase of the top Yukawa coupling in future LHC
runs [218–226]. The three leading-order Feynman diagrams for this process are shown in
Fig. 6.1, where we neglect the second diagram in the limit of a massless bottom quark in
the initial state. We choose the decay H → γγ. This allows us to focus on the signal
process and we do not have to include continuum backgrounds. We express the Lagrangian
of the top-Higgs interaction as a mixture of CP-even and CP-odd interactions [227],

Ltt̄H = − yt√
2

[
a cosα t̄t+ ib sinα t̄γ5t

]
H , (6.2)

with a = 1, b = 2/3 and the CP-phase α. α = 0◦ corresponds to a CP-even and α = 180◦
to CP-odd Yukawa coupling. The parameters a and b are chosen such that the total
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Figure 6.1: Leading-order Feynman diagrams for the hard process pp → tHj.
We neglect the second diagram in the limit of a massless bottom quark. The
diagrams also appear with an inverted light-quark line.
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Dataset cut rate [ab] fraction

leptonic σ 43.6 · 103

σ × BR 7.38
≥ 2 photons with pT > 20 GeV and η < 2.4 3.58 0.485
≥ 1 muon with pT > 20 GeV and η < 2.4 2.29 0.310
≥ 2 jets 1.69 0.230
1 b-jet with pT > 25 GeV and η < 2.4 1.00 0.136
≥ 1 jets with pT > 25 GeV and η < 2.4 0.41 0.055

hadronic, no ISR σ 43.6 · 103

σ × BR 44.28
≥ 2 photons with pT > 20 GeV and η < 2.4 19.56 0.442
≥ 4 jets 7.09 0.160
1 b-jet with pT > 25 GeV and η < 2.4 3.93 0.089
≥ 3 jets with pT > 25 GeV and η < 2.4 1.23 0.028

hadronic, with ISR σ 43.6 · 103

σ × BR 44.26
≥ 2 photons with pT > 20 GeV and η < 2.4 18.37 0.415
≥ 4 jets 12.67 0.286
1 b-jet with pT > 25 GeV and η < 2.4 6.44 0.146
≥ 3 jets with pT > 25 GeV and η < 2.4 3.06 0.069

Table 6.1: Cut flow for pp → tHj with H → γγ and for SM events (α = 0◦).
We assume mb = 0 and intermediate on-shell particles.

gg → H cross section remains constant when α is varied. From Eq. (6.2) we can see
that any observable O obtained by integrating over hard-scattering phase space has the
functional form

O(α) = A+B(1− cosα) + sinα (C sinα+D + E cosα) , (6.3)

which allows us to express likelihoods or the fiducial cross-section using only five parame-
ters.

Data samples

To train neural networks, we need paired events consisting of the CP-phase α, the
hard-scattering momenta xhard, and the reconstruction-level momenta xreco. For a given
α we run MG5aMC, v3.1.0, with LO-NNPDF and αs = 0.119 [228]. We assume the
incoming b-quark to be massless. We define xhard as the momenta of the top, Higgs and
light quark on their respective mass shells and decay them in a second step. We then
simulate the parton shower with Pythia8 [34] and detector effects with Delphes [39].
Next, we use FastJet [194] to reconstruct anti-kT jets with a jet radius of 0.4.

We generate three different datasets. After the top decays into a b and a W , the W
either decays leptonically into a muon and a neutrino,

pp→ tHj → (bµ+νµ) (γγ) j , (6.4)
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Dataset A [fb] B [fb] C [fb] D [fb] E [fb]

leptonic 4.07 · 10−4 2.37 · 10−3 −1.22 · 10−3 1.86 · 10−6 −2.90 · 10−7

hadronic, no ISR 1.23 · 10−3 7.59 · 10−3 −3.78 · 10−3 1.24 · 10−5 −7.96 · 10−6

hadronic, with ISR 3.06 · 10−3 2.05 · 10−2 −9.50 · 10−3 1.90 · 10−5 −5.77 · 10−6

Table 6.2: Fit parameters for the fiducial cross sections, for the formula given in
Eq. (6.3).

or hadronically into two jets,

pp→ tHj → (bjj) (γγ) j . (6.5)

In both cases, we allow for additional reconstructed jets from final state radiation, but do
not include initial state radiation or multi-parton interactions. In the third dataset, we
again consider hadronic decays of the top, and include the effects of initial state radiation,
resulting in additional jets,

pp→ tHj → (bjj) (γγ) j + QCD jets . (6.6)

In all cases, we allow for up to four additional jets from final state radiation, or from
initial state radiation in the case of the third dataset. We always combine top and
anti-top production, resulting in a total cross section of 43.6 fb. We do not apply cuts
in pT or η at the hard-scattering level, but apply a series of cuts during reconstruction.
The cut flow for the three datasets is shown in Tab. 6.1.

Every data point then consists of the CP-phase α, the four-momenta at the hard-scattering
level,

xhard = (pt, pH , pq) , (6.7)

and the reco-level four-momenta,

xreco = (pγ,1, pγ,2, pb, pµ, pj,1, . . . ) leptonic decay
xreco = (pγ,1, pγ,2, pb, pj,1, pj,2, pj,3, . . . ) hadronic decay .

(6.8)

The photon momenta and light jet momenta are separately ordered by pT . The dots
indicate additional light jet momenta from FSR or ISR. As we define the hard-scattering
level before any initial state radiation is added, we do not need to perform a boost into the
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Figure 6.2: Fiducial cross section including decays and after cuts as a function of
the CP-angle α. The lower panels illustrate the agreement between the generated
data and the fitted continuous function defined in Eq. (6.3) and Tab. 6.2.
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Figure 6.3: Kinematic distributions for the hard-scattering tHj final state for
different values of the CP-angle.

hard-scattering rest frame. The two training datasets without ISR contain 1.3M paired
events with α drawn from a uniform distribution. The third dataset contains 3.4M events
to address the more challenging training task due to initial state radiation. In all cases,
the test datasets contain 260k events for each of the angles α ∈ {0◦, 45◦, 90◦, 135◦, 180◦}.

We simulate events for the CP-angles α = −180◦,−90◦,−45◦, 0◦, 22.5◦, 45◦, 90◦, 135◦, 180◦
and then perform a fit of the fiducial cross section including decays after cuts using
Eq. (6.3). The fit parameters for the three different datasets are shown in Tab. 6.2. We
find that the fiducial cross section is almost symmetric under a sign change in α, as
D,E ≪ A,B,C. We show the fiducial cross section for the set of CP-angles listed above
as well as the fitted function in Fig. 6.2. It can be seen that the cross section around the
Standard Model value (α = 0◦) is below 0.01 fb and almost flat for small α ≲ 40◦, caused
by destructive interference between the left and right diagram in Fig. 6.1. This turns
into constructive interference as α gets further away from the Standard Model value.
We show the distributions for the hard-scattering tHj kinematics in Fig. 6.3. Unlike
for the rate, we can see that there is significant change in the shape of the kinematic
distributions between α = 0◦ and α = 45◦. Because of the low rates, we have to include
the kinematic information into our analysis to make optimal use of the available data,
making this process a perfect example application for the matrix element method.
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6.2 ML-matrix element method

As we already saw in Sec. 2.1.2, the differential cross section of a hard scattering process
can be interpreted as a probability distribution when it is normalized by the total cross
section. Similarly, the differential cross section for a given parameter of interest α can be
interpreted as the likelihood of an event given the parameter,

dσ(α)
dxhard

= σ(α) p(xhard|α) ⇔ p(xhard|α) = 1
σ(α)

dσ(α)
dxhard

. (6.9)

The hard-scattering momenta are not observed directly. Instead, we have to take into
account the effects of parton shower, hadronization, detector and reconstruction. Because
of the detector geometry and acceptance cuts performed during reconstruction, not every
xhard will result in a valid reco-level event xreco. As the reconstruction level data before
cuts is a very complex object that would be hard to learn for a neural network, we
instead model the forward process in terms of a rejection probability preject(xhard) and a
forward-transfer or response function r [229]. Any hard scattering event is then either
rejected, or it will be associated with a valid set of reco-level momenta xreco,

xhard
xreco

rejected

r(xreco|xhard)

preject(xhard)
.

(6.10)

We assume that the transfer function and the rejection probability are independent
of the theory parameter α. Note that our method does not require us to make that
assumption, but it is a very good approximation in many cases and allows for several
numerical optimizations, see Sec. 6.4.1. The transfer function r is not normalized, and
its normalization defines the efficiency or acceptance function,

ϵ(xhard) :=
∫
dxreco r(xreco|xhard) = 1− preject(xhard) . (6.11)

We can then obtain the differential cross section at the reconstruction level using the
transfer function,

dσfid(α)
dxreco

=
∫

dxhard r(xreco|xhard) dσ(α)
dxhard

, (6.12)

where the subscript ‘fid’ indicates that the reco-level phase space is different from the
hard-scattering level. We can then replace the transfer function r with the normalized
transfer probability p(xreco|xhard) using Eq. (6.11),

r(xreco|xhard) = ϵ(xhard) p(xreco|xhard) with
∫

dxreco p(xreco|xhard) = 1 . (6.13)

Next, we insert Eq. (6.13) in Eq. (6.12) to obtain the final expression for the differential
cross section,

dσfid(α)
dxreco

=
∫

dxhard ϵ(xhard) p(xreco|xhard) dσ(α)
dxhard

. (6.14)

Since we are interested in the likelihood of the reco-level events given a theory parameter,
we need a normalized version of this differential cross section in analogy to Eq. (6.9),

dσfid(α)
dxreco

= σfid(α) p(xreco|α) ⇔ p(xreco|α) = 1
σfid(α)

dσfid(α)
dxreco

. (6.15)
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We can compute the fiducial cross section σfid(α) by integrating Eq. (6.14) over the
reco-level phase space,

σfid(α) =
∫

dxreco

∫
dxhard ϵ(xhard) p(xreco|xhard) dσ(α)

dxhard

=
∫

dxhard ϵ(xhard) dσ(α)
dxhard

= σ(α)
∫

dxhard ϵ(xhard) p(xhard|α)

= σ(α)
〈
ϵ(xhard)

〉
x∼p(xhard|α) ,

(6.16)

where we used the normalization condition from Eq. (6.13) to integrate out the reco-level
phase space, and then replaced the differential cross section using Eq. (6.9). This allows
us to express the integral in terms of the average acceptance ⟨ϵ⟩α which is used to compute
the fiducial cross section numerically, for example to obtain the results shown in Tab. 6.1.
Inserting Eq. (6.14) into Eq. (6.15) yields the final expression for the reco-level likelihood,

p(xreco|α) = 1
σfid(α)

∫
dxhard

dσ(α)
dxhard

ϵ(xhard) p(xreco|xhard) . (6.17)

The training data for our neural networks consists of paired events (xreco, xhard, α), so
it only contains events that have passed the phase-space cuts. Hence, the marginal
distribution of the xhard is different from the distribution defined by the differential cross
section of the hard process, Eq. (6.9). The modified distribution of the accepted xhard is
given by

pfid(xhard|α) = 1
σfid(α)

dσ(α)
dxhard

ϵ(xhard) . (6.18)

Consequently, the reco-level likelihood and the modified parton-level likelihood are related
by a completeness relation,

p(xreco|α) =
∫

dxhard p(xreco|xhard) pfid(xhard|α) . (6.19)

Acceptance classifier and transfer network

The transfer probability p(xreco|xhard) and acceptance ϵ(xhard) needed to compute the
reco-level likelihood using Eq. (6.17) are not analytically tractable and only defined
through a forward simulation. We encode both functions in neural networks trained on
these simulations.

We extract the acceptance from the data using a classifier network

xhard
Acceptance network−−−−−−−−−−−−→ ϵψ(xhard) , (6.20)

with trainable parameters ψ. The classifier is trained on a dataset containing the momenta
xhard of both accepted (label 1) and rejected (label 0) events. The network is trained
with a binary cross entropy loss. As explained in Sec. 3.1.3, this means that the output
of the network will be the acceptance probability for a given input event.

The transfer probability introduced in Eq. (6.13) is encoded in a generative network.
To compute the integral in Eq. (6.17), the transfer probability has to be available as a
numerical value and not only through samples. The generative architecture therefore
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needs to be able to perform density estimation. Examples for such networks include
cINNs and CFMs. The network is trained on a data set with event pairs (xreco, xhard),
where we only include accepted events. The trained network then defines a bijective
mapping between random numbers and reco-level phase space conditioned on parton-level
events,

xreco ∼ pθ(xreco|xhard) Transfer network←−−−−−−−−−→ r ∼ platent(r) , (6.21)

with trainable parameters θ. This mapping is evaluated in the forward direction for
density estimation and in the inverse direction to sample from the transfer probability.

Sampling-cINN

We compute the integral in Eq. (6.19) using Monte Carlo integration, as introduced in
Sec. 2.2.1. It is challenging because the differential cross section spans several orders of
magnitude, and the transfer probability typically forms a narrow peak. Therefore, we
have to find a proposal distribution to sample xhard ∼ q(xhard|xreco, α) ≡ q(xhard) such
that the variance of the integral is minimized. Classically, this integral is computed by
constructing analytic mappings that take the specific structure of the matrix element and
transfer probability into account. As the transfer probability is only available through a
generative network, we instead use neural importance sampling. The proposal distribution
then also has to be extracted from the training data.

We start by writing the phase-space integral as an expectation value,

p(xreco|α) =
∫

dxhard pfid(xhard|α) pθ(xreco|xhard)

=
〈

1
q(xhard) pfid(xhard|α) pθ(xreco|xhard)

〉
xhard∼q(xhard)

,
(6.22)

Ideally, our network surrogate for the transfer probability has learned the phase-space
density perfectly,

pθ(xreco|xhard) = p(xreco|xhard) . (6.23)

We can then use Bayes theorem to rewrite the the integral as

p(xreco|α) =
〈

1
q(xhard) pfid(xhard|α) p(xreco|xhard)

〉
xhard∼q(xhard)

=
〈

1
q(xhard) p(xhard|xreco, α)p(xreco|α)

〉
xhard∼q(xhard)

.

(6.24)

We can see that the integrand becomes independent of xhard and the variance vanishes
when

q(xhard) ≡ q(xhard|xreco, α) ∝ p(xhard|xreco, α) , (6.25)

where p(xhard|xreco, α) corresponds to the generative unfolding probability from recon-
struction level to parton level [28].

In practice, we cannot expected the learned transfer probability to match the truth
distribution perfectly. To compensate for the imperfect training, we define the sampling
distribution in terms of the learned transfer probability. Then the condition in Eq. (6.25)
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p(xreco|α) = 1
σfid ⟨ 1
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Acceptance
network

α

xreco

{r | r ∼ platent(r)}

{xhard}

Figure 6.4: Three-network MEM integrator evaluating Eq. (6.29) through sam-
pling r. The Sampling-cINN is conditioned on the CP-angle α and the reco-level
event xreco. The Transfer network is conditioned on the hard-scattering event
xhard. For the three-network setup the acceptance ϵ(xhard) is encoded in a
network.

becomes
q(xhard|xreco, α) ∝ pfid(xhard|α) pθ(xreco|xhard) . (6.26)

We train a conditional normalizing flow with trainable parameters φ to learn either the
proposal distribution from Eq. (6.25) or Eq. (6.26),

r ∼ platent(r)
Sampling-cINN←−−−−−−−−→ xhard(r) ∼ qφ(xhard|xreco, α) . (6.27)

In the first case the network can be directly trained on paired samples (α, xhard, xreco),
whereas in the second case a synthetic dataset has to be created that follows the learned
transfer probability. In both cases, we can then parameterize the conditional sampling
density as

qφ(xhard|xreco, α) ≡ qφ(xhard(r)|xreco, α) = platent(r)
Jφ(r)

with Jφ(r) =
∣∣∣∣∂xhard(r;xreco, α;φ)

∂r

∣∣∣∣ .
(6.28)

Inserting this into the MEM integral from Eq. (6.17) yields

p(xreco|α) = 1
σfid(α)

∫
dr Jφ(r)

[ dσ(α)
dxhard

ϵψ(xhard) pθ(xreco|xhard)
]
xhard(r;xreco,α;φ)

= 1
σfid(α)

〈
Jφ(r)

platent(r)

[ dσ(α)
dxhard

ϵψ(xhard) pθ(xreco|xhard)
]
xhard(r;xreco,α;φ)

〉
r∼p(r)

.

(6.29)

The architecture of our three-network MEM integrator is illustrated in Fig. 6.4.
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6.3 Two-network setup

A common assumption in the MEM literature [206] is that the phase-space dependence of
the acceptance can be neglected. We will therefore start our discussion with a simplified
setup where the acceptance only enters the MEM integration through the fiducial cross
section. The reco-level likelihood can then be written as

p(xreco|α) ≈ 1
σfid(α)

∫
dxhard

dσ(α)
dxhard

pθ(xreco|xhard) . (6.30)

We use cINNs with rational-quadratic spline coupling blocks [110] for the transfer network
and the sampling network. For each network, we train a deterministic and a Bayesian
version, with the loss functions from Eq. (3.34) and Eq. (3.67), respectively. The input
features of both networks are the components of the hard-scattering and reco-level four
momenta. For the hard-scattering momenta, we remove redundant degrees of freedom
from the on-shell conditions and transverse momentum conservation, resulting in a
seven-dimensional input

{pxt , p
y
t , p

z
t , p

x
H , p

y
H , p

z
H , p

z
j} . (6.31)

For the reco-level momenta, we remove the energies of photons and muons because they
are redundant degrees of freedom, resulting in 5 · 4− 3 = 17 input dimensions for the
leptonic dataset, and 6 · 4− 2 = 22 for the hadronic dataset. We do not include potential
additional jets in the input of the Transfer-cINN as it requires a fixed dimension, but
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Figure 6.5: Forward-simulated kinematic distributions for the leptonic top decay,
assuming five different CP-angles and including uncertainties from the Bayesian
cINN. These distributions test the Transfer-cINN.
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append the zero-padded four momenta of up to four extra jets to the conditional input
of the Sampling-cINN. We expect the distribution learned by the Sampling-cINN to
depend on the CP-phase α, so we pass it to the network as another conditional input.
In contrast, we expect the forward-simulation to be α-independent. For all network
inputs, we subtract the feature-wise mean and divide by the standard deviation as a
preprocessing step. We use the hyperparameters shown in Tab. A.7 for both cINNs.

6.3.1 Leptonic top decay

We start by training a Bayesian Transfer-cINN and Sampling-cINN on our leptonic dataset.
The kinematic reco-level distributions obtained from the Transfer-cINN compared to
the truth distribution from the test dataset are shown in Fig. 6.5. We show histograms
for each of the five values of the CP-phase in our test dataset. The error bands are
defined by the bin-wise Bayesian uncertainties, similar to the results for precision event
generation shown in Sec. 4.3. While there are deviations from the truth distribution, they
are mostly covered by the uncertainties in the case of the three pT distributions, with
some deviations in the η distribution. These results also allow us to test our assumption
that the forward-simulation is independent of the CP-phase α. While there are differences
in the reco-level distributions, these are caused by the variation in the hard-scattering
distributions. Small performance differences for different α are mostly covered by the
training uncertainties, so the Transfer-cINN works equally well for all choices of α. This
confirms that we do not need to assume an α-dependent transfer probability.
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Figure 6.6: Hard-scattering level kinematic distributions for the leptonic top
decay, assuming five different CP-angles and including uncertainties from the
Bayesian cINN. These distributions test the Sampling-cINN.
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Next, we show the kinematic distributions from the Sampling-cINN in Fig. 6.6, again
with uncertainty bands estimated using a Bayesian network. We find that there is an
excellent agreement with the truth distribution within the uncertainties. Further, the α
dependence is correctly reproduced. The level of precision achieved by the Sampling-cINN
is higher than for the Transfer-cINN. This is because the forward simulation is the more
challenging task as it samples into a higher-dimensional space. In the following, we will
replace the Bayesian Sampling-cINN with a deterministic version. Because it is used for
importance sampling, deviations from the truth distribution only have an effect on the
convergence of the integral but will not bias the result.

After testing both networks individually, we combine them to compute the integral from
Eq. (6.30). We evaluate the integral for multiple sets of reco-level events, each one with
a different value of the CP-phase α. For each event and α, we sample 100k points in the
hard-scattering phase space using the Sampling-cINN conditioned on xreco and α. We
improve the numerical stability using trimmed means and standard deviations where we
discard 1% of the largest and smallest values of the integrand. To guarantee physical
events, we remove hard-scattering events with momentum fractions x > 1, and events
that have a negative differential cross section because of the parton distribution functions.
We then compute the negative log-likelihood −2 logLi(α) for a given event i, and combine
the log-likelihoods of multiple events by adding them.

To test the results of our method, we combine the likelihoods of 400 events for three
assumed truth values of the CP-angle, α = 0◦, 45◦, 90◦. In Fig. 6.7 we show the resulting
log-likelihoods with uncertainties computed using Gaussian error propagation of the
Monte Carlo integration error. We perform a polynomial fit to get a smooth reco-level
log-likelihood, and normalize them such that the minimum of the fit curve is at 0. As a
comparison, we show the log-likelihood obtained by directly evaluating the differential
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Figure 6.7: Likelihoods for the leptonic top decay as a function of the CP-angle
α, extracted from 400 events for three assumed truth angles. For the Bayesian
uncertainties we show the integrated likelihoods from 10 sampled networks.
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Figure 6.8: Calibration of the α-measurement from leptonic top decays, in terms
of mean values and 68% confidence intervals extracted from 20 sets of 100 events
at hard-scattering level and reco level.

cross sections for the hard-scattering momenta from the simulation. Note that even in
the limit of a perfect Transfer-cINN, we cannot expect the reco-level likelihood and the
hard-scattering level likelihood to be the same, as there could be a loss of information in
the forward simulation. It can be seen that there is a very good agreement for α = 45◦
and that the confidence interval is relatively narrow. This is because the kinematic
distributions are very sensitive to changes in the CP-angle around α = 45◦, as seen in
Fig. 6.3. The measurement of the CP-angle is especially challenging around the Standard
Model value α = 0◦ because the matrix element is almost symmetric under a sign flip in
α. For α = 0◦ and α = 90◦, the agreement with the hard-scattering result is still good,
but slightly worse compared to α = 45◦.

To better understand the uncertainties introduced by the training of the Transfer-cINN,
we can again make use of the Bayesian version of the network. To this end, we repeat
the likelihood calculation for 10 network replicas sampled from the distribution over
their trainable parameters. Again, we perform polynomial fits and show the resulting
log-likelihoods in the lower panels of Fig. 6.7. The more challenging inference task for
α = 0◦ and α = 90◦ is reflected by the larger uncertainty predicted by the Bayesian
network. There is a very large uncertainty in the lower left panel around α = −10◦
because of the aforementioned degeneracy in the matrix element.

As the last check of our ML-MEM setup, we look at the calibration of the extracted
CP-phase. While calibration plots are normally made by comparing the inferred α for
a range of different truth values for α, we create approximate calibration plots where
we compare the CP-angles extracted from the hard-scattering and reco-level likelihoods.
To this end, we determine the minima and 68% confidence intervals from the negative
log-likelihoods for 20 sets of 100 events. We compute the confidence intervals by assuming
an approximately Gaussian likelihood distribution on each side of the minimum, such that
the likelihood values at the two boundaries of the confidence interval are the same. This
can lead to asymmetric error bars. We show such plots for α = 0◦, 45◦, 90◦ in Fig. 6.8.
For all three truth angles, we find a good correlation between the hard-scattering level
and the reco-level results. For the SM-value α = 0◦, some points have larger uncertainties
at the reco-level because of the approximate degeneracy under a sign change in α. Still,
even for this challenging case, the results are well-calibrated.
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6.3.2 Hadronic top decay

In the case of the leptonic decay, every reco-level object can be clearly assigned to one
particle in the final state of the hard process. The main challenge is the reconstruction
of the missing neutrino momentum. This is no longer the case when we move to the
hadronically decaying top. The networks then have to solve the increasingly complex
jet combinatorics. There are at least four reco-level jets, which could come from the top
decay, or from the light quark produced in the hard process. In addition, there can be
jets from initial state radiation in our most challenging dataset.

Without ISR

We train the Transfer-cINN and Sampling-cINN with the same setup and hyperparameters
as before. The only difference to the leptonic case is that the reco-level phase space
is now higher-dimensional with 6 · 4 − 2 dimensions. Again, we show the extracted
log-likelihoods for 400 events in Fig. 6.9, using a deterministic network in the upper
panels and a Bayesian network in the lower panels. The results are comparable to those
from the leptonic decay, showing that the network is able to resolve the jet combinatorics.
We show the calibration in Fig. 6.10. Compared to the leptonic results in Fig. 6.8, our
method finds the wrong sign of the CP-angle for some sets of events because of the
approximate symmetry from Eq. (6.3). The absolute value is still well-calibrated.
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Figure 6.9: Likelihoods for the hadronic top decay as a function of the CP-angle
α, extracted from 400 events for three assumed truth angles. For the Bayesian
uncertainties we show the integrated likelihoods from 10 sampled networks.
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Figure 6.10: Calibration of the α-measurement from hadronic top decays, in
terms of mean values and 68% confidence intervals extracted from 20 sets of 100
events at hard-scattering level and reco level.

With ISR

Next, we allow for initial state radiation (ISR) and train our networks with the same
setup as before. We use a larger training dataset with 3.4M events to help the network
extract the more complex kinematic patterns from the data. As shown in Fig. 6.3, the
kinematic distribution of the hard forward jet is very sensitive to the CP-angle α. While
final state radiation can lead to an additional jet from the top decay or a splitting of
the forward jets, it does not change the event topology much. This is different for ISR
jets, as they can look similar to the forward jet. Sometimes, they are misidentified as the
forward jet by the network even though they are insensitive to the CP-angle. This can
lead to a bias in the extracted likelihoods.
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Figure 6.11: Likelihoods for the hadronic top decay, including ISR, as a function
of the CP-angle α, extracted from 400 events for three assumed truth angles. For
the Bayesian uncertainties we show the integrated likelihoods from 10 sampled
networks.
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Figure 6.12: Calibration of the α-measurement from hadronic top decays with
ISR, in terms of mean values and 68% confidence intervals extracted from 20
sets of 100 events at hard-scattering level and reco level.

We show the extracted likelihoods for 400 events in Fig. 6.11. While the results for
α = 45◦ are still in good agreement with the hard-scattering truth, we can see that there
is a bias towards lower CP-angles for α = 90◦, and a loss in sensitivity for |α| ≲ 10◦
in the Standard Model case. This observation is consistent between the results from
the deterministic Transfer-cINN in the upper panels and the Bayesian Transfer-cINN in
the lower panels. Furthermore, we see that the uncertainty from the network training
estimated by the Bayesian network is much larger compared to the results without ISR
shown in Fig. 6.9.

These issues are confirmed by the calibration plots shown in Fig. 6.12. There is almost
no sensitivity to the CP angle for |α| ≲ 10◦. For α = 45◦ and α = 90◦, there is a clear
correlation between the hard-scattering and reco-level α. It is however noisier than in the
results without ISR, and the calibration plot confirms the bias towards lower CP-angles
for α = 90◦.

6.4 Improved MEM setup

While the results shown in the previous section are promising, there are also several
problems that need to be solved for the ML-based matrix element method to reach the
required level of precision for an LHC analysis. First, the phase-space integration is
relatively slow as it involves a large number of network evaluations. Second, trimmed
means are used to stabilize the integration. This is effective, but can also lead to biased
integration results. Lastly, we find that the parameter measurement becomes biased
when ISR is included. In Sec. 6.4.2 we show that this is partially caused by phase-space
dependent acceptance effects.

6.4.1 Improved integration

In this section, we continue to use the same network setup with two cINNs and the same
hyperparameters as before to solve the integral in Eq. (6.30). To improve the speed and
stability of the integration, we introduce a series of numerical improvements.
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Single-pass integration over model parameters

In Sec. 6.3 we evaluated the integral separately for every value of the theory parameter α.
We can optimize this by making use of the fact that the transfer probability does
not depend on α, and the mapping for the importance sampling only has a small α-
dependence. We can therefore reuse the phase-space samples xhard ∼ qφ(xhard|xreco, α)
and the corresponding values of pθ(xreco|xhard) to evaluate the differential cross section
for multiple points in α. Furthermore, only parts of the differential cross section depend
on α, like the matrix elements, whereas other parts only depend on xhard, like the parton
densities. An additional benefit of this method is that the integrand for a given sample
xhard is a smooth function of α. Consequently, the integral is a smooth function as well
when the same samples xhard are used for all α. This makes it unnecessary to perform a
fit through noisy data points to get a smooth curve for the likelihood.

We replace multiple separate integrations with a single-pass integration for a given xreco
and a discrete set {α}. The integration is then performed as follows:

1. For j ∈ {1, . . . , N}, draw α(j) from {α} randomly;

2. Using the sampling network, sample x(j)
hard ∼ qφ(xhard|xreco, α(j));

3. Evaluate the transfer probability pθ(xreco|x(j)
hard) for each sample;

4. Evaluate the differential cross section dσ(α)/dx(j)
hard for each sample x(j)

hard and α;

5. Compute the MC integral Eq. (6.30) for all α values at the same time

p(xreco|α) ≈ 1
σfid(α)

1
N

N∑
j=1

1
qφ(x(j)

hard|xreco, α(j))
dσ(x(j)

hard|α)
dxhard

pθ(xreco|x(j)
hard) . (6.32)

As our example process has only two Feynman diagrams, the computational cost of the
integration is dominated by network evaluations. As a result, the single-pass integration
procedure leads to a large speedup.

Iterative integration

In Sec. 6.3 we used a fixed number of integration points for every reco-level event.
However, we find that the integration converges faster for some events, and needs more
samples for others. Possible reasons include that the integration is more challenging
for some events, or that the peaks of the transfer probability and importance sampling
distribution are not perfectly aligned. This results in a higher variance and a slower
convergence of the integral. To guarantee a small integration error in such cases while
keeping the overall integration time low, we compute the integral iteratively. To this end,
we specify a minimal and maximal number of iteration as well as a threshold for the
maximal relative uncertainty of the integration results for all values of α. The integration
is then repeated with a fixed batch size until the combined uncertainty drops below the
threshold or the maximal number of iterations is reached. For our example process we
use a batch size of 10k, between two and 15 iterations, and a target uncertainty of 2%.
Note that the uncertainties of the likelihood ratios shown in our Figures are much smaller
than 2% because of the correlations between different α introduced by the single-pass
integration.
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Integration uncertainties

Because the result of the single-pass integration is a smooth function of α, the simple point-
wise MC integration error is no longer sufficient to estimate the integration uncertainties.
Due to the correlation between the likelihoods for different α, the uncertainty on the
likelihood ratio should be much smaller than the uncertainty on the likelihood before
normalization. We use bootstrapping to estimate the correlated integration uncertainty.
To this end, we resample the integrand by randomly drawing M batches of N samples
with replacement from our set of integrand samples {I(j)(αi) |j = 1, . . . , N}. We compute
the integral by taking the mean over the N samples for each of the M replicas and
then propagate these replicas through the downstream tasks. Finally, we estimate
the uncertainties of the normalized negative log-likelihood by computing the standard
deviation over the M replicas for every αi.

We can use the same approach to extract the uncertainties from the training of the transfer
network, estimated using a Bayesian neural network. Instead of performing a separate
integration for every sample from the distribution of trainable network parameters like
in Sec. 6.3, we extend our one-pass integration and reuse the same phase-space points
xhard for multiple transfer networks sampled from the Bayesian network distribution.
This does not have a large effect on the integration performance because the same
importance sampling distribution works well for different sampled networks. We combine
this approach with the bootstrapping procedure described above by resampling the
integrand and the transfer network parameters for every replica. Then, the integration
and training uncertainties can be estimated in the same step.

Factorization of the differential cross section

In addition to the single-pass integration, we can further optimize the computation of
the differential cross section for some processes. For our example process, we can see
from Eq. (6.3) that the differential cross section can be written as

dσ(xhard|α)
dxhard

= g1 + sinα g2 + cosα g3 + sinα cosα g4 + sin2 α g5

≡
∑
i

fi(α)gi(xhard) ,
(6.33)

i.e. the differential cross section factorizes into a phase-space-dependent part gi(xhard)
and a parameter dependent part fi(α). Similar factorization properties hold for SMEFT
corrections where they are often referred to as operator morphing [230]. The MEM
integration in Eq. (6.30) then becomes

p(xreco|α) = 1
σfid(α)

∑
i

fi(α)
∫

dxhard gi(xhard) pθ(xreco|xhard) , (6.34)
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and its Monte Carlo estimate is given by

p(xreco|α) ≈ 1
σfid(α)

1
N

N∑
j=1

1
qφ(x(j)

hard|xreco, α(j))
dσ(x(j)

hard|α)
dxhard

pθ(xreco|x(j)
hard)

= 1
σfid(α)

∑
i

fi(α) 1
N

N∑
j=1

1
qφ(x(j)

hard|xreco, α(j))
gi(x(j)

hard) pθ(xreco|x(j)
hard) ,

(6.35)

where x
(j)
hard ∼ qφ(xhard|xreco, α(j)). Note that the MC estimate of the integral only

preserves the exact functional form from Eq. (6.33) if gi(xhard) is evaluated with the
same samples x(j)

hard for all i.

Importance sampling trained on transfer probability

So far the training of the Sampling-cINN was based on the assumption that the learned
transfer probability closely approximate the true transfer probability. Consequently, we
trained the proposal distribution directly on the truth distribution

qφ(xhard|xreco, α) ≈ p(xhard|xreco, α) ∝ p(xreco|xhard)pfid(xhard|α) . (6.36)

The transfer probability is a sharply peaked function, so a small misalignment compared
to the importance sampling distribution can lead to a large increase in the integral
variance. This does not necessarily have a significant impact on the inference result
itself, but slows down the convergence of the phase-space integral. Instead of training
the Sampling-cINN on the real distribution, we can instead train it on the modeled
distribution from Eq. (6.26),

qφ(xhard|xreco, α) ≈ pθ(xreco|xhard)pfid(xhard|α) . (6.37)

The training dataset consists of tuples (α, xhard, xreco). We can modify it to follow the
modeled distribution by replacing the reco-level momenta with samples

x̃reco ∼ pθ(xreco|xhard) , (6.38)

where we use the surrogate network for the transfer function as a generative model. To
increase the training statistics we re-sample x̃reco at the beginning of each epoch.

Vegas latent space refinement

Even when the Sampling-cINN is trained on the learned transfer probability, there
are still some events with a large variance in the MEM integration. Adapting the
importance sampling network during the integration, similar to the MadNIS approach
from Ch. 5, would make the integration even slower. An alternative is to use Vegas,
as introduced in Sec. 2.2.2, to refine the INN latent space. Because the α-dependence
of the importance sampling is small, we can define a shared Vegas grid. We then use
Vegas to transform our random latent space samples before we map them into phase
space using the Sampling-cINN. We adapt the grid after every iteration of the integration
by minimizing the variance for a point in the middle of the relevant α-interval. We
then combine the results from multiple iterations weighted by the inverse variance. This
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Figure 6.13: Integration performance with and without importance sampling
trained on the transfer probability and Vegas refinement. Left: number of
iterations (10000 samples each) to reach the 2% target precision, with 2 to 15
iterations. Right: relative integration error after 10 iterations of 10000 samples
each.

minimizes the overall variance and reduces the effect of early iterations where the grid is
not yet well adapted.

Results

To benchmark the various improvements to the integration procedure, we use the same
architecture and hyperparameters for the Transfer-cINN and Sampling-cINN as before,
and train the networks on the challenging hadronic dataset including ISR. In all cases we
use single-pass integration including a factorized differential cross section. We test the
impact of training the Sampling-cINN on the transfer probability and of the Vegas latent
space refinement for 1000 SM events. We show the number of iterations needed to reach
the target precision of 2% in the left panel of Fig. 6.13. While single-pass integration
guarantees smooth likelihoods, it does not meet the target precision within 15 iterations
for most events. This improves when it is combined with Vegas refinement, and there
are even larger improvements when the Sampling-cINN is trained on the learned transfer
probability. When both methods are combined, the target precision is reached within 15
iterations for most events. These observations are confirmed by the relative integration
error after 10 iterations shown in the right panel of Fig. 6.13. We will therefore use the
combination of both methods for all the following results to ensure a fast and stable
convergence of the phase-space integrals.

The purple line in the upper panels of Fig. 6.14 shows the log-likelihoods for 400 events,
extracted using our improved integration method. The setup is otherwise similar to the
one used for the results in Fig. 6.11. Compared to the previous results, the likelihoods are
much smoother. We show the integration uncertainty as error bands, but they are barely
visible because of the low error threshold and the single-pass integration. We confirmed
that these uncertainties are consistent with the variations between multiple runs of the
integrator. The key observation from Fig. 6.11 that there is a loss of sensitivity around
the α = 0◦, is still true for the new results.

The higher integration speed allows us to show the log-likelihood for a large set of 10k
events in the second row of Fig. 6.14. The higher number of events leads to much narrower
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Figure 6.14: cINN benchmark and learned acceptance: likelihoods for
different CP-angles. We use the same architecture as in Sec. 6.3, but with the
improved integration. The purple curve shows the two-network cINN benchmark
and the orange curve also includes the learned acceptance. From top to bottom:
likelihoods for 400 events, 10000 events, and pulls.

confidence intervals. We can see that there is a significant deviation between the hard-
process and reconstructed likelihoods for all three truth values of the CP-angle. These
results show that the biased measurements were not caused by the unstable integration,
so further improvements of our MEM setup are necessary.

The third row of Fig. 6.14 shows the distribution of the pull (α− αtruth)/σ for 100 sets
of 100 events. α and σ are extracted from the likelihoods using the same method as
for the calibration plots in Fig. 6.11. We can see that the uncertainty estimates are
well-calibrated for α = 45◦, 90◦, and slightly overconfident for α = 90◦.

6.4.2 Acceptance classifier

So far, we have assumed that we can neglect phase-space dependent acceptance effects.
This assumption works well for simple cases like the leptonic dataset and the hadronic
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Figure 6.15: Truth and learned acceptance as a function of different kinematic
observables.

dataset without ISR, as there is clear correspondence between hard-scattering and reco-
level objects, and the transfer probability is relatively narrow. This means that hard
cuts at the reconstruction level approximately lead to hard cuts of the hard-scattering
momenta. The situation becomes more complicated when ISR is included. We show
the acceptance probability for this case as a function of the hard-scattering phase space
in Fig. 6.15. The forward jet is not detected if |ηj | > 2.4. Such events are sometimes
still accepted when an ISR jet is tagged instead, reflected by the non-zero acceptance
probability in this phase-space region. This also causes the increase in the fiducial cross
section from the non-ISR-case to the ISR-case seen in Tab. 6.1. The transfer probability
has to take into account the two possible origins of jets in the forward direction, and
both regions of phase space contribute significantly to the MEM integral. We can see in
Fig. 6.15 that there is a jump in the acceptance at |ηj | = 2.4, by almost a factor of three.
There is also a significant variation of the acceptance as a function of other phase-space
observables, like the pT of the top. To correctly account for these effects, we have to
include the acceptance function in our MEM integral.

To this end, we move from the two-network setup used in Secs. 6.3 and 6.4.1 to the full
three-network setup introduced in Sec. 6.2. The MEM integral then has the form

p(xreco|α) = 1
σfid(α)

∫
dxhard

dσ(α)
dxhard

ϵψ(xhard) pθ(xreco|xhard) . (6.39)

To learn the acceptance function ϵψ(xhard), we train a simple classifier on a dataset
containing hard-scattering events with the acceptance information as a truth label. The
hyperparameters are given in Tab. A.8. The classifier only takes a few minutes to train.
Its results are in good agreement with the truth acceptance, as shown in Fig. 6.15.

We then evaluate the MEM integral including the learned acceptance and compare the
likelihoods (orange lines) with the two-network baseline (purple lines) in Fig. 6.14. There
are only small differences for the small set of 400 events. The likelihood is slightly
narrower for α = 0◦, indicating a higher sensitivity. The differences become more clear for
the large set of 10k events. There is a much smaller systematic bias for all three CP-angles
compared to the results from the two-network baseline. We will use the three-network
MEM setup for all the following results.
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Figure 6.16: Reco-level distributions for different kinematic observables, ob-
tained from the different generative transfer networks, conditioned on the hard-
scattering momenta. Truth corresponds to the high-statistics test dataset.

6.5 Better transfer networks

The proper treatment of acceptance effects has considerably improved the accuracy of
our MEM setup, but there is still some systematic bias left in the results shown in
Fig. 6.14. To further reduce this bias, we need to improve the generative network used to
model the transfer probability. We show reco-level distributions obtained by sampling
from the learned transfer probability for different kinematic observables in Fig. 6.16.
There are large deviations between the distribution from the Transfer-cINN (orange
line) applied to hard-scattering events compared to the truth distribution (blue line),
sometimes exceeding 20% relative error. We also show reco-level distributions for several
alternative network architectures in Fig. 6.16. As seen in the figure, they perform much
better than the Transfer-cINN. In the following, we will describe these architectures in
detail.

6.5.1 Transfer diffusion

One major issue of INNs is that their expressivity is restricted by the invertibility
constraint. Diffusion models are a more flexible architecture and have shown to reach
higher levels of precision than INNs in phase-space sampling applications [64]. To be
used as a transfer function it is crucial that the generative architecture has density
estimation capability. For this reason, we choose conditional flow matching (CFM)
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Figure 6.17: Transfer-CFM: likelihoods for different CP-angles. We compare
the cINN baseline with a CFM diffusion network, both including the learned
acceptance. From top to bottom: likelihoods for 400 events, 10000 events, and
pulls.

networks [102–104], as introduced in Sec. 3.2.4. CFMs implement an invertible mapping
with tractable Jacobian. Therefore, they can be used in place of the Transfer-cINN from
Eq. (6.21) without further modifications.

We train the Transfer-CFM with the loss function from Eq. (3.58). Once trained, we
apply an ODE solver to Eq. (3.52) to sample from the transfer probability, and use
Eq. (3.55) for density estimation. The hyperparameters of our CFM network are given
in Tab. A.9. To evaluate the likelihood with the required precision, we need O(100)
evaluations of the velocity field encoded by a neural network. While sampling is relatively
fast, we also need the gradients of the velocity field with respect to its inputs to compute
the likelihood using Eq. (3.55). This makes the likelihood computation much slower
compared to INNs, which is the main disadvantage of CFM-based transfer probabilities.

We show the likelihoods extracted with the Transfer-CFM in Fig. 6.17. The MEM setup
is otherwise similar to the one used for the Transfer-cINN in Fig. 6.14. For 400 events,
both architectures for the transfer probability work well. The extracted likelihoods are
close to the optimal information from the hard process, and there is no visible systematic
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bias. For the high-statistics case with 10k events, the CFM results are significantly
better than the INN results. There is a slight increase in sensitivity for α = 0◦, and
the systematic bias for α = 45◦ and α = 90◦ is significantly reduced. The extracted
likelihoods are now close to the optimal information.

6.5.2 Combinatorics transformer

Next, we introduce a transformer [64, 184, 231] to improve the treatment of jet combi-
natorics [183], and combine it with cINNs and CFMs to be used as a density estimator.
The transformer is used to generate a sequence of reco-level momenta from a sequence
of hard-scattering momenta, similar to its original use for translation tasks [105]. The
attention mechanism hereby takes care of encoding correlations between different particles
and solving the jet combinatorics.

Transfermer

To encode the transfer probability, we follow the basic structure of a generative transformer
described in Sec. 3.4.2. We make the transformer autoregressive at the level of reco-level
momenta, and rely on a small and universal cINN conditioned on the output of the
transformer c(i) to encode the likelihood for the momentum components of a single
reco-level particle. The attention mechanism of the transformer encoder then models
the correlations between hard-scattering momenta. The decoder models the correlations
between the reco-level momenta as well as the input-output combinatorics. We illustrate
the architecture in the left panel of Fig. 6.18.

x
(1)
hard

... x
(3)
hard

Em
b ...

Em
b

Transformer-Encoder

Self-Attention:
Hard-level correlations

0 x(1)
reco

... x(n−1)
reco

Em
b

Em
b ...

Em
b

Transformer-Decoder

Masked Self-Attention:
Reco-level correlations

Cross-Attention:
Combinatorics

cI
N

N

cI
N

N

cI
N

N

cI
N

N

cI
N

N ...

cI
N

N

p(x(1)
reco|c(1)) ... p(x(n)

reco|c(n))p(xreco|xhard) =

c(1) c(2) c(n)

r1

r2

r3

r4

p
(i)
T

η(i)

ϕ(i)

m(i)

RQS

RQS

RQS

RQS

condition c(i)

Figure 6.18: Left: transformer combined with cINN, encoding the transfer
probability. Right: cINN used to learn individual momenta, where r is the usual
latent space to parametrize a generative model.
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We can use the autoregressive factorization together with the tractable likelihood of the
cINNs for the individual particles to express the transfer probability from Eq. (6.45) as

p(xreco|xhard) =
n∏
i=1

p(x(i)
reco|c(i)(e(0)

reco, . . . , e
(i−1)
reco , ehard)) , (6.40)

where c(i) denotes the i-th output of the transformer. The autoregressive property
is ensured by defining a starting token e

(0)
reco, shifting the inputs by one and using a

triangular mask for the self-attention matrix. The likelihood of momentum x
(i)
reco is then

only conditioned on the previous reco-level momenta, but on all hard-scattering momenta.
e

(i)
reco and e(i)

hard denote the particle-wise embeddings of the momenta and their position in
the pT -ordered event. We build the embedding vectors by concatenating the momentum
components and the one-hot encoded position. We then pad this vector with zeros until
the embedding dimension of the transformer is reached. As the first operation applied to
these embeddings within the transformer is a matrix multiplication, it is not necessary to
apply any further processing steps like a single linear layer to the embeddings. As usual
for autoregressive models, sampling from the transfer probability requires n Transfermer
evaluations,

p(x(i)
reco|xhard) ≡ p(x(i)

reco|c(i)(e(0)
reco, . . . , e

(i−1)
reco , ehard)) for i = 1, . . . , n . (6.41)

In contrast, the density from Eq. (6.40) can be evaluated with a single Transfermer
evaluation as all reco-level momenta are known. This makes density estimation with the
Tranfermer very fast, so the MEM integration remains computationally cheap.

As the last ingredient, we need to build a cINN to encode the particle-wise probability
p(x(i)

reco|c(i)) in Eq. (6.41). Photon momenta only have three degrees of freedom because
they are massless, while the mass is an additional degree of freedom for jets. To encode
both types of reco-level objects in the same cINN we use the factorization

p(x(i)
reco|c(i)) = p(p(i)

T , η
(i), ϕ(i)|c(i)) · p(m(i)|p(i)

T , η
(i), ϕ(i), c(i)) , (6.42)

such that the mass component can be omitted during density estimation and genera-
tion without affecting the other three components. Because rational quadratic spline
transformations (see Sec. 3.2.3) are very expressive [110], it is sufficient to transform
every momentum component once, and condition it on the other components and the
transformer output using a feed-forward network. This defines a minimal cINN archi-
tecture that is able to model the correlations between the momentum components. We
illustrate the architecture in Fig. 6.18. To ensure the positivity and a roughly Gaussian
distribution of the masses and transverse momenta, we train the network on normalized
versions of log pT and logm. The cINN then maps these components to Gaussian latent
spaces. We know that ϕ and η are only defined within an interval, the latter because of
detector-level cuts. Hence, we map both components to uniform latent spaces, and use a
periodic version of the RQ splines for ϕ [8].

Our implementation of the Transfermer is based on the standard PyTorch [196] trans-
former module and the cINN architecture described above. We train the cINN and the
transformer jointly with a negative log-likelihood loss,

L = − log pθ(xreco|xhard) . (6.43)

The hyperparameters are given in Tab. A.10. We show the extracted likelihoods for

110



6 ML for the matrix element method

−10 0 10
CP-phase α [◦]

0

2

4

6

8

10

−
2

lo
g
L

(α
)

α = 0◦, 400 events

hard

Transfermer

Transfusion

35 40 45 50
CP-phase α [◦]

0

2

4

6

8

10

−
2

lo
g
L

(α
)

α = 45◦, 400 events

hard

Transfermer

Transfusion

80 90 100 110
CP-phase α [◦]

0

2

4

6

8

10

−
2

lo
g
L

(α
)

α = 90◦, 400 events

hard

Transfermer

Transfusion

−7.5 −5.0 −2.5 0.0 2.5
CP-phase α [◦]

0

2

4

6

8

10

−
2

lo
g
L

(α
)

α = 0◦, 10000 events

hard

Transfermer

Transfusion

43 44 45 46
CP-phase α [◦]

0

2

4

6

8

10

−
2

lo
g
L

(α
)

α = 45◦, 10000 events

hard

Transfermer

Transfusion

88 90 92 94
CP-phase α [◦]

0

2

4

6

8

10

−
2

lo
g
L

(α
)

α = 90◦, 10000 events

hard

Transfermer

Transfusion

−5.0 −2.5 0.0 2.5 5.0
(α− αtruth)/σ

0.0

0.1

0.2

0.3

0.4

n
or

m
al

iz
ed

α = 0◦, 100×100 events

normal

Transfermer

Transfusion

−5.0 −2.5 0.0 2.5 5.0
(α− αtruth)/σ

0.0

0.1

0.2

0.3

0.4

n
or

m
al

iz
ed

α = 45◦, 100×100 events

normal

Transfermer

Transfusion

−5.0 −2.5 0.0 2.5 5.0
(α− αtruth)/σ

0.0

0.2

0.4

0.6

n
or

m
al

iz
ed

α = 90◦, 100×100 events

normal

Transfermer

Transfusion

Figure 6.19: Transfermer and Transfusion: likelihoods for different CP-angles
using a transformer for the transfer probability, combined with a cINN or a CFM
network, respectively. From top to bottom: likelihoods for 400 events, 10000
events, and pulls. Only the Transfermer curve includes the training uncertainties
estimated with the Bayesian network.

the Transfermer architecture in Fig. 6.19. The error bands in this plot are much larger
than in the previous plots because we also included the systematic uncertainty from the
training of the Transfermer, which we estimated with a Bayesian network and propagated
using the procedure from Sec. 6.4.1. We omitted the Bayesian uncertainties for the other
architectures as they lead to longer integration times. The accuracy is similar to the
Transfer-CFM from Fig. 6.17, and there is again a significant reduction in bias compared
to the cINN result from Fig. 6.14. The main advantage of the Transfermer is that it is as
fast as the Transfer-cINN, while not being as restricted as a regular invertible architecture
because of the flexibility of the transformer.

Transfusion

We saw a considerable improvement when the Transfer-cINN was replaced with the
Transfer-CFM. Consequently, we should also ask the question whether replacing the small
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cINN in the Transfermer with a CFM leads to further performance improvements. We
refer to this combination of both architectures as Transfusion. We build the Transfusion
network by keeping the autoregressive structure and masked self-attention from Fig. 6.18,
and replace the cINN for the individual particle momenta with a small CFM. In analogy
to Eq. (6.40), we then define a learnable velocity field for the i-th particle as a function
of the transformer output and the time t,

v(i)(x(i)
reco(t), t|c(i)(e(0)

reco, . . . , e
(i−1)
reco , ehard)) . (6.44)

We build two different CFMs, one for the 3-dimensional on-shell momenta and a second
one for the 4-dimensional jet momenta. This performs better than a shared network
for both types of momenta where the mass is discarded for on-shell particles. The
likelihoods can again be obtained by integrating the gradients of the velocity field, see
Eq. (3.55). Note that the transformer output does not depend on the timestep t. As a
consequence, it is sufficient to evaluate the transfermer once per autoregressive sampling
step instead of evaluating its gradients in every timestep of the diffusion process. We
train the Transfusion network with the hyperparameters given in Tab. A.11.

As seen in Fig. 6.19, the MEM likelihoods obtained from the Transfusion network are
very similar to those from the Transfermer network. This means that the small cINN in
the Transfermer is sufficiently expressive to model the distribution of the single-particle
momenta. There is no additional benefit in replacing the cINN with a more flexible CFM,
as the complicated task of extracting the correlations between the particles and solving the
jet combinatorics is performed by the transformer. However, the Transfusion architecture
is conceptually interesting because it can be modified to replace the autoregressive
structure with a permutation-invariant structure [5]. Then, it does no longer rely on a
specific ordering of the particles, similar to transformer-based point-cloud architectures
like in Ref. [72].

Transfermer with variable jet number

So far, we have always ignored additional jets in the transfer probability because most
generative architectures like cINNs or CFMs are constructed for a fixed dimension. We
could solve this by training multiple networks for different multiplicities, or use a structure
like in the precision generator from Sec. 4.2. It is much simpler to implement the variable
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Figure 6.20: Probability of different multiplicities of additional jets as a function
of hard-scattering phase space for different kinematic observables.

112



6 ML for the matrix element method

−10 0 10
CP-phase α [◦]

0

2

4

6

8

10

−
2

lo
g
L

(α
)

α = 0◦, 400 events

hard

Transfermer

40 45 50
CP-phase α [◦]

0

2

4

6

8

10

−
2

lo
g
L

(α
)

α = 45◦, 400 events

hard

Transfermer

80 90 100 110
CP-phase α [◦]

0

2

4

6

8

10

−
2

lo
g
L

(α
)

α = 90◦, 400 events

hard

Transfermer

−7.5 −5.0 −2.5 0.0 2.5
CP-phase α [◦]

0

2

4

6

8

10

−
2

lo
g
L

(α
)

α = 0◦, 10000 events

hard

Transfermer

44 45 46
CP-phase α [◦]

0

2

4

6

8

10

−
2

lo
g
L

(α
)

α = 45◦, 10000 events

hard

Transfermer

88 90 92 94
CP-phase α [◦]

0

2

4

6

8

10

−
2

lo
g
L

(α
)

α = 90◦, 10000 events

hard

Transfermer

−5.0 −2.5 0.0 2.5 5.0
(α− αtruth)/σ

0.0

0.1

0.2

0.3

0.4

n
or

m
al

iz
ed

α = 0◦, 100×100 events

normal

Transfermer

−5.0 −2.5 0.0 2.5 5.0
(α− αtruth)/σ

0.0

0.1

0.2

0.3

0.4

0.5

n
or

m
al

iz
ed

α = 45◦, 100×100 events

normal

Transfermer

−5.0 −2.5 0.0 2.5 5.0
(α− αtruth)/σ

0.0

0.1

0.2

0.3

0.4

0.5

n
or

m
al

iz
ed

α = 90◦, 100×100 events

normal

Transfermer

Figure 6.21: Transfermer with variable jet numbers: likelihoods for different
CP-angles using the Transfermer with variable jet multiplicity as the transfer
probability. From top to bottom: likelihood for 400 events, 10000 events, and
pulls.

multiplicity for the Transfermer, as transformers are designed to work with variable
sequence lengths. To this end, we split the inclusive transfer probability and evaluate it
autoregressively,

p(xreco, n|xhard) = p(n|xhard) p(xreco|xhard, n)

= p(n|xhard)
n∏
i=1

p(x(i)
reco|c(i)(e(0)

reco, . . . , e
(i−1)
reco , ehard)) ,

(6.45)

where n is the number of final-state particles. This is similar to Eq. (6.40), except
that we also need a model for the probability for the multiplicity n given the hard-
scattering momenta xhard. We pass the information about the multiplicity n to the
transformer by appending it to the embedding of xhard in one-hot encoded form. To
sample from the transfer probability, we first sample the multiplicity n, followed by the
usual autoregressive sampling of the momenta as described in Eq. (6.41). Note that the
Transfermer also accepts a variable number of hard-scattering momenta without any

113



6 ML for the matrix element method

further changes. This makes it a good candidate for an extension of our machine-learned
MEM to next-to-leading-order matrix elements.

To learn p(n|xhard) we train a classifier with the hard-scattering momenta as inputs, the
jet multiplicity as truth labels, and a categorical cross-entropy loss. We allow for up to
two additional jets since a higher number of jets is only present for a negligible number
of events. The hyperparameters are given in Tab. A.8. We show the probability for the
different multiplicities as a function of different hard-scattering phase-space observables
in Fig. 6.20. Like for the acceptance in Fig. 6.15, there is a drop in multiplicity for
|η| > 2.4. Again, this is because ISR jets are tagged instead of forward jets from the hard
process. For other observables like the transverse momentum of the top, the probability
for different multiplicities is mostly flat.

We then run the MEM integration using Eq. (6.45) as the transfer probability, i.e. both the
Transfermer and the multiplicity classifier have to be evaluated for every hard-scattering
sample. The resulting likelihoods are shown in Fig. 6.21. They are similar or slightly
worse than the results with a fixed multiplicity shown in Fig. 6.19. This indicates that the
additional information from extra jets does not significantly increase the sensitivity for
this specific process, while the training setup gets more complicated because of the larger
number of momenta for some events. However, extracting information from additional
jets could become relevant for other processes or the extension of the MEM to NLO
matrix elements.

6.6 Conclusion

The matrix element method is a powerful inference method to measure fundamental
Lagrangian parameters. It makes close to optimal use of the available information. This
makes it attractive for LHC processes with very few events. To reach a high-level of
precision, the MEM requires three key ingredients,

1. a precise model of the transfer-probability, encoding the effects of shower, hadroniza-
tion, detector and reconstruction;

2. a flexible description of the acceptance probability as a function of phase space;

3. and precise phase-space mappings to make the integration over the hard-scattering
phase space efficient.

We showed for the measurement of the CP phase in associated production of a Higgs and
single top at the LHC that a combination of three neural networks provides the necessary
speed and precision.

We started our study with a simplified setup where we neglected acceptance effects and
used two cINNs to model the transfer function and sample hard-scattering phase space.
We found that the sensitivity for events with a leptonic decay of the top was close to
the hard-scattering truth. We saw similar results for hadronic decays when initial state
radiation was neglected. However, after including ISR, jet combinatorics and acceptance
effects became limiting factors. Next, we presented a series of numerical improvements
that improved speed and accuracy of the phase-space integration. Furthermore, we added
a classifier network to encode acceptance effects, reducing the measurement bias for the
complicated case of hadronic decays with ISR jets.
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Finally, we tested multiple generative architectures to improve the precision of the transfer
probability. We showed that conditional flow matching models reach a much higher
level of precision compared to cINNs. However, density estimation and therefore phase-
space integration is much slower with diffusion-based transfer probabilities, which might
eventually be solved using distillation techniques [232–234]. We then demonstrated how
an autoregressive transformer combined with cINNs, called the Transfermer, improves the
precision by solving the challenging jet combinatorics. We also showed that a combination
of diffusion models and transformers, Transfusion, achieves a similar level of precision.
Furthermore, we showed that these transformer-based architectures can be easily adapted
to support variable numbers of jets, a requirement for future implementations of the
MEM at next-to-leading-order precision [235–238]. The next step in the development
of the ML-based matrix element method is to test these different architectures in the
setting of an actual LHC analysis.
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Chapter 7
Summary and outlook

The LHC is entering an era of precision measurements, and is producing vast amounts
of data. The two key ingredients to ensure its success are fast and precise simulations,
and improved analysis techniques. In this thesis, we presented multiple applications of
generative networks that can help tackle these challenges.

In Chapter 4, we showed how invertible neural networks can be used as an end-to-end
surrogate for the LHC simulation chain. For the example of a leptonically decaying
Z with one to three QCD jets, we implemented an INN-based model that is able to
generate events with a variable jet multiplicity. Furthermore, we showed how challenging
features like the cut and collinear enhancement in the angular separation between jets can
be addressed through appropriate transformations of the training data. Our generator
achieved percent-level precision in important kinematic distributions.

When a neural network is used to replace parts of the LHC simulation chain, it is crucial to
understand the uncertainties introduced by this approach. We investigated two methods
to capture different parts of the uncertainty. First, we used a Bayesian version of our INN
generator to extract the uncertainties introduced by the limited amount of training data.
We confirmed that the uncertainties predicted by the BINN have the expected behavior,
for instance in tails of distributions where only few training points were available, or for
trainings on very small datasets. Second, we looked at the uncertainties from imperfect
training and the lack of expressivity of the generative model. We used classifier networks
to extract these uncertainties by learning the weight between the generated and truth
distribution. We demonstrated how these weights can be used to improve the generated
samples through reweighting, but also as a diagnostic tool to identify failure modes of the
training, and as a performance metric to assess the quality of generative models. Lastly,
we showed that the uncertainties captured by Bayesian networks and classifiers are in
some cases related, and in other cases orthogonal. Hence, both approaches are important
tools to understand the uncertainties introduced by generative networks.

Even when a large part of the LHC simulation chain is replaced with a generative
network, this network still relies on Monte Carlo generated training data. In Chapter 5,
we discussed how neural networks can be used to accelerate phase-space integration
and event generation at the level of the hard process while guaranteeing exact sampling
from the truth distribution. To this end, we replaced the established Vegas algorithm
used for adaptive importance sampling in most event generators with a normalizing
flow, and showed how the multi-channel approach used to model complex phase-space
distributions can be refined with neural networks. We validated our approach for simple
toy distributions and found that the method performs best when it is used to refine
pre-defined channel decompositions and mappings that are motivated by the target
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function. Based on these results, we applied our method to the phase-space mappings,
matrix elements and multi-channel weights provided by MG5aMC. This gives our
method the name “MadNIS – MadGraph Neural Importance Sampling”. We discussed
several improvements of the method that go beyond a simple neural multi-channel
importance sampling setup, including buffered training to accelerate the network training
for costly matrix elements, Vegas initialization to give the training a better starting
point, and stratified training and channel dropping to make it more stable and efficient.
We benchmarked the MadNIS performance for several LHC processes and found that
the combination of the various MadNIS features led to improvements in unweighting
efficiency between five and ten for most processes. In the case of a difficult vector boson
scattering process, we saw a gain of 15 in unweighting efficiency. Further, we showed that
the method stays efficient even for processes with higher multiplicities.

We then moved from ML-based simulations to ML-based methods for precision analyses
in Chapter 6. We showed how the differential cross section of a given process can be
combined with three neural networks to build an ML-based version of the matrix element
method. It allows for the measurement of theory parameters using all the available
kinematic information. In particular, we trained (i) a generative network encoding the
transfer probability from the effects of shower, hadronization, detector and reconstruction,
(ii) a classifier encoding phase-space-dependent detector effects, and (iii) a normalizing
flow for efficient phase-space integration. We tested our method for the associated
production of a Higgs and single top at the LHC with an anomalous CP-phase. We
started with a simplified version neglecting acceptance effects that was based on cINNs
for the transfer probability and sampling networks. We demonstrated that it works well
for the leptonic and hadronic decay channel of the top, as long as initial state radiation is
neglected. We then showed how the systematic deviation that arises when ISR is included,
can be solved by modeling phase-space-dependent acceptance effects. Furthermore, we
discussed several methods to make the integration over hard-scattering phase space
more precise and efficient. Even with these improvements, there were still systematic
deviations in the results, caused by the lack of precision of the transfer network. We
tested several different network architectures and found that replacing the Transfer-cINN
with a diffusion network significantly improved the results, but also led to slower inference.
Finally, we showed that a generative transformer solving the challenging jet combinatorics
provides a fast and precise estimate of the transfer probability.

The work presented in this thesis opens the possibility for many applications and exten-
sions. Our discussion of the use of generative models for event generation was focused
on the aspect of speeding up parts of the LHC simulation chain. However, they could
also be used as a compression tool. Instead of transferring a large number of events, a
trained generative model could be used. This idea could not only be applied to Monte
Carlo-generated events, but also to real LHC events, providing an efficient way to make
measured data available for phenomenological studies without the need to reduce it to
binned, low-dimensional summary statistics. Related applications of generative models
have been presented in Refs. [239,240].

The MadNIS phase-space sampler has almost progressed to a state where it could be
applied for LHC event generation in practice. Remaining tasks are to optimize the
interface between MadNIS and MG5aMC, extend the method to processes with more
than one partonic initial state and variable flavors in the final state, and to find reliable
settings that work for most LHC processes, including ones with large multiplicities.
Furthermore, there are several complementary approaches to speed up the sampling
of hard-scattering events. These could be combined with the MadNIS method. One
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promising approach is to move matrix element computations to GPUs [241, 242]. In
MadNIS, this could drastically decrease the time needed for the upfront training of
the network. This training has to be done jointly for all channels and cannot be easily
distributed to multiple machines, making it advantageous to move it to highly parallelized
hardware. We have presented buffered training as a solution to reduce the number of
computationally expensive matrix element evaluations. The same can also be achieved
using fast surrogate networks [48,49,55,243], for example to replace costly loop amplitude
computations. Combined with MadNIS for phase-space sampling, this could further
accelerate network training and event generation. Lastly, the matrix elements for the
processes used in MadNIS and for the matrix element method were both evaluated
at leading order in perturbation theory. Event generation including next-to-leading
order QCD effects is already automated in MG5aMC [135], and ways to extend the
MEM to NLO precision have been proposed [235–238]. Therefore, the next step for the
corresponding machine learning frameworks will be to extend them to work with NLO
matrix elements, and address the arising challenges like events with negative weights or
costly loop integral computations.

We can conclude that generative networks are powerful tools to accelerate simulations
and improve precision measurements at the LHC. They have the potential to strongly
impact the way that we work with collider data. As the whole field of machine learning
applications in particle physics is quickly progressing, it is likely that ML will become a
standard tool for physics at the high-luminosity LHC and beyond.
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Chapter A
Hyperparameters

The following tables show the hyperparameters for the various networks that we discussed
in this thesis.

Precision event generation

hyperparameter INN (Sec. 4.2) BINN (Sec. 4.3)

LR scheduling one-cycle same
Starter LR 10−4 10−5

Maximum LR 10−3 10−4

Epochs 100 100
Batch size 1024 3072
Adam β1, β2 0.9, 0.99 same
Coupling block cubic spline same
# spline bins 60 same
# coupling blocks 25 20
Layers per block 3 6
# generated events 2M 1M

Table A.1: Training setup and hyperparameters for the INN generators used in
our different setups from Ch. 4.
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Parameter Events Z + {1, 2, 3} jets

Optimizer Adam
Learning rate 0.001
LR schedule reduce on plateau
Decay factor 0.1
Decay patience (epochs) 5
Batch size 1024
Epochs 50
Number of layers 5
Hidden nodes 256
Dropout 10%
Activation function leaky ReLU
Training samples 2.7M / 750k / 210k
Validation samples 300k / 80k / 20k
Testing samples 3.0M / 830k / 240k

Table A.2: Hyperparameters of the classifier network from Sec. 4.4 applied to
the event generation dataset.

Neural importance sampling

Parameter Value

Loss function variance
Learning rate 0.001
LR schedule inverse time decay
Decay rate 0.01
Batch size 128
Epochs 20
Batches per Epoch 100
Number of layers 3
Hidden nodes 16
Activation function leaky ReLU

Table A.3: Hyperparameters of the multi-channel weight network for the 1-
dimensional camel back, see Sec. 5.2.1.
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Parameter Value

Loss function variance
Learning rate 0.0005 (0.001)
LR schedule inverse time decay
Decay rate 0.02
Batch size 1024
Epochs 100
Batches per Epoch 500
Coupling blocks affine
Permutations soft
Blocks 6
Subnet hidden nodes 32 (16)
Subnet layers 3 (2)
CWnet layers 2
CWnet hidden nodes 16
Activation function leaky ReLU

Table A.4: Hyperparameters of the INN and the channel weight network (CWnet)
for the crossed ring. The numbers in parentheses indicate that a different setting
was used for a ring mapping, see Sec. 5.2.2.

Parameter Value

Loss function variance
Learning rate 0.001
LR schedule inverse time decay
Decay rate 0.01
Batch size 10000
Epochs 60
Batches per epoch 50
Coupling blocks rational-quadratic splines
Permutations exchange
Blocks 6
Subnet hidden nodes 16
Subnet layers 2
CWnet layers 2
CWnet hidden nodes 16
Activation function leaky ReLU

Table A.5: Hyperparameters of the INN and the channel weight network (CWnet)
for the integration of the Drell-Yan + Z′ cross section, see Sec. 5.2.3.
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Parameter Value

Optimizer Adam
Learning rate 0.001
LR schedule Inverse decay
Final learning rate 0.0001
Batch size min(200 · n0.8

c , 10000)
Training length 88k batches
Permutations Logarithmic decomposition [45]
Number of coupling blocks 2 ⌈log2 D⌉
Coupling transformation RQ splines
Subnet hidden nodes 32
Subnet depth 3
CWnet parametrization (log pT , η, ϕ)
CWnet hidden nodes 64
CWnet depth 3
Activation function leaky ReLU
Max. # of buffered channel weights 75
Buffer size 1000 batches
Channel dropping cutoff 0.001
Uniform training fraction r 0.1
Vegas iterations 7 (7)
Vegas bins 64 (128)
Vegas samples per iteration 20k (50k)
Vegas damping α 0.7 (0.5)

Table A.6: MadNIS hyperparameters for the results shown in Sec. 5.3. For the
Vegas parameters, the first value is used for the pre-training and the value in
parentheses for the remaining runs.
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ML for the matrix element method

Parameter cINN

Blocks 20
Block type Rational quadratic
Layers per block 5
Units per layer 256
Spline bins 30
Epochs (Bayesian) 100 (200)
Learning rate scheduling One-cycle
Initial learning rate 1 · 10−4

Maximum learning rate 3 · 10−4

Batch size 1024
Training events 1.3M

Table A.7: Identical setup and hyper-parameters for the Transfer-cINN and the
Unfolding-cINN used in Sec. 6.3.

Parameter Acceptance Multiplicities

Optimizer Adam
Learning rate 0.0001
LR schedule One-cycle
Maximum learning rate 0.0003
Batch size 1024
Epochs 10
Number of layers 6
Hidden nodes 256
Activation function ReLU
Preprocessing pT , η, ϕ,m

Loss Binary cross-entropy Categorical cross-entropy
Training samples 5M 3.4M
Validation samples 500k 340k
Testing samples 4.5M 3.1M
Trainable parameters 266k 266k

Table A.8: Hyperparameters of the classifiers learning the acceptance ϵ(xhard)
described in Sec. 6.4.2 (left) and the jet multiplicity used in Sec. 6.5.2 (right).
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Parameter Value

Optimizer Adam
Learning rate 0.001
LR schedule Cosine-annealing
Batch size 16384
Epochs 1000
Number of layers 8
Feed-forward dimension 512
Activation function SiLU
Training samples 3.4M
Validation samples 340k
Testing samples 3.1M
Trainable parameters 3.2M
ODE solver method Runge-Kutta 4
Solver step-size 0.05

Table A.9: Hyperparameters of the Transfer-CFM, see Sec. 6.5.1.

Parameter Value

Optimizer RAdam
Learning rate 0.0001
LR schedule One-cycle
Maximum learning rate 0.0003
Batch size 1024
Epochs 200
Number of heads 8
Number of encoder layers 6
Number of decoder layers 8
Embedding dimension 64
Transformer feed-forward dimension 256
Number of subnet layers 5
Subnet hidden nodes 256
Subnet activation function ReLU
RQS spline bins 16
Training samples 3.4M
Validation samples 340k
Testing samples 3.1M
Trainable parameters 2.6M

Table A.10: Hyperparameters of the Transfermer, see Sec. 6.5.2.
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Parameter Value

Optimizer Adam
Learning rate 0.001
LR schedule Cosine-annealing
Batch size 8192
Epochs 600
Number of heads 8
Number of encoder layers 6
Number of decoder layers 8
Embedding dimension 64
Transf. feed-forward dim 256
Number of layers CFM 6
Hidden nodes CFM 400
Activation function CFM ReLU
Training samples 3.4M
Validation samples 340k
Testing samples 3.1M
Trainable parameters 3.5M
ODE solver method Runge-Kutta, order 4
Solver step-size 0.05

Table A.11: Hyperparameters of the autoregressive Transfusion, see Sec. 6.5.2
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