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Phänomenologie eines links-rechts-symmetrisches Modells basierend auf dem
Trinifikationsmodell

Das Trinifikationsmodell ist eine interessante Erweiterung des Standardmodells, die auf der
Eichgruppe SU(3)C×SU(3)L×SU(3)R basiert. Das Modell beschreibt die Paritätsverletzung
durch die spontane Brechung der Eichsymmetrie, und die gemessenen Fermionenmassen und
-mischungswinkel können mit wenigen Parametern reproduziert werden. Wir untersuchen
die Phänomenologie des Trinifikationsmodells bei niedrigen Energien, um seine Voraussa-
gungen mit Experimenten vergleichen zu können. Zu diesem Zweck konstruieren wir eine
effektive Feldtheorie die es erlaubt, mit einer geringeren Anzahl von Teilchen und freien
Parametern auszukommen. Die Modellparameter werden mittels den bereits vorliegenden
Präzisionsmessungen und experimentellen Grenzen eingeschränkt. Der Skalarsektor des Mo-
dells ermöglicht verschiedene phänomenologische Szenarien, zum Beispiel ein leichtes fermio-
phobisches Skalarteilchen zusätzlich zu einem standardmodellartigen Higgs, oder die Exi-
stenz eines entarteten (Zwillings-)Higgsbosons bei 126 GeV. Wir zeigen wie die Messung
der Higgskopplungen es erlaubt, zwischen solchen Szenarien und dem Standardmodell zu
unterscheiden. Es stellt sich heraus, dass das Trinifikationsmodell mehrere neue Skalarteil-
chen mit Massen im O (100 GeV)-Bereich vorhersagt. Außerdem werden in großen Teilen
des Parameterraums messbare Abweichungen der Higgskopplungskonstanten von den Stan-
dardmodellwerten erwartet. Das Trinifikationsmodell erwartet daher in den nächsten Jahren
entscheidende Tests am Large Hadron Collider.

Phenomenology of a left-right-symmetric model inspired by the trinification
model

The trinification model is an interesting extension of the Standard Model based on the gauge
group SU(3)C ×SU(3)L×SU(3)R. It naturally explains parity violation as a result of spon-
taneous symmetry breaking, and the observed fermion masses and mixings can be reproduced
using only a few parameters. We study the low-energy phenomenology of the trinification
model in order to compare its predictions to experiment. To this end, we construct a low-
energy effective field theory, thereby reducing the number of particles and free parameters
that need to be studied. We constrain the model parameters using limits from new-particle
searches as well as precision measurements. The scalar sector of the model allows for various
phenomenological scenarios, such as the presence of a light fermiophobic scalar in addition
to a Standard-Model-like Higgs, or a degenerate (twin) Higgs state at 126 GeV. We show
how a measurement of the Higgs couplings can be used to distinguish such scenarios from
the Standard Model. We find that the trinification model predicts that several new scalar
particles have masses in the O (100 GeV) range. Moreover, large regions of the parameter
space lead to measurable deviations from Standard-Model predictions of the Higgs couplings.
Hence the trinification model awaits crucial tests at the Large Hadron Collider in the coming
years.
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1

1 Introduction

The discovery of the Higgs boson [1, 2] marks the establishment of the Standard Model
(SM) of particle physics as the model that correctly describes physics at energies available
at particle colliders to date. All particles of the SM have been found experimentally, and
the experimental data gathered at particle colliders match the predictions of the SM to good
precision [3].

Yet, the Standard Model is not regarded to be a complete theory of nature. Firstly, it
does not describe correctly all observations made outside particle colliders. The Standard
Model lacks a description of gravity: as a quantum field theory, it is incompatible with
the theory of General Relativity. Also, the SM does not include any particles that could
be viable dark matter candidates, and it is incompatible with the observation of non-zero
neutrino masses (for a review, see e.g. [4]). Secondly, the Standard Model is unsatisfactory
from a theoretician’s perspective: the fermion masses and mixings are free parameters that
display hierarchical patterns, parity violation has to be introduced by hand, and the Higgs
mass is much smaller than the Planck scale despite quadratically divergent loop corrections.

Therefore our quest towards a better theory of nature requires us to extend the Standard
Model. Several extensions exist, such as supersymmetry, superstring models, axion models,
and extra dimensions. Every model attempts to provide a solution to one or more of the
aforementioned problems. Grand Unified Theories (GUTs) are interesting extensions of the
Standard Model. In such theories, the gauge group SU(3)C×SU(2)L×U(1)Y of the Standard
Model is embedded in a larger simple gauge group, such as SU(5) [5], SO(10) [6], or E6 [7,
8, 9]. At high energy scales, the gauge couplings are unified into a single gauge coupling, and
the matter content of the Standard Model is grouped together in one or more matter fields
in representations of the GUT group. GUTs are attractive new-physics models because they
provide an origin for the observed structure of the Standard Model: the quantum numbers
of the fermions are related to one another by the GUT symmetries, and the fermion masses
(which are free parameters in the SM) can be explained using only a few parameters. Since
the GUT group is always larger than the SM gauge group, these models introduce additional
gauge bosons. Also, the representations of these groups have more components than the SM
fields can fill up, so new fermions and scalars are introduced as well. Since we want to test
these models experimentally, we are interested in the properties of these new particles.

The exceptional group E6 is an attractive example of a GUT group in which the SM
gauge group can be embedded [7, 8, 9]. It is anomaly-free and left-right-symmetric (LR-
symmetric), and as such it provides an explanation for parity violation in the Standard
Model by spontaneous symmetry breaking. It appears in the compactification of string
theories, which leads to either four-dimensional E6 gauge symmetry or one of E6’s maximal
subgroups [10, 11]. The maximal subgroups of E6 are SO(10) × U(1), SU(6) × SU(2) and
SU(3) × SU(3) × SU(3). The latter is the so-called ‘trinification group’ G333 ≡ SU(3)C ×
SU(3)L × SU(3)R, and is the one we are interested in. All SM fermions are grouped into
a matter field in the fundamental 27 representation of E6. When the gauge symmetry is
broken from E6 to G333, the fermions decompose into representations of G333 in a way that
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displays the cyclical symmetry of E6:

quarks: (3,3,1),
leptons: (1,3,3),
antiquarks: (3,1,3).

(1)

The Higgs field is in the 27 representation of E6 as well. Its (1,3,3)-component obtains a
vacuum expectation value (vev) and is responsible for the breakdown of the gauge symmetry
to the electroweak symmetry of the Standard Model. The coloured components of the Higgs
field cannot obtain vevs, as these would break the SU(3)C symmetry that should hold at low
energy scales. They are assumed to acquire masses of the order of the GUT scale, and are
therefore left out of consideration.

In order to compare the trinification model with experiment, a study of the low-energy
phenomenology is necessary. The problem with such a study is the fact that the model con-
tains many scalars: a single Higgs field contains 18 real component fields, and the trinification
model needs at least two of them. The masses of the physical states and their mixing angles
are determined by the eigenvalues and eigenvectors of the tree-level mass matrix. It is very
challenging to calculate these because the mass matrix is at least a 36×36 matrix. However,
several of the scalar fields will obtain very large masses when the trinification symmetry is
broken, and therefore they can be integrated out from the theory. The result is an effective
field theory with the LR-symmetric gauge group SU(3)C × SU(2)L × SU(2)R × U(1)B−L,
and fewer scalar fields than in the trinification model. This model has the same low-energy
properties as the trinification model, but is easier to study. We will refer to this model as
the low-energy trinification (LET) model.

Left-right symmetric models based on the gauge group SU(3)C × SU(2)L × SU(2)R ×
U(1)B−L [12, 13, 14] have been studied extensively in the literature. Moreover, these models
have many features in common with the two-Higgs-doublet model (2HDM) [15], which has
been studied extensively as well in various contexts. However, the LET model has properties
that distinguish it from more general LR-symmetric models and the 2HDM, due to the
trinification origin at high energy scales. A LR-symmetric model in the context of the
trinification model has not been studied before to the best of our knowledge. Therefore the
LET model merits a study.

In this thesis, we explore the low-energy phenomenology of the LET model. We start with
an overview of the trinification model in section 2, and subsequently derive the properties of
the LET model from this in section 3. A comparison of the LET model to similar models
of beyond-the-Standard-Model physics is given in section 4. The subsequent sections are
used to constrain the parameter space of the LET model, starting with a simplified version
of the model. In section 5 we consider constraints from searches for heavy vector bosons,
whereas the remaining chapters are focused on the scalar sector. We show how the LET
model may be distinguished from the Standard Model by studying the modifications of the
Standard-Model-Higgs couplings in section 6. The prospects for detection of the new scalar
states of the LET model are discussed in section 7. Finally, we examine how the results from
the previous chapters would change in the complete LET model in section 8. Our conclusions
are presented in section 9.
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2 The trinification model

The exceptional group E6 is an attractive gauge-group candidate for a GUT [7, 8, 9]. It is
the only exceptional group that has non-real representations, which are necessary to account
for the inequivalent colour representations of quarks and antiquarks [16]. The trinification
model [7, 8, 9, 17] is based on the gauge group G333 ≡ SU(3)C × SU(3)L × SU(3)R (the
‘trinification group’), which is a maximal subgroup of E6. In E6-based GUTs, all known
fermions are in the fundamental 27 representation of E6. The trinification model makes the
cyclical symmetry of E6 manifest by assigning the fermions to the representations of G333

as in eq. (1). The generators of the cyclic symmetry of E6 transform quarks into leptons,
leptons into antiquarks, and antiquarks into quarks. This symmetry also ensures that the
three gauge couplings are equal above the scale where the E6-symmetry is restored.

Although the trinification model merits a study in itself, it is also interesting because
it appears in various contexts. The model can arise from the compactification of E8 ×
E8 heterotic superstring theories [10, 11]: the compactification process leads to either four-
dimensional E6 gauge symmetry or one of E6’s maximal subgroups.1 The model also appears
in N = 8 supergravity [18] and brane-world scenarios [19]. The trinification model we study
is non-supersymmetric, but supersymmetric models based on the trinification group exist as
well, which naturally give rise to the Minimal Supersymmetric Standard Model (MSSM) at
low energies [20, 21]. In non-supersymmetric versions, trinification can be combined with large
extra dimensions, a large number of copies of the SM states, or AdS/CFT complementarity
in order to solve the hierarchy problem [22].

Besides having a possible origin from a more fundamental theory, trinification models
have several attractive features. The gauge group is anomaly-free and has a cyclic symmetry
that implies left-right symmetry. As such, these models allow us to explain parity viola-
tion in the Standard Model by the spontaneous breakdown of the gauge symmetry. Proton
decay can only be mediated by the decay of heavy coloured Higgs bosons, and is therefore
suppressed [23]. The gauge symmetry conserves baryon number, so that proton decay can-
not be mediated by gauge boson exchange. This fact allows for gauge-coupling unification
without supersymmetry at relatively low unification scales MU ∼ 1014 GeV, where effects
of Planck-scale physics can be neglected [24]. Trinification models can also account for the
baryon-antibaryon asymmetry in the universe through heavy-Higgs decays at the one-loop
level [25].

In this section, we will give an overview of the trinification model. Here and in the rest
of this work, ‘trinification model’ will refer to the setup described in refs. [8, 17, 26, 27,
28, 29]; the rest of this section is based on those references. The setup described there is
interesting for several reasons: fermion masses and mixings of the Standard Model can be
reproduced using only a few parameters, with a satisfactory fit for the solar neutrino mass
difference and the neutrino mixing pattern. Also, a Standard-Model-like Higgs with a mass
of 126 GeV appears in a large region of parameter space of the model. Furthermore, it gives
predictions for the matrix element of neutrinoless double-beta decay and the neutrino masses,
which allow the model to be tested with low-energy experiments. It also allows for various
interesting phenomenological scenarios, such as the presence of a light fermiophobic Higgs in
addition to the Standard-Model-like Higgs, or even a degenerate Higgs state at 126 GeV. We

1The maximal subgroups of E6 are SO(10)× U(1), SU(6)× SU(2), and SU(3)× SU(3)× SU(3).
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will subsequently discuss the gauge boson sector, the scalar sector, and the fermion sector
of this setup. Then we will discuss how the G333-symmetry is broken down to QCD and
electromagnetism.

2.1 Gauge sector

The Standard Model has gauge group SU(3)C × SU(2)L × U(1)Y . As is well-known, the
factor SU(3)C comes with eight vector bosons Ga, a = 1, . . . , 8. The trinification group G333

has three factors of SU(3), so the trinification model comes with 3× 8 = 24 gauge bosons:

G1, . . . , G8 for SU(3)C with gauge coupling gC ,

W 1
L, . . . ,W

8
L for SU(3)L with gauge coupling gL,

W ,
R . . . ,W

8
R for SU(3)R with gauge coupling gR. (2)

We denote the corresponding gauge-group generators by T a
C , T

a
L, and T

a
R respectively. They

are traceless and Hermitian, and they satisfy the normalisation condition Tr
{
T aT b

}
= δab/2.

In the trinification model, the scalars and fermions are always in singlet or (anti)triplet
representations of the gauge group. The generators of the triplet representation 3 are given
by T a

C = T a
L = T a

R = λa

2 , where the λa are the Gell-Mann matrices:

λ1 =



0 1 0
1 0 0
0 0 0


 , λ2 =



0 −i 0
i 0 0
0 0 0


 , λ3 =



1 0 0
0 −1 0
0 0 0


 ,

λ4 =



0 0 1
0 0 0
1 0 0


 , λ5 =



0 0 −i
0 0 0
i 0 0


 ,

λ6 =



0 0 0
0 0 1
0 1 0


 , λ7 =



0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3



1 0 0
0 1 0
0 0 −2


 . (3)

The generators of the antitriplet representation 3 are given by T
a

C,L,R ≡ −(T a
C,L,R)

∗ =

−(T a
C,L,R)

T .

2.2 Scalar sector

In E6-based models, the Higgs field is a complex scalar in the fundamental representation 27
of E6. When the gauge symmetry is broken from E6 to G333, the Higgs decomposes as

27→ (1,3,3)⊕ (3,1,3)⊕ (3,3,1). (4)

That is, the Higgs field decomposes into three bitriplets, two of which are coloured. The col-
oured Higgs fields cannot obtain vevs, since the SU(3)C-symmetry should remain unbroken
at low energies. Hence only the colour-singlet Higgs field plays a role in spontaneous sym-
metry breaking. In the trinification model, the coloured Higgs fields are assumed to obtain
large masses, so that they can be integrated out when the E6 symmetry is broken.
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Thus consider a complex scalar field H1 ∼ (1,3,3). We employ a matrix notation in
which SU(3)L indices run vertically and SU(3)R indices run horizontally. In this notation,
H1 can be represented as a 3× 3 matrix. We can use the SU(3)L×SU(3)R gauge symmetry
to bring the vev of H1 into diagonal form:

〈H1〉 =
1√
2



v1 0 0
0 b1 0
0 0 M1


 . (5)

Here v1, b1 andM1 are real parameters. This vev defines the electromagnetic charge operator
Qem, which is a linear combination of the G333 generators from eq. (2) that annihilates the
vev in eq. (5). It is given by

Qem ≡ T 3
L + T 3

R +
1√
3
(T 8

L + T 8
R). (6)

The charges of all fields in the trinification model can be read off from the action of Qem. It
is straightforward to check that the (1,2) and (1,3) components of H1 have charge −1, the
(2,1) and (3,1) components have charge +1, and the other five components are neutral.

If the model is to describe our world at low energies, we need a vacuum that breaks the
G333 symmetry to SU(3)C × U(1)em. However, since we can always find a gauge in which
the vev in eq. (5) is diagonal, it is not possible to have it break the left-right-symmetry of
G333. We need to introduce a second complex scalar field H2 ∼ (1,3,3) that obtains a vev
as well, since we cannot simultaneously diagonalise both vevs in general. The most general
vev for H2 that respects electromagnetic gauge invariance is

〈H2〉 =
1√
2



v2 0 0
0 b2 b3
0 M M2


 . (7)

Here we take v2, b2, b3, M , M2 to be real in order to avoid CP -violating vacua. The off-
diagonal parameters M and b3 are taken to be unequal, and as such they break the left-right
symmetry. We assume the presence of large hierarchies among the vev parameters. In this
setup, M1,M2 ∼ 1013 GeV are of the order of the scale where the Standard-Model gauge
couplings g1 and g2 unify. The off-diagonal vev M is taken to be an intermediate scale of
order 1010 GeV. The gauge couplings gL, gR are equal above this scale, whereas belowM the
left-right symmetry is broken. The other vev parameters contribute to the W -boson mass
and are therefore constrained by the relation v21 + v22 + b21 + b22 + b23 = v2 = (246 GeV)2. This
implies that they are much smaller than M1, M2, and M .

The scalar-vector interactions are determined by the gauge-invariant kinetic terms of the
Lagrangian. These are given by

Ls = Tr
{
(DµH1)

†(DµH1)
}
+Tr

{
(DµH2)

†(DµH2)
}
, (8)

where the covariant derivatives are given by

DµHi = ∂µHi − igLW a
LµT

a

LHi − igRW a
RµHiT

aT
R , i = 1, 2. (9)

Note that the SU(3)R-generators are transposed and appear on the right of Hi. The reason
for this is our matrix notation, which allows us to omit many indices from our expressions, but
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obscures the difference between SU(3)L and SU(3)R indices. For the Higgs fields, rows and
columns correspond to left- and right-handed indices respectively, whereas for the SU(3)L
and SU(3)R generators, rows and columns correspond to either both left-handed or both
right-handed indices. Writing left-handed (right-handed) indices as upper (lower) indices, it
is easy to see that this notation leads to the placement of the generators as in eq. (9):

(DµHi)
j
l ≡(∂µHi)

j
l − igLW a

Lµ(T
a

L)
jk(Hi)

k
l − igRW a

Rµ(T
a
R)lm(Hi)

j
m

=(∂µHi)
j
l − igLW a

Lµ(T
a

L)
jk(Hi)

k
l − igRW a

Rµ(Hi)
j
m(T aT

R )ml

→(∂µHi)
j
l − igLW a

Lµ(T
a

LHi)
j
l − igRW a

Rµ(HiT
aT
R )jl . (10)

Here the arrow denotes that we switch to matrix notation.
The scalar masses, mixings and interactions are determined by the scalar potential. This is

a function of 2×2×9 = 36 real component fields. Of the 16 gauge bosons for SU(3)L×SU(3)R,
only one remains massless below the electroweak scale, namely the photon. Hence 15 of the
real scalars become Goldstone bosons that give mass to the massive gauge bosons, and the 21
remaining scalars should become massive. In order to achieve this, one starts with a scalar
potential that contains all possible gauge invariant renormalisable operators. Then one finds
constraints on the parameters in the potential such that the potential has a minimum at the
vevs in eqs. (5) and (7). Then the scalar masses are given by the eigenvalues of the matrix
of second derivatives at the minimum. The most general renormalisable SU(3)C ×SU(3)L×
SU(3)R-invariant potential constructed from H1, H2 is given by2

V =λ1

(
Tr
{
H†

1H1

})2
+ λ2Tr

{
H†

1H1H
†
1H1

}
+ λ3

(
Tr
{
H†

2H2

})2

+ λ4Tr
{
H†

2H2H
†
2H2

}
+ λ5Tr

{
H†

1H1

}
Tr
{
H†

2H2

}
+ λ6Tr

{
H†

1H1H
†
2H2

}

+ λ7Tr
{
H†

1H2

}
Tr
{
H†

2H1

}
+ λ8Tr

{
H†

1H2H
†
2H1

}
+

[
λ9

(
Tr
{
H†

1H2

})2

+ λ10Tr
{
H†

1H2H
†
1H2

}
+ λ11Tr

{
H†

1H1

}
Tr
{
H†

1H2

}
+ λ12Tr

{
H†

1H1H
†
1H2

}

+ λ13Tr
{
H†

1H2

}
Tr
{
H†

2H2

}
+ λ14Tr

{
H†

1H2H
†
2H2

}
+ h.c.

]

+ µd1

(
detH1 + detH†

1

)
+ µd2

(
detH2 + detH†

2

)

+ ǫijkǫlmn

[
µ112(H1)

i
l(H1)

j
m(H2)

k
n + µ122(H1)

i
l(H2)

j
m(H2)

k
n + h.c.

]

+ µ2
1Tr

{
H†

1H1

}
+ µ2

2Tr
{
H†

2H2

}
+ µ2

12

(
Tr
{
H†

1H2

}
+ h.c.

)
. (11)

Here ǫijk is the completely antisymmetric symbol that satisfied ǫ123 = +1. Alternatively,
one can add terms to the potential with a logarithmic dependence on the terms appearing

2The possible terms in the scalar potential can be obtained systematically by following a procedure
analogous to the one described in appendix C. Note that one could also write down terms of the form
ǫijkǫilm(H∗

1 )
j
p(H

∗
1 )

k
q (H1)lp(H1)mq and ǫijkǫilmǫpqrǫpst(H∗

1 )
j
q(H

∗
1 )

k
r (H1)ls(H1)mt . However, using the identity

ǫijkǫilm = δjlδkm − δjmδkl they can be rewritten as linear combinations of the invariants already listed in
eq. (11). Also note that ǫijkǫlmn(H1)il(H1)

j
m(H1)kn = 3! · detH1.
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in the above potential, as in ref. [29]. Putting the gradient of the potential at zero at the
vev in eqs. (5) and (7), one can express the dimensionful parameters µ2

1, µ
2
2, µ

2
12, µd1, µd2,

µ112, µ122, and one of the dimensionless parameters λi in terms of the thirteen remaining
dimensionless parameters and the eight vev parameters. We do not list these expressions
here, as some of them are quite large, but they are easily found using mathematics software
such as Mathematica [30]. However, a complete analysis of the mass matrix is challenging due
to the large number of field components and free parameters. One can simplify the analysis
by considering only benchmark points in which the vev parameters in eqs. (5) and (7) are
closely related, e.g. v1 = v2, b3 ∼ b1, M1 = M , M2 = b2 = 0. But even in these cases, a
complete analysis of the scalar masses and mixings is challenging, and one has to resort to
finding numerical benchmark points with an interesting phenomenology.

2.3 Fermion sector

In E6-based models, all known fermions are grouped into the fundamental representation
27 of E6. They are two-component left-handed Weyl spinors with respect to the Lorentz
group. After the gauge symmetry is broken from E6 to G333, the fermion field decomposes
as in eq. (4). The fermions are grouped into a left-handed quark field QL, a right-handed
quark field QR, and a lepton field L. These are assigned to the representations of SU(3)C ×
SU(3)L × SU(3)R in the decomposition of 27 as follows:

L ∼ (1,3,3), QL ∼ (3,3,1), QR ∼ (3,1,3). (12)

We can write their components into matrix notation, as we did for the Higgs fields. In this
notation, QL is a column vector, QR is a row vector, and L is a 3× 3 matrix:

Qb
L =




ub

db

Db


 , Qb

R =
(
ûb d̂b D̂b

)
, L =




L1
1 E− e−

E+ L2
2 ν

e+ ν̂ L3
3


 . (13)

Here b = 1, 2, 3 is a colour index. The components u and d are the left-handed up and down
quarks that we know from the Standard Model. The trinification model introduces a new
left-handed quark D with electromagnetic charge − 1

3 . The components û, d̂, D̂ are the right-
handed counterparts of u, d, D respectively. The lepton field contains the charged leptons
e± and the left-handed neutrino ν. It contains several new states: a right-handed neutrino
ν̂; three neutral states L1

1, L
2
2, L

3
3; and a pair of charged leptons E±. There are three copies

of each fermion in eq. (13); the generation indices α = 1, 2, 3 have been suppressed.

Note that the assignments of the SU(3)C representations of the quarks in eq. (12) are
interchanged with respect to the Standard Model, in which the quarks (antiquarks) transform
as a 3 (3) under SU(3)C . However, this assignment has no physical consequences, and
therefore it is an arbitrary choice. The gauge group E6 has a cyclical symmetry that changes
quarks into leptons, leptons into antiquarks, and antiquarks into quarks. The representations
in eq. (12) have been assigned such that this symmetry becomes manifest, while ensuring
that the left-handed quarks obtain the correct transformation behaviour under SU(2)L at
low energies.
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mu = (1.24± 0.06) MeV mc = (624± 14) MeV mt = (171.55± 0.90) GeV
md = (2.69± 0.09) MeV ms = (53.8± 1.4) MeV mb = (2.85± 0.023) GeV

me = 0.510 MeV mµ = 105.4 MeV mτ = 1.7725 GeV

|VCKM| =



0.97427± 0.00015 0.22534± 0.00065 0.00351+0.00015

−0.00014

0.22520± 0.00065 0.97344± 0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046




α = (89.0+4.4
−4.2)

◦, β = (21.4± 0.8)◦, γ = (68+10
−11)

◦, α+ β + γ = (178+11
−12)

◦.

Table 1: Fermion masses in the MS scheme at µ = MZ , magnitudes of the CKM-matrix
elements and angles of the unitarity triangle. The fermion masses have been taken from
ref. [29], whereas the CKM-matrix elements and angles of the unitarity triangle have been
taken from ref. [31].

The fermion covariant derivatives following from the assignments in eq. (12) are given by

DµQ
b
L =∂µQ

b
L − igLW a

LµT
a
LQ

b
L − igCGa

µ(T
a

CQL)
b,

DµQ
b
R =∂µQ

b
R − igRW a

RµQ
b
RT

aT

R − igCGa
µ(QRT

aT
C )b,

DµL =∂µL− igLW a
LµT

a

LL− igRW a
RµLT

aT
R . (14)

Besides describing the gauge boson and scalar sectors in accordance with experiment,
any new-physics model has the task of describing the Standard-Model-fermion masses and
mixings correctly (see table 1). The gauge-boson sector is fixed by the choice of gauge group,
and the scalar sector is straightforward to work out after the fields and their gauge-group
representations have been chosen. However, the Yukawa sector allows for more freedom: one
can choose which scalar fields couple to which fermions, as well as choose the form of these
couplings.

If both H1 and H2 were coupled to fermions, then each of them would have its own
Yukawa coupling matrix. Without making additional assumptions, it is not possible to
diagonalise these matrices simultaneously. This in turn leads to flavour-changing neutral
current (FCNC) processes, which are severely restricted by experiment. In order to suppress
FCNC interactions, the existence of a Z2-symmetry is assumed under which H1 (H2) is even
(odd). This implies that H2 does not couple to fermions, and therefore tree-level FCNC
diagrams are avoided. It also means that H2 only contributes to the gauge boson masses,
whereas H1 gives mass to both the fermions and the gauge bosons.

The Higgs couplings to the fermions are of the form

LY =− gtGαβ

(
Qα

RH
T
1 Q

β
L +

1

2
ǫijkǫlmnL

i
lL

j
m(H1)

k
n

)

−Aαβ

(
Qα

RH
T
AqQ

β
L + ǫijkLi

lL
j
m(HAl)

k
{lm}

)
+ h.c. (15)

The first line is a Yukawa interaction built from the fields we have already introduced: the
parameter gt is a dimensionless coupling, Gαβ is a symmetric 3×3 generation matrix, and ǫ is
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a totally antisymmetric symbol with ǫ123 = ǫ123 = +1. This interaction is sufficient to repro-
duce the up-quark masses: the matrix Gαβ can be diagonalised by choosing an appropriate
generation basis, and its diagonal components can be fit to the masses of the up quarks.
However, without the second line in eq. (15) it would lead to the same mass hierarchies for
the up quarks, down quarks, charged leptons, and neutrinos. Hence an additional coupling
to new scalar fields HAq ∼ (1,3,3) (for the quarks) and HAl ∼ (1,3,6) (for the leptons) is
introduced, with a Hermitian antisymmetric (and thus imaginary) generation matrix Aαβ .
The fields HAq and HAl are viewed as components of a scalar HA in the antisymmetric 351A

representation of E6 (see appendix D.1). It is assumed that they have negligible mixing with
H1 and H2 in order to simplify the analysis of the scalar spectrum.

The matrices Gαβ and Aαβ can be viewed respectively as the real and imaginary compon-
ent of the vev of a scalar field called the ‘flavon’ [26]. In this picture, the Yukawa interactions
are effective interactions arising from dimension-five operators, which in turn arise from inter-
actions with gauge-singlet fermions. However, the components of these matrices are simply
considered as free parameters of the trinification model.

The second line in eq. (15) leads to mixing among the d-quarks and the D-quarks via
the seesaw mechanism. This leads to small masses for the d-quarks and large masses for the
D-quarks. Using only four parameters (in addition to those of the first Yukawa term), all
the quark masses, the CKM-matrix elements, and the angles of the unitarity triangle are
reproduced within error limits [29]. Thus Gαβ is responsible for the quark mass hierarchy,
and Aαβ is responsible for the quark mixings and CP -violation. Similarly, the third term in
eq. (15) leads to mixing among the charged Standard-Model-leptons and their heavy partners.
A good fit for the charged-lepton masses is obtained with three extra parameters [29].

At this stage, neutrinos are still Dirac particles with masses comparable to the other fer-
mion masses. In order to obtain neutrino masses in accordance with experiment, a dimension-
five Yukawa interaction is added to the Lagrangian:

Leff
Y = − 1

MN
(G2)αβTr

{
LαH†

1

}
Tr
{
H†

2L
β
}
+ h.c. (16)

This interaction is considered as an effective one that could originate from the exchange
of a new heavy Dirac fermion that is a trinification singlet [26]. This fermion consists of
two Weyl fields, one of which is odd under the Z2-symmetry. A Dirac mass MN appears
after the aforementioned flavon field obtains a vev, breaking the Z2-symmetry. Hence this
effective interaction violates the Z2-symmetry as well. This term mixes the neutrinos ν, ν̂
with the other neutral leptons L1

1, L
2
2, L

3
3, giving rise to a generalised seesaw mechanism.

The light-neutrino mass matrix introduces two additional parameters, which can be fixed by
the experimentally observed atmospheric mass-squared difference and the lightest neutrino
mass.

2.4 From trinification to electromagnetism

In order to show how the trinification model reduces to the Standard Model at low energy
scales, we will work out the symmetry breaking chain from the trinification group down to
the electromagnetic group. This can be done by working out the action of the generators in
eq. (2) on the vevs in eqs. (5) and (7) to find the unbroken generators, keeping in mind the
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hierarchy M1,M2 > M ≫ v1, v2, b1, b2, b3. The generators of SU(3)C are not broken in any
step, therefore we omit them from the following discussion.

The first symmetry-breaking step is caused by M1; the vev parameter M2 is of the same
order of magnitude and breaks the same symmetry generators as M1. In this step, the
generators T a

L, T
a
R for a = 4, 5, 6, 7, 8 are broken. We can construct one unbroken generator

from T 8
L and T 8

R. The following unbroken generators generate SU(2)L×SU(2)R×U(1)B−L:

T 1
L, T

2
L, T

3
L, T 1

R, T
2
R, T

3
R, QB−L ≡

2√
3
(T 8

L + T 8
R). (17)

The normalisation of the U(1)B−L generator QB−L is arbitrary. However, it is possible to
choose it such that the charges of the Standard Model particles coincide with the known
quantum number B − L (baryon number minus lepton number), and here we choose to do
so. The Lagrangian in eq. (8) gives rise to mass terms for some of the gauge bosons. The
gauge bosons corresponding to the broken generators obtain masses of order M1, M2, and
can be integrated out.

The second symmetry-breaking step is caused by M , which breaks the generators T 1
R,

T 2
R, T

3
R, and QB−L. The latter two can be combined into an unbroken generator. Thus the

following four generators are left unbroken, and generate the electroweak group SU(2)L ×
U(1)Y :

T 1
L, T

2
L, T

3
L, Y ≡ T 3

R +
1

2
QB−L = T 3

R +
1√
3
(T 8

L + T 8
R). (18)

After this step, the Lagrangian in eq. (8) yields additional gauge-boson mass terms. The
gauge bosons corresponding to the broken generators obtain masses of order M , and can be
integrated out.

The third symmetry-breaking step is caused by v1; the other vev parameters v2, b1, b2, b3
break the electroweak symmetry as well, but they break the same generators as v1. In this
step, the generators T 1

L, T
2
L, T

3
L, and Y are all broken. A single combination of the broken

generators remains unbroken, and generates the electromagnetic gauge group U(1)em:

Qem ≡ T 3
L + Y = T 3

L + T 3
R +

1√
3
(T 8

L + T 8
R). (19)

We can summarise these steps in the following symmetry-breaking chain. The symbol over
each arrow denotes the vev that is responsible for this breaking step:

SU(3)C × SU(3)L × SU(3)R
M1−→ SU(3)C × SU(2)L × SU(2)R × U(1)B−L

M−→ SU(3)C × SU(2)L × U(1)Y
v1−→ SU(3)C × U(1)em. (20)
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3 The low-energy trinification model

An important aspect of studying a new-physics model is to look for phenomenological aspects
at experimentally available energy scales: this allows the model to be tested. This aspect
involves not only determining the masses of new particles, but also studying the effects of the
new particles on the couplings of Standard-Model particles. As was discussed in section 2.2,
a complete analysis of the phenomenology of the trinification model is challenging: the scalar
masses and mixings are determined by a 36 × 36 mass matrix that depends on several free
parameters. However, one can simplify the problem greatly by considering a low-energy
effective field theory (EFT) based on the trinification model. In an EFT, fields with a mass
much larger than the energy scale under consideration are integrated out from the theory.
This results in a theory that is more convenient to analyse, but has the same low-energy
behaviour as the complete high-energy theory.

According to eq. (20), the trinification group G333 is broken down to the Standard-Model
gauge group via the intermediate gauge group SU(3)C×SU(2)L×SU(2)R×U(1)B−L. In this
process, some of the fields from the trinification model will obtain masses of orderM1, and will
therefore be too heavy to have measurable effects at the low energy scales we are interested in.
Hence the low-energy phenomenology of the trinification model can be described conveniently
by an EFT based on the gauge group SU(3)C × SU(2)L × SU(2)R × U(1)B−L, from which
the fields with masses of order M1 have been integrated out. In this section we will derive
the field content of this effective model, which we will refer to as the low-energy trinification
(LET) model. We will subsequently discuss the gauge boson sector, scalar sector, and fermion
sector. In order to aid our study of the LET model, we introduce a toy model with a simplified
scalar sector, which we will refer to as the simplified LET model.

3.1 Gauge boson sector

As we described in section 2.4, the gauge symmetry is broken fromG333 to SU(3)C×SU(2)L×
SU(2)R × U(1)B−L by the vev parameter M1. In this process, the gauge bosons W a

L, W
a
R

for a = 4, 5, 6, 7 and the linear combination W 8 ≡ 1√
2
(W 8

L−W 8
R) obtain masses of order M1,

M2 via the Lagrangian in eq. (8). These heavy gauge bosons can now be integrated out from
the Lagrangian. The seven gauge bosons corresponding to the generators in eq. (17) remain
massless. These fields constitute the gauge boson field content of our model:

W 1
L,W

2
L,W

3
L for SU(2)L with gauge coupling gL,

W 1
R,W

2
R,W

3
R for SU(2)R with gauge coupling gR,

B ≡ 1√
2
(W 8

L +W 8
R) for U(1)B−L with gauge coupling g′. (21)

We denote the corresponding gauge-group generators by T i
L, T

i
R (i = 1, 2, 3), and QB−L.

Note that we use the same names for the SU(3)L,R generators as for the corresponding
SU(2)L,R generators; it should always be clear from the context which version the name
refers to. The SU(2) generators for the doublet representation 2 are given by the Pauli

matrices: T i
L = T i

R = σi

2 , where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (22)
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Note that these generators correspond to the upper left 2 × 2 blocks of the corresponding
SU(3) generators in eq. (3). The generators of the antidoublet representation 2 are given by

T
i

L,R = −(TL,R)
T .

The charges of the gauge bosons follow from the action of the electromagnetic charge
operator in eq. (19). The fields W 3

L, W
3
R, and B are neutral, whereas the remaining fields

mix to form charge eigenstates, analogously to the W bosons of the Standard Model:

W±
L,R ≡

1√
2
(W 1

L,R ∓ iW 2
L,R). (23)

After spontaneous symmetry breaking, the gauge fields mix to form six massive gauge bosons
and a massless photon field. The charged states in eq. (23) are rotated by an angle ζ into
two pairs of charged mass eigenstates W± and W ′±:

(
W±

W ′±

)
=

(
cos ζ sin ζ
− sin ζ cos ζ

)(
W±

L

W±
R

)
. (24)

Here the W± correspond to the charged vector bosons of the Standard Model. The W ′±

bosons are new massive vector bosons. The W −W ′ mixing angle ζ and the W , W ′ masses
are derived in appendix A. The mixing angle is very small: one can expand it in terms of the
small parameter v

M , which yields

ζ =
gLv

2 sin 2β

gRM2
+O

(
v4

M4

)
. (25)

Here v2 ≡ v21 + b21 and tanβ ≡ b1/v1. The masses of the charged mass eigenstates are given
by

mW =
gLv

2

(
1− 1

2
sin2 2β

v2

M2
+O

(
v4

M4

))
,

mW ′ =
gRM

2

(
1 +

v2

2M2
+O

(
v4

M4

))
. (26)

The three neutral gauge fields mix to form mass eigenstates A, Z, and Z ′. Here A is
the massless photon field, Z is the neutral massive vector boson we know from the Standard
Model, and Z ′ is a new massive state. They can be expressed in terms of the gauge eigenstates
W 3

L, W
3
R, B by a rotation over three mixing angles θW , θ′W , η:



A
Z
Z ′


 =




sθW cθW sθ′
W

cθW cθ′
W

cθW cη cθ′
W
sη − sθW sθ′

W
cη −(sθW cθ′

W
cη + sθ′

W
sη)

−cθW sη cθ′
W
cη + sθW sθ′

W
sη sθW cθ′

W
sη − sθ′

W
cη





W 3

L

W 3
R

B


 . (27)

Here we have defined sx ≡ sinx, cx ≡ cosx for the sake of brevity. The angle θW is the
Weinberg angle we know from the Standard Model; θ′W is an analogon of the Weinberg angle
for the breaking of the left-right symmetry; and η is the Z − Z ′ mixing angle. These angles
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are given in terms of the gauge couplings by

sin θW =
2g′gR√

4g′2(g2L + g2R) + g2Lg
2
R

,

sin θ′W =
2g′√

g2R + 4g′2
,

tan η =
g2R
√
4g′2(g2L + g2R) + g2Lg

2
R

(g2R + 4g′2)2
v2

M2
+O

(
v4

M4

)
. (28)

The masses of the neutral states are given by

mA =0,

mZ =
gLv

2 cos θW

(
1− cos4 θ′W

2

v2

M2
+O

(
v4

M4

))
,

mZ′ =
gRM

2 cos θ′W

(
1 +

cos4 θ′W
2

v2

M2
+O

(
v4

M4

))
. (29)

For the exact expressions of all masses as well as a derivation of these masses and the mixing
angles, see appendix A.

3.2 Scalar sector

The scalar fields in the LET model are parts of the trinification scalar fields H1, H2. First
consider the 2×2 blocks in the upper left corners of these fields. It is straightforward to work
out how these parts transform under the SU(3)C ×SU(2)L×SU(2)R×U(1)B−L-generators
in eq. (17). It turns out that they transform as bidoublets Φi ∼ (1,2,2, 0):

Φi =

(
Φ0

i,11 Φ−
i,21

Φ+
i,12 Φ0

i,22

)
↔



(Hi)

1
1 (Hi)

1
2 0

(Hi)
2
1 (Hi)

2
2 0

0 0 0


 , 〈Φi〉 =

1√
2

(
vi 0
0 bi

)
. (30)

Next consider the (3, 1) and (3, 2) components of H2. It turns out that these transform as a
right-handed doublet ΦR ∼ (1,1,2, 1):

ΦR =
(
Φ+

R Φ0
R

)
↔




0 0 0
0 0 0

(H2)
3
1 (H2)

3
2 0


 , 〈ΦR〉 =

1√
2

(
0 M

)
. (31)

The fields Φ1, Φ2, ΦR, and their vevs are sufficient to describe the symmetry breaking from
SU(3)C × SU(2)L × SU(2)R ×U(1)B−L to electromagnetism via the Standard Model. Note
that a right-handed doublet like ΦR resides in H1 as well. Similarly, the (1, 3) and (2, 3)
components of H1 and H2 contain left-handed antidoublets, and the (3, 3) components are
SU(2)L×SU(2)R singlets. We assume these field components to obtain large masses of order
M1, so that they can be integrated out from the trinification model. Note that the (3, 3)
components of H1 and H2 are total gauge singlets, and therefore are dark matter candidates.
Hence the scalar sector of the LET model contains 2 × 8 + 4 = 20 real scalars, which is a
great simplification with respect to the 36 real scalars of the trinification model.
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Remember that the field H2 does not couple to fermions. Since Φ2 and ΦR originate from
H2, these do not couple to fermions either. Hence only Φ1 couples to the fermions in the
LET model.

Similarly to the trinification model, the vev components of the bidoublet scalars are
constrained by the relation v21 + b

2
1+v

2
2 + b

2
2 = v2 = (246 GeV)2. The parameter M is a large

mass scale well above the electroweak scale. However, in contrast to the trinification model,
we do not only consider very high scales M ∼ 1010 GeV. We will also consider the possibility
that M lies in the TeV range. As we will see in section 6, the latter scenario means that
effects of new physics may be measurable at the LHC.

The scalar-vector interactions of the LET model are determined by the gauge-invariant
kinetic terms of the Lagrangian. Using a similar matrix notation as in the trinification
model, with SU(2)L and SU(2)R indices running vertically and horizontally respectively,
these kinetic terms are given by

Ls = Tr
{
(DµΦ1)

†(DµΦ1)
}
+Tr

{
(DµΦ2)

†(DµΦ2)
}
+ (DµΦR)(DµΦR)

†, (32)

where the covariant derivatives are given by

DµΦ1,2 =∂µΦ1,2 − igLW i
LµT

i

LΦ1,2 − igRW i
RµΦ1,2T

iT
R ,

DµΦR =∂µΦR − igRW i
RµΦRT

iT
R − ig′BµΦR. (33)

As in the trinification model, we build the scalar potential of the LET model from all possible
gauge-invariant renormalisable operators consisting of Φ1, Φ2, ΦR. A systematic derivation
of all possible invariants can be found in appendix C. However, since we consider our model
to be an EFT originating from the trinification model, some of these invariants can be left
out. Firstly, we do not include any invariants involving charge conjugates of the scalar fields.
The reason is the fact that the 3 and 3 representations of SU(3) are inequivalent, so there is
no such thing as the charge conjugate of a triplet field. This implies that there is no operator
in the trinification model from which terms involving charge conjugates could originate.
Secondly, some renormalisable operators in the LET model correspond to nonrenormalisable
operators in the trinification model. Since the trinification model is considered to be a
renormalisable theory, we do not take these operators into account.

As we will see in section 8, the scalar potential of the LET model still contains 15 free
parameters after these simplifications. This is a lot of freedom, which complicates the analysis
of the scalar states, and hence makes it challenging to constrain the model. Note that without
Φ2, we can still describe the breakdown of the SU(3)C × SU(2)L × SU(2)R × U(1)B−L-
symmetry to the Standard Model. Hence as a further simplification, we consider a toy model
in which we omit the fermiophobic bidoublet Φ2. We will refer to this setup as the ‘simplified
LET model’, although we will see it is no longer an EFT of the trinification model. The most
general scalar potential for the simplified LET model is given by

V (Φ1,ΦR) =
λ1
2
Tr
{
Φ†

1Φ1

}2

+
λ2
2
Tr
{
Φ†

1Φ1Φ
†
1Φ1

}
+
λ3
2

(
ΦRΦ

†
R

)2

+ λ4Tr
{
Φ†

1Φ1

}
(ΦRΦ

†
R) + λ5ΦRΦ

†
1Φ1Φ

†
R

+ µ2
11Tr

{
Φ†

1Φ1

}
+ µ2

RΦRΦ
†
R +

(
µ2
1 detΦ1 + h.c.

)
. (34)
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Here µ2
11, µ

2
R, µ

2
1, and the λi are real parameters. The dimensionful parameters µ2

11, µ
2
R,

µ2
1 are fixed in terms of the λi, and the vev parameters v1, b1, M by the condition that

the potential has an extremum at the vevs in eqs. (30) and (31). The expressions for these
parameters can be found in appendix B. The simplified LET model has only 12 real scalar
fields and five free parameters in the scalar potential, which makes this version much easier
to handle than the full LET model. This will make it easier to calculate the scalar masses
and mixings as well as their effects on the couplings of Standard-Model particles. Of course,
this model does not accurately describe the low-energy properties of the trinification model
anymore: the bidoublet Φ2 obtains a vev of the order of the electroweak scale, hence its effects
will be important at low energies. As such, the simplified LET model is not a proper EFT of
the trinification model, but rather a toy model that facilitates our study of the LET model.
We will study the simplified LET model in sections 4–7, and examine how the calculations
and results would change if we added Φ2 in section 8.

In the simplified LET model, the vev parameters v2, b2 are left out of consideration. Hence
the light vev parameters are now constrained by the condition v21 + b21 = v2 = (246 GeV)2.
It will be convenient to reparametrise the vevs as

v1 = v cosβ, b1 = v sinβ. (35)

At the scale where the left-right symmetry is broken, the vevs are related to the top and
bottom quark masses by b1/v1 = mb/mt [29]. Hence we have the hierarchy b1 ≪ v1 ≪ M ,
and β = 0.0166 is not a free parameter of the model.

The scalar fields Φ1, ΦR contain twelve real scalar components in total. After spontaneous
symmetry breaking, six of them become massless Goldstone bosons that give mass to the six
massive gauge bosons. The remaining components mix to form six massive scalars: three
CP -even scalars h0, H0

1 , and H
0
2 ; one CP -odd scalar A0; and a pair of charged scalars H±.

Here we define h0 as the scalar that is the most h01,11-like and H0
2 as the scalar that is the

most h0R-like, where h
0
1,11 ≡ ℜ ((Φ1)11) and h

0
R ≡ ℜ ((ΦR)2). The scalar masses are given in

terms of the model parameters by

m2
h0 =

(
λ1 + λ2 cos

2 β − (λ4 + λ5 sin
2 β)2

λ3
+O

(
v2

M2

))
v2,

m2
H0

1
=
1

2
λ5M

2 sec 2β − v2

2

(
λ2 cos

2 2β − λ25 sin
2 2β cos 2β

(λ5 − 2λ3 cos 2β)
+O

(
v2

M2

))
,

m2
H0

2
=λ3M

2 + v2
(
(λ4 + λ5 sin

2 β)2

λ3
− λ25 sin

2 2β cos 2β

λ5 − 2λ3 cos 2β
+O

(
v2

M2

))
,

m2
A0 =

1

2
λ5M

2 sec 2β − 1

2
λ2v

2,

m2
H± =

λ5
2

(
M2 sec 2β + v2 cos 2β

)
. (36)

We identify h0 with the Standard-Model-like Higgs particle that has been observed at the
LHC [1, 2], since it is the only scalar that naturally has a mass at the electroweak scale. A
derivation of the scalar masses and the mixing angles can be found in appendix B.

The scalar parameters λi are not completely free, as they have to satisfy three theoret-
ical conditions. These conditions and the constraints they yield are discussed in detail in
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appendix B. The first constraint comes from the condition of vacuum stability, which means
that the scalar potential in eq. (34) must be bounded from below for large field values. This
constraint puts lower bounds on the λi, which are given in appendix B.2. The second con-
straint comes from the condition of S-matrix unitarity, which basically means a conservation
of probability in scattering processes. This constraint implies that the λi cannot be too
large. The corresponding parameter bounds are derived in detail in appendix B.3. The third
constraint comes from the condition that the potential has a minimum at the vev given in
eqs. (30) and (31). This implies that the squared masses in eq. (36) should be positive.

3.3 Fermion sector

In the trinification model, the fermions obtain their masses from H1; additional scalar fields
HAq, HAl are introduced in order to obtain the correct mass hierarchies and mixing patterns
for the down quarks and leptons. Consider only the Yukawa coupling to H1 in eq. (15):

LY = −Gαβ

(
Qα

RH
T
1 Q

β
L +

1

2
ǫijkǫlmnL

i
lL

j
m(H1)

k
n

)
+ h.c. (37)

Here we absorbed the dimensionless parameter gt into the generation matrix Gαβ . After the
breaking of the G333 symmetry to SU(3)C × SU(2)L × SU(2)R ×U(1)B−L, this Lagrangian
results in mass terms of order M1 for three Dirac fermions:

ψD =

(
D

D̂†

)
, ψE =

(
E−

E+†

)
, ψL =

(
L2
2

L1†
1

)
. (38)

These fields are integrated out from the Lagrangian. As we did for the scalars, we can figure
out the SU(3)C × SU(2)L × SU(2)R × U(1)B−L-representations of the remaining fermion
components by working out the action of the gauge group generators in eq. (17) on them.
This yields the following representation assignments:

(
u
d

)
∼ (3,2,1, 13 ),

(
e−

ν

)
∼ (1,2,1,−1), L3

3 ∼ (1,1,1, 0),

(
û d̂

)
∼ (3,1,2,− 1

3 ),
(
e+ ν̂

)
∼ (1,1,2, 1). (39)

The field L3
3 is a total gauge singlet and has no couplings to the Standard Model fields, hence

we can omit it from our effective field theory.
Note that in order to combine the leptons and the Higgs field H1 into a gauge singlet,

we need to use the antisymmetric tensor (or equivalently iσ2). We can absorb it into a
redefinition of the lepton fields, transforming a 2 into a 2 and vice versa. Absorbing a minus
sign into the phase of the e± fields, we define the fermionic field content of our effective field
theory as follows:

QL ≡
(
u
d

)
∼ (3,2,1, 13 ), L− ≡

(
ν
e−

)
∼ (1,2,1,−1),

QR ≡
(
û d̂

)
∼ (3,1,2,− 1

3 ), L+ ≡
(
ν̂ e+

)
∼ (1,1,2, 1). (40)

Note that we use QL, QR to denote the quark fields in both the trinification model and the
LET model. It should always be clear from the context which version they refer to. The
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covariant derivatives of the fermions in eq. (40) are given by

DµQL =∂µQL − igCGa
µ(T

a

CQL)
b − igLW i

LµT
i
LQL − 1

3 ig
′BµQL,

DµQR =∂µQR − igCGa
µ(QRT

aT
C )b − igRW i

RµQRT
iT

R + 1
3 ig

′BµQR,

DµL
− =∂µL

− − igLW i
LµT

i
LL

− + ig′BµL
−,

DµL
+ =∂µL

+ − igRW i
RµL

+T
iT

R − ig′BµL
+. (41)

After integrating out the heavy fields, the Yukawa Lagrangian in eq. (37) becomes

LY = −Gαβ

(
Qα

RΦ
T
1Q

β
L + L+αΦT

1 L
−β
)
+ h.c. (42)

After spontaneous symmetry breaking, this interaction yields Dirac masses for all fermions,
where each left-handed fermion is combined with the corresponding right-handed version.
The universal generation matrix Gαβ results in the same mass hierarchies for the up quarks,
the down quarks, the neutrinos, and the charged leptons. Moreover, the up quarks (down
quarks) obtain the same masses as the neutrinos (charged leptons), and the CKM matrix
is a unit matrix at this point. Hence the interaction in eq. (42) is not sufficient to describe
the fermion spectrum in accordance with experiment (see table 1). We could try to solve
this problem by adding low-energy versions of the interactions with the components of HAq,
HAl. However, this is a non-trivial task: in the trinification model, mixings with the heavy
fermions are important to describe the masses and mixings of the lighter fermions correctly
[29]. In the LET model, the heavy fermions have been integrated out already, so the mixing
needs to be accounted for in some other way. Also, renormalisation effects could become
important at low energy scales. Accounting for the mixing and renormalisation effects would
require us to introduce additional parameters to describe the fermion sector. Moreover, our
analysis would be complicated by the inclusion of the Higgs fields HAq, HAl, since we would
need to account for mixing with the other Higgs fields, unless this mixing is suppressed for
some reason (as is assumed in e.g. [29]).

Rather than adding baggage to the LET model and complicating our analysis with more
free parameters, we restrict ourselves to the single Yukawa term in eq. (42) and fit the free
parameters such that the top- and bottom-quark masses are reproduced correctly. These
fermions are the most relevant to our analysis, since experimental searches for new physics
often focus on decays involving the heaviest generation (see e.g. the searches discussed in
sections 5 and 7). Therefore we ignore the lighter generations and the neutrinos, and restrict
ourselves to the heaviest generation. We assume that any additional new physics, necessary
to describe the fermion masses and mixings correctly, does not influence the phenomenology
of the scalar particles. Among the Dirac fermions, we consider only the top and bottom:

ψt =

(
t
t̂†

)
, ψb =

(
b

b̂†

)
. (43)

Fitting the free parameters to the top- and bottom-quark masses, we find v1 = 246 GeV,
b1 = 4.09 GeV, or equivalently v = 246 GeV, β = 0.0166 (see appendix D.3 for the details).
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4 Comparison to similar models beyond the SM

The literature contains a plethora of models that resemble the simplified LET model. The
most notable ones are the two-Higgs-doublet model (2HDM) [15] and left-right-symmetric
(LR-symmetric) models [12, 13, 14], which have both been studied extensively. However,
because of the origin in the trinification model, the simplified LET model has features that
distinguish it from the 2HDM and LR-symmetric models. Most notably, it has fewer para-
meters than those other models, and therefore it is more predictive. In this section, we give
an overview of the 2HDM and LR-symmetric models, their similarities to the simplified LET
model and the features that distinguish the simplified LET model from the other models.

4.1 The two-Higgs-doublet model

The two-Higgs-doublet model (2HDM) [15] (see [32] for a recent review) is an extension of
the Standard Model in which the scalar sector has been extended by an additional SU(2)L
doublet. The model allows for additional sources of CP -violation to account for the baryon-
antibaryon-asymmetry in the universe [33], provides additional neutral scalar particles that
are viable dark matter candidates [34], and allows for radiative neutrino mass generation
[35]. However, the main motivation for studying this extension is its appearance in many
different models of physics beyond the Standard Model. It provides a low-energy description
of various models such as supersymmetry (see e.g. [36] for a review), composite Higgs models
[37], and little Higgs models [38].

The Minimal Supersymmetric Standard Model (MSSM) [39, 40] is a well-known example
of a 2HDM. In the Standard Model, a single SU(2)L-doublet scalar field φ is sufficient to
give mass to all particles. In particular, φ gives mass to the down-type fermions, and its
charge conjugate φc ≡ iσ2φ

∗ gives mass to the up-type fermions. However, the structure of
supersymmetric theories does not allow for a charge conjugate to appear. The non-gauge
interactions of such theories are determined by a superpotential, which is an analytical func-
tion of the scalar fields. Hence charge conjugates cannot appear, and a second scalar doublet
is necessary to give mass to the up-type fermions [36]. Also, the presence of a second scalar
doublet is necessary to ensure the cancellation of gauge anomalies. The conditions for this
cancellation include Tr

{
T 2
3 Y
}
= 0 and Tr

{
Y 3
}
= 0, where T3 is the third component of

isospin, Y is the hypercharge, and the trace runs over all fermions. These conditions are sat-
isfied by the fermion content of the Standard Model. However, each scalar field introduces
a fermionic superpartner with the same isospin and hypercharge. Therefore, the fermionic
superpartner of a single scalar doublet would spoil the cancellation conditions. However,
if one scalar doublet with Y = 1

2 and another with Y = − 1
2 are present, the cancellation

conditions are satisfied [36].
Two-Higgs-doublet models can also appear as effective low-energy descriptions of composite-

Higgs models [37]. In composite-Higgs models, the Higgs doublet is not a fundamental field.
Instead, the gauge group is extended to include another strong interaction, and one intro-
duces new heavy fermion fields that are charged under this new interaction. The electroweak
symmetry is broken by condensates of these fermions, the Standard-Model fermions obtain
masses through four-fermion interactions with the heavy fermions, and the Higgs boson ap-
pears in the model as a bound state of fermions. For a particular choice of the four-fermion
interactions, the effective field theory at low energies is a 2HDM [41, 42].
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Little-Higgs models (see e.g. [43, 44] for reviews) constitute a class of models in which a
new strongly interacting sector is introduced as well. The Higgs boson is presumed to be a
pseudo-Goldstone boson corresponding to a spontaneously broken global symmetry of this
new sector. The global symmetry is broken explicitly but only collectively, i.e. it is only
broken if two or more of the gauge and Yukawa couplings of the Higgs are nonvanishing.
Therefore any diagram that contributes to the Higgs mass must involve at least two of these
couplings. Since there are no quadratically divergent diagrams with two or more couplings,
the Higgs mass is stabilised against large radiative corrections. In this scenario, a light Higgs
requires no fine-tuning if the scale of the new strongly interacting physics is of order 10 TeV.
Such light pseudo-Goldstone bosons are known as ‘little Higgses’. Little-Higgs models can
vary in symmetry and field content, which can be represented graphically as a diagram called
a ‘moose’. In the Minimal Moose setup [45], physics below a TeV is described by a 2HDM
with an additional complex weak triplet and a complex singlet.

The 2HDM contains two complex Higgs doublets φ1, φ2, both in the representation of
the Standard-Model gauge group (1,2, 12 ) of SU(3)C×SU(2)L×U(1)Y . Together, the Higgs
doublets contain eight fields, which we parametrise as follows:

φi =

(
φ+i

vi+h0
i+ia0

i√
2

)
, i = 1, 2. (44)

The most general gauge-invariant CP -conserving renormalisable scalar potential is

V2HDM(φ1, φ2) =
Λ1

2
(φ†1φ1)

2 +
Λ2

2
(φ†2φ2)

2 + Λ3(φ
†
1φ1)(φ

†
2φ2) + Λ4|φ†1φ2|2

+

(
Λ5

2
(φ†1φ2)

2 + Λ6(φ
†
1φ1)(φ

†
1φ2) + Λ7(φ

†
2φ2)(φ

†
1φ2) + h.c.

)

+m2
11φ

†
1φ1 +m2

22φ
†
2φ2 −m2

12

(
φ†1φ2 + h.c.

)
, (45)

where all coupling parameters are taken to be real. The parameters m2
11, m

2
22 are fixed by

the minimalisation of the scalar potential. Usually one imposes a Z2-symmetry on the Higgs
doublets under which φ1 → −φ1, φ2 → φ2. This symmetry forbids the terms Λ6, Λ7, and
m2

12; the latter is usually retained in the potential since it breaks the Z2-symmetry only
softly. Hence, the scalar potential contains six free parameters in this setup.

As in the Standard Model, three of the fields in eq. (44) become the Goldstone modes
G±, G0 that give mass to the W±, Z0 bosons after spontaneous symmetry breaking. Hence
there are five physical scalars: two CP -even states h0, H0, one CP -odd state A0, and a pair
of charged states H±. The state h0 is interpreted as the observed scalar with mh0 = 126
GeV.

Both vacuum expectation values v1,2 contribute to the gauge boson masses, and they are
therefore restricted by the relation v21 + v22 = v2 ≡ (246 GeV)2. It is useful to parametrise
the vevs as

v1 = v cosβ, v2 = v sinβ. (46)

The angle β is a free parameter of the model. It is the rotation angle that diagonalises the
squared-mass matrices of the CP -odd scalars and the charged scalars:

(
G±

H±

)
= R(β)

(
h±1
h±2

)
,

(
G0

A0

)
= R(β)

(
a±1
a±2

)
. (47)
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Here we defined h−i = (h+i )
∗ and

R(β) ≡
(

cosβ sinβ
− sinβ cosβ

)
. (48)

The squared-mass matrix of the CP -even states is diagonalised by an angle α:

(
H0

h0

)
= R(α)

(
h01
h02

)
. (49)

The angle α is a complicated function of the parameters of the scalar potential and the vevs of
the Higgs doublets (see e.g. [46] for the complete expression). However, in phenomenological
studies one usually trades the five dimensionless couplings Λi in the scalar potential for the
four scalar masses mh0

, mH0 , mA0 , mH± and the mixing angle α.
The presence of an additional Higgs doublet generally leads to additional Yukawa coup-

lings. These could give rise to tree-level flavour-changing neutral-current (FCNC) processes,
which are strongly constrained by experiment. In order to eliminate tree-level FCNC coup-
lings, one imposes the aforementioned Z2 symmetry on the Higgs doublets. In addition, one
allows each fermion family to couple to only one Higgs doublet. This results in four different
2HDM setups:

• type I, in which all fermions couple to φ2 only;
• type II, in which the up-type (down-type) fermions obtain mass from the vev of φ2

(φ1);
• lepton-specific, which has a type-I quark sector and a type-II lepton sector;
• flipped, which has a type-II quark sector and a type-I lepton sector.

4.2 Mapping the simplified LET model onto the 2HDM

As we will see in sections 6 and 7, the simplified LET model closely resembles the 2HDM,
with respect to both particle content and the resulting deviations of several couplings from
their Standard-Model values. In some respects, the model looks like a simplified version of
the 2HDM. It is easy to see why at the Lagrangian level. To this end, we ignore ΦR for
the moment: it has a vev M much larger than the vevs v1, b1 of Φ1, hence mixing of Φ1-
components with Φ2-components will be of order v

M ≪ 1. Then we are left with a 2 × 2
matrix Φ1 that is an antidoublet under SU(2)L. Each column of this matrix is in itself an
SU(2)L-antidoublet, and can be parametrised in terms of two SU(2)L doublets φ1, φ2 as
follows:

Φ1 ≡
(
Φ0

11 Φ−
12

Φ+
21 Φ0

22

)
= (iσ2φ1, φ

∗
2), φ1 ≡

(
−Φ+

21

Φ0
11

)
, φ2 ≡

(
Φ+

12

(Φ0
22)

∗

)
. (50)

Here we defined (Φ±
ij)

∗ = Φ∓
ij . If we set ΦR = 0 in the scalar potential in eq. (189), we can

rewrite the entire scalar potential in terms of φ1, φ2 only:

V (Φ1, 0) =
λ1 + λ2

2

(
(φ†1φ1)

2 + (φ†2φ2)
2
)
+ (λ1 + λ2)(φ

†
1φ1)(φ

†
2φ2)− λ2|φ†1φ2|2

+ µ2
11(φ

†
1φ1 + φ†2φ2) + µ2

1(φ
†
1φ2 + h.c. ). (51)
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By comparing eqs. (45) and (51), we see that the simplified LET model without ΦR corres-
ponds to a 2HDM with the following constraints on the scalar parameters:

Λ1 = Λ2 = Λ3 = λ1 + λ2, Λ4 = −λ2, Λ5 = Λ6 = Λ7 = 0,

m2
11 = m2

22 = µ2
11, m2

12 = −µ2
1. (52)

Note that φ1 and φ2 are part of a single field Φ1, and therefore must have equal mass terms.
For the same reason, the parameter m2

12 cannot be eliminated by imposing a Z2-symmetry
on the potential, since φ1 and φ2 must have the same charge under such a symmetry.

Analogously to Φ1, we can regard each column in the right-handed doublet ΦR as a
complex SU(2)L singlet, one of which has electromagnetic charge +1 and the other being
neutral:

ΦR =
(
S+ S0

)
, S+ ∼ (1,1, 1), S0 ∼ (1,1, 0). (53)

Rewriting the scalar potential in eq. (189) in terms of φ1, φ2, S+, S0 we find

V (Φ1,ΦR) =V (Φ1, 0) + V2(Φ1,ΦR),

V2(Φ1,ΦR) =
λ3
2

(
|S+|4 + |S0|4

)
+ λ3|S+|2|S0|2 + µ2

R

(
|S+|2 + |S0|2

)

+ (λ4 + λ5)
(
(φ†1φ1)|S+|2 + (φ†2φ2)|S0|2

)

+ λ4

(
(φ†1φ1)|S0|2 + (φ†2φ2)|S+|2

)

+ λ5

(
(φc†1 φ2)S−S0 + h.c.

)
. (54)

Here we defined S− = (S+)
∗ and the charge conjugate is defined by φc1 ≡ iσ2φ∗1. We see that

our model setup can be viewed as a model with two Higgs doublets and two singlets, one
of which is charged. In this picture, the additional structure that originates from the factor
SU(2)R in the gauge group leads to constraints on the scalar potential.

We can rewrite the Yukawa sector of the simplified LET model in terms of φ1, φ2 as well.
The Lagrangian in eq. (42) becomes

LY =−Gαβ

(
(Qα

R)j(Φ1)
i
j(Q

β
L)

i + (L+α)j(Φ1)
i
j(L

−β)i
)
+ h.c.

=−Gαβ

(
(Qα

R)1(iσ2φ1)
i(Qβ

L)
i + (Qα

R)2(φ
∗
2)

i(Qβ
L)

i

+ (L+α)1(iσ2φ1)
i(L−β)i + (L+α)2(φ

∗
2)

i(L+β)i
)
+ h.c.

=−Gαβ

(
ûα(iσ2φ1)

i(Qβ
L)

i + d̂α(φ∗2)
i(Qβ

L)
i

+ ν̂α(iσ2φ1)
i(L−β)i + e+α(φ∗2)

i(L+β)i
)
+ h.c. (55)

Note that the up-type fermions couple only to φ1, whereas the down-type fermions couple
only to φ2. Hence the simplified LET model resembles a constrained type-II 2HDM setup.

For the sake of completeness, we also map the parameters of the simplified LET model
onto the parameters of the 2HDM. First we consider the angle β. From now on, we will label
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the similar 2HDM parameter as β2HDM and the 2HDM doublets as φ1,2HDM, φ2,2HDM for the
sake of unambiguity. The angle β2HDM is defined by the relations

〈φ1,2HDM〉 = v cosβ2HDM, 〈φ2,2HDM〉 = v sinβ2HDM. (56)

Here the scalar doublets are defined such that φ1,2HDM (φ2,2HDM) gives mass to the down-type
(up-type) fermions. In the simplified LET model it is the other way around: we define

〈φ1〉 = v cosβ, 〈φ2〉 = v sinβ, (57)

but here φ1 (φ2) gives mass to up-type (down-type) fermions. This leads us to identify φ1
(φ2) with φ2,2HDM (φ1,2HDM) and gives the mapping

cosβ2HDM =sinβ, sinβ2HDM = cosβ,

⇒ β2HDM =
π

2
− β. (58)

Now consider the mixing angles of the CP -even states. In the 2HDM, the mixing angle
α is defined by eq. (49):

(
H0

2HDM

h02HDM

)
=

(
cosα sinα
− sinα cosα

)(
h01
h02

)
. (59)

Here we relabelled the CP -even mass eigenstates H0
2HDM, h02HDM to avoid ambiguities in the

following. We can bring the analogous expression of the simplified LET model into a similar
form by using the mixing angles in eq. (234) and neglecting terms of O

(
v
M

)
:

α1 = β +O
(
v2

M2

)
, α2,3 = O

( v
M

)
. (60)

Using these approximations, the CP -even states in eq. (220) can be written as



h0

H0
1

H0
2


 =




cosα1h
0
1,11 + sinα1h

0
1,22

− sinα1h
0
1,11 + cosα1h

0
1,22

h0R


+O

( v
M

)
. (61)

In this approximation, the fermiophobic state H0
2 does not mix with the other states. The

states h0 and H0
1 are obtained by rotating the states h01,11, h

0
1,22 by an angle α1. Therefore

we can make the following identifications between the CP -even fields of the 2HDM and those
of the simplified LET model: h02HDM ↔ h0, H0

2HDM ↔ H0
1 , h

0
1 ↔ h01,22, h

0
2 ↔ h01,11. The

2HDM has no equivalent of the field h0R. Thus eqs. (59)–(61) allows us to map α1 onto the
CP -even mixing angle α of the 2HDM:

α = −α1 = −β +O
(
v2

M2

)
. (62)
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4.3 2HDM vs. simplified LET model

As we have seen, the Lagrangian of the simplified LET model can be rewritten in such a way
that it resembles the Lagrangian of a type-II 2HDM. The SU(2)R gauge symmetry leads to
constraints that turn our scalar potential into a simplified version of the 2HDM potential.
However, this additional structure leads to important differences with the 2HDM as well.
The additional factor in the gauge group and the right-handed doublet ΦR give rise to new
features that cannot be encompassed in the 2HDM.

• In addition to the two SU(2)L-doublets, the simplified LET model includes an SU(2)R-
doublet ΦR. Its charged and CP -odd components do not give rise to additional charged
and CP -odd states; instead they give mass to the new heavy vector bosons W ′±, Z ′ of
SU(2)R (after mixing with the components of Φ1). However, the CP -even component
of ΦR does give rise to an additional physical particle H0

2 . Moreover, since ΦR does not
couple to fermions, this new state becomes fermiophobic. As can be seen in the scalar
mass expressions in eq. (36), its mass can be tuned independently from the masses of
the scalars H0

1 , A
0, H±. This results in several possible mass hierarchies that cannot

appear in the 2HDM (see section 6.6).
• In the 2HDM, there are three distinct Yukawa matrices for the up quarks, down quarks,

and charged leptons. However, in the LET model (and hence in the simplified LET
model) there is only one Yukawa matrix Gαβ . The reason is the fact that the right-
handed up-quarks and the right-handed down-quarks belong to different representa-
tions of the gauge group in the 2HDM (as in the Standard Model). This allows one to
write down separate Yukawa terms for the up and down-quarks. However, in the LET
model the right-handed up and down quarks are components of an SU(2)R-antidoublet
QR, just like the left-handed up and down quarks are components of an SU(2)L-doublet
QL. This implies that there is no gauge-invariant way to write down separate Yukawa
terms for the components.
For similar reasons, the leptons are coupled to the scalar sector with the same Yukawa
matrix as the quarks. We consider the LET model to be a low-energy description of
the trinification model, which in turn comes from an E6 GUT. At high energies where
the E6 symmetry is unbroken, the quarks and leptons are components of the same
representation of the gauge group, and therefore they couple to the scalars with the
same Yukawa matrix [29]. At low energies, the fermions will generally have different
Yukawa matrices because of renormalisation-group (RG) running. We assume RG-
effects to be negligibly small; an analysis including these effects is beyond the scope of
this thesis.

• In the 2HDM, the ratio tanβ = v2

v1
is a free parameter. However, in the LET model

(and hence in the simplified LET model) this ratio is constrained by the quark masses
(see appendix D.3). The reason is that the LET model has a single Yukawa matrix
Gαβ . In the flavour basis where this matrix is diagonal, the top-quark mass is given
by mt =

1√
2
G33v1 = 1√

2
G33v cosβ, whereas the bottom-quark mass is given by mb =

1√
2
G33b1 = 1√

2
G33v sinβ. Hence tanβ is equal to the ratio mb

mt
at tree level.

• Similarly to the above, the mixing angles of the CP -even scalars are not free parameters
either. As was mentioned before, the 2HDM allows one to choose the CP -even mixing
angle α and the scalar masses as the free parameters (rather than the quartic scalar
couplings). However, in the simplified LET model the three CP -even mixing angles
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only depend on the quartic scalar couplings at subleading order in v
M . At leading order,

they are constants (see appendix B.4).

4.4 Left-right-symmetric models

Left-right-symmetric models (LRSMs) [12, 13, 14] are extensions of the Standard Model
in which the gauge group has been enlarged by an additional factor SU(2)R in order to
incorporate a left-right symmetry in the Lagrangian. This implies a larger particle content
as well: the fermion sector is extended by right-handed neutrinos, the Higgs field responsible
for electroweak symmetry breaking obtains extra degrees of freedom, and additional scalar
fields are introduced to break the left-right symmetry.

The main motivation for studying these models is to address the origin of parity violation
in the weak interactions. In the Standard Model, this experimental fact is accounted for by
hand: the left-handed and right-handed fermions are assigned to different representations of
the gauge group, such that only the left-handed fermions couple to theW -bosons. In LRSMs
however, one starts with a Lagrangian that is LR-symmetric: the left-handed fermions couple
to the WL-bosons of SU(2)L, and the right-handed fermions couple to the newly introduced
WR-bosons of SU(2)R. Parity violation occurs through spontaneous symmetry breaking:
although the Lagrangian is LR-symmetric, the vacuum is not. The WR-bosons obtain large
masses, and right-handed V +A interactions become suppressed by the WR-mass. Thus the
weak interactions naturally have the observed left-handed V −A structure at low energies.

LRSMs also explain the generation of neutrino masses via the seesaw mechanism [47, 48]
(see e.g. [49, 50] for recent reviews). The observation of neutrino oscillations (see e.g. [51]
for a recent review) has established that neutrinos are massive, and their masses are very
small (below an eV). In the Standard Model however, neutrinos are strictly massless: there
is no possible Dirac mass term because there are no right-handed neutrinos. A Majorana
mass for the left-handed neutrinos νL cannot be generated by the Higgs mechanism, as
the corresponding Yukawa interaction would violate electroweak gauge symmetry as well as
lepton number conservation. Thus the existence of nonzero neutrino masses calls for an
extension of the Standard Model. LRSMs include a right-handed neutrino νR, which allows
for Dirac mass terms for the neutrinos. Since the right-handed neutrino is a total singlet
with respect to SU(3)C ×SU(2)L ×U(1)Y , a Majorana mass term is allowed as well. Hence
after electroweak symmetry breaking, the most general neutrino mass term in the Lagrangian
looks like [49]

L ⊃ −1

2

(
νL νcR

)( 0 mLR

mT
LR MRR

)(
νcL νR

)
+ h.c. (63)

Here the superscript ‘c’ denotes CP -conjugation, mLR is a Dirac mass matrix, and MRR is a
Majorana mass matrix. The Dirac mass matrix arises from electroweak symmetry breaking
and therefore its eigenvalues are of the order of the electroweak scale. On the other hand, the
Majorana mass matrix does not originate from electroweak symmetry breaking, and therefore
its eigenvalues can be arbitrarily large. For large eigenvalues of MRR, diagonalisation of the
mass matrix in eq. (63) yields effective Majorana masses for the left-handed neutrinos, with
a Majorana mass matrix [49]

mLL ≈ mLRM
−1
RRm

T
LR. (64)
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Since the eigenvalues of MRR are assumed to be very large, the resulting eigenvalues of mLL

are very small. Hence we have a natural explanation for small neutrino masses.
LRSMs appear in various contexts. They can appear as low-energy EFTs of non-supersymmetric

GUTs that predict gauge coupling unification at a high energy scale [52]. The LR-symmetric
gauge group can also be used as a basis for supersymmetric inflationary models [53]. The left-
right-symmetry-breaking scale can be as low as the TeV scale [52, 54], which means that new
physics may appear at the LHC. Also, since LRSMs give Majorana masses to the neutrinos,
they predict lepton number violation and therefore the possibility of neutrinoless double-β
decay [55] (see [56, 57] for recent reviews). Hence these models are not only theoretically
interesting, but can also be put to the test very soon.

The term ‘minimal LRSM’ appears in the literature, but it can refer to different mod-
els. Left-right-symmetric models have in common that they are based on the gauge group
SU(3)C × SU(2)L × SU(2)R × U(1)B−L. However, the field content varies from model to
model. Usually ‘minimal LRSM’ refers to a setup with one Higgs bidoublet φ ∼ (1,2,2, 0),
one left-handed triplet ∆L ∼ (1,3,1, 2), and one right-handed triplet ∆R ∼ (1,1,3, 2) [48,
55, 58]. These fields obtain the following vevs:

〈φ〉 =
(
κ 0
0 κ′

)
, 〈∆L〉 =



0
0
0


 , 〈∆R〉 =

(
0 0 v

)
. (65)

Here 〈∆R〉 is responsible for breaking the left-right symmetry, after which the Lagrangian
is still symmetric under the gauge group SU(3)C × SU(2)L × U(1)Y . Then 〈φ〉 breaks the
electroweak symmetry further down to SU(3)C × U(1)em. The field ∆L does not break any
symmetries, but is necessary in order to make the Lagrangian LR-symmetric.

The left-handed quarks are the same as in the Standard Model, but the right-handed
quarks are grouped into a right-handed doublet:

QL =

(
uL
dL

)
∼ (3,2,1,

1

3
), QR =

(
uR
dR

)
∼ (3,1,2,

1

3
). (66)

Additionally, the model contains right-handed neutrinos νR, so that the leptons form left-
and right-handed doublets as well:

ψL =

(
νL
eL

)
, ψR =

(
νR
eR

)
, (67)

where ψL ∼ (1,2,1,−1) and ψR ∼ (1,1,2,−1). The vev of ∆R creates a Majorana mass
term for the right-handed neutrino [55], as necessary for the seesaw mechanism. A discrete
left-right-symmetry is imposed on the Lagrangian; the fields transform under this symmetry
as

φ↔ φ†, QL ↔ QR, WL ↔WR,

∆L ↔ ∆R, ψL ↔ ψR. (68)

Here WL,R are the gauge bosons of SU(2)L,R. This symmetry also implies that the SU(2)L
and SU(2)R gauge couplings are equal: gL = gR.
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Alternatively, one could choose a set of Higgs doublets χL ∼ (1,2,1, 1), χR ∼ (1,1,2, 1)
instead of the triplets ∆L, ∆R [14, 59]. Under the left-right symmetry, they transform as
χL ↔ χR. The most general gauge-invariant, LR-symmetric, renormalisable scalar potential
can be found in e.g. [14]. In part of the parameter space of the model, the minimum of the
scalar potential has the form

〈χL〉 =
(
0
0

)
, 〈χR〉 =

(
0 vR

)
, (69)

where vR ≫ κ, κ′. Thus χR breaks the left-right symmetry. Note that these doublets
cannot generate a Majorana mass term for the right-handed neutrino, i.e. the standard
seesaw mechanism does not work here. Without any additions, the neutrinos would be
Dirac particles, with masses of the same order as the electron mass. However, small neutrino
masses can be explained by the inverse seesaw mechanism [59, 60, 61]: one introduces a
gauge-singlet fermion SL ∼ (1,1,1, 0) with Yukawa couplings to the leptons and χL,R. After
spontaneous symmetry breaking, they develop the mass terms

L ⊃ −νLmDνR − SLMνR −
1

2
SLµS

c
L + h.c. , (70)

where mD, M , µ are 3×3 complex mass matrices. In the basis (νL, νR, SL) this gives a 9×9
neutrino mass matrix

Mν =




0 mT
D 0

mD 0 MT

0 M µ


 . (71)

Analogously to the seesaw mechanism, one considers the case where the eigenvalues of the
mass matrices satisfy µ ≪ mD ≪ M . Diagonalisation of this mass matrix then gives an
effective mass matrix for the left-handed neutrinos:

mν = mT
D(MT )−1µM−1mD. (72)

Since mν has a double suppression by M , the smallness of the three left-handed-neutrino
masses requires a much lower scale of new physics than in the usual seesaw mechanism:
neutrinos with sub-eV masses are obtained with mD at the electroweak scale, M at the TeV
scale and µ at the keV scale. The other six neutrinos obtain masses at the TeV scale [61].

4.5 Left-right-symmetric models vs. simplified LET model

The LET model is a LR-symmetric model by construction, hence it bears much resemblance
to other LR-symmetric models that exist in the literature. However, since we consider the
LET model to be an EFT based on a trinification setup, it has features that distinguish it
from other LR-symmetric models. These features apply to the simplified LET model as well:

• The trinification origin of the LET model forbids certain invariants to appear in the
scalar potential. The Higgs field in the trinification model does not have a charge
conjugate, because the 3 and 3 representations of SU(3) are inequivalent. Since the
LET model originates from the trinification model, we do not include any invariants
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containing charge conjugates3 in our scalar potential, as there would be no equivalent
in the trinification model from which they could have originated. This excludes two
invariants from our analysis of the simplified LET model:

Jc
2 ≡Tr

{
Φ†

1Φ1Φ
c†
1 Φ1

}
+ h.c. ,

Jc
5 ≡ΦR(Φ

c†
1 Φ1 + h.c. )Φ†

R. (73)

Similarly, several invariants can be omitted from the complete LET model (see ap-
pendix C.2). Hence, the scalar potential of the LET model is simpler than that of a
general left-right symmetric model.

• We consider the trinification model to be a complete, renormalisable theory. As such,
we omit any invariants in the SU(3)C ×SU(2)L×SU(2)R×U(1)B−L-based EFT and
its derived toy model that would have to originate from nonrenormalisable operators
in the trinification model. This excludes another four invariants from the simplified
LET model:

J6 =(detΦ1)
2 + h.c. ,

J7 =detΦ†
1Φ1,

J8 =Tr
{
Φ†

1Φ1

}
(detΦ1 + h.c. ),

J9 =ΦRΦ
†
R(detΦ1 + h.c. ). (74)

• Usually a manifest left-right symmetry of the Lagrangian is assumed in LR-symmetric
models. This symmetry implies gL = gR. However, we do not assume such a symmetry
in our setup. We consider the model to be a description of physics at low energies where
the left-right symmetry has been broken. Hence we have to allow for the possibility of
different values of the left-handed and right-handed gauge couplings. Note that both
the simplified and the complete LET model without ΦR are LR-symmetric, and only
the vevM breaks this symmetry. Thus ifM is in the TeV range, renormalisation-group
running might not have driven gL and gR very far apart. That is, these couplings may
still be close to one another, depending on the magnitude of M .

• The scalar field content of both the simplified and the complete LET model differ from
the field content usually employed in LRSMs. As we noted in the previous section, one
usually introduces a pair of triplets ∆L, ∆R or a pair of doublets χL, χR to break the
left-right symmetry. However, since we do not impose an explicit left-right symmetry
on the Lagrangian, the right-handed doublet ΦR is sufficient to describe this symmetry
breaking.

3Note that we do include invariants that can be rewritten in terms of the original Higgs field only, such

as 1
2
Tr

{

Φ†
1Φ

c
1

}

+ h.c. = detΦ1 + h.c. .
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5 Constraints from heavy vector boson searches

The simplified LET model predicts the existence of a pair of charged vector bosons W ′±

and one neutral vector boson Z ′ in addition to the Standard-Model gauge bosons. We know
how their masses mW ′ , mZ′ as well as their mixings ζ, θW , θ′W , η depend on the simplified
LET model parameters. However, the W ′ and Z ′ bosons have not been observed as of yet.
This fact leads to lower bounds on their masses as well as constraints on their mixings. This
in turn allows us to constrain the underlying parameters of the simplified LET model. In
this section, we review the bounds that are available in the literature. We give an overview
of both direct searches and precision measurements. Then we use these bounds to obtain
constraints on the underlying simplified LET model parameters.

5.1 Direct searches

Many models of physics beyond the Standard Model include new heavy vector bosons W ′

and Z ′ (see e.g. the reviews in ref. [31] and references therein). For example, a W ′ and a Z ′

boson appear in LR-symmetric models and models with other gauge groups that embed the
electroweak symmetry, such as SU(3)W×U(1) or SU(4)W×U(1). The Z ′ boson also appears
in models with gauge groups containing an additional U(1)′, extra-dimensional theories in
which the electroweak gauge bosons can propagate in the extra dimensions, or as a composite
state in confining gauge theories. Because these heavy vector bosons appear in so many
different theories, it is important to look for them. As such, they have been subject to direct
searches in various decay channels at LEP, Tevatron, and the LHC. Lower bounds on the
masses of these particles are readily available in the literature (see ref. [31] for an overview).

Searches in the decay channel W ′ → ℓν are the most sensitive [62], where ℓ is an electron
or muon. The ATLAS [63] and CMS [64] collaborations have performed this search, and
found the following lower bounds on the W ′ mass:

ATLAS: mW ′ >2.55 TeV, (SSM)

CMS: mW ′ >2.90 TeV. (SSM) (75)

These bounds depend on assumptions on theW ′ couplings: theW ′WZ coupling is set to zero,
and the remaining couplings are taken to be those of the Sequential Standard Model (SSM).
In the SSM, the W ′ couplings are identical to the corresponding W couplings. However, this
assumption is not justified in the simplified LET model: for example the couplings gL, gR are
not equal. Also, the decay to leptons would be suppressed if the W ′ mass were smaller than
the mass of the right-handed neutrino. Therefore we will not use these bounds to constrain
the simplified LET model.

It is important to search for W ′ bosons in quark final states as well, since the results
of W ′ searches in leptonic final states may or may not apply depending on the underlying
model. ATLAS has searched for the decay W ′ → tb by looking for tb resonances in the ℓνbb
final state [62]. They found the following lower bound:

mW ′ > 1.13 TeV. (SSM) (76)

However, Standard-Model-like couplings of theW ′ to the fermions were assumed again, which
means that the bound does not apply to the simplified LET model. The CMS collaboration
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has searched for the decay W ′ → tb as well, with a final state consisting of a single electron
or muon, missing transverse energy, and jets, at least one of which is identified as a b-jet [65].
They modeled the W ′ couplings to Standard-Model fermions by the Lagrangian

L =
Vfifj

2
√
2
gLf iγµ

[
aRfifj (1 + γ5) + aLfifj (1− γ

5)
]
W ′µfj + h.c. (77)

Here aRfifj , a
L
fifj

are the right-handed and left-handed couplings of the W ′ to the fermions

fi and fj , and Vfifj is the CKM matrix for quarks and a unit matrix for leptons. For a W ′

boson that couples to right-handed fermions (aLfifj = 0, aRfifj=1), they found the bound

mW ′ > 1.85 TeV. (SSM) (78)

However, this bound still rests of the assumption that the left-handed coupling gL and the
right-handed coupling gR are equal. In the simplified LET model, these couplings are not
necessarily equal, so we should take aRfifj = gR/gL. In fig. 5 of ref. [65], contour plots for the

mW ′ bound are given in the (aL, aR)-plane for 0 ≤ aL, aR ≤ 1. Thus if we can constrain the
right-handed coupling gR and find gR < gL, we can read the corresponding W ′ mass bound
from the point (0, gR/gL) in this figure. Note that these constraints would still depend on
the assumption that the CKM matrices for the left-handed and right-handed currents are
the same.

In other W ′ searches one looks for the decay W ′ →WZ by looking for narrow resonances
in the WZ mass distribution. Bounds from these searches are complementary to those from
W ′ → ℓν searches, since in the latter it is usually assumed that the W ′ → WZ decay is
strongly suppressed. Several final states have been considered: ATLAS [66] and CMS [67]
have performed this search in the ℓνjj final state (ℓ = e, µ), which led to the bounds

ATLAS: mW ′ >950 GeV, (EGM)

CMS: mW ′ >1143 GeV. (SSM) (79)

The same search in the ℓνℓℓ final state [68, 69] yielded

ATLAS: mW ′ >760 GeV, (EGM)

CMS: mW ′ >940 GeV or mW ′ < 700 GeV. (SSM) (80)

However, these bounds depend on the assumptions made about the W ′WZ coupling, which
generally depend on the specifics of the underlying model. The quoted CMS searches assume
SSM couplings, in which the W ′ is assumed to have the same couplings to Standard-Model
particles as the W . The quoted ATLAS searches assume Extended Gauge Model (EGM)
couplings: the W ′WZ coupling is taken to be equal to the Standard-Model WWZ coupling
scaled by a factor c × (mW /mW ′)2, with c of order one. However, the W ′WZ coupling of
the simplified LET model is given by (see appendix G.1)

gW ′WZ

gSMWWZ

=
1

2
cos η sin 2ζ =

gRm
2
W

gLm2
W ′

sin 2β +O
(
v4

M4

)
. (81)

Hence the coefficient c cannot be taken of order one: β = 0.0166 is a small parameter fixed
by the ratio mb/mt of the bottom-quark mass and the top-quark mass, and gR cannot be
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too large or else it would become nonperturbative. A plot of c versus the bound on mW ′ is
given in fig. 7 of ref. [66] and fig. 4 of ref. [67]. The W ′ mass is basically unconstrained if
c . 0.2, so the simplified LET model is not constrained by these searches.

Direct searches for the Z ′ boson of LR-symmetric models have been performed at LEP
and Tevatron. These searches focus on the dilepton decay modes of the Z ′. The CDF
collaboration [70] has performed this search and set lower mass limits for the Z ′ in various
models based on the gauge group E6. For Z

′ bosons in LR-symmetric models, they obtained
the lower bound

mZ′ > 630 GeV. (gL = gR) (82)

The ALEPH [71], DELPHI [72], and OPAL [73] collaborations have found the following lower
bounds:

ALEPH: mZ′ >600 GeV, (gL = gR)

DELPHI: mZ′ >455 GeV, (gL = gR)

OPAL: mZ′ >518 GeV. (gL = gR) (83)

Since gL = gR was assumed in these analyses, we cannot apply these limits to the simplified
LET model. However, fig. 21 in ref. [73] also gives the mass bounds where the right-handed
coupling is allowed to vary. From this figure we read a lower bound for LR-symmetric models
in which gR is a free parameter:

mZ′ > 440 GeV. (84)

More recent results from the LHC are available, but the analyses so far focus on a Z ′

with Standard-model-like couplings to fermions. We give an overview of the resulting bounds
here, but we do not apply them to the simplified LET model. ATLAS has searched for Z ′

bosons in the decay mode Z ′ → τ+τ− [74] and found

mZ′ > 1.40 TeV. (SSM) (85)

CMS has looked at the decay Z ′ → qq̄ in dijet mass spectra, resulting in the bound [75]

mZ′ > 1.47 TeV. (SSM) (86)

Both ATLAS [76] and CMS [77] have searched in the dielectron and dimuon decay channels
as well, giving the lower mass bounds

ATLAS: mZ′ >2.22 TeV, (SSM)

CMS: mZ′ >2.590 TeV. (SSM) (87)

LHC bounds on Z ′ bosons in LR-symmetric models are not available as of yet to the best of
our knowledge.

5.2 Electroweak precision data

Another way to constrain the masses and mixings of the heavy vector bosons is via electroweak
precision data (EWPD). Chay et al. [78] obtained constraints on the neutral sector using
EWPD from LEP I. The advantage of studying the neutral sector over the charged sector
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is that the couplings of neutral vector bosons are independent of the CKM matrices. Thus
the constraints obtained from the neutral sector are less sensitive to the details of the model
under consideration. In an electroweak precision test, one considers the deviations of several
quantities from their Standard-Model values, such as the mass ratio mW /mZ , the leptonic
and b-quark decay widths Γl, Γb, and the leptonic and b-quark forward-backward asymmetries
Al

FB , A
b
FB . These deviations are expressed in terms of the mixing angles θ′W , η.4 Using a

χ2-fit of the LEP I data, these mixing angles have been constrained. Then these constraints
were combined with low-energy neutral-current data to obtain stronger constraints on the
mixing angles as well as the Z ′ mass. This encompasses experimental results for various
scattering processes in which both Z and Z ′ can participate, such as νe → νe scattering.
One works out the effective low-energy Lagrangian for these processes, then fits the couplings
to the experimental results. The following bounds were found [78]:

− 0.00040 < η < 0.0026, mZ′ > 430 GeV @95% C.L. (88)

The mixing angle θ′W was not constrained by the data considered. However, if the mixing
angle η were known, one could read off constraints on θ′W from fig. 1 in ref. [78].

Another study of electroweak precision data was performed by del Aguila et al. [79].
They studied the effects of new vector bosons in various representations of the Standard-
Model gauge group. The effective Lagrangian at low energies was worked out including
operators of dimension six, resulting in several four-fermion interactions. The couplings
of these interactions were then fit to EWPD, and constraints on the new vector bosons
were obtained. The EWPD included Z-pole observables, the W mass and width, unitarity
constraints of the CKM matrix, low-energy effective couplings from neutrino scattering with
nucleons and electrons, atomic parity violation, Møller scattering, and LEP 2 data. Bounds
were given for some of the W ′ and Z ′ couplings to scalars and leptons at 95% C.L. [79]:

|Gφ
W ′ | ≤0.11 TeV−1,

|Gφ
Z′ | ≤0.098 TeV−1,

|Gℓ
Z′ | ≤0.210 TeV−1,

|Ge
Z′ | ≤0.300 TeV−1. (89)

Here the results are given in terms of the effective couplings Gk
V ≡ gkV /MV , where g

k
V is

the coupling of the vector boson V to particle k and MV is the vector-boson mass. The
superscript φ refers to the Standard-Model-like Higgs field, whereas ℓ and e refer to a left-
handed lepton and right-handed electron respectively. We obtain the W ′ and Z ′ couplings
to the Higgs from the Feynman rules in appendix G.2, and the Z ′ couplings to a fermion f
follow from the gauge currents in appendix E. Using the W ′ and Z ′ masses given in eqs. (26)

4The Z′ mass is not constrained by LEP I data: since the experiment was performed at the Z peak, the
mass-dependent effects of the Z′ are strongly suppressed for mZ′ ≫ mZ . Hence the main contributions come
from mixing by θ′

W
and η [78].
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and (29) we find:

Gφ
W ′ =

1

M

[
sin 2β +O

(
v2

M2

)]
,

Gφ
Z′ =

1

M

[
cos2 θ′W +O

(
v2

M2

)]
,

Gf
Z′ =

2 cos2 θ′W
M

[
T 3
R(f)−

1

2
tan2 θ′WQB−L(f) +O

(
v2

M2

)]
. (90)

Here T 3
R(f) refers to the eigenvalue of f under the SU(2)R generator T 3

R, and QB−L(f) is
the charge of f under U(1)B−L. Taking the couplings to leading order in v

M , the bounds in
eq. (89) amount to

|Gφ
W ′ | =

sin 2β

M
≤ 0.11 TeV−1,

|Gφ
Z′ | =

cos2 θ′W
M

≤ 0.098 TeV−1,

|Gℓ
Z′ | =sin2 θ′W

M
≤ 0.210 TeV−1,

|Ge
Z′ | = | cos 2θ

′
W |

M
≤ 0.300 TeV−1. (91)

5.3 High-precision measurements

Another way to constrain heavy vector bosons is via high-precision measurements of parity
violation in the weak interaction. One example of such an experiment is the measurement
of the muon decay parameters, which has been performed by the TWIST collaboration
[80, 81] and by Barenboim et al. using LEP data [82]. Muons decay to positrons in the
process µ+ → e+νeν̄µ. At low energies, this decay can be described by a four-fermion
interaction. However, such an interaction is nonrenormalisable, and hence it can only be
viewed as an effective interaction. Four-fermion interactions can arise through the exchange of
various particles: they can be mediated by (pseudo)scalar, (axial) vector and tensor couplings,
depending on the underlying model. The differential decay rate of a muon decaying to
a positron can be described in terms of the four muon decay parameters [83, 84, 85, 86],
which are functions of all couplings that could mediate this decay. In the Standard Model,
muon decay occurs through the exchange of a W -boson only. However, new-physics models
generally introduce additional contributions to this process. For example, LR-symmetric
models (including the LET) provide an additional contribution from W ′ boson exchange. As
such, each model leads to different predictions for the muon decay parameters. Therefore a
high-precision measurement of these parameters provides a test for these models.

Such a measurement in the lepton sector has an advantage over measurements in the
quark sector: the signature is clean because hadronisation is not involved in muon decay.
Also, the couplings in the leptonic sector are unaffected by the left-handed and right-handed
CKM matrices. This allows one to obtain model-independent constraints. The TWIST
collaboration has measured the polarised muon decay spectrum in order to extract the muon
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Figure 1: Diagrams that form the main contributions to K0 −K0 mixing in LR-symmetric
models. The contribution from diagrams with the exchange of twoW ′ bosons is suppressed by
mW ′ with respect to these diagrams. Similar diagrams exist with theW andW ′ interchanged
and/or with crossed vector boson propagators. In the Standard-Model, this mixing only
obtains a contribution from the left diagram.

parameters [80, 81] . They used the results to put the following constraints on right-handed
charged currents in generalised LR-symmetric models (stronger constraints were obtained for
manifestly LR-symmetric models, in which gL = gR):

∣∣∣∣
gRζ

gL

∣∣∣∣ < 0.020,
gLmW ′

gR
≥ 578 GeV @90% C.L. (92)

Barenboim et al. [82] performed a χ2 fit of the muon decay parameters using the muon
decay data of LEP. They used these to constrain the right-handed charged currents as well.
Assuming the right-handed neutrino is lighter than the W ′, they found the following bounds:

gR
gL

= 0.94± 0.09, mW ′ ≥ 485 GeV, |ζ| ≤ 0.0327. (93)

Another constraint on right-handed currents comes from the neutral kaon system. The
mass difference ∆mK ≡ mKL

−mKS
is governed by ∆S = 2 strangeness-changing processes

induced by box diagrams. In the Standard Model, the main contribution comes from diagrams
involving the exchange of two W bosons. However, models of new physics may introduce
additional contributions to this K0 −K0 mixing. For example, the dominant contributions
in LR-symmetric models come from the exchange of either two W bosons or a W and a W ′

(see fig. 1). The contribution from twoW ′ bosons is suppressed by the largeW ′ mass. Hence
precision measurements of the neutral kaon system allow us to constrain the mass of the W ′.
Barenboim et al. used data on the neutral kaon system to arrive at the constraint [82]

mW ′ & 0.7 TeV. (94)

5.4 Parameter constraints

The bounds on the masses of new heavy vector bosons are the strongest in direct searches,
putting W ′ and Z ′ masses at least in the TeV regime. However, these bounds apply only to
manifestly LR-symmetric models, and as such are not applicable to the simplified LET model.
The strongest bounds for general LR-symmetric models come from analyses of precision
experiments. Moreover, these studies also constrain the mixing angles and gauge couplings.
These allow us to put constraints on the parameters of the simplified LET model. In order to
extract these constraints, we will use the following experimental values from ref. [31] as input:
the Weinberg angle θW in theMS scheme at µ =MZ is given by sin2 θW = 0.23126±0.00005,
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the electromagnetic coupling constant is e =
√

4πα(MZ) = 0.313402 ± 0.000017, where
α(MZ) is the fine-structure constant in the MS scheme at µ = MZ . This gives a weak
coupling constant of gL = e/ sin θW = 0.65170± 0.00008. We will also use the vev parameter
v = 246 GeV and the angle β = 0.0166, which is fixed by the ratio of the bottom- and
top-quark masses (see appendix D.3).

The ratio of the SU(2)R coupling gR to the SU(2)L coupling gL is constrained by the LEP
muon decay data in eq. (93). Using the experimental value for gL, we obtain a constraint on
gR:

gR
gL

= 0.94± 0.09 ⇒ gR = 0.61± 0.06. (95)

Using the expression for the electromagnetic gauge coupling e in terms of the SU(3)C ×
SU(2)L × SU(2)R × U(1)B−L gauge couplings (see appendix E), we obtain a constraint on
g′ as well:

g′ =
egLgR

2
√
g2Lg

2
R − e2(g2L + g2R)

= 0.22± 0.01. (96)

As we mentioned in section 5.1, we can read off a bound on the W ′ mass from the point
(aL, aR) = (0, gR/gL) in fig. 5 of ref. [65] if we know gR. This gives us the bound

mW ′ & 1.4 TeV. (97)

The bounds given in the previous sections yield several constraints on the scale M . For
example, the masses of the heavy vector bosons are proportional to M , and as such they
constrain this parameter. We use the mass expressions given in eqs. (26) and (29) to leading
order in v

M . The strongest bounds on the masses of the W ′ and Z ′ come from the W ′

search by CMS, combined with our value for gR, and the LEP I electroweak precision data
respectively:

gRM

2
= mW ′ & 1.4 TeV,

gRM

2 cos θ′W
= mZ′ > 430 GeV. (98)

Note that the simplified LET model predicts mZ′ = mW ′/ cos θ′W ≥ mW ′ , so the mZ′ bound
given here is weaker than the mW ′ bound, and does not add any information. Using the
upper bound gR < 0.67 obtained above, the mW ′ mass bound gives the following constraint
on M :

M > 3.6 TeV. (99)

Another constraint on M comes from the W −W ′ mixing angle ζ. Given the value of gR
in eq. (95), the strongest constraint on ζ comes from the TWIST muon-decay parameters
(see eq. (92)). Using the expression for ζ in eq. (25) to leading order in v

M , we obtain the
following bound on M :

0.020 >

∣∣∣∣
gRζ

gL

∣∣∣∣ =
v2 sin 2β

M2
,

⇒M >v

√
sin 2β

0.020
= 317 GeV. (100)
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This bound is weaker than the one in eq. (99). The four bounds on the effective low-
energy couplings from Aguila et al. in eq. (91) allow us to constrain M as well. We use
θ′W = arctan(2g′/gR) = 0.62± 0.05 to obtain the following constraints:

M ≥ sin 2β

0.11 TeV−1 = 0.302 TeV,

M ≥ cos2 θ′W
0.098 TeV−1 > 6.2 TeV,

M ≥ sin2 θ′W
0.210 TeV−1 > 1.4 TeV,

M ≥ cos 2θ′W
0.300 TeV−1 > 0.73 TeV. (101)

The second line gives the strongest bound on M we have so far. Another constraint on M
comes from the bound on the mixing angle η from Chay et al. Since this angle is small, it
can be rewritten at leading order in v

M as

η ≈ tan η ≈ sin θ′W cos3 θ′W
sin θW

v2

M2
< 0.0026. (102)

Using the values we have for θW , θ′W , and v, we arrive at the bound

M > 3.6 TeV. (103)

In summary, the gauge-boson sector of the simplified LET model depends on four new
parameters β, M , gR, g

′ in addition to the Standard-Model parameters. For the latter, we
used the experimental values as input, and the angle β = 0.0166 is fixed by the mass ratio
of the bottom- and top-quark masses. We have used the available bounds on the masses and
mixings of the new heavy vector bosons to constrain the remaining three parameters. Our
strongest bounds come from a combination of low-energy precision measurements; the results
are

M > 6.2 TeV, gR = 0.61± 0.06, g′ = 0.22± 0.01. (104)
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6 Couplings of the Standard-Model-like Higgs

The simplified LET model predicts the existence of new scalar particles. Their masses depend
on several simplified-LET-model parameters. In parts of parameter space, these masses are
low enough such that we could produce them at the LHC. However, it is also possible that we
are not that lucky, because the new scalars are too heavy to detect experimentally in large
regions of the simplified-LET-model parameter space. In that case, the Standard-Model-like
scalar with a mass of 126 GeV would be all we could observe in the foreseeable future.

In this scenario, it may still be possible to distinguish the Standard Model from the
simplified LET model if we measure the Higgs couplings to all Standard-Model particles.
In the Standard Model, these couplings are fixed by the particle masses and the vev of the
Higgs field. Since the latter are known, an independent measurement of the Higgs couplings
provides an important test of the Standard Model. These couplings are generally modified
in the presence of new physics [87]: the Standard-Model-like Higgs is a mixture of the scalar
gauge eigenstates, and the mixing angles show up in the Standard-Model-like Higgs couplings.
Thus deviations of the Higgs couplings from their Standard-Model values would be an indirect
probe of physics beyond the Standard Model.

In this section, we give the Standard-Model Higgs couplings and quantify the Higgs-
coupling modifications. We review how these coupling modifications are measured, and give
the values available in the literature. Then we derive the coupling modifications as predicted
by the simplified LET model. We look at possible patterns in these coupling modifications
that may allow us to distinguish the simplified LET model from the Standard Model or
some other new-physics model. Then we see how the measured Higgs-coupling modifications
constrain the simplified LET model. We define a set of benchmark points that represent the
possible phenomenological features of the simplified LET model, and compute the coupling
modifications for each of them. We look for scenarios that give a measurable deviation from
the Standard-Model Higgs couplings.

6.1 Standard-Model Higgs couplings

The Standard-Model Higgs couplings are not free parameters. The couplings of the Higgs
to vector bosons are completely determined by gauge invariance. They can be read off the
covariant derivative terms for the Higgs field φ:

LSM ⊃(Dµφ)
†(Dµφ),

Dµ =∂µ − igAa
µτ

a − ig′Y Bµ

=∂µ −
ig√
2
(W+

µ τ
+ +W−

µ τ
−)− ig

cos θW
Zµ(τ

3 − sin2 θWQ)− ieAµQ. (105)

Here g, g′ are the SU(2)L and U(1)Y couplings respectively, Aa
µ are the SU(2)L gauge fields,

B is the hypercharge gauge field, τa = σa

2 are the SU(2)L generators, and Y is the U(1)Y
generator. The gauge-boson mass eigenstates are given by

W± =
1√
2
(A1 ∓ iA2),

(
Z
A

)
=

(
cos θW − sin θW
sin θW cos θW

)(
A3

B

)
. (106)

The corresponding generators are defined by τ± = τ1 ± iτ2, Q = τ3 + Y , and their gauge
couplings are determined by sin θW = g′/

√
g2 + g′2 and e = g sin θW . TheW bosons obtain a
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mass mW = gv/2, the Z boson obtains a mass mZ =
√
g2 + g′2v/2 = mW / cos θW , whereas

the photon A remains massless. In order to extract the Higgs couplings, we parametrise the
Higgs field as follows:

φ =

(
φ+

v+h+ia√
2

)
. (107)

Here h is the physical Higgs boson, whereas φ+, φ− = (φ+)∗, a are the Goldstone bosons that
give mass to the W±, Z bosons. Inserting this expression into the Lagrangian in eq. (105),
we obtain the Higgs couplings to the vector bosons:

gSMhWW =
g2v

2
=

2m2
W

v
,

gSMhZZ =
g2v

2 cos2 θW
=

2m2
Z

v
. (108)

That is, the Higgs coupling to vector bosons is proportional to their squared mass. The
tree-level coupling of the Higgs to photons vanishes. However, the photon obtains a non-zero
effective Higgs coupling through loops involving massive charged particles. We derive the
expression for this coupling for a general theory with any number of scalars, fermions, and
vector bosons in appendix F. For the Standard Model, this expression reduces to

gSMhγγ =
αv

16
√
2π


ghWW

m2
W

A1(τW ) +
∑

f

2ghff
mf

Nc,fQ
2
fA1/2(τf )


 . (109)

Here α is the fine-structure constant, and the sum runs over all fermions f with Higgs
coupling ghff , mass mf , Nc,f colour degrees of freedom, and electromagnetic charge Qf .
The functions A1/2(x), A1(x) are the spinor and vector loop functions, which are defined in
appendix F. They take the mass ratios τi ≡ 4m2

i /m
2
h as argument.

Note that a similar effective coupling exists for the gluons as well, which is generated
by quark loops. The main contribution to this coupling comes from the top quark, since
it couples the most strongly to the Higgs. However, the effective gluon coupling is not of
relevance to the discussion in this chapter: the LET model does not introduce any new
massive coloured states that could modify this coupling. The only modifications to the
Higgs-gluon coupling would be those induced by the coupling modifications of the quarks
running in the loop. Therefore, we omit the gluon coupling from our discussion.

The Higgs couplings to fermions are given by the Yukawa Lagrangian

LSM
Y = −QYu(iσ2φ∗)uR −QYdφdR − LYℓφℓR + h.c. (110)

Here Q, L are the quark and lepton doublets, uR, dR, ℓR are the right-handed fermions,
and Yu, Yd, Yℓ are generation matrices; generation indices are suppressed. After spontaneous
symmetry breaking and diagonalisation of the generation matrices, the quarks and charged
leptons obtain masses mf = yfv, where yf is the relevant diagonal element of the generation
matrix. The Higgs couplings can be read off as well:

gSMhff = −yf = −mf

v
. (111)
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Note that all Higgs couplings of the Standard Model are fixed by the corresponding particle
masses and the vev v. The latter is fixed by the Fermi coupling constant to be v =
(
√
2GF )

−1/2 = 246 GeV, and all particle masses have been measured. Hence we know all
Standard-Model Higgs couplings indirectly, and a direct measurement of the Higgs couplings
provides an important test of the Standard Model.

6.2 Higgs-coupling modifications

The Higgs-coupling modifications are defined as the deviations of the Higgs couplings from
the Standard-Model values in eqs. (108), (109) and (111). For any Standard-Model particle
x, the Higgs couplings gx ≡ gh0xx are defined as the coefficient of the operator h0xx in the
Lagrangian. Then the Higgs-coupling modifications ∆x are defined as

gx
gSMx

= 1 +∆x. (112)

The loop-induced Higgs coupling to photons can be written as follows:

gγ
gSMγ

= 1 +∆SM
γ +∆γ . (113)

Here ∆SM
γ is the coupling modification that is induced by coupling modifications of the

Standard-Model particles generating the coupling. The term ∆γ represents contributions
from non-SM particles running in the loops.

The Higgs-coupling modifications have been extracted from LHC data using the tool
SFitter [88, 89, 90, 87] (see fig. 2). In this analysis, the operators in the Lagrangian are taken
to be Standard-Model-like (i.e. the Higgs field is a CP -even scalar), but with variable Higgs
couplings. The free parameters in the fit of these couplings to data are ∆W , ∆Z , ∆t, ∆b,
∆γ . Since the LHC has no sensitivity to the second-generation Yukawa couplings, the latter
are linked to the third-generation Yukawa couplings, e.g. gc = gtmc/mt. The top coupling is
extracted from the effective gluon coupling, to which the top loop gives the main contribution.
The reason for this indirect determination of ∆t is that there is no independent measurement
of the top Yukawa coupling yet. Hence ∆g is not included as a free parameter in the fit.5

The bottom coupling has not been measured directly yet either: although the Higgs decay
to bb̄ is the dominant channel, its signal is hard to extract from QCD backgrounds. Instead,
∆b is extracted indirectly from the total Higgs width Γtot, which is identified with the sum
of the observed partial widths (i.e. decays into invisible new states are not included). Hence
the unknown b coupling enters the denominator of every σ×BR prediction, and is extracted
from a correlated fit.

The most recent fit of the Higgs-coupling modifications is given in fig. 2. The first three
couplings are irrelevant to us: they represent the best fit of a hypothetical universal Higgs-
coupling modification ∆x = ∆H and a two-parameter fit of the scenario ∆W,Z = ∆V , ∆t,b,τ =
∆f . The next six couplings are the best fit when each parameter is taken to be free. The

5In the 14 TeV run of the LHC, the top coupling can be probed directly in tt̄H production, so that ∆g

can be allowed to vary in a future update of the analysis.
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Figure 2: Most recent fit of the Higgs-coupling modifications to LHC data. The red points
correspond to the expected SM result ∆x = 0, whereas the dark blue points give the results
from the data if the photon coupling is assumed to be determined by the W and t loops
only. The light blue points give the results if a free coupling shift in ∆γ due to new physics
is allowed. See the main text for a definition of the various coupling modifications. Figure
taken from ref. [87].

last three couplings are modifications to ratios of couplings:

gx/gy
gSMx /gSMy

=(1 +∆x/y),

⇒ ∆x/y =
∆x −∆y

1 + ∆y
. (114)

These coupling modifications do not introduce any new information, since they are given in
terms of the individual coupling modifications in eq. (112). However, they are included in
the analysis because some of the theory and systematic errors are correlated and cancel from
the coupling ratio. The error bars on the W , Z, τ , and t couplings have similar magnitudes,
whereas the error on the b coupling is significantly larger. The reason is that ∆b is determined
indirectly from the total Higgs width.

6.3 Higgs-coupling modifications of the simplified LET model

The couplings of the SM-like Higgs h0 to the massive vector bosons can be found by substitut-
ing the gauge-boson mass eigenstates in eqs. (169) and (176) and the scalar mass eigenstates
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in eq. (220) into the Lagrangian in eq. (32). The resulting couplings are given by

gW =
v

2

(
(g2Lc

2
ζ + g2Rs

2
ζ)(cβcα1

+ sβsα1
cα2

)− gLgRs2ζ(sβcα1
+ cβsα1

cα2
)

)

+
M

2
g2Rs

2
ζsα1

sα2

=
g2Lv

2

(
cβcα1

+ sβsα1
cα2
− 2s2β(sβcα1

+ cβsα1
cα2

)ξ2 +O
(
ξ3
))
,

gZ =
v

2

(
(cβcα1

+ sβsα1
cα2

)
(
gLcηcθW + gR(cηsθW sθ′

W
− sηcθ′

W
)
)2)

+
M

2
sα1

sα2

(
gR(cηsθW sθ′

W
− sηcθ′

W
)− 2g′(cηsθW cθ′

W
+ sηsθ′

W
)
)2

=
g2Lv

2c2θW

(
(cβcα1

+ sβsα1
cα2

)(1− 2c4θ′
W
ξ2) +O

(
ξ3
))
. (115)

Here we defined cx = cosx, sx = sinx for the sake of brevity and introduced the dimensionless
small parameter ξ ≡ v/M . In the second steps we used the W −W ′ mixing angle ζ from
eq. (25) and the neutral-vector-boson mixing angles θW , θ′W , η from eq. (28). The couplings
gR, g

′ have been eliminated in favour of gL using the identities gR = gL tan θW / sin θ′W ,
2g′ = gL tan θW / cos θ′W . Using the SM Higgs couplings given by eq. (108), with the W and
Z masses given in eqs. (26) and (29), the above expressions yield the following Higgs-coupling
modifications:

∆W =cβcα1
+ sβsα1

cα2
− 1 +

(
s22β − 2s2β(sβcα1

+ cβsα1
cα2

)
)
ξ2 +O

(
ξ3
)
,

∆Z =cβcα1
+ sβsα1

cα2
− 1− c4θ′

W
(2(cβcα1

+ sβsα1
cα2

)− 1) ξ2 +O
(
ξ3
)
. (116)

The SM Higgs couplings to the fermions are given by eq. (111). The corresponding
Higgs couplings of the simplified LET model can be read off the Yukawa Lagrangian in mass
eigenstates, which is given in eq. (277). This results in the following coupling modifications:

∆t =
cosα1

cosβ
− 1,

∆b =
sinα1 cosα2

sinβ
− 1. (117)

The photon coupling is modified indirectly through the modifications of the particles
running in the loops that generate this coupling. However, it also gets a genuine non-SM
contribution from loops involving the charged scalar H±. This results in the following photon
coupling modification (see appendix F for the full calculation):

∆γ =
vA0(τH±)λh0H+H−

2m2
H±ASM

. (118)

Here ASM ≡ A1(τW )+NcQ
2
tA1/2(τt) = −6.5, τi ≡ 4m2

i /m
2
h0 , and the As(x) are loop functions

which are defined in eq. (292). The coupling λh0H+H− of h0 to the charged scalars is given
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by

λh0H+H− =λ1v(cβcα1
+ sβsα1

cα2
)(s213 + c2+)

+ λ2v
(
(cβcα1

+ sβsα1
cα2

)(s213 + c2+)− (sβcα1
+ cβsα1

cα2
)s13c+

)

+ λ3Msα1
sα2

c2− + λ4(v(cβcα1
+ sβsα1

cα2
)c2− +Msα1

sα2
(s213 + c2+))

+ λ5
(
v(cβcα1

c2− − sβsα1
sα2

s13c− + cβsα1
sα2

c+c−)

+M(sα1
sα2

c2+ − sα1
cα2

s13c− + cα1
c+c−)

)
. (119)

Here we defined the following combinations of mixing angles of the charged scalar fields,
which are given in eq. (225):

s13 ≡ sγ1
sγ3

, c+ ≡ cγ1
cγ2
sγ3

+ sγ2
cγ3
, c− ≡ cγ1

sγ2
sγ3
− cγ2

cγ3
. (120)

The Higgs self-couplings have not been measured so far. The trilinear coupling could
be measured at the 14 TeV run of the LHC from the ratio of cross sections of double-to-
single Higgs production [91]. The quartic coupling requires the measurement of triple-Higgs
production, which has a low cross-section due to interference between the different diagrams
contributing to this process [92]. Hence we have no bounds on the modifications of these
couplings yet, and a measurement of the quartic coupling seems to be challenging. However,
we calculate these couplings for the simplified LET model anyway in order to see how precisely
we would have to measure these couplings in order to see deviations from the SM values.
In the Standard Model, the scalar potential contains a single quartic and a single quadratic
invariant:

VSM = λ(Φ†Φ)2 − µ2Φ†Φ, Φ =

(
φ+

v+h+ia√
2

)
, (121)

where we must set µ2 = λv2 in order to have the minimum of the potential at 〈Φ〉 = (0, v/
√
2).

After spontaneous symmetry breaking, this potential gives rise to both trilinear and quartic
self-couplings for the Higgs boson h:

λSM3h =6λv =
3gm2

h

2mW
,

λSM4h =6λ =
3g2m2

h

4m2
W

. (122)

In the simplified LET model, the scalar potential contains several quartic invariants, all
of which contribute to the Higgs self-couplings. Inserting the mass eigenstates defined by
eqs. (220) and (234) into the potential in eq. (34), we find:

λ3h
3v

=λ1(c
2
α1

+ s2α1
c2α2

)(cβcα1
+ sβsα1

cα2
) + λ2(cβc

3
α1

+ sβs
3
α1
c3α2

) + λ3
M

v
s3α1

s3α2

+ λ4

(
M

v
sα1

sα2
(c2α1

+ s2α1
c2α2

) + s2α1
s2α2

(cβcα1
+ sβsα1

cα2
)

)

+ λ5sα1
sα2

(
M

v
s2α1

c2α2
+ sβs

2
α1
cα2

sα2

)
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λ4h
3

=λ1(c
2
α1

+ s2α1
c2α2

)2 + λ2(c
4
α1

+ s4α1
c4α2

) + λ3s
4
α1
s4α2

+ 2λ4s
2
α1
s2α2

(c2α1
+ s2α1

c2α2
) + 2λ5s

4
α1
c2α2

s2α2
. (123)

Using the Standard-Model couplings in eq. (122), the W boson mass in eq. (26), and the
Higgs mass in eq. (36), we find the following modifications of the Higgs self-couplings:

∆λ3h
=
λ3h
λSM3h

− 1 =
λ3h/(3v)

λ1 + λ2 cos2 β − (λ4 + λ5 sin
2 β)2/λ3 +O (ξ2)

− 1,

∆λ4h
=
λ4h
λSM4h

− 1 =
λ4h/3

λ1 + λ2 cos2 β − (λ4 + λ5 sin
2 β)2/λ3 +O (ξ2)

− 1, (124)

where the numerator in these expressions is given in eq. (123).

6.4 The Standard-Model limit

The Standard Model describes experimental data very successfully so far. Hence the simpli-
fied LET model should reduce to the Standard Model and the new physics should decouple
in some limit of parameter space. Now that we know the effects of the new particles on the
Standard-Model particles, we can make this statement more precise. In the simplified LET
model, the scale of new physics is M , above which the left-right symmetry is restored. The
effects of new physics at energy scales well below M should therefore be negligible. Hence we
define a small expansion parameter ξ ≡ v

M . We will express the new-physics effects in terms
of ξ and consider the limit ξ → 0.

Let us consider the massive gauge bosons first. Their masses are given in eqs. (26) and (29)
and can be rewritten in terms of ξ as follows:

mW =
gLv

2

(
1− ξ2

2
sin2 2β +O

(
ξ4
))

,

mW ′ =
gRv

2

(
1

ξ
+
ξ

2
+O

(
ξ3
))

,

mZ =
gLv

2 cos θW

(
1− cos4 θ′W

2
ξ2 +O

(
ξ4
))

,

mZ′ =
gRv

2 cos θ′W

(
1

ξ
+

cos4 θ′W
2

ξ +O
(
ξ3
))

. (125)

In the limit of small ξ, the new gauge bosons W ′ and Z ′ become very heavy, and we can
integrate them out. All higher-dimensional operators that arise from integrating out these
fields are suppressed by powers of their mass (that is, they are proportional to powers of ξ)
and thus vanish in the limit ξ → 0. Hence the W ′ and Z ′ decouple from the Standard-Model
fields in the small-ξ limit.

Now let us consider the scalar states. Their masses are given by eq. (36) and can be



6.5 Coupling-modification patterns 43

rewritten in terms of ξ as follows:

mh0 =v



√

λ1 + λ2 cos2 β −
(λ4 + λ5 sin

2 β)2

λ3
+O

(
ξ2
)

 ,

mH0
1
=v

√
λ5 sec 2β

2

(
1

ξ
− ξ

2

[
λ2 cos

3 2β

λ5
− λ5 sin

2 2β cos 2β

λ5 − 2λ3 cos 2β

]
+O

(
ξ3
))

,

mH0
2
=v
√
λ3

(
1

ξ
+
ξ

2

[(
λ4 + λ5 sin

2 β

λ3

)2

− λ25 sin
2 2β cos 2β

λ3(λ5 − 2λ3 cos 2β)

]
+O

(
ξ3
)
)
,

mA =v

√
λ5 sec 2β

2

(
1

ξ
− λ2 cos 2β

2λ5
ξ +O

(
ξ3
))

,

mH± =v

√
λ5 sec 2β

2

(
1

ξ
+
ξ

2
cos2 2β +O

(
ξ3
))

. (126)

In the limit of small ξ, only h0 retains a finite mass. Like the new vector bosons, all new
scalars become very heavy, so we can integrate them out. The effective operators arising in
this process are again suppressed by powers of the corresponding scalar mass (and hence ξ)
and thus vanish in the limit ξ → 0. Thus like the new gauge bosons, the new scalars decouple
from the Standard-Model fields for ξ → 0.

Now consider the Higgs-coupling modifications in eqs. (116)–(118) and (124). In the small-
ξ limit, the mixing angles αi of the CP -even scalars can be approximated by the expressions
in eq. (234). Thus we can rewrite the Higgs-coupling modifications in terms of ξ as well.
We have listed the resulting expressions in table 2. Note that all coupling modifications to
vector bosons and fermions vanish in the limit ξ → 0. Only the so far unmeasured Higgs
self-couplings have a non-decoupling modification. Hence the simplified LET model could be
put to the test by measuring these couplings.

6.5 Coupling-modification patterns

We have worked out the Higgs-coupling modifications for the simplified LET model in terms
of the underlying parameters. We would like to compare these expressions to the measured
values of the ∆x in order to constrain the parameter space. However, the coupling modifica-
tions cannot be measured with arbitrary precision, and large regions of simplified-LET-model
parameter space yield very small coupling modifications. Hence if the data do not show sig-
nificant deviations in the Higgs couplings, parts of parameter space would be excluded, but
we could not distinguish between the Standard Model and a Standard-Model-like simplified
LET model. In the case that we do find significant deviations from the SM couplings, we
can test whether these deviations are compatible with the simplified LET model, or whether
another new-physics model is preferred.

Let us consider the possible patterns in the coupling modifications of the simplified LET
model. The question of interest is which regions of parameter space lead to measurable
coupling modifications. Note that the current errors are in the 20% ballpark (see fig. 2) and
may improve after the 14 TeV run, so we are looking for coupling modifications in at least
the 10% range. Let us first consider the couplings to W , Z bosons in eq. (116). Note that
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∆W

(
−s22β +

λ2s
2
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4s4βs2βλ453 − 1
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2
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2
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2
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λ5
+ 2s2βc2βλ453 +

1
2λ

2
453
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ξ2 +O

(
ξ4
)
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2λ2c

2
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2
2β

λ5
− 2c2βc2βλ453 +

1
2λ

2
453
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ξ2 +O

(
ξ4
)

∆γ
ξ2A0(τH±)c2β

ASMλ5

(
λ1 + λ2(1 +

1
2s

2
2β) + λ5c2β −

λ4(λ4 + λ5c
2
β)

λ3
+O

(
ξ2
)
)

∆λ3h

−λ2λ3 sin2 β cos 2β
λ3(λ1 + λ2 cos2 β)− (λ4 + λ5 sin

2 β)2
+O

(
ξ2
)

∆λ4h

−λ2λ3 sin2 β cos 2β + (λ4 + λ5 sin
2 β)2

λ3(λ1 + λ2 cos2 β)− (λ4 + λ5 sin
2 β)2

+O
(
ξ2
)

Table 2: Coupling modifications of the Standard-Model-like Higgs boson h0 to the Standard-
Model particles in the limit of small ξ ≡ v/M . The last two couplings denote the modifications
of the trilinear and quartic Higgs self-couplings. We defined λ453 = (λ4 + λ5 sin

2 β)/λ3,
cx = cosx, sx = sinx for the sake of brevity. The results are given to leading order in ξ, and
we defined the constant ASM ≡ A1(τW ) +NcQ

2
tA1/2(τt) = −6.5.

the coefficients of the O
(
ξ2
)
terms cannot become larger than 1. Given the bound M > 6.2

TeV from section 5.4, we have ξ2 . 10−3. Thus the O
(
ξ2
)
contributions cannot lead to

significant deviations of the Higgs couplings. In order to find regions of parameter space
with significant coupling modifications, we can therefore approximate these modifications as

∆V ≡ ∆W,Z = cβcα1
+ sβsα1

cα2
− 1 +O

(
ξ2
)

(127)

Since the sines and cosines cannot be greater than one, a rough estimate gives

∆V ≤ cβ + sβ − 1 ≤ sβ ∼ 10−2. (128)

Thus our setup does not allow for a positive modification of the W , Z couplings larger than
about 10−2. The measurement of a significant, positive ∆W and/or ∆Z would therefore falsify
the simplified LET model. Note that the most recent fits (see fig. 2) prefer a positive ∆Z ,
although the errors are still large enough to allow a small or vanishing coupling modification.
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Therefore a more accurate measurement of ∆Z would provide a direct test of the simplified
LET model.

Another important test comes from the top-coupling modification ∆t in eq. (117). Since
β ∼ 10−2, we can use cosβ = 1−O

(
β2
)
to find

∆t = cosα1 − 1 +O
(
β2
)
≤ 0. (129)

That is, the simplified LET model does not allow for a significant positive top coupling
modification. Hence the measurement of ∆t provides another direct test of the simplified
LET model. The current data are compatible with the simplified LET model: they prefer a
negative ∆t, where the error bars allow for a vanishing coupling modification but disfavour
a positive one.

Now let us consider what coupling patterns are possible if the simplified LET model
survives these direct tests. Comparing the approximate expressions for ∆V in eq. (127) to
the expressions for ∆t, ∆b in eq. (117), we see that they are correlated:

∆V =c2β(1 + ∆t) + s2β(1 + ∆b)− 1 +O
(
ξ2
)

=c2β∆t + s2β∆b +O
(
ξ2
)
. (130)

Although ∆b is allowed to be large by the simplified LET model parameter space, a value
|∆b| > 1 would be in conflict with the measurements of the coupling modifications in fig. 2.
Hence for any scenario compatible with the SFitter constraints, we have | sin2 β∆b| . 10−4

and cos2 β ≈ 1. This implies that any measurable shift in the Higgs couplings has to satisfy

∆V = ∆t. (131)

Significant differences between the measured values of ∆W , ∆Z , and/or ∆t would therefore
falsify the simplified LET model. Note that the current data show a tension between ∆Z

and ∆t, where the former is preferred to be positive and the latter to be negative. The error
bars have a small overlap around ∆Z = ∆t = 0. Hence more accurate measurements of the
Higgs couplings would provide an important direct test of the simplified LET model.

The last question is whether a significant photon coupling modification is possible in the
simplified LET model. To this end, we consider the leading contributions to the charged-
scalar coupling λh0H+H− in eq. (119). Using the mixing angles of the charged scalars from
eq. (225), we find that the quantities in eq. (120) are given by

s13 =sinβ +O
(
ξ2
)
∼ 10−2,

c+ =− cosβ +O
(
ξ2
)
∼ −1,

c− =− (2 cos2 β − 1)ξ +O
(
ξ2
)
∼ −ξ. (132)

Thus the coupling λh0H+H− can be approximated as:

λh0H+H− =(λ1 + λ2)(cβcα1
+ sβsα1

cα2
)v
(
1 +O

(
β2
))

+
(
λ3ξ

2 + λ4 + λ5
)
sα1

sα2
M
(
1 +O

(
ξ2
))
. (133)
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Using the squared mass m2
H± = λ5M

2/2(1 + O
(
ξ2
)
) of the charged scalar, this expression

yields

vλh0H+H−

m2
H±

=
2

λ5

(
(λ1 + λ2)(cβcα1

+ sβsα1
cα2

)ξ2
(
1 +O

(
β2
) )

+ sα1
sα2

(
λ3ξ

3 + λ4ξ + λ5ξ
)(
1 +O

(
ξ2
) ))

. (134)

The numerical factor A0(τH±)/(2ASM) in the expression for ∆γ in eq. (118) is of order 10−2

for m2
H± & m2

h0 . Hence we need the above expression to be of order 10 to get a measurable
effect. However, this would require λ5 ∼ ξ2/10, which would lead to a charged Higgs that
is too light. Hence the simplified LET model does not allow for a substantial ∆γ . This is
compatible with the current SFitter bound, which centers around ∆γ = 0.

6.6 Benchmark points

The free parameter space of the simplified LET model is spanned by the scaleM and the five
scalar parameters λi. A full analysis of this parameter space and the possible signatures is
beyond the scope of this work. In order to see what features could show up in experiment, we
define a set of benchmark points that lead to distinct phenomenological features instead. To
get a feel for the possibilities, consider the approximate scalar masses given in eq. (36). The
mass of the Standard-Model-like Higgs h0 can be adjusted independently of the other ones,
by changing the values of λ1, λ2, λ4. For each benchmark point, we tune these parameters
such that mh0 = 126 GeV. Note that the leading contributions to the H0

1 , A
0, and H±

masses are all given by
√
λ5M . Hence we expect them to have similar masses, with O (v)

mass splittings. On the other hand, the scalar H0
2 has a mass proportional to

√
λ3M , which

can be tuned independently of the other scalar masses. Thus the simplified LET model
allows for different mass hierarchies or compressed spectra, depending on the magnitudes of
the parameters λ3, λ5.

For each benchmark point, we use the parameter values v = 246 GeV, β = 0.0166 as
well as the experimental values sin2 θW = 0.23126, gL = 0.65170, as in section 5.4. We also
use the best-fit value θ′W = 0.62 from that section and fix the other gauge couplings by the
identities gR = gL tan θW / sin θ′W , 2g′ = gL tan θW / cos θ′W . Additionally, we consider two
possibilities for the magnitude of the LR-symmetry-breaking scaleM : a high scaleM = 1010

GeV well outside experimental reach, and a lower scale M = 104 GeV just beyond LHC
reach, which is still allowed by the experimental constraints given in section 5. We define six
scenarios in terms of the values of the five scalar parameters λi. For each scenario, we make
sure that the constraints from vacuum stability and S-matrix unitarity (see appendix B) are
satisfied. We describe the distinct phenomenological features of these scenarios below, and
summarise the corresponding parameter values in table 3.

Note that the approximate mass expressions for the CP -even scalar masses in eq. (36)
contain some of the scalar parameters in the denominator. This means that subleading terms
in the v

M -expansion are potentially large for the benchmarks with small λ3 and/or λ5. There-
fore, we do not use these approximate expressions to calculate the scalar masses. Instead,
we insert the numerical parameter values directly into the mass matrix in Mathematica, cal-
culate its eigensystem, and then extract the masses and mixing angles. We list the resulting
particle masses in table 4.
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Benchmark point M λ1 λ2 λ3 λ4 λ5

SLH-1 1010 0.24 0.24 0.47 0.32 0.2
SLH-2 104 0.24 0.24 0.47 0.32 0.2
2HDM-1 1010 0.41 0.4 0.44 0.49 5 · 10−15

2HDM-2 104 0.41 0.4 0.44 0.49 5 · 10−3

LF-1 1010 0.133 0.13 2 · 10−15 1 · 10−12 3 · 10−7

LF-2 104 0.14 0.14 2 · 10−3 5.5 · 10−3 0.6
Compressed-1 1010 0.133 0.13 1.1 · 10−15 1 · 10−12 5 · 10−15

Compressed-2 104 0.15 0.14 1.1 · 10−3 5.2 · 10−3 5 · 10−3

VLF-1 1010 0.133 0.13 1 · 10−20 1 · 10−14 2 · 10−8

VLF-2 104 0.13 0.13 4.5 · 10−7 4 · 10−5 0.7
Twin-1 1010 0.13 0.133 1.58 · 10−16 1 · 10−16 1 · 10−10

Twin-2 104 0.131 0.131 1.59 · 10−4 1 · 10−5 0.1

Table 3: Definitions of the benchmark points in terms of the scalar potential parameters
λi and the LR-symmetry-breaking scale M , given in GeV. For each benchmark point, the
parameter values v = 246 GeV, β = 0.0166, sin2 θW = 0.23126, gL = 0.65170, θ′W = 0.62,
gR = gL tan θW / sin θ′W , 2g′ = gL tan θW / cos θ′W are kept fixed. We refer to the text for a
description of the phenomenological features of each benchmark point.

Single large hierarchy If the scalar parameters λ3 and λ5 are not too small, then all new
scalars H0

1 , H
0
2 , A

0, H± obtain masses of order M , well beyond experimental reach. An
additional hierarchy between H0

1 , A
0, H± on one side and H0

2 on the other side is possible
depending on the relative size of λ3 and λ5. However, since all these particles would be
well beyond experimental reach, these additional possibilities are of little phenomenological
interest. We denote the benchmark points for a Single Large Hierarchy by SLH-1 (M = 1010

GeV) and SLH-2 (M = 104 GeV). The scalar gauge eigenstates barely mix: h0 is almost
purely h01,11-like, H

0
1 is almost purely h01,22-like, andH

0
2 is almost purely h0R-like, with mixings

smaller than 10−3.

2HDM-like hierarchy For λ5 ∼ O
(
v2/M2

)
, the scalars H0

1 , A
0, H± all have O (v)

masses. If λ3 remains sizeable, only the fermiophobic H0
2 would have a mass outside of

experimental reach. That is, only the 2HDM-like particles (see section 4.1) could be observed
at the LHC. Hence we denote these benchmark points by 2HDM-1 and 2HDM-2. We choose
the parameters such that the masses of the 2HDM-like particles lie in the O (100 GeV) range.
Note that H0

1 , A
0 have roughly equal masses, slightly below mH± , as we would expect from

the scalar mass expressions in eq. (36). As in the SLH-1 and SLH-2 benchmarks, scalar
mixings are smaller than 10−3.

Light fermiophobic Higgs We also consider the reverse of the 2HDM-like hierarchy: if
λ5 is sizeable but λ3 ∼ O

(
v2/M2

)
, the fermiophobic state H0

2 can be made light enough to
be within experimental reach. On the other hand, the states H0

1 , A
0, H± would be out of

experimental reach. Note that other models allow for the existence of a light fermiophobic
as well, such as the type-I 2HDM and models with SU(2)L-triplet Higgs fields [93, 94, 95]
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Benchmark point mH0
1

mA0 mH± mH0
2

SLH-1 3.2 · 109 3.2 · 109 3.2 · 109 6.9 · 109
SLH-2 3.2 · 103 3.2 · 103 3.2 · 103 6.9 · 103
2HDM-1 488 488 500 6.6 · 109
2HDM-2 488 488 500 6.6 · 103
LF-1 3.9 · 106 3.9 · 106 3.9 · 106 447
LF-2 5.5 · 103 5.5 · 103 5.5 · 103 448
Compressed-1 496 496 500 332
Compressed-2 496 496 500 334
VLF-1 1.0 · 106 1.0 · 106 1.0 · 106 1.0
VLF-2 5.9 · 103 5.9 · 103 5.9 · 103 0.9
Twin-1 7.1 · 104 7.1 · 104 7.1 · 104 126
Twin-2 2.2 · 103 2.2 · 103 2.2 · 103 126

Table 4: Scalar masses for the benchmark points defined in table 3. All masses are given
in GeV. The mass of the Standard-Model-like Higgs h0 has been tuned to 126 GeV in each
case.

(we discuss such fermiophobic Higgses in more detail in section 7.2). However, in those
scenarios the light Higgs h0 is fermiophobic, whereas the benchmark scenario we consider
has a fermiophobic light Higgs in addition to the Standard-Model-like Higgs.

We choose the parameters such that mH0
2
lies in the O (100 GeV) range. Note that the

expression for m2
h0 in eq. (36) contains the term −v2(λ4 + λ5 sin

2 β)2/λ3. Since the small
parameter λ3 appears in the denominator, we have to choose λ4, λ5 sufficiently small to
ensure that this expression remains positive. This means that the masses of H0

1 , A
0, H± lie

well below M . We denote the benchmark points with a Light Fermiophobic Higgs by LF-1
and LF-2. For both benchmarks, mixing is below the percent level.

Compressed spectrum A combination of the previous two benchmarks is also possible:
if both λ3 and λ5 are sufficiently small, all new scalars could be within the O (100 GeV)
range. That is, the scalar spectrum does not contain any large hierarchies and is instead
compressed. We denote the corresponding benchmarks by Compressed-1 and Compressed-2.
The mixings for Compressed-1 are smaller than 10−3, whereas the Compressed-2 benchmark
gives a 2% mixing of h01,11 and h0R.

Very light fermiophobic Higgs We also consider a special case of the scenario with a
light fermiophobic Higgs particle. Since the mass of H0

2 can be tweaked independently of the
other scalar masses by the choice of λ3, we could make it even lighter than the Standard-
Model-like Higgs h0. Such a scenario is not necessarily ruled out by experiment, since H0

2

does not decay into fermions. This means that a very light H0
2 (mH0

2
∼ O (1 GeV)) would

only decay into pairs of photons. If the signal strength for its decay is low enough, it could
have escaped detection so far. The experimental constraints on this scenario are given in
section 7.2. We denote the benchmarks for a Very Light Fermiophobic Higgs by VLF-1 and
VLF-2. All scalar mixings of these benchmarks are below 10−3.
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Twin Higgs scenario Another interesting special case of the scenario with a light fermi-
ophobic Higgs particle is when h0 and H0

2 are approximately degenerate, i.e. if their mass
difference is less than their widths. In that case, both h0 and H0

2 would contribute to the
signal strength used for the Higgs discovery, leading to a ‘twin Higgs’6 [98, 99]. The latter
state does not decay to fermions, hence the measured Higgs couplings would deviate from
their Standard-Model values.

For these benchmarks, we tweak the parameters such that mh0 = mH0
2
= 126 GeV. We

denote these benchmarks by Twin-1 and Twin-2. Scalar mixings are again small for Twin-1,
but mixing among the h01,11 and h0R states is large for Twin-2: the SM-like Higgs h0 is 62%
h01,11 and 38% h0R, whereas the fermiophobic Higgs H0

2 is 38% h01,11 and 62% h0R. The mixing
with h01,22 is negligible.

6.7 Parameter constraints from coupling modifications

We give the numerical values for the coupling modifications for all benchmark points in
tables 5 and 6. As we mentioned in the previous section, we have to be careful with the
benchmarks where some of the scalar parameters are very small, because they appear in
some of the denominators of the approximate expressions for the masses and mixing angles.
Therefore we have calculated all mixing angles numerically and inserted these into the coup-
ling modifications in eqs. (116)–(118) and (124).

For the benchmark points SLH-1 and SLH-2, all modifications of couplings to vector
bosons and fermions are at most of the permille level. Hence these modifications will not be
measurable at the LHC. Interestingly, the modification of the quartic Higgs self-coupling is
as large as 83%, whereas the trilinear coupling is not modified. Thus if we could measure
both Higgs self-couplings, a simplified LET model with a large hierarchy would distinguish
itself from the Standard Model by the strength of only the quartic Higgs self-coupling, even
if the LR-symmetry-breaking scale M is very large.

For the benchmark points 2HDM-1 and 2HDM-2, there is an 11% increase of the Higgs
coupling to b quarks. Such a substantial modification is to be expected from the approxima-
tions in table 2: the main contribution to ∆b in this scenario is proportional to ξ2/λ5 ∼ 0.1.
The same is true for ∆t, but the corresponding term is suppressed by a factor sin2 β ∼ 10−4,
making this coupling modification small. The W , Z coupling modifications also contain a
term proportional to ξ2/λ5, but it is suppressed by sin2 4β ∼ 10−3. Hence the 2HDM-like
hierarchy is characterised by an increase in only the b coupling. Moreover, the quartic Higgs
self-coupling is enhanced by a factor 3, whereas the trilinear self-coupling hardly changes.

The LF-1 and LF-2 benchmarks all show very small coupling modifications, at or below
the percent level. Hence these scenarios would not be distinguishable from the Standard
Model via the Higgs-coupling modifications. These scenarios would be characterised by the
discovery of a scalar with a mass in the 100 GeV range decaying only into bosons.

The Compressed-1 and Compressed-2 benchmarks both lead to coupling modifications of
at most a few percent. Hence these scenarios would not show themselves via the coupling

6Our use of the term ‘twin Higgs’ is not to be confused with ‘twin Higgs models’ in the literature. In those
models, each Standard-Model particle has a corresponding particle that transforms under a mirror copy of
the SM gauge group (see e.g. refs. [96, 97]). The copies are related by a Z2 symmetry called ‘twin parity’,
and the twin Higgs is the partner of the Standard-Model Higgs.
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Benchmark point ∆W ∆Z ∆t ∆b

SLH-1 −1.4 · 10−16 0.0 −1.4 · 10−16 0.0
SLH-2 −1.4 · 10−4 −4.1 · 10−4 −1.4 · 10−4 2.1 · 10−3

2HDM-1 −1.6 · 10−6 −1.6 · 10−6 −3.2 · 10−5 0.11
2HDM-2 −3.8 · 10−4 −6.4 · 10−4 −4.1 · 10−4 0.11
LF-1 −6.2 · 10−7 −6.2 · 10−7 −6.2 · 10−7 −6.2 · 10−7

LF-2 −2.9 · 10−3 −3.1 · 10−3 −2.9 · 10−3 1.1 · 10−3

Compressed-1 −1.6 · 10−7 −1.6 · 10−7 −9.6 · 10−6 3.4 · 10−2

Compressed-2 −9.1 · 10−3 −9.4 · 10−3 −9.1 · 10−3 3.5 · 10−2

VLF-1 −3.6 · 10−7 −3.6 · 10−7 −3.6 · 10−7 −3.6 · 10−7

VLF-2 −6.6 · 10−4 −9.3 · 10−4 −6.6 · 10−4 −2.2 · 10−3

Twin-1 −1.9 · 10−7 −1.9 · 10−7 −1.9 · 10−7 1.4 · 10−6

Twin-2 -0.21 -0.21 -0.21 -0.18

Table 5: Numerical results for the Higgs-coupling modifications of tree-level couplings for the
benchmark points defined in table 3.

Benchmark point ∆γ ∆λ3h
∆λ4h

SLH-1 −5.0 · 10−17 0.0 0.83
SLH-2 −5.0 · 10−5 −4.2 · 10−4 0.83
2HDM-1 −1.7 · 10−3 −9.7 · 10−5 2.1
2HDM-2 −1.6 · 10−3 −1.2 · 10−3 2.1
LF-1 −2.6 · 10−11 −1.9 · 10−6 1.2 · 10−5

LF-2 5.1 · 10−5 −8.6 · 10−3 5.5 · 10−2

Compressed-1 −1.6 · 10−3 −9.6 · 10−6 −1.4 · 10−5

Compressed-2 −1.5 · 10−3 −2.7 · 10−2 7.1 · 10−2

VLF-1 −4.1 · 10−10 −1.1 · 10−6 −2.2 · 10−6

VLF-2 −8.8 · 10−5 −2.0 · 10−3 −4.0 · 10−3

Twin-1 −8.1 · 10−8 −5.6 · 10−7 −7.5 · 10−7

Twin-2 6.9 · 10−4 −0.52 −0.61

Table 6: Numerical results for the Higgs-coupling modifications of the loop-induced photon
coupling and the Higgs self-couplings for the benchmark points defined in table 3.
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modifications. However, in these scenarios there should be several new scalar states in the
range of a few hundred GeV, possibly allowing detection at the LHC.

The VLF-1 and VLF-2 benchmarks have small coupling modifications as well, at most at
the permille level. Moreover, a light fermiophobic particle with a mass of 1 GeV would be
hard to detect. Hence these scenarios would be indistinguishable from the Standard Model.

The Twin-1 benchmark has very small deviations from the Standard-Model couplings.
However, the Twin-2 benchmark shows significant modifications: all tree-level couplings are
about 20% weaker than in the Standard Model. Moreover, both the trilinear and quartic
Higgs self-couplings are diminished by 50-60%. Currently, the errors on the Higgs couplings
are still large enough to allow a 20% deviation (see fig. 2). If the errors can be reduced after
the 14 TeV run, the Twin-2 benchmark can be put to the test.

Note that all benchmark points satisfy ∆W ≈ ∆Z ≈ ∆t as required by eq. (131), and
that ∆γ is very small as we argued at the end of section 6.5. The current errors on the
Higgs couplings in fig. 2 are still too large to exclude any of the above scenarios. However,
the twin-Higgs scenario with a low LR-breaking scale could clearly be excluded when the
uncertainties shrink. A diminished bottom coupling with unmodified couplings to other
fermions and vector bosons would point in the direction of a 2HDM-like setup, regardless of
the magnitude ofM . A more interesting scenario is if the Higgs self-couplings can be probed:
this would mean that even the single-large-hierarchy scenario can be tested.



52 7 BOUNDS ON NEW SCALARS

7 Bounds on new scalars

In the last section, we focused on the properties of the Standard-Model-like Higgs boson. We
considered which scenarios could be distinguished from the Standard-Model in experiment
and which ones are very Standard-Model-like, looking only at the couplings of h0. However,
the simplified LET model also predicts the existence of additional scalar states. The obser-
vation of a new scalar would be unambiguous proof of physics beyond the Standard Model.
Therefore, it is important to know whether we could observe the new scalar states predicted
by the simplified LET model, and how. This means that we need to study their production
cross-sections as well as their branching ratios into Standard-Model particles.

As we have seen in section 4.2, the simplified LET model resembles a type-II 2HDM
setup. However, it contains additional physics beyond the Standard Model in the form of
an additional gauge group factor SU(2)R and an SU(2)R-doublet scalar field. The 2HDM
has been studied extensively, so many bounds on the simplified LET model can be drawn
from the literature. Before we can do this, we must know to what extent the non-2HDM
physics modifies the 2HDM setup. In this section, we start with an analysis of the sources
that couple this new physics to the Standard-Model fields. Then we consider the available
bounds on the new scalars, and see to what extent they apply to the simplified LET model.
We look at the production and decay channels that are relevant to discovery, and consider a
few benchmark examples. We look for benchmarks that lead to signatures clearly different
from the type-II 2HDM, and comment on the prospects for discovery in these scenarios.

7.1 Couplings to the SM fields

As we have shown in section 4.2, the simplified LET model looks like a type-II 2HDM
with additional constraints on the scalar-potential parameters and the vev ratio tanβ. The
simplified LET model distinguishes itself from the type-II 2HDM through the presence of
three additional gauge bosons and one additional CP -even scalar state. Moreover, the scalar
field ΦR is fermiophobic, which leads to the possibility of fermiophobic scalar particles. We
are looking for phenomenological scenarios that, if realised in nature, would clearly distinguish
the simplified LET model from the Standard Model and the type-II 2HDM. We have already
encountered examples of these scenarios in the previous section: a light fermiophobic Higgs
with mass in the O (100 GeV) range, a very light fermiophobic scalar with a mass in the
O (1 GeV) range, and a twin Higgs at 126 GeV. Another interesting possibility would be a
scenario with fermiophobic charged scalars.

Let us see what possibilities can be accommodated in the simplified LET model, and in
which regions of parameter space these scenarios manifest themselves. Then we can figure
out how these scenarios would manifest themselves in experiment. Without the right-handed
doublet ΦR, the simplified LET model is a type-II 2HDM with constraints on the parameters
and a fixed tanβ (see section 4.2). The field ΦR does not couple to fermions, hence it can only
affect the 2HDM-like fields through its couplings to vector bosons and scalars. This implies
that we can identify three sources through which the non-2HDM physics could couple to the
Standard-Model fields:

• W − W ′ mixing. The field ΦR is an SU(2)L singlet, so it does not couple to the
gauge eigenstates W±

L . However, it does couple to W±
R . The physical W± bosons are

mixtures of the gauge eigenstates W±
L and W±

R . Hence the components of ΦR couple
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to the W bosons through this mixing. According to eq. (25), the size of the W −W ′

mixing angle ζ is set by ξ2, which we found to be of order 10−4 using the experimental
bounds reviewed in section 5. Therefore, this mixing will not lead to a significant
coupling of ΦR to the Standard-Model fields.

• Z−Z ′ mixing. The neutral gauge bosons are mixtures ofW 3
L,W

3
R, andB. At the scale

M where the left-right symmetry is broken, the latter two states mix into a massless
hypercharge gauge boson BY and a massive Z̃ ′ (see appendix A). The massless W 3

L,

BY can be rotated into the states A, Z̃ by the Weinberg angle, in analogy to eq. (106).

After electroweak symmetry breaking, the Z̃ boson becomes massive. The states Z̃,
Z̃ ′ have the same gauge quantum numbers and are therefore mixed into the physical
states Z, Z ′ by a rotation over the Z − Z ′ mixing angle η. The neutral component of
ΦR is an U(1)Y and SU(2)L singlet, so it couples to neither BY nor Z̃, but it does

couple to Z̃ ′.7 This means that Z − Z ′ mixing is another source through which ΦR

couples to the Standard Model. However, the Z − Z ′ mixing angle η is of order ξ2

(see eq. (28)), which we found to be small using the experimental bounds reviewed in
section 5. Hence the resulting coupling is not significant either.

• Scalar mixing. The mixing among the CP -even scalars depends on the scalar-
potential parameters λi. If all of them have similar magnitudes, then this mixing
is small (see eq. (234)) because of the hierarchy v ≪ M in the mass matrix. Hence
in most of the parameter space, the non-2HDM neutral scalar H0

2 is almost 100% h0R-
like (see eqs. (220) and (234)), in which case it has no significant couplings to the
Standard-Model fields. However, in some regions of parameter space, this mixing be-
comes substantial (see e.g. the Twin-2 benchmark point). Through this mixing, H0

2 is
allowed to couple to the SM particles.

Hence the non-2HDM physics only couples to the Standard-Model fields if the mixing among
the CP -even scalars is substantial. Therefore scenarios with large scalar mixing are the most
interesting when we determine whether the simplified LET model could be tested experi-
mentally.

7.2 Light fermiophobic Higgs particles

Fermiophobic Higgs particles are not unique to the simplified LET model (see e.g. ref. [93]).
For example, from eq. (49) it follows that in a type-I 2HDM (in which the fermions couple
only to h02) the Standard-Model-like scalar h0 does not couple to fermions if the CP -even
mixing angle α2HDM equals π/2 [93]. Fermiophobic Higgs particles also appear in models with
SU(2)L-triplet Higgs fields [94, 95]. Note that fermiophobic Higgs particles are incompatible
with the type-II 2HDM: the up- and down-type fermions couple to different Higgs doublets,
and therefore eq. (49) tells us that h0 couples to at least one type of fermions. Hence the
discovery of a fermiophobic Higgs would have important consequences: apart from indicating
the existence of physics beyond the Standard Model, it would rule out the type-II 2HDM,
and more specifically the MSSM. Searches for a fermiophobic Higgs boson have already been
performed at particle colliders, and bounds on its mass are readily available in the literature
[31].

7The charged component of ΦR becomes the Goldstone mode that gives mass to the Z′ boson, see eqs. (220)
and (225).
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The signatures of a fermiophobic Higgs are different from those of a Higgs with Standard-
Model couplings [93]. In the Standard Model, the Higgs coupling to a particleX is determined
by the mass mX (see section 6.1). That is, the Higgs decays the most often to the heaviest
particles that are kinematically accessible. It also means that the tree-level coupling to
photons is zero, and the Higgs can only decay to a pair of photons through loop diagrams
involving massive charged particles. The main contributions to this decay come from a top-
quark loop and a W -boson loop (see appendix F), which interfere negatively. Due to this
loop-suppression and the negative interference, the branching ratio of the decay h → γγ
is below a percent [100]. The picture is different for a fermiophobic Higgs. Such a particle
cannot decay into fermions at tree-level. If the couplings to vector bosons are the same
as for the Standard-Model Higgs, the branching ratios into WW , ZZ, and γγ are therefore
enhanced with respect to the Standard Model. Moreover, since the decay into photons is only
mediated by W bosons, there is no negative interference from the top-quark loop anymore,
so that the photon decay rate is enhanced even further. For a fermiophobic Higgs with a
mass of 120 GeV, the branching ratio into photons is enhanced by an order of magnitude
[101].

Another consequence of the absence of tree-level couplings to fermions is a reduced pro-
duction cross-section: gluon fusion, which occurs through a top-quark loop, is turned off.
Hence a fermiophobic Higgs can only be produced through vector-boson fusion or associated
production with a vector boson [93]. For fermiophobic Higgses with a mass below 120 GeV,
the increased branching ratio into photons more than compensates for the diminished pro-
duction cross-section, leading to an increased signal strength. The signal strength decreases
for larger Higgs masses [101]. This makes the diphoton channel an attractive search channel
for light fermiophobic Higgses. Note that these results do not hold any more if the Higgs
couplings to W , Z bosons are modified with respect to the Standard Model as well.

7.2.1 Experimental bounds

The four LEP experiments [102, 103, 104, 105] have searched for fermiophobic Higgs particles
in the Higgs-strahlung process e+e− → hZ0, where the Higgs boson decays into two photons.
Upper limits on σ(e+e− → hZ)×BR(H → γγ) were derived as a function of the Higgs mass.
Mass bounds on the fermiophobic Higgs were derived under the assumption that it has the
same cross sections as the SM Higgs. The strongest LEP limit comes from DELPHI [102]:

mH0
2
> 107 GeV. (SM cross sections) (135)

The other collaborations found lower limits of 105.4 GeV (ALEPH [103] as well as L3 [104])
and 105.5 GeV (OPAL [105]). However, the cuts on the energy of the photon pair in these
analyses make these searches insensitive to fermiophobic Higgs particles with masses below
10 GeV.

More recent searches at the LHC extend the LEP bounds. Both ATLAS and CMS
have searched for fermiophobic Higgs particles produced in either vector-boson fusion or
VH associated production and decaying into a pair of photons. The searches have been
performed in the mass range 110-150 GeV. A fermiophobic Higgs was excluded at 95% C.L.
by ATLAS for the mass ranges 110.0-118.0 GeV and 119.5-121.0 GeV [101]. CMS excluded a
fermiophobic Higgs in the mass range 110-147 GeV [106]. Combined with the LEP exclusion
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limits, these exclusion limits result in the mass bound

mH0
2
> 147 GeV. (SM cross sections) (136)

Additionally, CMS has explored the mass range 110-300 GeV by combining results for the
γγ, WW , and ZZ decay channels. A fermiophobic Higgs boson was excluded at 95% C.L.
in the mass range 110-194 GeV [107]. Thus combined with the previous limits, we have the
following lower bound on the mass of the fermiophobic Higgs:

mH0
2
> 194 GeV. (SM cross sections) (137)

7.2.2 Simplified-LET-model limits

In order to see to what extent these mass bounds apply to the fermiophobic Higgs of the
simplified LET model, we need to check whether the assumptions made in these searches are
valid. To this end, we need to examine the couplings of H0

2 to the Standard-Model particles.
As we argued in section 7.1, the only possible source of significant couplings of H0

2 to the
Standard Model is scalar mixing. We neglect O (ξ) corrections in the following, i.e. we set
ζ = η = 0.

We define the coupling gH0
2xx

of H0
2 to a Standard-Model particle x as the coefficient

of the operator H0
2xx in the Lagrangian. Using the corresponding Standard-Model coupling

gSMh0xx as a normalisation, we define the coupling modifications ∆FP
x of the fermiophobic Higgs

in analogy to eq. (112):

1 + ∆FP
x ≡

gH0
2
xx

gSMh0xx

. (138)

The Feynman rules for the tree-level couplings of H0
2 to the Standard-Model vector bosons

and fermions are given in appendix G. These give us:

1 + ∆FP
W =cβsα1

sα3
− sβ(cα1

cα2
sα3

+ sα2
cα3

) +O (ξ) ,

1 + ∆FP
Z =cβsα1

sα3
− sβ(cα1

cα2
sα3

+ sα2
cα3

) +O (ξ) ,

1 + ∆FP
t =

sα1
sα3

cβ
,

1 + ∆FP
b =

cα1
cα2

sα3
+ sα2

cα3

sβ
. (139)

We are only interested in cases where these couplings become substantial, which means we
can neglect the terms proportional to sβ in the W and Z coupling modifications. Since
cβ ≈ 1, the couplings of H0

2 to W , Z, t are all roughly scaled by sα1
sα3

with respect to the
coupling of the Standard-Model Higgs. Looking at the scalar mass eigenstates in eq. (220),
we see that this factor only becomes substantial if there is substantial mixing between the
gauge eigenstates h01,11 and h0R. Of all our benchmark points in section 6.6, this is only the
case in the Twin-2 benchmark. On the other hand, the coupling to b is of order ξ unless there
is significant mixing between h01,22 and h0R. This is not the case in any of the benchmark
points. Note that the main contributions to the loop-induced coupling of H0

2 to photons
(given by eq. (298), substituting H0

2 for h0) are given by the W and top loops.8 Hence gH0
2γγ

8The W ′ boson does not contribute significantly to this coupling: its contribution is proportional to
gH0

2W
′W ′/m2

W ′ ∼ 1/M and is therefore suppressed by a factor ξ with respect to the W contribution.
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scales with sα1
sα3

as well. The same is true for the effective gluon coupling, since its main
contribution comes from the top-quark loop.

In most of the parameter space, the mixing between h01,11 and h0R is negligible. In those
cases, the couplings ofH0

2 to the Standard-Model vector bosons are suppressed by sα1
sα3
≪ 1.

However, the searches quoted in the previous section all assume that the fermiophobic Higgs
has Standard-Model couplings to all bosons. Hence for most of the simplified-LET-model
parameter space, the bounds on the mass of the fermiophobic Higgs are evaded trivially.

The situation is different for the benchmark point Twin-2. In this scenario, both h0

and H0
2 contribute to the signal strength of the resonance at 126 GeV. The signal strength

µx(S
0) (for S0 = h0, H0

2 ) of a particular decay channel S0 → xx is defined as the observed
cross section times branching ratio at a given Higgs mass, normalised by the Standard-Model
value:

µx(S
0) =

σ ×BR(S0 → xx)obs
σ ×BR(h0 → xx)SM

. (140)

A deviation from unity could indicate the presence of new physics. The Higgs signal strength
in each channel has been measured at the LHC and can be found in refs. [108] (ATLAS) and
[2, 109] (CMS). The signal strength in the diphoton channel lies more than one standard
deviation from the Standard-Model value. This may be a statistical fluctuation, but could
also be explained by new physics, such as a fermiophobic Higgs boson accompanying the
Standard-Model like Higgs, leading to an enhanced diphoton decay rate. In order to compare
the Twin-2 benchmark to these experimental results, we have to consider the change in
production cross section as well as the branching ratios for both h0 and H0

2 . Then we need
to add the signal strengths coming from both states. In order to estimate the magnitude of
the deviations from their Standard-Model values, we neglect loop corrections in the following
discussion.

At the LHC, the Higgs can be produced in vector-boson fusion, VH associated production,
gluon fusion, and production in association with tt̄ pairs [110]. The former two processes are
proportional to the Higgs coupling to vector bosons, whereas the latter two scale with the
top coupling (the main contribution to gluon fusion) comes from a top-quark loop). Recall
from section 6.5 that for h0, we have ∆1 ≡ ∆W = ∆Z = ∆t = cα1

− 1 (neglecting O
(
ξ2
)

corrections and using cβ ≈ 1). Hence as a tree-level approximation we have

σ(pp→ h0)

σ(pp→ h0)SM
= c2α1

. (141)

Similarly, eq. (139) tells us that ∆FB
1 ≡ ∆FB

W = ∆FB
Z = ∆FB

t = sα1
sα3
− 1, plus O

(
ξ2
)
and

O
(
β2
)
corrections. Hence at tree level we have

σ(pp→ H0
2 )

σ(pp→ h0)SM
= (sα1

sα3
)2. (142)

As for the branching ratios, we only take into account the decay channels listed in table 7;
all other channels have negligibly small branching ratios. The given Standard-Model values
were calculated with HDecay [100] using mh = 126 GeV. We estimate the corresponding
branching ratios of the simplified LET model using the Higgs-coupling modifications.

Recall that the LET model does not give a correct description of the masses of the
lightest two generations of down-quarks nor the leptons (see appendix D.3). The description
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of their masses and mixings requires an extension of the Yukawa sector. That means that we
currently do not have a good expression for the Yukawa couplings to these fermions. More
specifically, we need to make assumptions about the τ Yukawa coupling in order to calculate
the relevant branching ratios of the simplified LET model. To this end, we note that the
b-coupling modifications in eqs. (117) and (139) are determined by the mixings and the vev
of h01,22. This field component couples in the same way to b and τ (see eq. (42)). Neglecting
contributions to the coupling modification from any extensions of the Yukawa sector, we
assume that ∆τ = ∆b ≡ ∆2 and ∆FP

τ = ∆FP
b ≡ ∆FP

2 .
Now we are ready to calculate the branching ratios of the simplified LET model. Note

that the partial decay widths for the h0 and H0
2 decays into WW , ZZ, gg, γγ, and cc all

scale with respectively (1+∆1)
2 and (1+∆FP

1 )2. Similarly, the partial decay widths for the
bb and ττ decay channels for h0 and H0

2 scale with respectively (1 + ∆2)
2 and (1 + ∆FP

2 )2.
Thus the branching ratios for the simplified LET model are given by

BR(h0 → xx) =
Γ(h0 → xx)∑

y1
Γ(h0 → y1y1) +

∑
y2

Γ(h0 → y2y2)

=
(1 + ∆x)

2Γ(h0 → xx)SM
(1 + ∆1)2

∑
y1

Γ(h0 → y1y1)SM + (1 +∆2)2
∑

y2
Γ(h0 → y2y2)SM

=
(1 +∆x)

2BR(h0 → xx)SM
(1 + ∆1)2

∑
y1
BR(h0 → y1y1)SM + (1 +∆2)2

∑
y2
BR(h0 → y2y2)SM

.

(143)

Here the sums run over y1 = W,Z, g, γ, c and y2 = b, τ . The corresponding expression for
BR(H0

2 → xx) is obtained by substituting each ∆x by ∆FP
x . Recall from table 5 that the

Higgs-coupling modifications of the Twin-2 benchmark are given by

1 + ∆1 = 0.79, 1 + ∆2 = 0.82. (144)

For the Twin-2 benchmark, the coupling modifications for H0
2 are given by

1 + ∆FB
1 = 0.62, 1 + ∆FB

2 = −0.58. (145)

The resulting branching ratios for h0 and H0
2 are listed in table 7.

The total signal strength is given by the sum of the contributions from h0 and H0
2 .

Combining eqs. (141)–(143), we find

µx,tot =µx(h
0) + µx(H

0
2 )

=
c2α1

(1 + ∆x)
2

(1 + ∆1)2
∑

y1
BR(h0 → y1y1)SM + (1 +∆2)2

∑
y2
BR(h0 → y2y2)SM

+
(sα1

sα3
)2(1 + ∆FP

x )2

(1 + ∆FP
1 )2

∑
y1
BR(h0 → y1y1)SM + (1 +∆FP

2 )2
∑

y2
BR(h0 → y2y2)SM

. (146)

The numerical values have been summarised in table 7. Note that none of the decay channels
has a total signal strength that deviates significantly from 1. In particular, there is no
enhancement in the diphoton channel, which would be the case for the fermiophobic scenarios
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WW ZZ gg γγ cc bb ττ

BR(h0 → xx)SM 0.216 0.027 0.077 0.002 0.026 0.594 0.057

BR(h0 → xx)LET 0.206 0.026 0.073 0.002 0.025 0.610 0.059
BR(H0

2 → xx)LET 0.235 0.029 0.084 0.002 0.028 0.566 0.054

µx(h
0) 0.59 0.59 0.59 0.59 0.59 0.64 0.64

µx(H
0
2 ) 0.41 0.41 0.41 0.41 0.41 0.36 0.36

µx(h
0) + µx(H

0
2 ) 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 7: Branching ratios and signal strengths of the various h0 and H0
2 decays in the Twin-2

benchmark. The Standard-Model values of the branching ratios were calculated with HDecay
[100] formh = 126 GeV. We neglect the branching ratios for the µµ, ss, tt, Zγ decay channels.
We refer to the text for details on the approximation of the branching ratios.

usually considered in the literature. In order to see whether one could distinguish the twin-
Higgs scenario of the simplified LET model from the Standard Model, an analysis of the
loop corrections to these signal strengths is necessary. This is beyond the scope of this
work. However, the lack of any change in the signal strengths is not surprising. In most
of the parameter space, h0 is a Standard-Model-like scalar with negligible deviations from
the Standard-Model couplings, whereas H0

2 is a fermiophobic Standard-Model singlet. The
latter can only couple significantly to the Standard Model through mixing with the other
scalars. In case of significant h0 −H0

2 mixing, there is therefore no additional contribution
to the signal strength, but rather the Standard-Model contributions to the signal strength
are divided among the two scalars. This scenario is different from fermiophobic scenarios in
the literature, in which there is a single, fermiophobic Higgs state that is simply assumed to
have couplings different from the Standard-Model Higgs.

Note that the situation may change in the complete LET model, in which there is a second
fermiophobic bidoublet Φ2. Since its vevs are of order v, we expect that there are scenarios
in which the components of Φ1 and Φ2 mix significantly, and could produce a twin Higgs at
126 GeV. However, Φ2 does have its own couplings to the Standard-Model fields, since it is
an SU(2)L-antidoublet. This means that the couplings of the twin state to vector bosons
would change. We explore this possibility in section 8.

To summarise, the properties of the fermiophobic Higgs boson as assumed in direct
searches do not hold in the simplified LET model. In most of the parameter space, the
couplings of H0

2 to the Standard-Model particles are strongly suppressed. An exception is
the Twin-2 benchmark, in which there is significant mixing between h01,11 and h0R. However,
the fermiophobic Higgs in this scenario is very different from the fermiophobic Higgs usually
assumed in direct searches: because of the large mixing, the twin state does actually couple
to fermions. Both h0 and H0

2 contribute to the signal strengths used for the Higgs discovery.
However, the total signal strength is not affected significantly.

7.3 Charged Higgses

Charged scalar particles are a general feature of 2HDMs, and supersymmetric models in
particular (see section 4.1 and the references therein). They also appear in models with
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SU(2)L-triplet Higgs fields [94, 95]. Since the Standard Model does not contain any charged
scalar particles, the observation of such a particle would be a clear sign of physics beyond the
Standard Model. Therefore charged scalars have been the subject of various collider searches,
and limits on their masses are readily available in the literature [31].

In LEP searches, the charged Higgses are assumed to be pair-produced in the process
e+e− → H+H− [111]. In the currently available LHC searches, the charged Higgs is assumed
to be produced in tt̄ events, where the top decays as t → H+b and the antitop decays as
t̄ → b̄W− [112, 113, 114]. In all searches it is assumed that BR(H+ → τ+ν) + BR(H+ →
cs̄) = 1, which is valid as long as tanβ2HDM is larger than a few units [111].

In some 2HDM scenarios, the charged scalars can become fermiophobic. An example is
the inert 2HDM [35, 115], in which a Z2 symmetry is postulated under which the Standard-
Model fields and φ1 are even but φ2 is odd. Such a symmetry forbids linear interactions
of φ2 with the SM fields, thus making the second doublet inert. The Z2 symmetry implies
that 〈φ2〉 = 0, hence β2HDM = 0, so that H± is the unmixed charged component of the
fermiophobic φ2 (see eq. (47)). Fermiophobic charged scalars can also occur in the type-I
2HDM: all couplings of H± to fermions are then suppressed by tanβ2HDM, which makes the
charged scalars fermiophobic for tanβ2HDM ≫ 1 [32].

Note that if the charged scalars are fermiophobic, the bounds from direct searches are
evaded trivially. In that case, other production and decay channels need to be considered.
This has been done for relatively light charged scalars (mW ≤ mH± ≤ mW +mZ) in ref. [116].
It was found that the loop-induced decay H+ → W+γ becomes very relevant in this case.
The most important production channels were found to be associated production with either
a neutral scalar or a charged W .

7.3.1 Experimental bounds

The four LEP collaborations have searched for pair-produced charged scalars in the frame-
work of 2HDMs. The various search channels of all four collaborations have recently been
statistically combined, and the results have been interpreted in terms of a type-I or type-II
2HDM [111]. It is assumed that BR(H+ → τ+ντ ) + BR(H+ → cs̄) = 1, i.e. the charged
Higgs decays as either H+ → τ+ντ or H+ → cs̄. The combined data result in the following
lower bound at 95% C.L.:

mH± > 80 GeV. (type-II 2HDM) (147)

This bound holds for any value of BR(H+ → τ+ντ ) between 0 and 1. Stronger bounds are
given for two limiting cases: for BR(H+ → τ+ντ ) = 0, a charged Higgs is excluded for mH±

below 80.5 GeV and in the interval between 83 and 88 GeV. For BR(H+ → τ+ντ ) = 1, the
lower bound mH± > 94 GeV is given.

ATLAS has performed a search in the mass range 90-160 GeV in the τν channel [112],
and another one in the mass range 90-150 GeV in the cs̄ channel [113]. Both searches set
limits on BR(t → H+b) in the 1 − 5% range. A mass bound on H± was only given in the
context of the MSSM. CMS has performed a search for mH± in the range 80-160 GeV in the
τν channel as well [114]. This resulted in upper limits on the branching ratio BR(t→ H+b)
in the 2-4% range.
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7.3.2 Simplified-LET-model limits

Let us first discuss whether the simplified LET model allows for a fermiophobic charged
Higgs. Note that the mixings of the charged-scalar components are independent of the scalar
potential: the mixing angles in eq. (225) are completely determined by the vev parameters
v, β, M . Inserting the mixing angles into the mass eigenstates in eq. (220), we find

H± = sinβh±1,21 + cosβh±1,12 + ξ cos 2βh±R +O
(
ξ2
)
. (148)

That is, the charged Higgs contains only a very small component of the fermiophobic h±R.
Thus the simplified LETmodel does not allow for a fermiophobic charged scalar, and therefore
does not evade the aforementioned bounds from H± searches trivially. This may change in
the presence of a second Higgs bidoublet; we will comment on this possibility in section 8.

Since H± contains only a very small h±R-component, we expect the charged scalar of
the simplified LET model to be very similar to the charged scalar of the 2HDM. We can
see how large the deviations from the H±-couplings of the 2HDM are by considering the
Feynman rules for the H± couplings to Standard-Model particles in appendices G.3 and G.4
and comparing them to the corresponding Feynman rules of the 2HDM in appendix H. It
turns out that these deviations are negligibly small indeed:

• The tree-level H±W∓γ and H±W∓Z couplings vanish in the 2HDM. In the simplified
LET model, they do not vanish but are suppressed by ξ2 (the quantities s13, c+ were
defined in eq. (120)):

gH±W∓γ =− gLev

2
(sβc+ + cβs13 +O

(
ξ2
)
) = −gLev

2
· O
(
ξ2
)
,

gH±W∓Z =
g2Lvs

2
θW

2cθW
(sβc+ + cβs13) +O

(
ξ2
)
) =

g2Lvs
2
θW

2cθW
· O
(
ξ2
)
. (149)

• The H+H−γ and H+H−Z couplings are identical (see appendices G.3 and H.1).
• Recall from section 4.2 that we have to set β2HDM = π/2−β when we map the simplified

LET model onto the 2HDM. Using the relation mb/mt = tanβ, we see that the H+tb̄
coupling of the simplified LET model in appendix G.6 is equal to the 2HDM coupling
(see appendix H) plus O

(
ξ2
)
corrections.

• Also recall from section 4.2 that α2HDM = −α1. Hence we see that the H±W∓h0

coupling of the 2HDM can be written as

g2HDM
H±W∓h0 = ±gL

2
cos(α2HDM − β2HDM) = ∓gL

2
sin(α1 − β). (150)

In most of the parameter space, α2 = O
(
ξ2
)
. Using this approximation, we find that

the H±W∓h0 coupling of the simplified LET model yields the same expression as the
2HDM with O

(
ξ2
)
corrections. This approximation holds for all of our benchmark

points except Twin-2. A deviation from the 2HDM value of this coupling is to be
expected in the Twin-2 scenario because of significant mixing among the CP -even
scalars.

• The scalar-potential parameters of the simplified LET model can be mapped onto the
2HDM as in eq. (51). Inserting these values into the h0H+H− coupling of the 2HDM
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(see appendix H), we find

λ2HDM
h0H+H− = v(λ1 + λ2(1 +

1

2
sin2 2β)). (151)

In most of the parameter space, we have cα1
= cβ+O

(
ξ2
)
, sα1

cα2
= sβ+O

(
ξ2
)
. These

approximations do not hold if there is significant mixing between h01,11 and h01,22, which
is not the case in any of our benchmark scenarios. Inserting these approximations into
the h0H+H− coupling of the simplified LET model (see appendix G.3 combined with
eq. (120)), we find

λh0H+H− =v
(
λ1 + λ2(1 +

1

2
sin2 2β) + (λ4 + λ5)

sα1
sα2

ξ
+O

(
ξ2
) )
. (152)

For all benchmarks except Twin-2, the mixing between h01,11 and h0R is very small:

sα1
sα2

= O
(
ξ2
)
. This means that the h0H+H− coupling of the simplified LET model

is the same as in the 2HDM, up to O (ξ) corrections. Again, a deviation is to be
expected for the Twin-2 benchmark because of significant mixing among the CP -even
scalars.

Hence we treat the charged scalars of the simplified LET model as 2HDM-like charged scalars
in the following. Note that we need to make assumptions about their couplings to leptons
and the two lightest quark generations, as we have done for the fermiophobic Higgs in sec-
tion 7.2.2. Since the mixing of the charged-scalar components with the right-handed doublet
is negligible, we postulate that the H± couplings to these fermions can be approximated by
the corresponding Feynman rules of the 2HDM (see appendix H.2). That is, we neglect the
contributions of additional scalars that would be needed to describe the fermion masses and
mixings correctly.

In order to see to what extent the H± searches apply to the simplified LET model, we
calculate the H± branching ratios using HDecay [100]. The program calculates the 2HDM
branching ratios from the input parameters tanβ2HDM, m2

12, α2HDM, mh0 , mH0 , mA0 , and
mH± . In order to be able to use HDecay for our setup, we map the simplified LET model
onto the 2HDM as in section 4.2, using the values

α2HDM =− β = −0.0166,
tanβ2HDM =cotβ = 60.2. (153)

We set mh0 = 126 GeV and vary mH± from 100 GeV to 500 GeV in steps of 5 GeV. In
order to choose input values for m2

12, mH0 , and mA0 , we note that these parameters are
not independent in the simplified LET model. Using the mapping in eq. (51) as well as the
minimum condition in eq. (191), we find

m2
12 =

1

4

(
λ5M

2 tan 2β − λ2v2 sin 2β
)
=

1

2
m2

A0 sin 2β. (154)

Furthermore, the mass expressions in eq. (36) yield

m2
H± =

λ5
2
M2(sec 2β +O

(
ξ2
)
),
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Figure 3: H± Branching ratios of the simplified LET model given by HDecay for mH±

between 100 and 500 GeV, varied in steps of 5 GeV. We used the values tanβ2HDM = 60.2
and α2HDM = −0.0166. For an estimate of the H0

1 and A0 masses as well as the 2HDM-
parameter m2

12, we keep λ2 = 0.2 fixed and use the approximations in eqs. (154) and (155).

m2
A0 =m2

H± −
λ2
2
v2 + v2 · O

(
ξ2
)
,

m2
H0

1
=m2

A0 + v2 · O
(
β2
)
. (155)

We neglect the O
(
ξ2
)
and O

(
β2
)
corrections and keep λ2 fixed at 0.2, which means λ2v

2/2 =

6 · 103 GeV2.
The resulting branching ratios are given in fig. 3. Our results agree qualitatively with

ref. [117], in which the H± branching ratios were given for large tanβ2HDM (see e.g. figure 4
in this reference, where the branching ratios are given for tanβ2HDM = 50). For mH± > mt,
the tb̄ decay channel is dominant. For mH± < mt, the τν channel is the dominant one,
whereas the cs̄ channel is suppressed.

Note that the simplified LET model evades the mass bounds from the searches in which
BR(H+ → cs̄) = 1 was assumed. Instead, we can apply the bound from ref. [111] for
BR(H+ → τν) = 1:

mH± > 94 GeV. (156)
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8 The complete LET model

Until now we have considered a simplified version of the LET model, in which the scalar sector
consists only of the bidoublet Φ1 and the right-handed doublet ΦR. These two scalar fields
are sufficient to describe the breakdown of the gauge symmetry from SU(3)C × SU(2)L ×
SU(2)R × U(1)B−L to the Standard-Model gauge group. More importantly, this simplified
setup has allowed us to analyse the phenomenological features of the LET model without
being overwhelmed by a plethora of scalar particles and their mixings. We have discussed
the properties of the heavy W ′, Z ′ bosons as well as the bounds on their masses that are
available in the literature. Moreover, we have been able to obtain analytical expressions on
the scalar masses and mixings, and used these to help us figure out the possible phenomeno-
logical features of the model. We have worked out the modifications of the couplings of the
Standard-Model-like Higgs at 126 GeV, and defined a set of benchmark scenarios to get a feel
for the magnitude of the deviations from the Standard Model. We have also discussed exper-
imental bounds on the new scalar particles, and to what extent they apply to the simplified
LET model. Because of the reduced number of scalar fields with respect to the complete
LET model, we were able to discern the regions of parameter space that lead to potentially
measurable deviations from Standard-Model predictions at the LHC.

Recall that our goal of studying the LET model was to figure out the low-energy phe-
nomenology of the trinification model. Of course, the simplified LET model is only partly a
substitute for the trinification model, since we have neglected the effects of the second scalar
bidoublet Φ2. This scalar field is not a Standard-Model singlet, so we have to include it in
order to get a good grasp on the trinification model.

In this section, we finally include Φ2 into our analysis, and discuss the consequences it
has for the results from the previous sections. First we discuss the changes in field content
as well as the new scalar potential. Then we discuss the effects of the inclusion of Φ2 on
the gauge-boson masses and mixings, and how the bounds from section 5 change as a result.
We look at the phenomenological scenarios that are possible in the complete LET model.
Analogously to section 6.6, we subsequently define a set of benchmark points that lead to
these phenomenological scenarios. Then we calculate to what extent these scenarios lead to
measurable deviations from the Standard Model.

8.1 The second bidoublet

With the second bidoublet Φ2 added back, the complete LET model has eight more scalar
fields than the simplified setup. The number of Goldstone bosons remains unchanged, so the
complete LET model contains eight additional physical particles: two CP -even states, two
CP -odd states, and two pairs of charged states. This makes a total of 14 physical scalars:

CP − even : h0, H0
1 , H

0
2 , H

0
3 , H

0
4 ,

CP − odd : A0
1, A

0
2, A

0
3,

charged : H±
1 , H

±
2 , H

±
3 . (157)

These states are linked to the gauge eigenstates through three 5× 5 rotation matrices, each
of which is described by 10 mixing angles. These mixings are defined in appendix B.5. As
in the simplified LET model, we define h0 as the most h01,11-like scalar, which naturally has
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a mass of order v. We define the other CP -even scalars H0
1 , H

0
2 , H

0
3 , H

0
4 respectively as the

most h02,11-, h
0
1,22-, h

0
2,22-, h

0
R-like scalars. We define the massive CP -odd states A0

1, A
0
2, A

0
3

respectively as the most a01,22-, a
0
2,11-, a

0
R-like scalars. The charged states H±

1 , H±
2 , H±

3 are

defined respectively as the most h±2,21-, h
±
1,12-, h

±
2,12-like scalars.

Again, the scalar masses and mixings are determined by the scalar potential. The most
general renormalisable scalar potential for the complete LET model is given by

V2(Φ1,Φ2,ΦR) =V (Φ1,ΦR) +
λ̃1
2
Tr
{
Φ†

2Φ2

}2

+
λ̃2
2
Tr
{
Φ†

2Φ2Φ
†
2Φ2

}

+ λ̃3Tr
{
Φ†

2Φ2

}
(ΦRΦ

†
R) + λ̃4ΦRΦ

†
2Φ2Φ

†
R

+ λ̃5Tr
{
Φ†

1Φ1

}
Tr
{
Φ†

2Φ2

}
+ λ̃6

∣∣∣Tr
{
Φ†

1Φ2

}∣∣∣
2

+
λ̃7
2

(
Tr
{
Φ†

1Φ2

}2

+ h.c.

)
+ λ̃8Tr

{
Φ†

1Φ1Φ
†
2Φ2

}

+ λ̃9Tr
{
Φ†

1Φ2Φ
†
2Φ1

}
+
λ̃10
2

(
Tr
{
Φ†

1Φ2Φ
†
1Φ2

}
+ h.c.

)

+ µ2
22Tr

{
Φ†

2Φ2

}
+
(
µ2
2 detΦ2 + h.c.

)
. (158)

Here V (Φ1,ΦR) is the scalar potential of the simplified LET model as given in eq. (34). As in
the simplified LET model, all parameters appearing in the scalar potential are assumed to be
real in order to avoid tree-level CP -violation. This scalar potential should have a minimum
at the vev

〈Φ1〉 =
(
v1 0
0 b1

)
, 〈Φ2〉 =

(
v2 0
0 b2

)
, 〈ΦR〉 =

(
0 M

)
. (159)

If the potential is to have an extremum at this vev, the five dimensionful parameters µ2
11, µ

2
22,

µ2
R, µ

2
1, µ

2
2 are fixed in terms of the dimensionless parameters λi, λ̃j and the vev parameters

v1, b1, v2, b2, M . These five conditions are given in eq. (239).
The vev parameters are restricted by the condition v21 + b21 + v22 + b22 = v2 = (246 GeV)2.

In analogy to the simplified LET model, it will be convenient to reparametrise the vev
parameters as follows:

v1 =v cosα cosβ1, v2 = v sinα cosβ2,

b1 =v cosα sinβ1, b2 = v sinα sinβ2. (160)

As in the simplified LET model, the vev parameters of Φ1 are restricted by the ratio of the
bottom and top mass: tanβ1 = b1/v1 = mb/mt = 0.0166. Since Φ2 does not contribute to
the fermion masses, there is no such restriction on β2.

In order for the extremum of the scalar potential to be a minimum, the eigenvalues
of the mass matrix (except those corresponding to Goldstone bosons) must be positive.
Approximate expressions for the scalar masses to leading order in ξ2 are given in eq. (244).
The CP -even states h0, H0

1 have masses of order v, whereas H0
2 , H

0
3 , H

0
4 have masses of

order M . This is not surprising: if we decouple the bidoublet Φ2 from the model, we get one
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light state h0 and two heavy states. Since Φ1 and Φ2 are copies of the same representation,
we expect that Φ2 adds one light and one heavy scalar to the spectrum as well. The CP -odd
state A0

1 is light, whereas A0
2, A

0
3 are heavy. Again, this is not surprising. In the simplified

LET model, the CP -odd components of the bidoublet Φ1 give rise to one Goldstone and one
heavy state. Thus we would expect Φ2 to contribute one heavy state as well. Since there are
no more would-be Goldstones, the other CP -odd component of Φ2 becomes a massive state
with a mass of order v. For the same reason, H±

1 is light while H±
2 , H±

3 have masses of order
M .

Due to the large number of fields and scalar parameters, it is very challenging to analyse
all the possible scenarios for the scalar masses and mixings in the complete LET model. In
the rest of this chapter, we will limit ourselves to a study of phenomenologically interesting
numerical benchmark points.

8.2 Gauge-boson mixing

As we have seen in section 7.1, there are three sources through which the new physics couples
to the Standard Model: W −W ′ mixing, Z−Z ′ mixing, and scalar mixing. For the simplified
LET model, it turned out that only the latter can lead to significant couplings. With the
inclusion of the second scalar bidoublet Φ2, the gauge bosons receive additional contributions
to the mass matrix. Hence we need to check the size of W −W ′ and Z − Z ′ mixing for the
complete LET setup. The gauge-boson masses and mixings are derived in appendix A.3. We
find that the masses and mixings are not affected significantly by the inclusion of Φ2: the
masses of the charged vector bosons are given by

mW =
gLv

2

(
1− 1

2
(cos2 α sin 2β1 + sin2 α sin 2β2)

2 v
2

M2
+O

(
v4

M4

))
,

mW ′ =
gRM

2

(
1 +

v2

M2
+O

(
v4

M4

))
. (161)

The W −W ′ mixing angle is given by

ζ =
gLv

2(cos2 α sin 2β1 + sin2 α sin 2β2)

gRM2
+O

(
v4

M4

)
. (162)

Note that these expressions reduce to the analogous expressions for the simplified LET model
in eqs. (25) and (26) for α → 0. The Z, Z ′ masses and mixing angles are the same as in
the simplified LET model (see eqs. (28) and (29)), with the understanding that v is now
composed of all four vev parameters v1, b1, v2, b2.

As for the experimental constraints on heavy vector bosons in section 5, we see that most
of these bounds are unchanged. The exceptions are the constraints derived from bounds
on the W − W ′ mixing angles ζ, because the size of ζ depends on the vev parameters
through the combination v1b1 + v2b2. Apart from the relation v2 = v21 + b21 + v22 + b22, the
parameters v2, b2 are unconstrained. Hence the mixing angle ζ could be made to vanish,
and the experimental bounds on ζ in eqs. (92) and (93) become useless unless we know more

about the vev parameters. Additionally, the constraints from the bounds on Gφ
W ′ , G

φ
Z′ in

eq. (91) may not apply either, since the mixing angles of the Standard-Model-like scalar are
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not necessarily the same as in the simplified LET model. Analytical expressions for the scalar
mixing matrices are necessary before we can apply these bounds.

Fortunately, the bound on the Z−Z ′ mixing angle η in eq. (102) remains unaffected. The
values we obtained on the gauge couplings gR, g

′ in eqs. (95) and (96), and hence our value
for θ′W , are unaffected as well. Hence the bound in eq. (103) still holds for the complete LET
model:

M > 3.6 TeV. (163)

This means that W −W ′ and Z − Z ′ mixing, which are of order ξ2, can still be neglected
in the complete LET model. Only scalar mixing can lead to significant couplings between
the Standard-Model particles and the new scalar fields. This means that as far as the scalar
phenomenology is concerned, we can set the W −W ′ and Z − Z ′ mixing to zero. We do so
in the rest of this section.

8.3 Benchmark points

Like the first bidoublet Φ1, the second bidoublet consists of two SU(2)L doublets. Hence the
complete LET model resembles a four-Higgs-doublet model, with two doublets that couple
like a type-II 2HDM, two fermiophobic doublets, and two SU(2)L singlets from ΦR. Hence we
no longer expect the LET model to look like a type-II 2HDM. In this section, we qualitatively
explore the phenomenological features that may appear in the complete LET model.

In the simplified LET setup, we explored several benchmark scenarios, each with distinct
phenomenological features. However, it turned out that the new physics decouples in most of
the parameter space: with all scalar parameters of order 1, the simplified LET model looks
like the single-large-hierarchy scenarios SLH-1, SLH-2. The reason is the fact that there is a
large hierarchy v ≪ M among the vev parameters of Φ1, ΦR. Significant scalar mixing and
non-decoupling were only obtained if one or more of the scalar parameters that appear in
denominators were set to O

(
ξ2
)
values. This makes these scenarios very unnatural.

The picture changes drastically with the inclusion of the bidoublet Φ2. Its vev introduces
two additional mass scales v2, b2, which are bounded by the electroweak scale because they
contribute to the W mass. This means that in the absence of a large hierarchy between the
vev components of Φ1 and Φ2, we expect that the complete LET model allows for large mixing
between the components of both bidoublets if the dimensionless scalar-potential parameters
have O (1) values. The result is that the model naturally contains new scalar particles with
masses of order v (see eq. (244)). On the other hand, as in the simplified LET model,
we expect that the components of the right-handed doublet ΦR can only mix significantly
with the other scalar fields if some of the parameters are fine-tuned to small values, since
the natural mass scale of ΦR is M . These insights have important consequences for the
benchmark scenarios we defined in section 6.6:

• Since the components of Φ2 result in new particles with masses of order v, we expect
that there will always be new scalar particles with a mass in the O (100 GeV) range.
That is, the scenario with a single large hierarchy (see the SLH-1 and SLH-2 benchmark
points) is not possible in the complete LET model. This increases the predictivity of
the LET model, since there should be new physics within experimental reach in any
case.
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• The mass scales of the 2HDM-like scalars can naturally be of order v. Thus we ex-
pect that the 2HDM-like scenario is still possible in the parameter space of the LET
model, but without the need for fine-tuning the scalar-potential parameters. Depend-
ing on the mixing of Φ1 and Φ2, the 2HDM-like scalars may become fermiophobic, thus
distinguishing this scenario from the usual 2HDM.

• Likewise, we expect the scenario with a light fermiophobic Higgs to be much more
natural in the complete LET model than in the simplified setup. In the simplified
model, a fermiophobic Higgs would need to have a large component of ΦR, which has
an associated mass scale M . However, in the complete LET model, a fermiophobic
Higgs could also be made to contain significant portions of Φ2, which has a lower mass
scale. Moreover, a fermiophobic Higgs containing significant portions of Φ2 would have
significant couplings to W , Z, since Φ2 is an SU(2)L doublet. This means that the
bounds on fermiophobic Higgses in section 7.2.1 would not be trivially evaded any
longer.

• We have argued that the complete LET model is expected to have at least some new
scalar particles within experimental reach. With some fine-tuning, all scalars could
be made light enough to be within experimental reach, as we did in the simplified
LET setup. Thus a compressed spectrum is still a possibility, albeit an unnatural one
compared to the other scenarios. Moreover, it remains to be seen whether this scenario
is of phenomenological interest compared to the other scenarios: the only difference
would be whether there is an additional h0R-like scalar within experimental reach or
not.

• Like the LF scenario, we expect that a very light fermiophobic Higgs with a mass of a
few GeV becomes a natural possibility. If it is Φ2-like, its mass would be determined
mainly by v2, b2, which could be a few GeV like b1. Moreover, such a very light
fermiophobic Higgs would be unlike the one in the simplified LET setup, which has
negligible couplings to the Standard Model. Instead, it would have significant couplings
to W , Z since Φ2 is an SU(2)L doublet. Hence such a state could have significant
production rates at the LHC.

• The twin-Higgs scenario is a special case of the light-fermiophobic-Higgs scenario, so
our comments on the latter apply to the former as well. That is, it becomes a nat-
ural possibility. Moreover, we would expect deviations from the Standard-Model signal
strength in this case. In the simplified setup, the twin Higgs would arise from mixing
between a scalar with Standard-Model-like couplings and a scalar with strongly sup-
pressed couplings to Standard-Model particles. However, in the complete LET model,
the fermiophobic components would still have couplings to W , Z. This would give rise
to additional contributions to the signal strength of the resonance at 126 GeV, and
hence change our analysis in section 7.2.2.

Moreover, the inclusion of Φ2 allows for some entirely new phenomenological scenarios. In
section 7.3 we discussed the possibility of having a fermiophobic charged scalar, which would
trivially evade all experimental bounds. Such a charged scalar is not possible in the simplified
LET model: apart from O (ξ) mixings, the charged components of ΦR become the Goldstone
bosons that give mass to the W ′ bosons. However, a fermiophobic charged scalar is con-
ceivable in the complete LET model, because Φ2 contains two pairs of fermiophobic charged
scalars. Depending on the scalar mixing, the lightest charged-scalar mass eigenstate may be
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either fermiophobic or fermiophilic. If there is large mixing between the fermiophilic and
fermiophobic states, the lightest charged state may have suppressed couplings to fermions.
This means that the experimental bounds on charged scalars would be weakened.

Hence we expect the LET model to allow for more interesting phenomenological scenarios.
More importantly, these scenarios should be testable experimentally, since the new physics
does not decouple from the Standard Model in the large-M limit. The LET model becomes
predictive without the need to tune the scalar parameters to values of order ξ2. In the
following, we do not consider such scenarios with unnaturally small scalar parameters.

In the previous two chapters, we have discussed two methods for probing this new physics
in the simplified LET setup: measuring deviations from the Standard-Model Higgs couplings
and direct searches for new scalars. We will discuss the prospects for measuring the Higgs-
coupling modifications in the context of the complete LET model as well. To this end, we
define a new set of benchmark points, inspired by the considerations given above. As a
starting point for choosing the parameter values, we observe the following about the scalar
masses in eq. (244):

• The mass of the Standard-Model-like h0 is mainly determined by λ1+λ2 cos
2 β1 and to a

lesser extent by λ4, λ5 (see also the expression in eq. (36) for the simplified LET model),
but with an overall scaling factor cos2 α due to the presence of the second bidoublet.
We tune the parameters such that mh0 = 126 GeV is fixed. This means that the choice
of a smaller α is generally accompanied by a smaller value for λ1 + λ2 cos

2 β1.
• Similarly, the mass of H0

1 is mainly determined by λ̃1+ λ̃2 cos
2 β2 and to a lesser extent

by λ̃3, λ̃4, with an overall factor sin2 α. This means that smaller values of α should be
compensated by larger values of λ̃1 + λ̃2 cos

2 β2.
• The mass difference between h0 and H0

1 and their mixing are governed by sin 2α as well

as the scalar parameters λ̃5,6,7,8,9,10. Hence we can tune these parameters to obtain a
parameter set that corresponds to the desired benchmark scenario.

• The mass of the scalar H0
4 (which is the equivalent of the fermiophobic H0

2 in the
simplified LET model) is given by

√
λ3M . Hence we should take a positive λ3.

• The squared masses of the light scalars A0
1, H

±
1 are determined by the scalar parameters

λ̃6,7,9,10 with an overall minus sign. Hence we take these parameters to be negative to
ensure that the mass matrix corresponds to a minimum of the scalar potential.

• We have m2
H0

2 ,A
0
2,H

±
2

∼ λ5 sec 2β1M2. Since we will not tune the parameters to unnat-

urally small values such that H0
2 , A

0
2, H

±
2 become light, it is sufficient to ensure that

λ5 > 0.
• Similarly, m2

H0
3 ,A

0
3,H

±
3

∼ λ̃4 sec 2β2M2, which means that we should take λ̃4 sec 2β2 > 0.

Additionally, we ensure that the chosen benchmark points satisfy the vacuum stability con-
ditions as described in appendix B.5. The chosen parameter values for the benchmark points
are given in table 8, and the resulting scalar masses are given in table 9.

2HDM-3 For this benchmark point, the scalars H0
1 , A

0
1, and H± all have masses in the

O (100 GeV) range. The Standard-Model-like scalar h0 is almost purely h01,11, with permille
level mixing with the other states. The light CP -even state H0

1 is 97% h02,11 and 3% h02,22;
mixing with the other states is negligible. The lightest CP -odd state A0

1 is 87% a01,11 and

13% a02,11. Similarly, the lightest charged state H±
1 is 87% h±1,21 and 13% h±2,21.
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2HDM-3 2HDM-4 VLF-3 Twin-3 Twin-4

sinα 0.93 0.43 0.50 0.72 0.33

sinβ2 0.17 0.65 0.17 0.16 0.11

λ1 1.0 0.20 0.13 0.34 0.17

λ2 1.0 0.18 0.13 0.35 0.16

λ3 0.50 0.50 0.50 0.50 0.42

λ4 0.010 0.12 0.13 0.27 0.12

λ5 0.20 0.50 0.20 0.20 0.50

λ̃1 0.40 1.3 0.27 0.34 1.3

λ̃2 0.40 1.3 0.27 0.34 1.2

λ̃3 0.27 0.20 0.27 0.27 0.19

λ̃4 0.20 0.10 0.20 0.20 1.0

λ̃5 0.20 0.046 0.54 0.32 0.060

λ̃6 -0.40 -0.50 -0.43 -0.42 -0.30

λ̃7 -0.24 -0.20 -0.24 -0.24 -0.30

λ̃8 0.84 0.95 0.83 0.84 1.0

λ̃9 -0.050 -0.10 -0.04 -0.053 -0.10

λ̃10 -0.30 -0.30 -0.30 -0.30 -0.30

Table 8: Defining parameters of the benchmark points for the complete LET model. All
benchmark points use the values v = 246 GeV, M = 1010 GeV, β1 = arctan(mb/mt) =
0.0166.

We call this scenario 2HDM-3, because as in the 2HDM-1 and 2HDM-2 scenarios from
section 6.6, the particle content within experimental reach resembles that of the 2HDM. How-
ever, we expect that this scenario could be distinguished from a type-II 2HDM in experiment:
the CP -even state H0

1 is completely fermiophobic and would therefore dominantly decay into
pairs of vector bosons. Also, the lightest CP -odd and charged states have significant mixing
with components of the fermiophobic field Φ2. Thus they would have reduced couplings to
fermions compared to the 2HDM.

2HDM-4 Like the previous benchmark point, 2HDM-4 has a 2HDM-like set of scalars
with masses in the O (100 GeV) range. Mixing among the CP -even scalars is substantial:
the Standard-Model-like scalar h0 is 74% h01,11, with a 15% admixture of h02,11 and 11% of
h02,22. The next-to-lightest CP -even state H0

1 is 25% h01,11, 43% h02,11 and 32% h02,22. The
lightest CP -odd state A0

1 is a mixture of fermiophilic and fermiophobic scalars as well: it
is 18% a01,11, 47% a02,11, and 35% a02,22. The lightest charged scalar H±

1 is a mixture of

fermiophilic and fermiophobic components too: it is 18% h±1,21, 47% h±2,21 and 35% h±2,22.
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2HDM-3 2HDM-4 VLF-3 Twin-3 Twin-4

mh0 126 126 126 126 126

mH0
1

182 148 3.9 126 126

mH0
2

3.2 · 109 5.0 · 109 3.2 · 109 3.2 · 109 5.0 · 109

mH0
3

3.3 · 109 5.8 · 109 3.3 · 109 3.2 · 109 7.2 · 109

mH0
4

7.1 · 109 7.1 · 109 7.1 · 109 7.1 · 109 6.5 · 109

mA0
1

179 134 179 179 190

mA0
2

3.2 · 109 5.0 · 109 3.2 · 109 3.2 · 109 5.0 · 109

mA0
3

3.3 · 109 5.8 · 109 3.3 · 109 3.2 · 109 7.2 · 109

mH±
1

171 135 173 173 173

mH±
2

3.2 · 109 5.0 · 109 3.2 · 109 3.2 · 109 5.0 · 109

mH±
3

3.3 · 109 5.8 · 109 3.3 · 109 3.2 · 109 7.2 · 109

Table 9: Scalar masses for each of the benchmark points defined in table 8. All masses are
in GeV.

Like the 2HDM-3 scenario, this benchmark has a fermiophobic H0
1 , distinguishing it

from a type-II 2HDM. The scalars A0
1 and H±

1 are mostly fermiophobic as well. They have
suppressed couplings to fermions, so that current bounds on their masses may be evaded.

VLF-3 This benchmark point distinguishes itself from the previous ones by having a very
light fermiophobic Higgs H0

1 , with a mass of a few GeV. The states A0
1 and H±

1 again have
masses within experimental reach. The Standard-Model-like Higgs h0 is a mixture of 65%
h01,11, 34% h02,11, and 1% h02,22. Thus it contains a significant portion of fermiophobic scalars,
and we expect it to have reduced couplings to fermions with respect to the Standard Model.
The very light scalar H0

1 is 35% h01,11, 63% h02,11, and 2% h02,22. It is light and mainly
fermiophobic, which means it could have evaded the LEP searches. The lightest CP -odd
scalar A0

1 is 25% a01,11, 73% a02,11, and 2% a02,22, so it is mostly fermiophobic. Similarly, the

lightest charged scalar H±
1 is 25% h±1,21, 73% h±2,21, and 2% h±2,22, and is therefore mostly

fermiophobic as well.

Twin-3 For this benchmark point, both h0 and H0
1 have a mass of 126 GeV, similarly to

the Twin-1 and Twin-2 benchmarks in section 6.6. The former is 87% h01,11 with a 13%
admixture of h02,11. The latter is 13% h01,11, 85% h02,11 and 2% h02,22. The lightest CP -odd
and charged states are almost 50-50 mixtures of fermiophilic and fermiophobic states: A0

1

(H±
1 ) is 51% a01,11 (h±1,21), 47% a02,11 (h±2,21), and 1% a02,22 (h±2,12).

Twin-4 Like Twin-3, this benchmark contains a twin Higgs state at 126 GeV. Here h0

is almost purely h01,11, with only permille-level admixtures of other states. The other state
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2HDM-3 2HDM-4 VLF-3 Twin-3 Twin-4

∆W -0.69 -0.01 -0.01 -0.61 -0.06

∆Z -0.69 -0.001 -0.001 -0.60 -0.05

∆t 1.8 -0.05 -0.07 0.34 0.06

∆b 1.8 -0.05 -0.07 0.34 0.06

∆γ -0.05 -0.09 -0.07 -0.03 -0.05

Table 10: Higgs-coupling modifications for the complete LET model, as defined in eq. (112).

H0
1 is 99% h02,11 with a 1% admixture of h02,22. The lightest CP -odd and charged states are

mostly fermiophobic: A0
1 (H±

1 ) is 11% a01,11 (h±1,21), 88% a02,11 (h±2,21), and 1% a02,22 (h±2,12).

8.4 Higgs-coupling modifications

The complete LET model contains eight more scalar fields and ten more free scalar-potential
parameters than the simplified setup. The mixing matrices for the CP -even, CP -odd, and
charged scalar components are now 5× 5 matrices, which contain 15 mixing angles in total.
This makes it challenging and cumbersome to find analytical expressions for the scalar masses
and mixings. Therefore, we restrict ourselves to a numerical analysis of the Higgs-coupling
modifications for the benchmark points defined in the previous section. Below we describe
how we extract the relevant scalar couplings for these benchmark points.

As we did in for the simplified LET model in chapter 6, we calculate the scalar mass
matrix numerically in Mathematica. Then we calculate the eigenvalues and eigenvectors. For
the rotation matrices, we use the conventions described in appendix B.5 for the order of the
rows and the phases of the mass eigenstates. Using the mixing matrices, we express the
gauge eigenstates in mass eigenstates with numerical coefficients. We insert these into the
Lagrangian of eq. (32) and extract the couplings as numerical coefficients of the operators.

The modifications of the Standard-Model-like Higgs couplings to W , Z, t, b can be ob-
tained easily by comparing the numerical values to the Standard-Model values, which are
calculated from eqs. (108) and (111). For the photon-coupling modification ∆γ , we take
into account the contributions of all three charged scalars H±

1,2,3, each of which is given by
eq. (300).

All coupling modifications have been summarised in table 10. Note that contrary to the
simplified LET model, the photon-coupling modification not negligibly small any more: the
charged scalar H±

1 has a mass of order v and hence yields a sizeable contribution to the
effective photon coupling.

The 2HDM-3 benchmark has large coupling modifications: the couplings to V =W,Z are
suppressed by a factor 0.3, whereas the couplings to t, b are enhanced by almost a factor 3.
This is not surprising: the state h0 is almost purely h01,11. In the simplified LET model, its
coupling toW , Z is equal to g2Lv/2, g

2
Lv/(2 cos θW ) respectively. In the complete LET model,

we have to make the replacement v → v cosα (see eq. (160)). This means that the W , Z
couplings are suppressed by cosα = 0.36. On the other hand, the t, b couplings are given by
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mf/v in the simplified LET model. This implies that these couplings are enhanced by a factor
1/ cosα = 2.8 in the complete LET model. This benchmark point is clearly incompatible
with the measured coupling modifications in fig. 2. Note that for a given amount of Φ1 −Φ2

mixing, the measured coupling modifications can be used to constrain the parameter α.
In contrast, the 2HDM-4 benchmark has smaller but still sizeable coupling modifications.

The V couplings are suppressed by cosα = 0.90, but the total coupling is a few percent
higher because there is an additional contribution from the second bidoublet. On the other
hand, the quark couplings are enhanced by a factor 1/ cosα = 1.11. Still, ∆t, ∆b are
smaller than 0.11 because h0 contains a significant admixture of the fermiophobic second
bidoublet. This tension results in coupling modifications that are actually negative. All
coupling modifications for this benchmark point are consistent with the measured coupling
modifications.

The VLF-3 scenario has large mixing between the fermiophilic and fermiophobic scalar
gauge eigenstates. The vector-boson couplings obtain contributions from both. The fermion
couplings are enhanced by a factor 1/ cosα = 1.2 but at the same time suppressed by the large
scalar mixing. The resulting coupling modifications are at the percent level, all compatible
with the measured values.

Like the 2HDM-3 benchmark, the Twin-3 scenario has large coupling modifications: the
W , Z couplings are reduced by about 60% whereas the t, b couplings are enhanced by 34%.
The strong suppression of the vector-boson couplings is mostly due to interference between the
contributions of the fermiophobic and fermiophilic scalar components. The fermion couplings
are enhanced by a factor 1/ cosα = 1.4, which is slightly reduced by h01,11 − h02,11 mixing.
This benchmark point is incompatible with the data.

The Twin-4 scenario has negligible h01,11-h
0
2,11 mixing. Hence the V couplings are sup-

pressed by cosα = 0.94 whereas the fermion couplings are enhanced by 1/ cosα = 1.06. This
results in percent-level coupling modifications, compatible with the measured values.

We have illustrated that the complete LET model allows for various phenomenological
scenarios, and is predictive at the same time. The model allows for large coupling modifica-
tions as well as moderate ones that can be expected to be measurable. Both the 2HDM-like
and the twin scenario can be excluded in some parts of parameter space, and are compatible
with experiment in other regions. Thus the complete LET model is testable, and a more
thorough analysis of the parameter space is required to see which parameter values are pre-
ferred by experiment. Also, it would be interesting to see whether we can expect general
patterns among the coupling modifications, as was the case for the simplified LET model in
section 6.5.
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9 Conclusions

In this work we have studied the low-energy phenomenology of the trinification model as
described in refs. [8, 17, 26, 27, 28, 29], which is based on the trinification group SU(3)C ×
SU(3)L×SU(3)R. In order to simplify our study, we have integrated out the fields that obtain
masses of the order of the trinification scale. This resulted in a left-right-symmetric model
with two scalar bidoublets Φ1, Φ2 and one right-handed doublet ΦR, where only Φ1 couples
to fermions, as well as constraints on the form of the scalar potential. We call this effective
model the low-energy trinification (LET) model. In order to simplify our analysis further, we
have introduced a toy model (the simplified LET model) in which the fermiophobic bidoublet
Φ2 has been omitted. We have studied this toy model in the first part of this work, and used
the results to help us understand the complete LET model.

The simplified LET model contains three heavy vector bosons W ′±, Z ′ and five massive
scalars H0

1 , H
0
2 , A

0, H± on top of the Standard-Model particles. We have worked out the
masses and mixings of these new particles. Our Ansatz for the Yukawa sector was based on
the Yukawa Lagrangian of the trinification model. Here we left out a discussion of the first
and second fermion generations, where a description of the mixing requires the introduction
of new Higgs fields. The free parameters were used to fix the masses of the top and bottom
quarks only, since these are the most important for comparison to experimental searches. In
the trinification model, the fermion masses and mixings can be described using only a few
parameters due to the presence of new heavy quarks as well as interactions with additional
Higgs fields. An improved version of the LET model would require a better understanding
of the Yukawa sector at low energy scales, where renormalisation-group effects and mixing
with the heavy quark states become important.

We have reviewed direct searches as well as precision measurements that lead to lower
bounds on heavy-vector-boson masses. Then we discussed to what extent these bounds apply
to the W ′, Z ′ bosons of the LET model, and used them to obtain a lower bound on the left-
right-symmetry-breaking scale M in the TeV range. Values for the SU(2)R gauge coupling
gR and the U(1)B−L coupling g′ were obtained as well.

We have given approximate expressions for the Higgs-coupling modifications in the sim-
plified LET model. In order to showcase the possible phenomenological scenarios in the
simplified LET model, we have defined a set of benchmark points. The new scalars turned
out to decouple in most of the parameter space. By tuning some of the scalar parameters to
O
(
v2/M2

)
values, other scenarios were obtained: a scenario similar to the two-Higgs-doublet

model (2HDM) where only H0
1 , A

0, H± are within experimental reach; a scenario with a light
fermiophobic H0

2 in which all other new scalars are heavy; a scenario where H0
2 has a mass

of a few GeV, thereby escaping direct searches; a scenario where all new scalars have masses
within experimental reach; and a scenario with a degenerate (‘twin’) Higgs state at 126 GeV.
We calculated the Higgs-coupling modifications for these benchmarks to show to what extent
these scenarios can be distinguished from the Standard Model in experiment. In most cases,
the coupling modifications are negligibly small. In those parameter-space regions where the
coupling modifications become measurably large, the W , Z, and t coupling modifications are
fully correlated. Moreover, a measurement of the quartic Higgs self-coupling would allow us
to distinguish some of these benchmarks from the Standard Model, since modifications of
this coupling can be as large as O (1).

We have reviewed the available bounds on charged scalars and fermiophobic neutral scal-
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ars, and discussed to what extent these bounds apply to the simplified LET model. The
fermiophobic H0

2 evades these bounds trivially, since it has negligible couplings to Standard-
Model particles. The charged scalars have 2HDM-like couplings to Standard-Model particles.
Using additional assumptions on the Yukawa couplings to the lightest two fermion genera-
tions, we found that the charged scalars decay dominantly to τν below the tb̄ threshold. This
part of our analysis would benefit from an improved understanding of the Yukawa sector as
well.

The twin-Higgs scenario was found to have large scalar mixing. However, we expect no
significant deviations of the Higgs signal strength from Standard-Model predictions, since the
twin state h0, H0

2 arises from a basis rotation of a scalar with Standard-Model-like couplings
and a scalar that does not couple to the Standard-Model vector bosons and fermions.

In the last section, we have added back the fermiophobic bidoublet Φ2 to the model, and
discussed how the phenomenology of the complete LET model changes with respect to the
simplified setup. We found that M is still at least in the TeV range, and that the effects of
W −W ′ and Z − Z ′ mixing are negligibly small. The complete LET model introduces four
new CP -even states H0

1,2,3,4, three CP -odd states A0
1,2,3, and three pairs of charged states

H±
1,2,3. We have found approximate expressions for their masses in terms of the underlying

model parameters. There are always at least one other CP -even scalar, one CP -odd scalar,
and a pair of charged scalars with masses in the O (100 GeV) range, without tuning the scalar
parameters to very small values. Hence interesting scenarios like a 2HDM-like spectrum at
low energies or a twin Higgs are natural possibilities. Additionally, the lightest charged scalar
can become fermiophobic.

In order to illustrate these scenarios, we defined a set of numerical benchmark points
and calculated the corresponding Higgs-coupling modifications. We found that the various
phenomenological scenarios lead to sizeable effects on the Higgs couplings. Parts of parameter
space can already be excluded using the available values in the literature.

The LET model is an interesting extension of the Standard Model with various phenomen-
ological possibilities. The model is predictive and can be tested using LHC data. We have
only calculated a few benchmark points to illustrate the possible phenomenological scenarios
of the LET model. A more thorough analysis of the scalar mixing is necessary to constrain
the parameter space systematically. Furthermore, approximate expressions for the scalar
mixing angles would help us find patterns in the Higgs-coupling modifications. These are
also necessary to figure out what regions of parameter space lead to significant deviations of
the Higgs signal strength from the Standard-Model predictions. Most interestingly, we could
test whether the observed scalar state at 126 GeV is a twin state or not. We leave these
improvements to future work.
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A Gauge-boson mass eigenstates

The low-energy trinification model contains seven gauge bosons: W i
L,R, i = 1, 2, 3 for

SU(2)L,R with gauge coupling gL,R and B for U(1)B−L with gauge coupling g′. The fields
W 3

L, W
3
R, and B are neutral, whereas the remaining fields mix to form the charge eigenstates

W±
L,R = 1√

2
(W 1

L,R ∓ iW 2
L,R). After spontaneous symmetry breaking, one linear combination

of the neutral fields forms the massless photon, whereas the remaining six gauge bosons
obtain mass. In this appendix, we work out their masses and mixings.

The gauge-boson mass terms are determined by the scalar-scalar-vector-vector interac-
tions, which follow from the gauge-invariant kinetic terms for the scalars (see eq. (32)). For
the simplified LET model, these terms are given by

Ls =Tr
{
(DµΦ1)

†(DµΦ1)
}
+ (DµΦR)(DµΦR)

†

⊃g2LW iµ
L W j

LµTr
{
Φ†

1T
i

LT
j

LΦ1

}
+ g2RW

iµ
R W j

RµTr
{
Φ†

1Φ1T
iT
R T jT

R

}

+ g2RW
iµ
R W j

RµΦRT
iT
R T jT

R Φ†
R + g′2BµBµΦRΦ

†
R

+ 2gLgRW
iµ
L W j

RµTr
{
Φ†

1T
i

LΦ1T
jT
R

}
+ 2gRg

′W iµ
R BµΦRT

iT
R Φ†

R, (164)

where the covariant derivatives are given by

DµΦ1 =∂µΦ1 − igLW i
LµT

i

LΦ1 − igRW i
RµΦ1T

iT
R ,

DµΦR =∂µΦR − igRW i
RµΦRT

iT
R − ig′BµΦR. (165)

The Higgs fields obtain the vevs

〈Φ1〉 =
(
v1 0
0 b1

)
, 〈ΦR〉 =

(
0 M

)
. (166)

The vev parameters of Φ1 are constrained by the condition v21 + b21 = v2, hence it will
often be convenient to reparametrise them as v1 = v cosβ, b1 = v sinβ. After spontaneous
symmetry breaking, the interaction terms in eq. (164) give rise to mass terms for the gauge
bosons. These are easily obtained using mathematics software such as Mathematica [30]. In
the subsequent sections, we will study how the charged and neutral gauge bosons mix to
form mass eigenstates. We will also derive the Weinberg angle from the expressions of the
neutral mass eigenstates.

A.1 Charged gauge bosons

There are two pairs W±
L , W±

R of charged gauge bosons. After spontaneous symmetry break-
ing, they will mix into two pairs of mass eigenstates W±, W ′±. We identify the former with
the charged vector bosons from the Standard Model; the W ′± are new massive states. After
the scalar fields obtain the vevs in eq. (166), the interactions in eq. (164) give rise to the
following mass matrix for the charged gauge bosons in the basis {W±

L ,W
±
R }:

M2
± =

(
1
4g

2
Lv

2 − 1
4gLgRv

2 sin 2β
− 1

4gLgRv
2 sin 2β 1

4g
2
R(M

2 + v2)

)
. (167)
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The squared masses of the W and W ′ bosons are given by the eigenvalues of M2
±; we find

them to be

m2
W =

1

8


g2RM2 + (g2L + g2R)v

2 − g2RM2

√(
1 +

(g2R − g2L)v2
g2RM

2

)2

+
4g2Lv

4 sin2 2β

g2RM
4




=
1

4
g2Lv

2

(
1− sin2 2β

v2

M2
+O

(
v4

M4

))
,

m2
W ′ =

1

8


g2RM2 + (g2L + g2R)v

2 + g2RM
2

√(
1 +

(g2R − g2L)v2
g2RM

2

)2

+
4g2Lv

4 sin2 2β

g2RM
4




=
1

4
g2RM

2

(
1 +

v2

M2
+O

(
v4

M4

))
. (168)

The mass eigenstates W and W ′ are given by the eigenvectors of M2
±; these turn out to be



W±

W ′±


 =




1√
NW

(
g2R

(
1 +

v2

M2

)
− 4

m2
W

M2

)
1√
NW

gLgRv
2 sin 2β

M2

1√
NW ′

(
4
m2

W

M2
− g2L

v2

M2

)
1√
NW ′

gLgRv
2 sin 2β

M2






W±

L

W±
R


 . (169)

Here we defined the normalisation factors

NW ≡
(
g2R

(
1 +

v2

M2

)
− 4

m2
W

M2

)2

+

(
gLgRv

2 sin 2β

M2

)2

,

NW ′ ≡
(
4
m2

W

M2
− g2L

v2

M2

)2

+

(
gLgRv

2 sin 2β

M2

)2

, (170)

Since this is a two-dimensional basis rotation, eq. (169) is usually expressed in terms of a
mixing angle ζ: (

W±

W ′±

)
=

(
cos ζ sin ζ
− sin ζ cos ζ

)(
W±

L

W±
R

)
. (171)

Expanding eq. (169) in the small parameter v
M yields the following expression for ζ:

ζ =
gLv

2 sin 2β

gRM2
+O

(
v4

M4

)
. (172)

Thus the mixing among the charged gauge bosons is very small. The Standard-Model W
bosons are almost completely left-handed gauge bosons, and the new W ′ bosons are almost
completely right-handed gauge bosons:

W± =W±
L +O

(
v2

M2

)
, W ′± =W±

R +O
(
v2

M2

)
. (173)
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A.2 Neutral gauge bosons

There are three neutral gauge bosons W 3
L, W

3
R, B. After spontaneous symmetry breaking,

they will mix into the mass eigenstates A, Z, Z ′. Here A is the photon, Z is the neutral
massive vector boson we know from the Standard Model, and Z ′ is a new massive state. The
gauge-boson mass terms give rise to the following mass matrix for the neutral gauge bosons
in the basis {W 3

L,W
3
R, B}:

M2
0 =




1
4g

2
Lv

2 − 1
4gLgRv

2 0
− 1

4gLgRv
2 1

4g
2
R(M

2 + v2) − 1
2g

′gRM2

0 − 1
2g

′gRM2 g′2M2


 . (174)

The squared masses of A, Z, Z ′ are given by the eigenvalues of M2
0 ; we find them to be

m2
A =0,

m2
Z =

1

8

(
(g2R + 4g′

2
)M2 + (g2L + g2R)v

2

− (g2R + 4g′
2
)M2

√

1 +

(
4g4R − 2(g2L + g2R)(g

2
R + 4g′2)

)
v2

(g2R + 4g′2)2M2
+

(g2L + g2R)
2v4

(g2R + 4g′2)2M4

)

=
v2

4

4g′2(g2L + g2R) + g2Lg
2
R

g2R + 4g′2

(
1− g4R

(g2R + 4g′2)2
v2

M2
+O

(
v4

M4

))
,

m2
Z′ =

1

8

(
(g2R + 4g′

2
)M2 + (g2L + g2R)v

2

+ (g2R + 4g′
2
)M2

√

1 +

(
4g4R − 2(g2L + g2R)(g

2
R + 4g′2)

)
v2

(g2R + 4g′2)2M2
+

(g2L + g2R)
2v4

(g2R + 4g′2)2M4

)

= 1
4 (g

2
R + 4g′

2
)M2

(
1 +

g4R
(g2R + 4g′2)2

v2

M2
+O

(
v4

M4

))
. (175)

The mass eigenstates A, Z, Z ′ are given by the eigenvectors of M2
0 ; these turn out to be




A

Z

Z ′




=




2g′gR√
NA

2g′gL√
NA

gLgR√
NA

gL√
NZ

(
g2R + 4g′2 − 4

m2
Z

M2

)
− 4gR√

NZ

(
g′2 − m2

Z

M2

)
−2g′g2R√

NZ
−gL√
NZ′

(g2L + g2R)v
2 − 4m2

Z

M2

gR√
NZ′

(
g2R +

(g2L + g2R)v
2 − 4m2

Z

M2

)
− 2g′g2R√

NZ′







W 3
L

W 3
R

B



.

(176)
Here we defined the normalisation factors

NA ≡4g′2(g2L + g2R) + g2Lg
2
R,

NZ ≡NA(g
2
R + 4g′

2
)− 8NA

m2
Z

M2 + 16(g2L + g2R)
m4

Z

M4 ,

NZ′ ≡g4R(g2R + 4g′
2
) + 2g4R

(
[g2L + g2R]

v2

M2 − 4
m2

Z

M2

)
+ (g2L + g2R)

(
(g2L + g2R)

v2

M2 − 4
m2

Z

M2

)2
,

(177)
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We express this basis rotation in terms of three mixing angles θW , θ′W , η, following the
conventions in [78]:



A
Z
Z ′


 =




sθW cθW sθ′
W

cθW cθ′
W

cθW cη cθ′
W
sη − sθW sθ′

W
cη −(sθW cθ′

W
cη + sθ′

W
sη)

−cθW sη cθ′
W
cη + sθW sθ′

W
sη sθW cθ′

W
sη − sθ′

W
cη





W 3

L

W 3
R

B


 . (178)

Here we have written sx ≡ sinx, cx ≡ cosx for the sake of brevity. The mixing angles are
given by

sin θW =
2g′gR√

4g′2(g2L + g2R) + g2Lg
2
R

,

sin θ′W =
2g′√

g2R + 4g′2
,

tan η =
(g2L + g2R)v

2 − 4m2
Z

(g2R + 4g′2)M2 − 4m2
Z

√
NZ

NZ′

=
g2R
√
4g′2(g2L + g2R) + g2Lg

2
R

(g2R + 4g′2)2
v2

M2
+O

(
v4

M4

)

=
sin θ′W cos3 θ′W

sin θW

v2

M2
+O

(
v4

M4

)
. (179)

The above mixing angles can be interpreted as follows. After the left-right symmetry is
broken by the vev parameter M , the mass matrix in eq. (174) yields mass terms of order
M for W 3

R, B. Their mixing results in a massless boson BY , corresponding to the unbroken

U(1)Y symmetry, and a massive boson Z̃ ′ with mass mZ̃′ = gRM/(2 cos θ′W ):
(
BY

Z̃ ′

)
=

(
sin θ′W cos θ′W
− cos θ′W sin θ′W

)(
W 3

R

B

)
. (180)

At this stage, both W 3
L and BY are massless. We can perform a basis rotation in analogy to

the Standard Model: (
A

Z̃

)
≡
(

sin θW cos θW
− cos θW sin θW

)(
W 3

L

BY

)
. (181)

After the electroweak symmetry is broken by the vev parameters v1, b1, mass terms appear
for Z̃. The field A remains massless and therefore corresponds to the photon. A comparison
of the above basis rotation to the analogous Standard-Model expression shows that θW is the
familiar Weinberg angle. The field Z̃ does not correspond to the physical Z boson, since the
mass matrix in eq. (174) yields mixing terms between Z̃ and Z̃ ′ as well. The mass eigenstates
Z, Z ′ are given by a small rotation over η:

(
Z
Z ′

)
=

(
− cos η − sin η
sin η − cos η

)(
Z̃

Z̃ ′

)
. (182)

A successive combination of the three rotations in eqs. (180)–(182) leads to the rotation
matrix in eq. (178). That is, we identify θW with the Weinberg angle; θ′W is an analogon of
the Weinberg angle for the breaking of the left-right symmetry; and η is the Z − Z ′ mixing
angle [78].
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A.3 Gauge bosons in the complete LET model

In the complete LET model, there is an additional scalar field Φ2 in the same representation
as Φ1. It obtains a vev

〈Φ2〉 =
(
v2 0
0 b2

)
. (183)

This vev contributes to the gauge-boson mass matrix the same way that Φ1 does. Hence we
find the W mass matrix for the complete LET model to be

M2
± =

(
1
4g

2
Lv

2 − 1
2gLgR(v1b1 + v2b2)

− 1
2gLgR(v1b1 + v2b2)

1
4g

2
R(M

2 + v2)

)
. (184)

Here it is understood that v2 = v21 + b21 + v22 + b22. Note that this mass matrix is the same as
the one for the simplified LET model in eq. (167), with the substitution

sin 2β → 2(v1b1 + v2b2)

v2
. (185)

This means that we can copy the results from the simplified LET model, provided we apply
this substitution. Thus the W , W ′ masses are given by

m2
W =

1

4
g2Lv

2

(
1− 4(v1b1 + v2b2)

2

v2M2
+O

(
v4

M4

))
,

m2
W ′ =

1

4
g2RM

2

(
1 +

v2

M2
+O

(
v4

M4

))
. (186)

The W −W ′ mixing angle is given by

ζ =
2gL(v1b1 + v2b2)

gRM2
+O

(
v4

M4

)
. (187)

As for the neutral gauge bosons, we find their mass matrix to be the same as the one for
the simplified LET model in eq. (174), with the understanding that v2 = v21 + b21 + v22 + b22.
Hence the Z, Z ′ masses and mixing angles are identical to those of the simplified LET model.
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B Scalar spectrum

In order to study the scalar sector of the LET model and its effects on Standard-Model
couplings, we need to know the masses and mixings of the scalars. We work them out in this
appendix. We start with the most general scalar potential for the simplified LET model and
ensure it has a minimum at the envisioned vev. Then we work out the theoretical constraints
on the scalar parameters that come from vacuum stability and S-matrix unitarity. After
that, we work out the scalar masses and extract additional parameter constraints from the
condition that the squared masses should be positive. We also extract the mixing angles
from the mass eigenstates. We conclude with a brief discussion of the scalar spectrum for
the complete LET model.

B.1 Scalar potential

We consider the scalar sector of the simplified LET model first, which contains only the fields
Φ1 ∼ (1,2,2, 0) and ΦR ∼ (1,1,2, 1). We parametrise their components as follows:

Φ1 =




v1 + h01,11 + ia01,11√
2

h−1,12

h+1,21
b1 + h01,22 + ia01,22√

2


 ,

ΦR =

(
h+R

M + h0R + ia0R√
2

)
. (188)

Here the components h0x are CP -even gauge eigenstates, and the components a0x are CP -odd
gauge eigenstates. For the charged components, we define their conjugates as h∓x ≡ (h±x )

†.
As before, SU(2)L indices run vertically and SU(2)R indices run horizontally, hence Φ1 is
a 2 × 2 matrix and ΦR is a two-dimensional row vector. The vev parameters v1, b1 are
constrained by the relation v21 + b21 = v2 = (246 GeV)2. Hence we reparametrise them as
v1 = v cosβ, b1 = v sinβ. The most general scalar potential for the simplified LET model is

V (Φ1,ΦR) =
λ1
2
Tr
{
Φ†

1Φ1

}2

+
λ2
2
Tr
{
Φ†

1Φ1Φ
†
1Φ1

}
+
λ3
2

(
ΦRΦ

†
R

)2

+ λ4Tr
{
Φ†

1Φ1

}
(ΦRΦ

†
R) + λ5ΦRΦ

†
1Φ1Φ

†
R

+ µ2
11Tr

{
Φ†

1Φ1

}
+ µ2

RΦRΦ
†
R +

(
µ2
1 detΦ1 + h.c.

)
. (189)

Here the µ2
i and λi are real parameters. In general LR-symmetric models, additional invari-

ants could appear in the potential; see appendix C for a systematic derivation of all possible
scalar invariants, as well as a discussion of which ones cannot arise from the trinification
model.

The potential in eq. (189) should have a minimum at the vev

〈Φ1〉 =
(
v1 0
0 b1

)
, 〈ΦR〉 =

(
0 M

)
. (190)

We obtain contraints on the scalar parameters from the condition that the first derivatives
of the potential with respect to the component fields in eq. (188) vanish at the vev. This
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yields three conditions, which allow us to express the three dimensionful scalar parameters
in terms of the dimensionless scalar parameters and the vevs:

µ2
11 =− 1

2
(λ1 + λ2)v

2 − λ4
2
M2 +

λ5
2
M2 tan2 β

1− tan2 β
,

µ2
R =− λ3

2
M2 − λ4

2
v2 − λ5

2
v2 sin2 β,

µ2
1 =

λ2
4
v2 sin 2β − λ5

4
M2 tan 2β. (191)

B.2 Vacuum stability

The minimised scalar potential still has five free parameters, namely the dimensionless scalar
couplings λi. Their values are restricted by the condition of vacuum stability. This condition
requires the potential in eq. (189) to be positive for large field values |Φ1|, |ΦR| → ∞. In this
section we work out some necessary constraints on the λi arising from this condition. To this
end, we follow the same procedure as described in [118].

First, we rewrite the scalar potential in terms of two SU(2)L doublets φ1, φ2 and two
singlets S+, S0 as in eqs. (50) and (53). Then we reparametrise these fields as follows:

φ1 = ‖φ1‖φ̂1, φ2 = ‖φ2‖φ̂2, S+ = r+e
iθ+ , S0 = r0e

iθ0 , (192)

where φ̂1, φ̂2 are spinors of unit norm, r+, r0 ≥ 0, and θ+, θ0 ∈ [0, 2π). Furthermore, we
parametrise the norms of these fields as

‖φ1‖ = R cos γ1, ‖φ2‖ = R sin γ1 cos γ2,

r+ = R sin γ1 sin γ2 cos γ3, r0 = R sin γ1 sin γ2 sin γ3. (193)

where R ≥ 0 and γ1, γ2, γ3 ∈ [0, π2 ]. We parametrise the unit spinor products as

φ̂†1φ̂2
‖φ1‖‖φ2‖

= ρ1e
iθ1 ,

φ̂c†1 φ̂2
‖φ1‖‖φ2‖

= ρ2e
iθ2 , (194)

where ρ1, ρ2 ∈ [0, 1] and θ1, θ2 ∈ [0, 2π). In terms of this reparametrisation, the scalar
potential becomes

V (Φ1,ΦR) =V4R
4 + V2R

2,

V4 ≡
λ1 + λ2

2
(1− sin2 γ1 sin

2 γ2)
2 − λ2ρ21 cos2 γ1 sin2 γ1 cos2 γ2

+
λ3
2

sin4 γ1 sin
4 γ2 + λ4 sin

2 γ1 sin
2 γ2(1− sin2 γ1 sin

2 γ2)

+ λ5 sin
2 γ1 sin

2 γ2
(
cos2 γ1 cos

2 γ3 + sin2 γ1 cos
2 γ2 sin

2 γ3

+ ρ2 cos γ1 sin γ1 cos γ2 cos γ3 sin γ3 cos(θ0 − θ+ + θ2)
)
,

V2 ≡µ2
11(cos

2 γ1 + sin2 γ1 cos
2 γ2) + µ2

1ρ1 cos γ1 sin γ1 cos γ2 cos θ1

+ µ2
R sin2 γ1 sin

2 γ2. (195)
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At large R, the R4 term becomes dominant over the R2 term. Hence in order to ensure
vacuum stability, it is a necessary and sufficient condition to ensure V4 > 0 for all possible
combinations of γ1, γ2, γ3 ∈ [0, π2 ]; θ+, θ0, θ1, θ2 ∈ [0, 2π); ρ1, ρ2 ∈ [0, 1]. By considering
specific points in this parameter space, we obtain very simple necessary (but not sufficient)
stability conditions:

• V4(γ1 = 0) = λ1+λ2

2
, which gives the condition

λ1 + λ2 > 0.

• V4(γ1 = π

4
, γ2 = 0, ρ1 = 1) = 2λ1+λ2

4
, which gives the condition

λ2 > −2λ1.

• V4(γ1 = γ2 = π

2
) = λ3

2
, which gives the condition

λ3 > 0.

• V4(γ1 = π

4
, γ2 = γ3 = π

2
) = λ1+λ2+λ3+2λ4

8
, which gives the condition

λ4 > −
λ1 + λ2 + λ3

2
.

• V4(γ1 = γ3 = π

2
, γ2 = π

4
, ρ1 = ρ2 = 0) = 1

8
(λ1 + λ2 + λ3 + 2λ4 + 2λ5), which

gives the condition

λ5 > −
λ1 + λ2 + λ3 + 2λ4

2
.

B.3 Unitarity of the S-matrix

Other constraints on the scalar parameters come from the requirement of S-matrix unitarity.
This basically means a conservation of probability in scattering processes. Tree-level unitarity
of the S-matrix is a necessary condition for perturbative renormalisability [119]. It implies
that the scalar couplings cannot be too large. We will make this statement more precise in
this section, following the technique described in refs. [120, 121, 122].

One can impose tree-level unitarity for scalar-scalar, vector-vector, and scalar-vector scat-
tering processes. However, the search for these constraints can be simplified by using the
Goldstone boson equivalence theorem [119, 123]. This theorem states that in the massless
limit (i.e. at very high energies), scattering amplitudes for processes involving longitudinal
vector bosons can be approximated by the scattering amplitudes in which the vector bosons
have been replaced by their corresponding Goldstone bosons. Hence unitarity constraints
can be obtained by considering only scalar scattering processes.

Consider such a process φ1φ2 → φ3φ4. The amplitudeM for this process can be written
as a partial wave decomposition:

M(s, t, u) = 16π
∞∑

l=0

(2l + l)Pl(cos θ)al(s), (196)
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where s, t, u are the Mandelstam variables, Pl(x) are the Legendre polynomials, and al(s) are
partial wave amplitudes. Using the orthogonality of the Legendre polynomials, the partial
waves can be expressed as

al(s) =
1

32π

∫ 1

−1

d(cos θ)Pl(cos θ)M(s, t, u). (197)

Unitarity of the S-matrix implies [124]

|ℜ(al(s))| ≤
1

2
∀l. (198)

In the limit of high-energy scattering, M depends only on the quartic scalar coupling
λφ1φ2φ3φ4

: by dimensional analysis, the diagrams involving trilinear couplings are suppressed
by the energy of the scattering process. Note that M (and hence al) is real at tree-level.
Considering only the l = 0 partial waves, we find the condition

1

2
≥ |a0| =

1

16π
|M| ,

⇒ 8π ≥ |M| . (199)

If we consider all possible scalar-scattering processes, M becomes a matrix of scattering
amplitudes. In that case, the condition in eq. (198) applies to all eigenvalues of this matrix
[120].

The quartic couplings of the Lagrangian in terms of the physical fields of our model
are quite complicated expressions. However, our analysis is simplified by the fact that the
S-matrix in terms of the physical fields is related to the S-matrix in terms of the gauge-
eigenstate fields by a unitary transformation. Since we are only interested in the eigenvalues,
we can obtain the constraints in any basis we want. The quartic couplings in terms of gauge
eigenstates are easily obtained from the scalar potential in eq. (189).

For the simplified LET model, the matrixM can be written as a block diagonal matrix
composed of 10 submatrices. The first blockM1 corresponds to scattering where the initial

and final states are elements of the basis {h
0
1,11h

0
1,11√
2

,
h0
1,22h

0
1,22√
2

,
h0
Rh0

R√
2
,

a0
1,11a

0
1,11√
2

,
a0
1,22a

0
1,22√
2

,

a0
Ra0

R√
2
, h+1,12h

−
1,12, h

+
1,21h

−
1,21, h

+
Rh

−
R}. The factors 1√

2
are there to account for identical-particle

statistics. Mathematica gives us

M1 =




6λ12 2λ1 2λ4 2λ12 2λ1 2λ4
√
2λ12

√
2λ12

√
2λ45

2λ1 6λ12 2λ45 2λ1 2λ12 2λ45
√
2λ12

√
2λ12

√
2λ4

2λ4 2λ45 6λ3 2λ4 2λ45 2λ3
√
2λ4

√
2λ45

√
2λ3

2λ12 2λ1 2λ4 6λ12 2λ1 2λ4
√
2λ12

√
2λ12

√
2λ45

2λ1 2λ12 2λ45 2λ1 6λ12 2λ45
√
2λ12

√
2λ12

√
2λ4

2λ4 2λ45 2λ3 2λ4 2λ45 6λ3
√
2λ4

√
2λ45

√
2λ3√

2λ12
√
2λ12

√
2λ4

√
2λ12

√
2λ12

√
2λ4 2λ12 λ1 λ45√

2λ12
√
2λ12

√
2λ45

√
2λ12

√
2λ12

√
2λ45 λ1 2λ12 λ4√

2λ45
√
2λ4

√
2λ3

√
2λ45

√
2λ4

√
2λ3 λ45 λ4 2λ3




,

(200)
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where we have written λij ≡ λi + λj for the sake of brevity. Three of the eigenvalues ofM1

are simple expressions:
4(λ1 + λ2), (2×) 4λ3. (201)

The remaining six eigenvalues are roots of a sixth-degree polynomial, which we could not
solve analytically.

The second block M2 of the S-matrix corresponds to scattering with initial and final
states contained in {h01,11h01,22, h01,11a01,22, h01,22a01,11, a01,11a01,22, h+1,21h−1,12, h+1,12h−1,21}. It is
given by

M2 =




λ1 0 0 0 λ2

2
λ2

2

0 λ1 0 0 iλ2

2 − iλ2

2

0 0 λ1 0 iλ2

2 − iλ2

2

0 0 0 λ1 −λ2

2 −λ2

2
λ2

2 − iλ2

2 − iλ2

2 −λ2

2 λ1 0
λ2

2
iλ2

2
iλ2

2 −λ2

2 0 λ1



. (202)

The eigenvalues ofM2 are
λ1, (2×) λ1 ± λ2 (2×). (203)

The third blockM3 of the S-matrix corresponds to scattering with initial and final states
contained in {h01,11h0R, h01,11a0R, h0Ra01,11, a01,11a0R, h+1,12h−R, h+Rh−1,12}. We find

M3 =




λ4 0 0 0 λ5

2
λ5

2

0 λ4 0 0 − iλ5

2
iλ5

2

0 0 λ4 0 − iλ5

2
iλ5

2

0 0 0 λ4 −λ5

2 −λ5

2
λ5

2
iλ5

2
iλ5

2 −λ5

2 λ4 0
λ5

2 − iλ5

2 − iλ5

2 −λ5

2 0 λ4



. (204)

The eigenvalues ofM3 are
λ4, (2×) λ4 ± λ5 (2×). (205)

The fourth block M4 of the S-matrix corresponds to scattering with initial and final
states contained in {h01,22h0R, h01,22a0R, h0Ra01,22, a01,22a0R, h+1,21h−R, h+Rh−1,21}. It is given by

M4 =




λ45 0 0 0 λ5

2
λ5

2

0 λ45 0 0 − iλ5

2
iλ5

2

0 0 λ45 0 iλ5

2 − iλ5

2

0 0 0 λ45
λ5

2
λ5

2
λ5

2
iλ5

2 − iλ5

2
λ5

2 λ45 0
λ5

2 − iλ5

2
iλ5

2
λ5

2 0 λ45



. (206)

The eigenvalues ofM4 are

λ4 (2×), λ4 + λ5 (2×), λ4 + 2λ5 (2×). (207)

The blockM5 in the basis {h01,11a01,11, h01,22a01,22, h0Ra0R} is diagonal, hence its eigenvalues
are simply the diagonal elements:

M5 = diag(λ12, λ12, λ3). (208)
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The blockM6 corresponds to scattering with initial and final states contained in {h+1,21h01,11,
h+1,12h

0
1,22, h

+
1,21a

0
1,11, h

+
1,12a

0
1,22}. We find

M6 =




λ12
λ2

2 0 iλ2

2
λ2

2 λ12 − iλ2

2 0

0 iλ2

2 λ12 −λ2

2

− iλ2

2 0 −λ2

2 λ12


 . (209)

Its eigenvalues are
λ1, λ1 + λ2 (2×), λ1 + 2λ2. (210)

The blockM7 corresponds to scattering with initial and final states contained in {h+1,21h01,22,
h+1,12h

0
1,11, h

+
Rh

0
R, h

+
1,21a

0
1,22, h

+
1,12a

0
1,11, h

+
Ra

0
R}, and is given by

M7 =




λ12
λ2

2
λ5

2 0 iλ2

2 − iλ5

2
λ2

2 λ12
λ5

2 − iλ2

2 0 − iλ5

2
λ5

2
λ5

2 λ3 − iλ5

2
iλ5

2 0

0 iλ2

2
iλ5

2 λ12 −λ2

2
λ5

2

− iλ2

2 0 − iλ5

2 −λ2

2 λ12 −λ5

2
iλ5

2
iλ5

2 0 λ5

2 −λ5

2 λ3



. (211)

Its eigenvalues are

λ1, λ1 + λ2 (2×), λ3,

1

2

(
λ1 + 2λ2 + λ3 ±

√
(λ1 + 2λ2)2 − λ3(2λ1 + 4λ2 − λ3) + 8λ25

)
. (212)

The blockM8 corresponds to scattering with initial and final states contained in {h+1,21h0R,
h+Rh

0
1,22, h

+
1,21a

0
R, h

+
Ra

0
1,22}, and is given by

M8 =




λ4
λ5

2 0 − iλ5

2
λ5

2 λ4 − iλ5

2 0

0 iλ5

2 λ4
λ5

2
iλ5

2 0 λ5

2 λ4


 . (213)

Its eigenvalues are
λ4 (2×), λ4 ± λ5. (214)

The blockM9 corresponds to scattering with initial and final states contained in {h+1,12h0R,
h+Rh

0
1,21, h

+
1,12a

0
R, h

+
Ra

0
1,21}. It is given by

M9 =




λ45
λ5

2 0 − iλ5

2
λ5

2 λ45
iλ5

2 0

0 − iλ5

2 λ45 −λ5

2
iλ5

2 0 −λ5

2 λ45


 . (215)

Its eigenvalues are
λ4, λ4 + λ5 (2×), λ4 + 2λ5. (216)
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The block M10 in the basis {h
+
1,21h

+
1,21√
2

,
h+
1,12h

+
1,12√
2

,
h+
R
h+
R√
2
, h+1,21h

+
1,12, h

+
1,21h

+
R, h

+
1,12h

+
R} is

diagonal, hence its eigenvalues are simply the diagonal elements:

M10 = diag(4λ12, 4λ12, 4λ3, λ1, λ45, λ4). (217)

All eigenvalues need to satisfy the S-matrix-unitarity condition in eq. (199). This yields
the following constraints on the scalar parameters:

2π ≥|λ3|, |λ1 + λ2|,
8π ≥|λ1|, |λ4|, |λ1 − λ2|, |λ4 + λ5|, |λ4 − λ5|, |λ1 + 2λ2|, |λ4 + 2λ5|,

16π ≥
∣∣∣∣λ1 + 2λ2 + λ3 ±

√
(λ1 + 2λ2)2 − λ3(2λ1 + 4λ2 − λ3) + 8λ25

∣∣∣∣ . (218)

B.4 Scalar masses and mass eigenstates

In our parametrisation of the scalar field components in eq. (188), the gauge eigenstates
contain three pairs of charged states h±1,21, h

±
1,12, h

±
R, three CP -odd states a01,11, a

0
1,22, a

0
R, and

three CP -even states h01,11, h
0
1,22, h

0
R. After spontaneous symmetry breaking, the potential

in eq. (189) gives rise to scalar mass terms. The scalar mass matrix is the matrix of second
derivatives of the potential with respect to the scalar field components at the vev. The
eigenvectors of this matrix become the physical states we observe, and their eigenvalues
are their squared masses. The mass eigenstates can be parametrised by a rotation of the
gauge eigenstates. These rotations are described by three 3 × 3 matrices, each of which we
parametrise by three Euler angles:

R(α1, α2, α3) ≡




c1 s1c2 s1s2
−s1c3 c1c2c3 − s2s3 c1s2c3 + c2s3
s1s3 −s2c3 − c1c2s3 c2c3 − c1s2s3


 . (219)

Here we defined ci ≡ cosαi and si ≡ sinαi for the sake of brevity. The ranges for the angles
are α1 ∈ [0, π2 ], α2 ∈ (−π, π], and α3 ∈ [−π

2 ,
π
2 ].

9 In terms of this parametrisation, we define
the scalar mass eigenstates as follows:



h0

H0
1

H0
2


 =R(α1, α2, α3)



h01,11
h01,22
h0R


 ,



G0

G′0

A0


 = R(β1, β2, β3)



a01,11
a01,22
a0R


 ,



G±

G′±

H±


 =R(γ1, γ2, γ3)



h±1,21
h±1,12
h±R


 . (220)

9 For general three-dimensional rotations, the ranges for the Euler angles are α1 ∈ [0, π] and α2, α3 ∈

(−π, π]. However, there is an ambiguity in the definition of the mixing angles because the phase of the mass
eigenstates is arbitrary: if for example h0 ≡ c1h0

1,11+s1c2h0
1,22+s1s2h0

R
is a mass eigenstate with mass mh0 ,

then so is −h0. Hence we can redefine α1,2,3 by multiplying any pair of rows in R(α1, α2, α3) by a minus
sign, keeping the determinant at +1. Multiplying the first two rows by −1 corresponds to the redefinition
α1 → π − α1, α2 → π + α2, α3 → π − α3, whereas multiplying the last two rows by −1 corresponds to
α1 → α1, α2 → α2, and α3 → π + α3. Thus we have the freedom to choose our mass eigenstates such that
α1 ∈ [0, π

2
], α3 ∈ [−π

2
, π
2
]. In practice, if we want to extract these rotation angles from a rotation matrix

R, we first multiply the first two rows by −1 if R(1,1) < 0, and then multiply the last two rows by −1 if
R(2,1) > 0. Only then do we extract α1, α2, α3 from eq. (219)
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Here the CP -odd states G0 and G′0 are defined as the Goldstones that give mass to the Z
and Z ′ bosons respectively. Similarly, the charged states G± and G′± are the Goldstones
that give mass to the W± and W ′± bosons respectively. Note that the simplified LET model
predicts the existence of a massive CP -odd scalar A0 and a pair of massive charged scalars
H±.

The simplified LET model contains three massive CP -even scalars h0, H0
1 , H

0
2 , of which

only one has been observed. Of course, the definition of the mixing angles α1, α2, α3 in
eq. (220) is ambiguous unless we specify how to distinguish the three scalars from each other.
We define h0 as the state that is the most h01,11-like, and H

0
2 as the state that is the most

h0R-like. It will turn out that h0 has a mass proportional to v whereas H0
1 , H

0
2 have masses

proportional to M . That is, h0 is the only CP -even scalar that naturally has a mass of the
order of the electroweak scale. Therefore we identify h0 with the scalar particle that has been
observed at the LHC. This means that the Standard-Model-like Higgs in our model is given
by

h0 = cosα1h
0
1,11 + sinα1 cosα2h

0
1,22 + sinα1 sinα2h

0
R. (221)

Note that if h0 contains a nonzero component of the fermiophobic h0R, the decay rate to
fermions will be less than the rate predicted by the Standard Model. If the coefficient
sinα1 sinα2 is not too small, this reduction may be observable experimentally.

Charged mass eigenstates After spontaneous symmetry breaking, the charged states in
the basis {h±1,21, h±1,12, h±R} have the following mass matrix:

M2
± =

1

2
λ5



M2 sin2 β sec 2β 1

2M
2 tan 2β Mv sinβ

1
2M

2 tan 2β M2 cosβ sec 2β Mv cosβ
Mv sinβ Mv cosβ v2 cos 2β


 . (222)

The eigenvalues can easily be solved by Mathematica. Two of them are zero: they correspond
to the charged Goldstones G±, G′±. The third eigenvalue gives the mass of H±:

m2
H± =

λ5
2

(
M2 sec 2β + v2 cos 2β

)
. (223)

In order for the scalar potential to be at a minimum, the eigenvalues of the mass matrix that
do not correspond to Goldstones must be positive. This yields a new constraint on the scalar
parameter λ5:

λ5 > 0. (224)

The mixing angles γ1, γ2, γ3 can be solved analytically as well. We find:

γ1 =arctan


tanβ

√

1 +
2M2v2 sin2 2β

(M2 + v2 cos 2β)2




=β +
1

2
sin3 2β

v2

M2
+O

(
v4

M4

)
,

γ2 =arctan

(
2Mv cosβ

M2 − v2 cos 2β

)
− π
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=− π + 2 cosβ
v

M
+O

(
v3

M3

)
,

γ3 =arccos

(
v

√
M2 + v2 cos2 2β

M4 + 2M2v2 + v4 cos2 2β

)

=
π

2
− v

M
+O

(
v3

M3

)
. (225)

CP -odd mass eigenstates The CP -odd states in the basis {a01,11, a01,22, a0R} have the
following mass matrix:

M2
odd =

1

2
(λ5M

2 − λ2v2 cos 2β)



sin2 β sec 2β 1

2 tan 2β 0
1
2 tan 2β cos2 β sec 2β 0

0 0 0


 . (226)

Two of its eigenvalues are zero: they correspond to the CP -odd Goldstones G0, G′0. The
third eigenvalue gives the mass of A0:

m2
A =

1

2

(
λ5M

2 sec 2β − λ2v2
)
. (227)

This eigenvalue should be positive, hence we obtain another constraint on the scalar para-
meters:

λ5 > λ2
v2

M2
cos 2β. (228)

The mixing angles β1, β2, β3 can be solved analytically as well. They have the following
simple form:

β1 = β, β2 = π, β3 =
π

2
. (229)

CP -even mass eigenstates The CP -even states in the basis {h01,11, h01,22, h0R} have the
following mass matrix:

M2
even =



C1 + C2 cos 2β + 2C3 sin

2 β (C1 − C3) sin 2β λ4Mv cosβ
(C1 − C3) sin 2β C1 − C2 cos 2β + 2C3 cos

2 β (λ4 + λ5)Mv sinβ
λ4Mv cosβ (λ4 + λ5)Mv sinβ λ3M

2


 ,

C1 ≡
1

4
(2λ1 + λ2)v

2, C2 ≡
1

4
(2λ1 + 3λ2)v

2, C3 ≡
1

4
λ5M

2 sec 2β. (230)

The three eigenvalues m2
i are the roots of the characteristic polynomial p(x) = det(xI3 −

M2
even). We have no analytical solution for these eigenvalues, since p(x) is a third-degree

polynomial with large expressions as its coefficients. However, it is straightforward to calcu-
late the m2

i as an expansion in v
M :

m2
i (M, v) =M2

(
xi0 + xi1

v

M
+

1

2
xi2

v2

M2
+O

(
v3

M3

))
,
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The expansion coefficients xin only depend on β and the λi. We obtain these coefficients by
solving the eigenvalue equation p(m2

i ) = 0 order by order in v
M . This yields

m2
h0 =

(
λ1 + λ2 cos

2 β − (λ4 + λ5 sin
2 β)2

λ3
+O

(
v2

M2

))
v2,

m2
H0

1
=
1

2
λ5M

2 sec 2β − v2

2

(
λ2 cos

2 2β − λ25 sin
2 2β cos 2β

λ5 − 2λ3 cos 2β
+O

(
v2

M2

))
,

m2
H0

2
=λ3M

2 + v2
(
(λ4 + λ5 sin

2 β)2

λ3
− λ25 sin

2 2β cos 2β

λ5 − 2λ3 cos 2β
+O

(
v2

M2

))
. (231)

Note that since β is small, H0
1 is approximately degenerate in mass with A0. For M ≫ v,

the vacuum stability condition λ3 > 0 and the minimum condition λ5 > 0 guarantee that
m2

H0
1
, m2

H0
2
are positive. The positivity of m2

h0 gives an additional constraint (using λ3 > 0):

(λ1 + λ2 cos
2 β)λ3 > (λ4 + λ5 sin

2 β)2. (232)

The mixing angles α1, α2, α3 can be solved order by order in v
M as well. Let vi be the

eigenvector ofM2
even with eigenvalue m2

i . We then write

vi = (vi)0 + (vi)1
v

M
+

1

2
(vi)2

v2

M2
+O

(
v3

M3

)
. (233)

Again, the expansion coefficients (vi)n depend only on β and the λi. We obtain them by
solving the eigenvector equation M2

evenvi = m2
i vi order by order in v

M , using the masses
in eq. (231). The rotation matrix R(α1, α2, α3) has the vi as its rows. Using eq. (220), we
extract the following mixing angles from this matrix:

α1 =β +

(
1

2
cotβ

(
λ4 + λ5 sin

2 β

λ3

)2

+
1

2
sin 4β

(
λ4 + λ5 sin

2 β

λ3

)

+
λ2 sin 2β cos

2 2β

λ5

)
v2

M2
+O

(
v3

M3

)
,

α2 =− cscβ

(
λ4 + λ5 sin

2 β

λ3

)
v

M
+O

(
v2

M2

)
,

α3 =

(
λ4 cotβ

λ3
+

λ25 tan 2β

2λ3(λ5 sec 2β − 2λ3)

)
v

M
+O

(
v2

M2

)
. (234)

B.5 The complete LET model

Now let us consider the scalar sector of the complete LET model. That is, we add a second
bidoublet Φ2 ∼ (1,2,2, 0) to the scalar sector. We parametrise it the same way as Φ1:

Φ2 =




v2 + h02,11 + ia02,11√
2

h−2,12

h+2,21
b2 + h02,22 + ia02,22√

2


 . (235)
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The vev parameters of Φ1 and Φ2 are now constrained by v21+b
2
1+v

2
2+b

2
2 = v2 = (246 GeV)2.

In analogy to the simplified LET model, it will be convenient to reparametrise them as

v1 =v cosα cosβ1, v2 = v sinα cosβ2,

b1 =v cosα sinβ1, b2 = v sinα sinβ2. (236)

In order to avoid FCNC processes in the fermion sector, we introduced a Z2-symmetry under
which Φ1 (Φ2) is even (odd). The most general scalar potential for the complete LET model
is

V2(Φ1,Φ2,ΦR) =V (Φ1,ΦR) +
λ̃1
2
Tr
{
Φ†

2Φ2

}2

+
λ̃2
2
Tr
{
Φ†

2Φ2Φ
†
2Φ2

}

+ λ̃3Tr
{
Φ†

2Φ2

}
(ΦRΦ

†
R) + λ̃4ΦRΦ

†
2Φ2Φ

†
R

+ λ̃5Tr
{
Φ†

1Φ1

}
Tr
{
Φ†

2Φ2

}
+ λ̃6

∣∣∣Tr
{
Φ†

1Φ2

}∣∣∣
2

+
λ̃7
2

(
Tr
{
Φ†

1Φ2

}2

+ h.c.

)
+ λ̃8Tr

{
Φ†

1Φ1Φ
†
2Φ2

}

+ λ̃9Tr
{
Φ†

1Φ2Φ
†
2Φ1

}
+
λ̃10
2

(
Tr
{
Φ†

1Φ2Φ
†
1Φ2

}
+ h.c.

)

+ µ2
22Tr

{
Φ†

2Φ2

}
+
(
µ2
2 detΦ2 + h.c.

)
. (237)

Here V (Φ1,ΦR) is the scalar potential for the simplified LET model, which was given in
eq. (189). Again, all coupling parameters in the potential are assumed to be real. For
a derivation of all possible scalar invariants, including the ones we omitted because they
violate the Z2-symmetry, see appendix C.

The potential in eq. (237) should have a minimum at the vev

〈Φ1〉 =
(
v1 0
0 b1

)
, 〈Φ2〉 =

(
v2 0
0 b2

)
, 〈ΦR〉 =

(
0 M

)
. (238)

If we demand that the first derivatives of the potential with respect to the component fields
vanish at the vev, we obtain five conditions. These allow us to express the five dimensionful
scalar parameters in terms of the dimensionless scalar parameters and the vevs:

µ2
11 =− 1

2
(λ1 + λ2)(v

2
1 + b21)−

λ4
2
M2 +

λ5
2

M2b21
v21 − b21

− λ̃5
2
(v22 + b22)−

1

2
(λ̃6 + λ̃7 + λ̃8 + λ̃9 + λ̃10)

v21v
2
2 − b21b22
v21 − b21

,

µ2
22 =− 1

2
(λ̃1 + λ̃2)(v

2
2 + b22)−

λ̃3
2
M2 +

λ̃4
2

M2b22
v22 − b22

− λ̃5
2
(v21 + b21)−

1

2
(λ̃6 + λ̃7 + λ̃8 + λ̃9 + λ̃10)

v21v
2
2 − b21b22
v22 − b22

,

µ2
R =− 1

2

(
λ3M

2 + λ4(v
2
1 + b21) + λ5b

2
1 + λ̃3(v

2
2 + b22) + λ̃4b

2
2

)
,
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µ2
1 =

λ2
2
v1b1 −

λ5
2

M2v1b1
v21 − b21

+
1

2
(λ̃6 + λ̃7)

(
v1b1

v22 − b22
v21 − b21

− v2b2
)

+
1

2
(λ̃8 + λ̃9 + λ̃10)v1b1

v22 − b22
v21 − b21

,

µ2
2 =

λ̃2
2
v2b2 −

λ̃4
2

M2v2b2
v22 − b22

+
1

2
(λ̃6 + λ̃7)

(
v2b2

v21 − b21
v22 − b22

− v1b1
)

+
1

2
(λ̃8 + λ̃9 + λ̃10)v2b2

v21 − b21
v22 − b22

. (239)

The scalar mass eigenstates are eigenstates of the mass matrix, which is the matrix of
second derivatives of V2(Φ1,Φ2,ΦR). These eigenstates are rotations of the gauge eigenstates
in eqs. (188) and (235), which amount to five CP -even scalars, five CP -odd scalars and five
pairs of charged scalars. Their mixings are given by three 5×5 matrices. We parametrise these
matrices using the 5-dimensional analogue of the Euler angles. In a general N -dimensional
vector space, a rotation over angle α in the plane spanned by the mth and nth basis vectors
is given by the N ×N matrix

Rmn(α) ≡

mth column nth column


1
. . .

1
cosα sinα

1
. . .

1
− sinα cosα

1
. . .

1




mth row

nth row

(240)

where the empty entries are zeroes. In five dimensions there are
(
5
2

)
= 10 such planes, hence

we need 10 rotation angles to describe a general five-dimensional rotation. Using the analog
of the Euler angles, the corresponding rotation matrix can be parametrised as

R(α1, . . . , α10) ≡ R45(α10)R34(α8)R45(α9)R23(α5)R34(α6)·
R45(α7)R12(α1)R23(α2)R34(α3)R45(α4). (241)

We omit the full expression of the rotation matrix, as it is quite large. It can easily be
generated in Mathematica. The ranges for the angles are αi ∈ [0, π2 ] for i = 1, 5, 8; αi ∈
[0, π] for i = 2, 3, 6; αi ∈ (−π, π] for i = 4, 7, 9; and α10 ∈ [−π

2 ,
π
2 ).

10 In terms of this

10The usual ranges for the Euler angles in five dimensions are αi ∈ [0, π] for i = 1, 2, 3, 5, 6, 8 and αi ∈

(−π, π] for i = 4, 7, 9, 10. However, as in the three-dimensional case there is an ambiguity due to the phase
freedom of the mass eigenstates, which allows for a redefinition of the angles by multiplying any pair of rows
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parametrisation, we write for the Higgs mass eigenstates:



h0

H0
1

H0
2

H0
3

H0
4




=R(α1, . . . , α10)




h01,11
h01,22
h02,11
h02,22
h0R



,




G0

G′0

A0
1

A0
2

A0
3




= R(β1, . . . , β10)




a01,11
a01,22
a02,11
a02,22
a0R



,




G±

G′±

H±
1

H±
2

H±
3




=R(γ1, . . . , γ10)




h±1,21
h±1,12
h±2,21
h±2,12
h±R



. (242)

As in the simplified LET model, we have to define the mass eigenstates before these ex-
pressions makes sense. Recall that in the simplified setup, the CP -even part of the scalar
spectrum contains a h01,11-like state h0 with a mass of order v, a h01,22-like state H0

1 with a
mass of orderM , and a h0R-like state with a mass of orderM . Note that the scalar field Φ2 is
in the same representation as Φ1. Hence if we decoupled Φ1 from the complete LET model,
we would expect a h02,11-like state with a mass of order v, as well as a h02,22-like state and a
h0R-like state with masses of order M . Likewise, we would expect a massive CP -odd state
that is a02,22-like, whereas the Goldstones G0, G′0 would be a02,11- and a0R-like respectively.

The massive charged state would be h±2,21-like, and the Goldstones G±, G′± would be h±2,12-

and h±R-like respectively.
In the complete LET model, we get a mixture of these two scenarios, and we use the

above considerations to define the mass eigenstates. Again, we define h0 as the most h01,11-
like state, and we define H0

1 as the most h02,11-like. Both will turn out to have masses of order
v, so they are naturally light. We identify h0 with the observed scalar at 126 GeV, since
h01,11 couples to fermions whereas h02,11 does not. In terms of mixing angles, the expression
for the Standard-Model-like Higgs boson is

h0 = c1h
0
1,11 + s1c2h

0
1,22 + s1s2c3h

0
2,21 + s1s2s3c4h

0
2,22 + s1s2s3s4h

0
R, (243)

where ci ≡ cosαi and si ≡ sinαi. We define H0
2 , H

0
3 , H

0
4 respectively as the most h01,22-,

h02,22-, h
0
R-like states. They will turn out to have masses of order M .

As for the CP -odd states, we define A0
1, A

0
2, A

0
3 respectively as the most a02,11-, a

0
1,22-

, a02,22-like states. The Goldstones G0, G′0 turn out to be a01,11- and a0R-like respectively.

Similarly, we define the charged states H±
1 , H±

2 , H±
3 respectively as the most h±2,21-, h

±
1,12-,

h±2,12-like states. The Goldstones G±, G′± turn out to be h±1,21- and h
±
R-like respectively.

of the rotation matrix by −1 (see footnote 9 on page 86). Multiplying the first two rows by −1 corresponds
to the redefinition αi → π − αi for i = 1, 2, 3, 5, 6, 7 and α4 → π + α4; the other angles are left unchanged.
Multiplying the second and third rows by −1 corresponds to αi → π − αi for i = 5, 6, 8, 9 and α7 → π + α7,
with the other angles unchanged. The third and fourth rows correspond to αi → π − αi for i = 8, 10 and
α9 → π + α9, with all other angles unchanged. The last two rows only change α10 → π + α10. Thus, given
a rotation matrix R, we have the freedom to choose α1 ∈ [0, π

2
] by multiplying the first two rows by −1 if

R(1,1) < 0. Then we can choose α5 ∈ [0, π
2
] by multiplying the second and third rows by −1 if R(2,1) > 0. If

R(3,1) < 0, we multiply the third and fourth rows by −1 to let α8 ∈ [0, π
2
]. Then if R(4,1) > 0, we multiply

the last two rows by −1 to let α10 ∈ [−π
2
, π
2
]. Only after these operations, we extract the mixing angles from

eq. (241).
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The scalar masses can be found by solving for the eigenvalues of the scalar mass matrix
as described in the previous section. This amounts to finding the eigenvalues of one 5 × 5
matrix and two 3× 3 matrices. This can be done in an expansion in v

M , as described on 88.
We find the following expressions:

m2
h0,H0

1
=
v2

2

(
Λ1 cos

2 α+ Λ2 sin
2 α

±
√(

Λ1 cos2 α− Λ2 sin
2 α
)2

+ Λ2
3 sin

2 2α+O
(
v2

M2

))

m2
H0

2
=M2

(
λ5
2

sec 2β1 +O
(
v2

M2

))
,

m2
H0

3
=M2

(
λ̃4
2

sec 2β2 +O
(
v2

M2

))
,

m2
H0

4
=M2

(
λ3 +O

(
v2

M2

))
,

m2
A0

1
=− v2

(
(λ̃7 + λ̃10)(cos

2 β1 cos
2 β2 + sin2 β1 sin

2 β2)

+
λ̃6
2

sin 2β1 sin 2β2 +O
(
v2

M2

))
,

m2
A0

2
=M2

(
λ5
2

sec 2β1 +O
(
v2

M2

))
,

m2
A0

3
=M2

(
λ̃4
2

sec 2β2 +O
(
v2

M2

))
,

m2
H±

1
=− v2

2

(
(λ̃6 + λ̃7 + λ̃10) cos

2(β1 − β2) + λ̃9 cos 2β1 cos 2β2 +O
(
v2

M2

))
,

m2
H±

2
=M2

(
λ5
2

sec 2β1 +O
(
v2

M2

))
,

m2
H±

3
=M2

(
λ̃4
2

sec 2β2 +O
(
v2

M2

))
. (244)

Here we have defined the quantities

Λ1 ≡λ1 + λ2 cos
2 β1 −

(λ4 + λ5 sin
2 β1)

2

λ3
,

Λ2 ≡λ̃1 + λ̃2 cos
2 β2 −

(λ̃3 + λ̃4 sin
2 β2)

2

λ3
,

Λ3 ≡−
(λ4 + λ5 sin

2 β1)(λ̃3 + λ̃4 sin
2 β2)

λ3
+ λ̃5 + (λ̃6 + λ̃7) cos

2(β1 − β2)

+ (λ̃8 + λ̃9 + λ̃10)(cos
2 β1 cos

2 β2 + sin2 β1 sin
2 β2). (245)
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We can find vacuum-stability conditions for the complete LET model completely analog-
ously to appendix B.2. Because of the large number of fields and parameters, we generate
these conditions in Mathematica. To this end, we write the scalar fields in terms of SU(2)L
doublets φ1, φ2, χ1, χ2 and SU(2)L singlets S+, S0:

Φ1 =
(
iσ2φ1, φ∗2

)
, Φ2 =

(
iσ2χ1, χ∗

2

)
, ΦR =

(
S+, S0

)
. (246)

We reparametrise these fields in terms of unit spinors φ̂1,2, χ̂1,2 and the norms of the fields:

φ1,2 = ‖φ1,2‖φ̂1,2, χ1,2 = ‖χ1,2‖χ̂1,2, S+,0 = r+,0e
iθ+,0 . (247)

Here all norms are positive and θ+,0 ∈ [0, 2π). We reparametrise the norms of the SU(2)L
doublets and singlets as follows:

‖φ1‖ = R cos γ1, ‖χ2‖ = R sin γ1 sin γ2 sin γ3 cos γ4,

‖φ2‖ = R sin γ1 cos γ2, r+ = R sin γ1 sin γ2 sin γ3 sin γ4 cos γ5,

‖χ1‖ = R sin γ1 sin γ2 cos γ3, r0 = R sin γ1 sin γ2 sin γ3 sin γ4 sin γ5. (248)

Here R ≥ 0 and γ1,2,3,4,5 ∈ [0, π/2]. The products of unit spinors can be parametrised as
follows:

(Φ†
1Φ2)ij

‖φi‖‖χj‖
= φije

iθij ,
φcT1 φ∗2
‖φi‖‖φj‖

= ρφe
iθφ ,

χcT
1 χ∗

2

‖χi‖‖χj‖
= ρχe

iθχ , (249)

where ρij , ρφ, ρχ ∈ [0, 1] and θij , θφ, θχ ∈ [0, 2π). Inserting these reparametrisations into the
scalar potential in eq. (158), we write the scalar potential as

V (Φ1,Φ2,ΦR) = V4R
4 + V2R

2, (250)

in analogy to eq. (195). We omit the full expression for V4, as it is quite large. The condition
of vacuum stability requires that V4 > 0 for all possible values of γ1,2,3,4,5, ρij , ρφ,χ, θij ,
θ+,0,φ,χ. We generate a list necessary (but not sufficient) conditions in Mathematica by
requiring that the condition V4 > 0 is satisfied for all combinations of θij = θ+,0,φ,χ = 0,
γ1,2,3,4,5 ∈ {0, π/4, π/2}, and ρij , ρφ,χ ∈ {0, 1}. This results in 367 unique vacuum-stability
conditions. For all benchmark points in section 8, we check that the parameters satisfy all
367 vacuum-stability conditions.
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C Systematic derivation of scalar invariants

The scalar masses, mixings, and interactions of a theory are determined by the scalar poten-
tial. This potential contains all possible gauge-invariant combinations of the scalar fields up
to mass dimension four. The most general scalar potential for the simplified LET model was
given in eq. (189), and the potential for the full LET model was given in eq. (237). In this
appendix we derive all possible invariants for the LET model in a systematical way, in order
to show that the given scalar potentials are indeed the most general for our setup. First we
will find the invariants for the simplified LET model, constructed from Φ1 ∼ (1,2,2, 0) and
ΦR ∼ (1,1,2, 1) only. Then we will find the additional invariants that are allowed when the
field Φ2 ∼ (1,2,2, 0) is added for the complete LET model.

Field components will be labelled with an upper index for the SU(2)L component and a
lower index for the SU(2)R component. In the rest of this work, the invariants have been
cast into an index-free matrix notation, in which SU(2)L indices run vertically and SU(2)R
indices run horizontally. In this appendix, we will show how the expressions in this matrix
notation arise from the expressions with all indices restored. Since this index-free notation
obscures the difference between SU(2)L and SU(2)R indices, care has to be taken whenever
transposes and hermitian conjugates are used. To avoid confusion, we will indicate the use
of this matrix notation by putting the relevant expressions in boldface.

In order to cast all invariants in matrix notation, we employ the following identities. The
determinant of an n× n matrix A can be written as

detA = ǫi1...inA
i1
1 . . . A

in
n =

1

n!
ǫi1...inǫj1...jnA

i1
j1
. . . Ain

jn
. (251)

Here ǫ is the completely antisymmetric symbol that satisfies ǫ1...n = +1. For n = 2, the
ǫ-symbol can be written in matrix notation as

ǫ =

(
0 1
−1 0

)
. (252)

Then eq. (251) becomes

detA = 1
2Tr

{
ǫTAǫAT

}
(253)

We also note that ǫ = iσ2, so that the charge conjugate of Φ1 can be written in terms of ǫ:

(Φc
1)

i
k ≡(iσ2)ij(iσ2)kl(Φ∗

1)
j
l = ǫij(Φ∗

1)
j
l (ǫ

T )lk,

⇒ Φc
1 =ǫΦ∗

1ǫ
T. (254)

C.1 The simplified LET model

The scalar fields of the LET model are only in singlet and (anti)doublet representations of
SU(2)L,R. We need to combine them in such a way that the whole becomes a singlet with
respect to the gauge group. A doublet and an antidoublet can be combined symmetrically
into a singlet. Also, two doublets or two antidoublets can be combined antisymmetrically into
a singlet, using the completely antisymmetric symbols ǫij (for SU(2)L) and ǫij (for SU(2)R).

This implies that each invariant needs to contain an even number of factors Φ1 and/or Φ†
1
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in order to be an SU(2)L singlet. Furthermore, each invariant needs to contain an equal

number of factors ΦR and Φ†
R in order to be a U(1)B−L singlet.

Now let us derive the scalar invariants with couplings of positive mass dimension first.
Using the above observations and the fact that all invariants should be real, we find the
following three invariants:

I1 ≡(Φ∗
1)

i
j(Φ1)

i
j = Tr

{
Φ†

1Φ1

}
,

I2 ≡ 1
2ǫ

ijǫkl

(
(Φ1)

i
k(Φ1)

j
l + (Φ∗

1)
i
k(Φ

∗
1)

j
l

)
= detΦ1 + detΦ†

1,

I3 ≡(Φ∗
R)i(ΦR)i = ΦR ·Φ†

R. (255)

Note that for I3, we put Φ†
R on the right since ΦR is a row vector in our notation. Now we

turn to the quartic terms. We divide them into invariants that do not mix Φ1 and ΦR and
those that do.

Unmixed invariants First let us write down the terms involving only Φ1. We need to
combine i ∈ {0, . . . , 4} copies of Φ1 and 4 − i copies of Φ∗

1, and we need the antisymmetric
symbol whenever we combine the indices of two factors Φ1 or two factors Φ∗

1. This gives the
following invariants (note that we are not taking real combinations yet).

• For i = 0 we have two distinct options of combining the indices, although they lead to
the same invariant:

1
4ǫ

ijǫklǫpqǫrs(Φ1)
i
p(Φ1)

j
q(Φ1)

k
r (Φ1)

l
s =

1
4Tr

{
ǫTΦ1ǫΦ

T
1

}2

=(detΦ1)
2,

1
2ǫ

ijǫklǫpqǫrs(Φ1)
i
p(Φ1)

j
r(Φ1)

k
q (Φ1)

l
s =

1
2Tr

{
ǫTΦ1ǫΦ

T
1 ǫΦ1ǫ

TΦT
1

}

=det(Φ1ǫΦ
T
1 )

=(detΦ1)
2. (256)

• For i = 1 we also have two options, leading to two different invariants:

1
2ǫ

jkǫmn(Φ
∗
1)

i
l(Φ1)

i
l(Φ1)

j
m(Φ1)

k
n =Tr

{
Φ†

1Φ1

}
· 12Tr

{
ǫTΦ1ǫΦ

T
1

}

=Tr
{
Φ†

1Φ1

}
detΦ1,

1
2ǫ

jkǫmn(Φ
∗
1)

i
l(Φ1)

i
m(Φ1)

j
l (Φ1)

k
n = 1

2Tr
{
ǫTΦ1Φ

†
1Φ1ǫΦ

T
1

}

=Tr
{
Φ†

1Φ1(Φ
c
1)

†Φ1

}
. (257)

• For i = 2 we get several options by combining the left-handed and right-handed indices
either symmetrically or antisymmetrically:

(Φ∗
1)

i
k(Φ

∗
1)

j
l (Φ1)

i
k(Φ1)

j
l =Tr

{
Φ†

1Φ1

}2

,

(Φ∗
1)

i
k(Φ

∗
1)

j
l (Φ1)

i
l(Φ1)

j
k =Tr

{
Φ†

1Φ1Φ
†
1Φ1

}
,
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1
2ǫ

ijǫkl(Φ∗
1)

i
m(Φ∗

1)
j
n(Φ1)

k
m(Φ1)

l
n = 1

2Tr
{
ǫTΦ1Φ

†
1ǫΦ

∗
1Φ

T
1

}

=det(Φ†
1Φ1),

1
2ǫpqǫrs(Φ

∗
1)

i
p(Φ

∗
1)

j
q(Φ1)

i
r(Φ1)

j
s =

1
2Tr

{
ǫTΦ†

1Φ1ǫΦ
T
1 Φ

∗
1

}

=det(Φ†
1Φ1),

1
4ǫpqǫrsǫ

ijǫkl(Φ∗
1)

i
p(Φ

∗
1)

j
q(Φ1)

k
r (Φ1)

l
s =

1
4Tr

{
ǫTΦ†

1ǫΦ
∗
1

}
Tr
{
ǫTΦ1ǫΦ

T
1

}

=det(Φ†
1Φ1). (258)

• For i = 3 we have two possibilities, which are the Hermitian conjugates of the combin-
ations for i = 1:

1
2ǫ

jkǫmn(Φ
∗
1)

j
m(Φ∗

1)
k
n(Φ

∗
1)

i
l(Φ1)

i
l =Tr

{
Φ†

1Φ1

}
· 12Tr

{
ǫTΦ∗

1ǫΦ
†
1

}

=Tr
{
Φ†

1Φ1

}
detΦ†

1,

1
2ǫ

jkǫmn(Φ
∗
1)

j
l (Φ

∗
1)

k
n(Φ

∗
1)

i
l(Φ1)

i
m = 1

2Tr
{
ǫTΦ∗

1Φ
T
1 Φ

∗
1ǫΦ

†
1

}

=Tr
{
Φ†

1Φ1Φ
†
1Φ

c
1

}
, (259)

• For i = 4 we get the Hermitian conjugates of the invariants for i = 0:

1
4ǫ

ijǫklǫpqǫrs(Φ
∗
1)

i
p(Φ

∗
1)

j
q(Φ

∗
1)

k
r (Φ

∗
1)

l
s =

1
4Tr

{
ǫTΦ∗

1ǫΦ
†
1

}2

=(detΦ†
1)

2,

1
2ǫ

ijǫklǫpqǫrs(Φ
∗
1)

i
p(Φ

∗
1)

j
r(Φ

∗
1)

k
q (Φ

∗
1)

l
s =

1
2Tr

{
ǫTΦ∗

1ǫΦ
†
1ǫΦ

∗
1ǫ

TΦ†
1

}

=det(Φ∗
1ǫΦ

†
1)

=(detΦ†
1)

2. (260)

The above list exhausts the possible options for gauge-invariant quartic terms built from Φ1

only. However, the invariants appearing in the scalar potential should be real as well, which
yields only six combinations:

J1 ≡Tr
{
Φ†

1Φ1

}2

= I21 ,

J2 ≡Tr
{
Φ†

1Φ1Φ
†
1Φ1

}
,

Jc
2 ≡Tr

{
Φ†

1Φ1(Φ
c
1)

†Φ1

}
+ h.c. ,

J6 ≡(detΦ1)
2 + (detΦ†

1)
2,

J7 ≡ det(Φ†
1Φ1),

J8 ≡Tr
{
Φ†

1Φ1

}(
detΦ1 + detΦ†

1

)
= I1I2. (261)

For ΦR, there is only one unmixed quartic invariant:

J3 ≡ (Φ∗
R)i(ΦR)i(Φ

∗
R)j(ΦR)j = (ΦR ·Φ†

R)2 = I23 . (262)
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Mixed invariants Now we find all quartic invariants that contain both Φ1 and ΦR. Recall
that each of them must contain one copy of ΦR and one copy of Φ∗

R. We can combine them
with either two factors of Φ1 or Φ∗

1 (with antisymmetrically combined SU(2)L indices) or
with one factor of Φ1 and Φ∗

1 each (with symmetrically combined SU(2)L indices). The
possible gauge-invariant (not necessarily real) combinations are given by

1

2
ǫijǫkl(Φ

∗
R)m(ΦR)m(Φ1)

i
k(Φ1)

j
l =ΦR ·Φ†

R detΦ1,

ǫijǫkl(Φ
∗
R)m(ΦR)k(Φ1)

i
m(Φ1)

j
l =ΦRǫΦ

T
1 ǫ

TΦ1Φ
†
R

=ΦRΦc†
1 Φ1Φ

†
R,

(Φ∗
R)j(ΦR)j(Φ

∗
1)

i
k(Φ1)

i
k =ΦR ·Φ†

RTr
{
Φ†

1Φ1

}
,

(Φ∗
R)j(ΦR)k(Φ

∗
1)

i
k(Φ1)

i
j =ΦRΦ†

1Φ1Φ
†
R,

1

2
ǫijǫkl(Φ

∗
R)m(ΦR)m(Φ∗

1)
i
k(Φ

∗
1)

j
l =ΦR ·Φ†

R detΦ†
1,

ǫijǫkl(Φ
∗
R)m(ΦR)k(Φ

∗
1)

i
m(Φ∗

1)
j
l =ΦRǫΦ

†
Rǫ

TΦ∗
1Φ

†
R

=ΦRΦ†
1Φ

c
1Φ

†
R. (263)

Taking only real combinations, we end up with four invariants:

J4 ≡ΦR ·Φ†
RTr

{
Φ†

1Φ1

}
= I1I3,

J5 ≡ΦRΦ†
1Φ1Φ

†
R,

Jc
5 ≡ΦRΦ†

1Φ
c
1Φ

†
R + h.c. ,

J9 ≡ΦR ·Φ†
R

(
detΦ1 + detΦ†

1

)
= I2I3. (264)

This concludes the list of all possible invariants built from Φ1 and ΦR. We have three
quadratic and eleven quartic invariants. However, so far we have not taken the trinification
origin of the LET model into account. The fact that our setup is derived from the trinification
model puts two restrictions on the possible invariants.

Firstly, charge conjugates are not allowed to appear, which eliminates the invariants Jc
2

and Jc
5 .

11 The reason is that the (anti)doublets of the LET model come from (anti)triplets in
the trinification model. Since the 3 and 3 representations of SU(3) are inequivalent, charge
conjugates of scalars in the LET model would have no equivalent in the trinification model.
Hence there are no invariants in the trinification model from which the invariants Jc

2 and Jc
5

could originate.
Secondly, the trinification model is considered to be a renormalisable theory. This con-

dition eliminates all invariants from the LET model that would have to originate from non-
renormalisable operators. Note that the 2× 2 matrix Φ1 originates from a 3× 3 matrix H1

in the trinification model, so any invariant that contains detΦ1 comes from an invariant of
a higher mass dimension. This implies that the invariants J6, J7, J8, and J9 would have

11We could write down other invariants containing charge conjugates, but they would be the same as one

of the invariants already listed. For example, Tr
{

Φ
†
1
Φ

c

1

}

+ h.c. is just another way to write detΦ1+ h.c. .
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to come from operators of dimension six, six, five, and five respectively in the trinification
model. Therefore we eliminate these invariants from the scalar potential, and our setup
contains only five quartic and three quadratic terms. We summarise them here:

I1 = Tr
{
Φ†

1Φ1

}
, J1 = I21 ,

I2 = detΦ1 + detΦ†
1, J2 = Tr

{
Φ†

1Φ1Φ
†
1Φ1

}
,

I3 = ΦR ·Φ†
R, J3 = I23 ,

J4 = I1I3,

J5 = ΦRΦ†
1Φ1Φ

†
R. (265)

Thus the scalar potential in eq. (189) is indeed the most general potential for the simplified
LET model.

C.2 The full LET model

Now let us derive the additional invariants that can appear in the scalar potential when
we add Φ2 to the scalar sector. Note that Φ1 and Φ2 are in the same representation of
the gauge group, so all we have to do is replace one or more factors of Φ1 by Φ2 in the
invariants in eq. (265) in every possible way, while checking that the resulting invariants are
real. This procedure results in two quadratic and ten quartic invariants that are even under
the Z2-symmetry of the scalar sector:

Ĩ1 = Tr
{
Φ†

2Φ2

}
, J̃1 = Tr

{
Φ†

2Φ2

}2

,

Ĩ2 = detΦ2 + detΦ†
2, J̃2 = Tr

{
Φ†

2Φ2Φ
†
2Φ2

}
,

J̃3 = Tr
{
Φ†

2Φ2

}
ΦR ·Φ†

R,

J̃4 = ΦRΦ†
2Φ2Φ

†
R,

J̃5 = Tr
{
Φ†

1Φ1

}
Tr
{
Φ†

2Φ2

}
,

J̃6 =
∣∣∣Tr
{
Φ†

1Φ2

}∣∣∣
2

,

J̃7 = Tr
{
Φ†

1Φ2

}
Tr
{
Φ†

1Φ2

}
+ h.c. ,

J̃8 = Tr
{
Φ†

1Φ1Φ
†
2Φ2

}
,

J̃9 = Tr
{
Φ†

1Φ2Φ
†
2Φ1

}
,

J̃10 = Tr
{
Φ†

1Φ2Φ
†
1Φ2

}
+ h.c. (266)

In addition, there are one quadratic and six quartic invariants that are odd under the Z2-
symmetry. We do not include them in the scalar potential, but we mention them for the sake
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of completeness:

Ĩ12 = Tr
{
Φ†

1Φ2

}
+ h.c. , J̃11 = Tr

{
Φ†

1Φ1

}
(Tr

{
Φ†

1Φ2

}
+ h.c. ),

J̃12 = Tr
{
Φ†

2Φ2

}
(Tr

{
Φ†

1Φ2

}
+ h.c. ),

J̃13 = Tr
{
Φ†

1Φ1Φ
†
1Φ2

}
+ h.c. ,

J̃14 = Tr
{
Φ†

1Φ2Φ
†
2Φ2

}
+ h.c. ,

J̃15 = (Tr
{
Φ†

1Φ2

}
+ h.c. )ΦR ·Φ†

R,

J̃16 = ΦR(Φ†
1Φ2 + h.c. )Φ†

R. (267)
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D Yukawa sector

Any new-physics model should reproduce the properties of all particles that have been ob-
served. This includes a correct description of the Standard-Model fermion masses and mix-
ings, which we listed in table 1. The gauge-boson sector is fixed by the choice of gauge
group. The scalar sector is straightforward to work out after the fields, their gauge-group
representations, and any additional symmetries have been chosen. However, the fermion sec-
tor allows for additional freedom. This includes choosing which scalar fields couple to which
fermions, as well as the particular form of these couplings. In this appendix we propose a
form for the Yukawa interactions of the LET model based on the trinification model. First
we describe the Yukawa sector of the trinification model, based on refs. [17, 29]. Then we
work out the LET equivalent of the Yukawa Lagrangian and the fermion mass eigenstates
that result from our choice, and give the Yukawa interactions in the mass eigenstate basis
for the simplified LET model. We also comment on the description of fermion mixing in
charged-current interactions.

D.1 Yukawa interactions in the trinification model

In the trinification model, the scalar sector contains two bitriplets H1, H2 ∼ (1,3,3). In
order to avoid tree-level FCNC interactions, a Z2 symmetry is postulated under which H1

(H2) is even (odd). This symmetry permits only Yukawa couplings to H1. It couples to the
fermions with a symmetric generation matrix Gαβ . This matrix can be described as the real
component of the vev of a flavon field, but in the trinification model its entries are considered
as free parameters. The Lagrangian term is given by

LY ⊃− gtGαβ

(
ψαTH1ψ

β
)
+ h.c.

=− gtGαβ

(
Qα

RH
T
1 Q

β
L +

1

2
ǫijkǫlmnL

i
lL

j
m(H1)

k
n

)
+ h.c. (268)

Here gt is a dimensionless coupling, and ψ is a fermion field in the 27 representation of E6,
containing all quarks, antiquarks, and leptons. In the second line, we show how this Yukawa
interaction decomposes in terms of the separate fermion types of the trinification model.

The matrix Gαβ can be diagonalised by a biunitary transformation: G = UYW † where
U , W are unitary matrices and Y is a diagonal matrix. Then U , W can be absorbed into a
redefinition of the fermion fields. Thus we can take G to be diagonal without loss of generality.
Its diagonal elements can be fit to the up-quark masses. However, this implies that without
additional terms, eq. (268) yields the same mass hierarchies for the down quarks, charged
leptons, and neutrinos as for the up quarks [29]. Also, it would mean that the neutrinos
(charged leptons) have the same masses as the up quarks (down quarks), and that the CKM
matrix is a unit matrix. All of this is in clear contradiction with the experimental values
listed in table 1.

In order to reproduce these fermion properties correctly, additional scalar fields HAq ∼
(1,3,3), HAl ∼ (1,3,6) are introduced. They originate from a field HA in the antisymmetric
351A representation of E6. They couple to the fermions with an antisymmetric Hermitian
matrix Aαβ , which is considered to be the imaginary component of the vev of the aforemen-
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tioned flavon field. Including these fields, the Yukawa Lagrangian becomes

LY ⊃− gtGαβ

(
ψαTH1ψ

β
)
+Aαβ

(
ψαTHAψ

β
)
+ h.c.

=− gtGαβ

(
Qα

RH
T
1 Q

β
L +

1

2
ǫijkǫlmnL

i
lL

j
m(H1)

k
n

)

−Aαβ

(
Qα

RH
T
AqQ

β
L + ǫijkLi

lL
j
m(HAl)

k
{lm}

)
+ h.c. (269)

Again, the first line contains the Yukawa Lagrangian from the E6 model whereas the second
line is written in terms of the separate fermion fields of the trinification model. This Lag-
rangian is sufficient to reproduce the down-quark masses, the CKM-matrix, the angles of the
unitarity triangle, and the charged lepton masses and mixings. However, the neutrino masses
are still Dirac neutrinos with masses comparable to the quark masses. Therefore an effective
Yukawa interaction is added to the Lagrangian [29]:

LY =− gtGαβ

(
ψαTH1ψ

β
)
−Aαβ

(
ψαTHAψ

β
)

− 1

MN
(G2)αβ

(
(ψαTH†

1)1(H
†
2ψ

β)1

)
+ h.c.

=− gtGαβ

(
Qα

RH
T
1 Q

β
L +

1

2
ǫijkǫlmnL

αi
l L

βj
m (H1)

k
n

)

−Aαβ

(
Qα

RH
T
AqQ

β
L + ǫijkLαi

l L
βj
m (HAl)

k
{lm}

)

− 1

MN
(G2)αβTr

{
LαH†

1

}
Tr
{
H†

2L
β
}
+ h.c. (270)

Here the subscript ‘1’ in the denotes that the fields ψ and H†
1,2 are combined into an E6-

singlet. Since H1 and H2 are bitriplets of SU(3)L × SU(3)R, only the leptons are involved
in this interaction. It could arise as an effective interaction via the exchange of a gauge-
singlet Dirac fermion with a large mass MN ∼ M1 [26]. This fermion has a mass term that
violates the Z2 symmetry, hence the effective Yukawa term violates this symmetry as well.
After spontaneous symmetry breaking, this interaction yields additional mass terms for the
neutrinos. These make it possible to give low masses for the Standard-Model neutrinos and
large masses to the other neutral leptons via the seesaw mechanism.

D.2 Yukawa interactions in the LET model

As we discussed at the beginning of this appendix, we need to determine which scalars in the
LET model couple to which fermions, as well as the form of these couplings. The scalar sector
contains three fields Φ1,Φ2 ∼ (1,2,2, 0) and ΦR ∼ (1,1,2, 1). The first one comes from the
trinification field H1 whereas the last two come from the fermiophobic H2. Hence we let only
Φ1 couple to fermions. The trinification model introduced additional scalar fields HAq, HAl,
which couple to the fermions as well. However, we choose not to include their components
in the LET model. One reason is the fact that the description of the fermion masses and
mixings via HAq, HAl involves mixing of light fermions with heavy fermions, which have been
integrated out in the LET model. Another reason is the fact that these components would
mix with the components of the other scalar fields to form mass eigenstates. This complicates



D.3 Mass eigenstate basis 103

our analysis of the scalar sector, unless we assume that the components of Φ1, Φ2, ΦR do
not mix with the components of HAq, HAl (this is assumed in the trinification model as well
[29]). Hence we do not include these additional scalar fields in the LET model. Instead, we
restrict ourselves to the first term of the Yukawa Lagrangian in eq. (270). We assume that
any additional new physics, necessary to describe the fermion masses and mixings correctly,
does not influence the phenomenology of the scalar particles. When restricted to the fermion
fields of the LET model, the first term in the Lagrangian in eq. (270) becomes

LY = −Gαβ

(
Qα

RΦ
T
1Q

β
L + L+αΦT

1 L
−β
)
+ h.c. (271)

Here the dimensionless parameter gt has been absorbed into Gαβ .

D.3 Mass eigenstate basis

The Yukawa Lagrangian in eq. (271) determines all couplings of the physical scalars to the
fermions. In order to compare these predictions to experiment, it is necessary to rewrite the
interactions in terms of mass eigenstates. The scalar mass eigenstates have been worked out
in appendix B.4, so we only need to determine the fermion mass eigenstates.

As we discussed in appendix D.1, the generation matrix Gαβ can be diagonalised by a
biunitary transformation G = UYW †. Thus we can write the Yukawa Lagrangian as

LY =−Gαβ

(
Qα

RΦ
T
1Q

β
L + L+αΦT

1 L
−β
)
+ h.c.

=− Yαα
(
Q′α

RΦT
1Q

′α
L + L+′αΦT

1 L
−′α)+ h.c. (272)

Here we have introduced the fermions in the mass eigenstate basis:

Q′
R ≡ QRU, Q′

L ≡W †QL, L+′ ≡ L+U, L−′ ≡W †L−. (273)

After spontaneous symmetry breaking, the primed fermion fields obtain Dirac mass terms.
These combine left-handed and right-handed fermion fields, described by two-component
Weyl spinors, into four-component Dirac spinors:

ψα
u =

(
u′α

û′α†

)
, ψα

d =

(
d′α

d̂′α†

)
, ψα

ν =

(
ν′α

ν̂′α†

)
, ψα

e =

(
e−′α

e+′α†

)
, (274)

In terms of these Dirac spinors, the Lagrangian in eq. (272) can be rewritten as

LY =− 1√
2
Yαα(v1 + h01,11)(ψ

α
uψ

α
u + ψα

ν ψ
α
ν )−

1√
2
Yαα(b1 + h01,22)(ψ

α
dψ

α
d + ψα

e ψ
α
e )

+
i√
2
Yααa

0
1,11(ψ

α
uγ

5ψα
u + ψα

ν γ
5ψα

ν ) +
i√
2
Yααa

0
1,22(ψ

α
d γ

5ψα
d + ψα

e γ
5ψα

e )

− Yααh+1,21
(
ψα
u

1−γ5

2 ψα
d + ψα

ν
1−γ5

2 ψα
e

)
− Yααh−1,21

(
ψα
d

1+γ5

2 ψα
u + ψα

e
1+γ5

2 ψα
ν

)

− Yααh+1,12
(
ψα
u

1+γ5

2 ψα
d + ψα

ν
1+γ5

2 ψα
e

)
− Yααh−1,12

(
ψα
d

1−γ5

2 ψα
u + ψα

e
1−γ5

2 ψα
ν

)
. (275)
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We fit the diagonal elements of Y to the up-quark masses:

Y =



yu 0 0
0 yc 0
0 0 yt


 =

√
2

v1



mu 0 0
0 mc 0
0 0 mt


 . (276)

We define mα ≡ (mu,mc,mt), so that we can abbreviate this as Yαα =
√
2

v1
mα. Now we

can find the Yukawa interactions between the mass eigenstates of the simplified LET model
by inserting the scalar mass eigenstates from eq. (220) into eq. (272). We write cx ≡ cosx,
sx ≡ sinx for the sake of brevity. Since we are only interested in the couplings of the
physical particles, we omit all couplings to Goldstone bosons. This yields the following
physical Yukawa Lagrangian for the simplified LET model:

Lphys
Y =−mα

(
1 + cα1

h0

v1

)(
ψα
uψ

α
u + ψα

ν ψ
α
ν

)
−mα

b1
v1

(
1 + sα1

cα2

h0

b1

)(
ψα
dψ

α
d + ψα

e ψ
α
e

)

− mα

v1
H0

1

(
−sα1

cα3

[
ψα
uψ

α
u + ψα

ν ψ
α
ν

]
+ (cα1

cα2
cα3
− sα2

sα3
)
[
ψα
dψ

α
d + ψα

e ψ
α
e

])

− mα

v1
H0

2

(
sα1

sα3

[
ψα
uψ

α
u + ψα

ν ψ
α
ν

]
− (sα2

cα3
+ cα1

cα2
sα3

)
[
ψα
dψ

α
d + ψα

e ψ
α
e

])

− imα

v1
A0
(
sβ1

sβ3

[
ψα
uψ

α
u + ψα

ν ψ
α
ν

]
− (sβ2

cβ3
+ cβ1

cβ2
sβ3

)
[
ψα
dψ

α
d + ψα

e ψ
α
e

])

−
√
2mα

v1
H+

(
sγ1

sγ3

[
ψα
u

1−γ5

2 ψα
d + ψα

ν
1−γ5

2 ψα
e

]

− (cγ1
cγ2
sγ3

+ sγ2
cγ3

)
[
ψα
u

1+γ5

2 ψα
d + ψα

ν
1+γ5

2 ψα
e

])

−
√
2mα

v1
H−

(
sγ1

sγ3

[
ψα
d

1+γ5

2 ψα
u + ψα

e
1+γ5

2 ψα
ν

]

− (cγ1
cγ2
sγ3

+ sγ2
cγ3

)
[
ψα
d

1−γ5

2 ψα
u + ψα

e
1−γ5

2 ψα
ν

])
. (277)

We are interested in the caseM ≫ v, so we also insert the scalar mixing angles from eqs. (225),
(229) and (234) into eq. (277). This gives us

Lphys
Y =−mα

(
1 + cosβ

h0

v1

)(
ψα
uψ

α
u + ψα

ν ψ
α
ν

)

−mα
b1
v1

(
1 + sinβ

h0

b1

)(
ψα
dψ

α
d + ψα

e ψ
α
e

)

− mα

v1
H0

1

(
− sinβ

[
ψα
uψ

α
u + ψα

ν ψ
α
ν

]
+ cosβ

[
ψα
dψ

α
d + ψα

e ψ
α
e

])

− imα

v1
A0
(
sinβ

[
ψα
uψ

α
u + ψα

ν ψ
α
ν

]
+ cosβ

[
ψα
dψ

α
d + ψα

e ψ
α
e

])

−
√
2mα

v1
H+

(
sinβ

[
ψα
u

1−γ5

2 ψα
d + ψα

ν
1−γ5

2 ψα
e

]

+ cosβ
[
ψα
u

1+γ5

2 ψα
d + ψα

ν
1+γ5

2 ψα
e

])
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−
√
2mα

v1
H−

(
sinβ

[
ψα
d

1+γ5

2 ψα
u + ψα

e
1+γ5

2 ψα
ν

]

+ cosβ
[
ψα
d

1−γ5

2 ψα
u + ψα

e
1−γ5

2 ψα
ν

])
+O

( v
M

)
. (278)

The fermion mass hierarchies are not represented correctly in our model. Therefore we have
to choose which masses we use to fix the free parameters of the model. We fixed the three
Yukawa couplings by the masses of the up-quarks. Then we can fix b1 and v1 using the
running MS-mass of the b-quark at MZ and the condition v21 + b21 = v2 = (246 GeV)2:

mb = mt
b1
v1

=mt tanβ, ⇒ tanβ = 0.0166,

⇒ v1 =246 GeV, b1 = 4.09 GeV. (279)

D.4 Fermion mixing in charged current interactions

After switching to the fermion mass-eigenstate basis in eq. (274), the matrices U , W have
disappeared from the Yukawa Lagrangian. They cancel from the neutral currents in eq. (290)
as well, as they should. In order to reproduce the experimental fermion mixings, they should
not cancel from the charged currents. However, since all left-handed (right-handed) fermions
are brought into their mass eigenstates by the same transformation matrix W † (U), these
matrices do cancel from the charged currents in our setup. Unless we include a mechanism
for quark mixing, the CKM-matrix is simply a unit matrix, in contradiction with the exper-
imental values listed in table 1. A full understanding of fermion mixing in the LET model
requires us to include mixing with the heavy D quarks from the trinification model as well
as renormalisation-group effects. This is beyond the scope of this work.
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E Gauge currents

The LET model contains fifteen gauge bosons: eight gluons for SU(3)C , four electroweak
bosons as in the Standard Model, a new pair of charged states W ′±, and a new neutral state
Z ′. The model should reproduce the correct couplings of the fermions to the Standard-Model
vector bosons. In this appendix we derive the expressions for the gauge currents in terms of
four-component Dirac spinors. The couplings to the new heavy vector bosons will allow us to
put constraints on their masses and mixings. Note that the colour sector of the LET model
is unchanged with respect to the Standard Model, so we omit the gluons from the following
discussion.

The fermion-gauge-boson couplings are fixed by the covariant derivatives of the fermion
fields. At this stage, we describe the fermions by two-component left-handed Weyl spinors.
Omitting the gluon couplings, the covariant derivatives in eq. (41) become

DµQL =∂µQL − igLW i
LµT

i
LQL − 1

3 ig
′BµQL,

DµQR =∂µQR − igRW i
RµQRT

iT

R + 1
3 ig

′BµQR,

DµL
− =∂µL

− − igLW i
LµT

i
LL

− + ig′BµL
−,

DµL
+ =∂µL

+ − igRW i
RµL

+T
iT

R − ig′BµL
+, (280)

where i = 1, 2, 3. These covariant derivatives appear in the gauge-invariant kinetic part of
the Lagrangian, which is given by

Lf ≡iQ†
Lσ̄

µ(DµQL)− i(DµQR)σ
µQ†

R

+ i(L−)†σ̄µ(DµL
−)− i(DµL

+)σµ(L+)†. (281)

Here we have employed the spinor identity ξ†σ̄µη = −ησµξ† to order the spinors in such
a way that they conform to both index-free spinor notation (in which descending undotted
indices α

α and ascending dotted indices α̇
α̇ can be suppressed) and our matrix notation for

left- and right-handed components. The daggers on the fermion fields imply both spinor
conjugation and Hermitian conjugation w.r.t. matrix notation. We can read off the fermion-
gauge-boson interactions directly from the Lagrangian after we insert the covariant derivatives
from eq. (280) into the above expression:

Lf =
∑

f

if†σ̄µ∂µf + gLW
i
Lµ

(
Q†

LT
i
LQL + (L−)†T i

Lσ̄
µL−

)

+ gRW
i
Rµ

(
−QRT

iT

R σµQ†
R − L+T

iT

R σµ(L+)†
)

+ g′Bµ

∑

f

f†σ̄µQB−Lf. (282)

Here f runs over all two-component spinors u, d, ν, e−, û, d̂, ν̂, e+. As usual, we introduce the
gauge-boson charge eigenstates W±

L,R ≡ 1√
2
(W 1

L,R ∓ iW 2
L,R). If we define T±

L,R ≡ 1√
2
(T 1

L,R ±
iT 2

L,R) as well, we can use the identity

∑

i=1,2

W i
L,RµT

i
L,R =W+

L,RT
+
L,R +W−

L,RT
−
L,R (283)
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to rewrite the kinetic part of the Lagrangian as

Lf =
∑

f

if†σ̄µ∂µf +
gL√
2

(
W+

Lµu
†σ̄µd+W+

Lµν
†σ̄µe− + h.c.

)

+
gR√
2

(
W+

Rµûσ
µd̂† +W+

Rµν̂σ
µ(e+)† + h.c.

)

+ gLW
3
Lµ

(
Q†

LT
3
Lσ̄

µQL + (L−)†T 3
Lσ̄

µL−
)

+ gRW
3
Rµ

(
−QRT

3T

R σµQ†
R − L+T

3T

R (L+)†
)

+ g′Bµ

∑

f

f†σ̄µQB−Lf. (284)

As we discussed in appendix D.3, the two-component Weyl spinors are combined into four-
component Dirac spinors after spontaneous symmetry breaking. These are defined as

ψu ≡
(
u
û†

)
, ψd ≡

(
d

d̂†

)
, ψν ≡

(
ν
ν̂†

)
, ψe ≡

(
e−

(e+)†

)
. (285)

We can write expressions involving two-component Weyl spinors and Pauli matrices in terms
of four-component Dirac spinors and gamma matrices using the identities

ψf1γ
µψf1 =f̂1σ

µf̂†1 + f†1 σ̄
µf1,

ψf1γ
µP−ψf2 =f†1 σ̄

µf2,

ψf1γ
µP+ψf2 =f̂1σ

µf̂†2 . (286)

Here we define the projection operators P± ≡ 1
2 (1 ± γ5) and denote pairs of fermions as

(fi, f̂i) = (u, û), (d, d̂), (ν, ν̂), (e−, e+). In terms of these Dirac spinors, the Lagrangian be-
comes

Lf =
∑

f=u,d,ν,e

ψf iγ
µ∂µψf

+
gL√
2
W+

Lµ

(
ψuγ

µP−ψd + ψνγ
µP−ψe

)
+
gL√
2
W−

Lµ

(
ψdγ

µP−ψu + ψeγ
µP−ψν

)

+
gR√
2
W+

Rµ

(
ψuγ

µP+ψd + ψνγ
µP+ψe

)
+
gR√
2
W−

Rµ

(
ψdγ

µP+ψu + ψeγ
µP+ψν

)

+
∑

f=u,d,ν,e

ψfγ
µ
(
gLW

3
LµT

3
L(f)P− + gRW

3
RµT

3
R(f)P+ + g′BµQB−L(f)

)
ψf . (287)

Here we defined T 3
L(f) = T 3

R(f) = + 1
2 for f = u, ν; T 3

L(f) = T 3
R(f) = − 1

2 for f = d, e;
and QB−L(f) denotes the B − L quantum number of the fermion f . We will rewrite this

expression in terms of gauge-boson mass eigenstates to leading order in v2

M2 . These mass
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eigenstates were given in eqs. (171) and (178):


W 3

L

W 3
R

B


 =




sθW cθW cη −cθW sη
cθW sθ′

W
cθ′

W
sη − sθW sθ′

W
cη cθ′

W
cη + sθW sθ′

W
sη

cθW cθ′
W
−(sθW cθ′

W
cη + sθ′

W
sη) sθW cθ′

W
sη − sθ′

W
cη





A
Z
Z ′


 ,

(
W±

L

W±
R

)
=

(
cos ζ − sin ζ
sin ζ cos ζ

)(
W±

W ′±

)
. (288)

Inserting these expressions into eq. (287) and collecting terms proportional to Aµ, we can
extract the electromagnetic gauge coupling e in terms of the gauge couplings:

e ≡ 2g′gLgR√
4g′2(g2L + g2R) + g2Lg

2
R

= gL sin θW . (289)

We rewrite the Lagrangian in eq. (287) using this expression as well as the mixing angles in
eqs. (172) and (179). Here we expand the result to first order in ζ, η, since both angles are

of order v2

M2 :

Lf =
∑

f=u,d,ν,e

ψf iγ
µ∂µψf

+
gL√
2
W+

µ

(
ψuγ

µ(P− +
gRζ

gL
P+)ψd + ψνγ

µ(P− +
gRζ

gL
P+)ψe +O

(
ζ2
) )

+
gL√
2
W−

µ

(
ψdγ

µ(P− +
gRζ

gL
P+)ψu + ψeγ

µ(P− +
gRζ

gL
P+)ψν +O

(
ζ2
) )

+
gR√
2
W ′+

µ

(
ψuγ

µ(P+ −
gLζ

gR
P−)ψd + ψνγ

µ(P+ −
gLζ

gR
P−)ψe +O

(
ζ2
) )

+
gR√
2
W ′−

µ

(
ψdγ

µ(P+ −
gLζ

gR
P−)ψu + ψeγ

µ(P+ −
gLζ

gR
P−)ψν +O

(
ζ2
) )

+ eAµ

∑

f=u,d,ν,e

ψfγ
µQem(f)ψf

+
gL
cθW

Zµ

∑

f=u,d,ν,e

ψfγ
µ

[(
1 +

gRcθW s
2
θ′
W
η

gLcθ′
W

)
T 3
L(f)P− +

sθW η

sθ′
W
cθ′

W

T 3
R(f)P+

− s2θW

(
1 +

gRcθW s
2
θ′
W
η

s2θW cθ′
W

)
Qem(f) +O

(
η2
)
]
ψf

+ gRcθ′
W
Z ′
µ

∑

f=u,d,ν,e

ψfγ
µ

[
− gLcθW η

gRcθ′
W

T 3
L(f)P− +

(
1 +

gRcθW s
2
θ′
W
η

gLcθ′
W

)
T 3
R(f)P+

− 1

2
t2θ′

W

(
1−

gRcθW cθ′
W
η

gL

)
QB−L(f) +O

(
η2
)
]
ψf . (290)

Here Qem(f) denotes the electromagnetic charge of the fermion f , and tx ≡ tanx. Note that

at leading order in ζ, η (or equivalently v2

M2 ), the LET model reproduces the Standard-Model
gauge currents correctly. The couplings of the fermions to W ′, Z ′ can be used to constrain
the model, see section 5.



109

F Photon coupling modification

In this section we calculate the photon coupling modification ∆γ ≡ (gγ − gSMγ )/gSMγ for the
simplified LET model. First we derive a general expression for the photon coupling. Then
we discuss the relevant contributions in the simplified LET model, and derive an expression
for ∆γ in terms of simplified-LET-model parameters.

The Higgs boson has no direct couplings to photons. However, a Higgs boson can decay
into a pair of photons via a loop involving a massive charged particle. For a general theory
with a set of vector bosons V , fermions f , and scalars S, the resulting decay width Γ(h0 → γγ)
is given by [125]

Γ(h0 → γγ) =
α2m3

h0

1024π3

∣∣∣∣∣∣

∑

V

gh0V V

m2
V

Q2
VA1(τV ) +

∑

f

2gh0ff

mf
Nc,fQ

2
fA1/2(τf )

+
∑

S

Nc,SQ
2
S

gh0SS

m2
S

A0(τS)

∣∣∣∣∣

2

. (291)

Here α is the fine-structure constant, gh0xx denotes the Higgs coupling to the particle x, Qx

is the electromagnetic charge of x, Nc,x is the number of colour degrees of freedom for x, and
τx is defined as the ratio τx ≡ 4m2

x/m
2
h0 . Furthermore, the functions As(x) are the scalar,

spinor, and vector loop functions, which are defined as

A0(x) ≡− x2(x−1 − f(x)),
A1/2(x) ≡2x2(x−1 + (x−1 − 1)f(x)),

A1(x) ≡− x2(2x−2 + 3x−1 + 3(2x−1 − 1)f(x)),

f(x) ≡




arcsin2

√
x−1 τ > 1,

− 1
4

(
log 1+

√
1−τ

1−
√
1−τ
− iπ

)2
τ < 1.

(292)

We can compute the decay width in eq. (291) in terms of an effective Higgs-photon coupling as
well. This will allow us to express the effective coupling in terms of the underlying couplings
and masses. The Higgs-photon coupling is defined by the effective Lagrangian

Lh0γγ =
gγ
v
h0AµνA

µν . (293)

The corresponding Feynman rule is given by

p2 տ

p1 ւ
h0

γν

γµ

= −4igγ
v

((p1 · p2)gµν − pµ2pν1). (294)

The resulting matrix element for the decay h0 → γγ is

iM(mh → {p1, p2}) = −
4igγ
v

((p1 · p2)gµν − pν1pµ2 )ǫ∗1µ(p1)ǫ∗2ν(p2). (295)
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Summing over all photon polarisations, we find

∑

ǫ1,ǫ2

|M|2 =
16g2γ
v2

((p1 · p2)gµν − pν1pµ2 )gµρgνσ((p1 · p2)gρσ − pσ1pρ2)

=
16g2γ
v2

(2(p1 · p2)2 + p21p
2
2)

=
32g2γ
v2

(p1 · p2)2. (296)

In the last line we used the fact that p21 = p22 = 0 for the photons. The decay width is
therefore given by

dΓ =
1

2mh0

d~p1
(2π)3

d~p2
(2π)3

1

4E1E2
|M(mh → {p1, p2})|2(2π)4δ(4)(ph − p1 − p2)

=
1

2mh0

d~p1
(2π)3

d~p2
(2π)3

1

4E1E2

32g2γ
v2

(p1 · p2)2(2π)4δ(4)(ph − p1 − p2)

Γ(h0 → γγ) =
4g2γ
mh0v2

∫
d~p1
(2π)3

d~p2
(2π)3

(p1 · p2)2
E1E2

(2π)4δ(4)(ph − p1 − p2)

(CM)
=

4g2γ
mh0v2

∫
d~p1
(2π)3

d~p2
(2π)3

(p1 · p2)2
E1E2

(2π)4δ(3)(~p1 + ~p2)δ(mh0 − E1 − E2)

=
4g2γ
mh0v2

∫
d~p1
(2π)3

(2|~p1|2)2
|~p1|2

(2π)δ(mh0 − E1 − E2)

=
4g2γ
mh0v2

∫
dΩCMd|~p1||~p1|2

(2π)3
4|~p1|4(2π)δ(mh0 − E1 − E2)

=
4g2γ
mh0v2

∫
dΩCM

2π2
dE|~p1|4δ(mh0 − E)

=
8g2γ

πmh0v2
|~p1|4

∣∣
E=m

h0

=
g2γm

3
h0

2πv2
. (297)

Here we defined E = E1 + E2 and used the fact that dE = (dE1/d|~p1| + dE2/d|~p1|)d|~p1| =
2d|~p1| on the third last line. Comparing eqs. (291) and (297), we find the photon coupling

gγ =
αv

16
√
2π



∑

V

gh0V V

m2
V

Q2
VA1(τV ) +

∑

f

2gh0ff

mf
Nc,fQ

2
fA1/2(τf )

+
∑

S

Nc,SQ
2
S

ghSS

m2
S

A0(τS)

)
. (298)

Now we use this result to determine the relevant contributions to the photon coupling
modification. In the Standard Model, the leading contributions come from the W loop and
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the top loop. The simplified LET model introduces new contributions from a W ′ loop and a
H± loop. However, the W ′ contribution turns out to be negligible: from the Feynman rules
in appendix G.5 we find gh0W ′W ′ ∼ v, hence gh0W ′W ′/m2

W ′ ∼ v/M2. This implies that the

W ′ contribution is suppressed by a factor v2

M2 with respect to the W contribution. Therefore
we take only the charged scalar contribution into account. The resulting photon coupling
modification reads

∆γ =

(
λh0H+H−

m2
H±

A0(τH±)

)(
gh0WW

m2
W

A1(τW ) +
2ghtt
mt

NcQ
2
tA1/2(τt)

)−1

. (299)

The denominator can be simplified by inserting gh0WW = 2m2
W /v and gh0tt = mt/v:

∆γ =
vλh0H+H−A0(τH±)

2m2
H±ASM

,

ASM ≡
v

2

(
gh0WW

m2
W

A1(τW ) +
2ghtt
mt

NcQ
2
tA1/2(τt)

)

=A1(τW ) +NcQ
2
tA1/2(τt) = −6.5. (300)

The charged scalar mass is given by eq. (223):

m2
H± =

λ5
2

(
M2 sec 2β + v2 cos 2β

)
. (301)

Now the only thing missing is an expression for λh0H+H− . It follows from the scalar potential
in eq. (189) combined with the minimum condition in eq. (191), rewritten in terms of the
mass eigenstates in eq. (220). Mathematica gives us

λh0H+H− =λ1v(cβcα1
+ sβsα1

cα2
)(s213 + c2+)

+ λ2v
(
(cβcα1

+ sβsα1
cα2

)(s213 + c2+)− (sβcα1
+ cβsα1

cα2
)s13c+

)

+ λ3Msα1
sα2

c2− + λ4(v(cβcα1
+ sβsα1

cα2
)c2− +Msα1

sα2
(s213 + c2+))

+ λ5
(
v(cβcα1

c2− − sβsα1
sα2

s13c− + cβsα1
sα2

c+c−)

+M(sα1
sα2

c2+ − sα1
cα2

s13c− + cα1
c+c−)

)
. (302)

Here we defined the following combinations of mixing angles of the charged scalar fields,
which are given in eq. (225):

s13 ≡ sγ1
sγ3

, c+ ≡ cγ1
cγ2
sγ3

+ sγ2
cγ3
, c− ≡ cγ1

sγ2
sγ3
− cγ2

cγ3
. (303)

In the limit of small ξ ≡ v
M , we can use the approximations for the CP -even mixing angles

in eq. (234). This results in the following coupling:

λh0H+H−

v
= λ1 + λ2(1 +

1

2
sin2 2β) + λ5 cos 2β −

λ4(λ4 + λ5 cos
2 β)

λ3
+O

(
ξ2
)
. (304)

Thus in the small-ξ limit, the photon coupling modification is given by

∆γ(ξ → 0) =
ξ2A0(τH±) cos 2β

ASMλ5

(
λ1 + λ2(1 +

1

2
sin2 2β) + λ5 cos 2β

− λ4(λ4 + λ5 cos
2 β)

λ3
+O

(
ξ2
)
)
. (305)
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G Feynman rules

In this appendix, we give the Feynman rules of the simplified LET model that are relevant
to our analysis. In the following, we denote the charged gauge bosons by V ± ≡ {W±,W ′±}
and the neutral gauge bosons by V 0 ∈ {γ, Z, Z ′}. Also, we write Φ0 ≡ {h0, H0

1 , H
0
2 , A

0} for
the neutral scalars and S0 ≡ {h0, H0

1 , H
0
2} for the CP -even scalars. For the sake of brevity,

we write sx ≡ sinx, cx ≡ cosx, tx ≡ tanx. The combinations s13, c± of mixing angles of the
charged states are defined in eq. (303). Other combinations of parameters are defined when
they appear.

G.1 Triple-vector-boson couplings

ր q

pց ← r

V ±
2ν

V ±
1µ

V 0
3ρ=− igV ±

1
gV ±

2
gV 0

3
(gµν(p− q)ρ + gνρ(q − r)µ + gρµ(r − p)ν) ,

gV ± ={cos ζ,± sin ζ},
gV 0 ={e, gL cos θW cos η,−gL cos θW sin η}. (306)

G.2 Couplings of SM-like Higgs components to a heavy vector bo-

son

ր p

q ց

h0

G∓

W ′±
µ =± igR sin 2β

2
(p− q)µ,

ր p

q ց

G0

G∓

W ′±
µ =

gR sin 2β

2
(p− q)µ,

ր p

q ց

h0

G0

Z ′
µ =

gR cos θ′W
2

(p− q)µ,

ր p

q ց

G+

G−

Z ′
µ =

igR cos θ′W
2

(p− q)µ. (307)
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G.3 H
± Couplings to SM bosons

H±

γν

W±
µ

=− igµν
2
gLe

(
v

(
cζ [cβs13 + sβc+]−

sζtθW
sθ′

W

[cβc+ + sβs13]

)

+M
sζtθW c−
sθ′

W

)
,

H±

Zν

W±
µ

=
igµν
2
g2LtθW

(
v

(
cζ [cβs13 + sβc+][cηsθW −

sη
tθ′

W

]

+
sζcηcθW
sθ′

W

[cβc+ + sβs13]

)
+M

sζc−tθW
sθ′

W

(cηsθW + sηtθ′
W
)

)
,

ր q

pց

H−

H+

V 0
µ =igV 0(p− q)µ, gγ = e, gZ =

gL cos 2θW
2 cos θW

H−

H+

h0 =− iλh0H+H− ,

λh0H+H− =λ1v(cβcα1
+ sβsα1

cα2
)(s213 + c2+)

+ λ2v
(
(cβcα1

+ sβsα1
cα2

)(s213 + c2+)− (sβcα1
+ cβsα1

cα2
)s13c+

)

+ λ3Msα1
sα2

c2− + λ4(v(cβcα1
+ sβsα1

cα2
)c2− +Msα1

sα2
(s213 + c2+))

+ λ5
(
v(cβcα1

c2− − sβsα1
sα2

s13c− + cβsα1
sα2

c+c−)

+M(sα1
sα2

c2+ − sα1
cα2

s13c− + cα1
c+c−)

)
. (308)

G.4 H
± Couplings to a W and a neutral scalar

−→p
տ qH±

Φ0

W±
µ

=± i

2
(p− q)µgΦ0 ,

gh0 =− gLcζ(cα1
s13 + sα1

cα2
c+) + gRsζ(cα1

c+ + sα1
cα2

s13),

gH0
1
=gLcζ

(
sα1

cα3
s13 − (cα1

cα2
cα3
− sα2

sα3
)c+
)

+ gRsζ
(
(cα1

cα2
cα3
− sα2

sα3
)s13 − sα1

cα3
c+
)
,

gH0
2
=gLcζ

(
− sα1

sα3
s13 + (cα1

cα2
sα3

+ sα2
cα3

)c+
)

+ gRsζ
(
− (cα1

cα2
sα3

+ sα2
cα3

)s13 + sα1
sα3

c+
)
,

gA0 =± i
(
gLcζ(sβs13 − cβc+) + gRsζ(−cβs13 + sβc+)

)
. (309)
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G.5 Couplings of neutral scalars to pairs of vector bosons

S0

V ∓
2ν

V ±
1µ

=
igµν
2

(
g2LvC

1
S0C1

V ±
1
C1

V ∓
2

+ g2R(vC
1
S0 +MC2

S0)C2
V ±
1
C2

V ∓
2

− gLgRvC3
S0(C1

V ±
1
C2

V ∓
2

+ C2
V ±
1
C1

V ∓
2
)
)
,

S0

V 0
2ν

V 0
1µ

=
ig2Lgµν

2 cos2 θW

(
vC1

S0C1
V 0
1
C1

V 0
2
+

4Ms2θW
s22θ′

W

C2
S0C2

V 0
1
C2

V 0
2

)
,

A0

W±

W ′∓

=∓ gLgRvc2β
2

gµν ,

C1
V ± ={cζ ,−sζ},

C2
V ± ={sζ , cζ},
C1

V 0 ={0,−(cη − sηsθW cot θ′W ), sη + cηsθW cot θ′W },
C2

V 0 ={0, sη, cη},
C1

S0 =
{
cβcα1

+ sβsα1
cα2

,−
(
cβsα1

cα3
− sβ(cα1

cα2
cα3
− sα2

sα3
)
)
,

cβsα1
sα3
− sβ(cα1

cα2
sα3

+ sα2
cα3

)
}
,

C2
S0 =

{
sα1

sα2
, cα1

sα2
cα3

+ cα2
sα3

,−(cα1
sα2

sα3
− cα2

cα3
)
}
,

C3
S0 =

{
cβsα1

cα2
+ sβcα1

, cβ(cα1
cα2

cα3
− sα1

sα3
)− sβsα1

cα3
,

−
(
cβ(cα1

cα2
sα3

+ sα2
cα3

)− sβsα1
sα3

)}
. (310)

G.6 Scalar couplings to fermions

For the sake of brevity, we write uα = {u, c, t}, mα = {mu,mc,mt}. We only give couplings
of neutral scalars to the up-type quarks and the bottom quark, and couplings of charged
scalars to the heaviest quark generation. The other couplings involve fermions of which the
LET model does not reproduce the masses correctly. However, they can be ignored since the
most important contributions in our analysis come from the heaviest quarks.

Φ0

uα

uα

=− imα

v

{
cα1

cβ
,−sα1

cα3

cβ
,
sα1

sα3

cβ
, i tanβ

}
,

Φ0

b

b

=− imb

v

{
sα1

cα2

sβ
,
cα1

cα2
cα3
− sα2

sα3

sβ
,

cα1
cα2

sα3
+ sα2

cα3

sβ
, i cotβ

}
,
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H+

b

t

=− i
√
2

v

(
mb

s13
sβ

1− γ5
2
−mt

c+
cβ

1 + γ5

2

)
,

H−

b

t

=− i
√
2

v

(
−mt

c+
cβ

1− γ5
2

+mb
s13
sβ

1 + γ5

2

)
. (311)



116 H CHARGED-SCALAR COUPLINGS OF THE 2HDM

H Charged-scalar couplings of the 2HDM

The H± branching ratios of the simplified LET model have been calculated using the 2HDM-
modus of HDecay (see section 7.3.2). To make sure that the results apply to the simplified
LET model, we need to compare the H± couplings of the simplified LET model to the corres-
ponding 2HDM-couplings. In this appendix, we list the relevant Feynman rules, assuming a
type-II Yukawa sector. We write V 0 = {γ, Z} and Φ0 = (h0, H0, A0) for the sake of brevity.

H.1 Couplings to bosons

ր q

ց p

H−

H+

V 0
µ =i(p− q)µ

{
e,
g cos 2θW
2 cos θW

}
,

H−

H+

h0 =− iv
(
− Λ3 cos

3 β sinα+ (Λ2 − Λ4 − Λ5) cosα sinβ cos2 β

− (Λ1 − Λ4 − Λ5) sinα sin2 β cosβ + Λ3 cosα sin3 β
)
,

p−→

q տ
H±

Φ0

W±
µ

=
ig

2
(p− q)µ {± cos(α− β),± sin(α− β),−i} . (312)

H.2 Couplings to fermions

H+

bα

tα

=
i
√
2

v

(
mα

t cotβ 1−γ5

2 +mα
b tanβ 1+γ5

2

)
,

H−

tα

bα

=
i
√
2

v

(
mα

b tanβ 1−γ5

2 +mα
t cotβ 1+γ5

2

)
,

H+

eα

να

=
i
√
2

v
mα

e tanβ 1+γ5

2 ,

H−

να

eα

=
i
√
2

v
mα

e tanβ 1−γ5

2 . (313)
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