
Department of Physics and Astronomy
Heidelberg University

Bachelor Thesis in Physics
submitted by

Andreas Michael Hölzl

born in Hausham (Germany)

2024

Consistency Models for Fast and Scalable LHC Event Generation

This Bachelor Thesis has been carried out by Andreas Hölzl at the
Institute for Theoretical Physics Heidelberg University

under the supervision of
Prof. Tilman Plehn

Abstract

Score-based generative models, such as diffusion models and flow matching are considered state-of-the-
art in generative machine learning. However, their reliance on iterative sampling results in slow generation.
To overcome this limitation, we implement Consistency Models (CM), a new class of generative models.
Designed as one-step generators that map directly from noise to data. CM also support multi-step sam-
pling, allowing for a flexible trade-off between sample quality and speed. The CM implementation utilizes
a Transformer architecture and is trained by distilling a pre-trained Conditional Flow Matching model. To
compare the performance of these generative models, we use a classifier-based metric. Through experi-
ments on a benchmark process involving Z boson plus jets, we demonstrate that CMs not only surpass the
conditional flow matching models in terms of sampling speed but also achieve competitive sample quality.

Zusammenfassung

Score-basierte generative Modelle wie Diffusionsmodelle und Flow-Matching zählen derzeit zu den füh-
renden Ansätzen im Bereich des generativen maschinellen Lernens. Diese Modelle generieren jedoch Da-
ten durch das wiederholte Aufrufen eines neuronalen Netzwerks, was zu einer langsamen Generierung
führt. Um diese Einschränkung zu überwinden, implementieren wir eine neue Klasse generativer Netz-
werke, die sogenannten Consistency Models (CM). Consitency Models sind darauf ausgelegt, direkt von
Rauschen zu Daten abzubilden, unterstützen jedoch auch einen mehrstufigen Generierungsprozess, der
einen flexiblen Kompromiss zwischen Qualität und Geschwindigkeit bietet. Die Implementierung von CM
nutzt eine Transformer-Architektur, die durch Distillation eines vortrainierten Conditional Flow Matching
Modells trainiert wird. Um die Leistung zu bewerten, verwenden wir ein weiteres neuronales Netzwerk,
das ausschließlich darauf trainiert ist, generierte Daten von echten Daten zu unterscheiden. Experimente
mit einem Datensatz von Z-Bosonen und Jets zeigen, dass Consistency Models nicht nur die Conditional
Flow Matching Modelle in Bezug auf die Geschwindigkeit übertreffen, sondern auch eine vergleichbare
Qualität erreichen.

CONTENTS CONTENTS

Contents

1 Introduction 1

2 Particle Physics Fundamentals 3
2.1 Standard model . 3
2.2 LHC Framework . 3
2.3 Kinematic Observables . 4
2.4 Drell-Yan Process at the LHC . 4

3 Machine Learning Fundamentals 6
3.1 Deep learning . 6

3.1.1 Neural Networks . 6
3.1.2 Activation Functions . 7
3.1.3 Training Neural Networks . 8
3.1.4 Transformer and Self-Attention . 10

4 Novel Generative Networks 11
4.1 Conditional Flow Matching . 11
4.2 Consistency Models . 14
4.3 Limitations of Generative Networks . 16

4.3.1 1D Metrics . 17
4.3.2 Classifier metric . 17

4.4 Related literature . 18

5 Experiments 20
5.1 Dataset . 20
5.2 Training Conditional Flow Matching . 21
5.3 Training Consistency Models . 23
5.4 Wasserstein and Energy Metric . 25
5.5 Classifier Metric . 26
5.6 Performance and Comparison . 29

6 Conclusion and Outlook 30

7 Appendix 34
7.1 Hyperparameters . 34
7.2 Mathematics . 35
7.3 Kinematics . 35

8 Acknowledgements

9 Declaration

1 INTRODUCTION

1 Introduction

The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) in Geneva,
Switzerland, is a proton-proton (pp) collider designed for center-of-mass energies up to

p
s = 14 TeV with

a luminosity of L = 1034 cm−2 s−1 [18]. High-energy collisions at the LHC, observed by the multi-purpose
detector ATLAS, led to the discovery of the Higgs boson in 2012, marking a significant milestone in the com-
pletion of the Standard Model (SM) of particle physics [1].

However, several fundamental physics questions, including the baryon asymmetry of the universe, cosmo-
logical inflation, dark matter, and neutrino oscillations and their masses, remain unexplained, indicating the
need for theories beyond the Standard Model [6]. As particle physics research is moving away from testing
predefined models, Data-driven approaches might address the unanswered questions.

With the ongoing LHC Run 3 and the High Luminosity Run scheduled for 2029, the collider is expected
to produce significantly more data than in previous runs [3]. This data increase will enable more precise
measurements and may also lead to the discovery of physics beyond the Standard Model. Thus, a systematic
understanding of all recorded data is crucial for the future of LHC physics research.

To interpret LHC measurements, Monte Carlo simulations are used to predict observed LHC events [8].
These simulations, which include event generation based on the Lagrangian, Quantum Field Theory, and
detector simulations that describe particle interactions with the detector, are essential for verifying our un-
derstanding of the underlying physics, as illustrated in Fig. 1.1. However, the computational expense of
current simulations is a significant challenge, especially given the anticipated data output from the high-
luminosity LHC [29].

Figure 1.1: Illustration of the LHC simulation chain. Figure taken from [10].

Recent advancements in computing power, software architectures like Transformers [44], and the increasing
volume of data suggest that novel machine learning (ML) tools have the potential to revolutionize research
at the LHC [10]. Machine learning can be applied at every stage of data analysis, from anomaly detection to
rapid event identification [10].

The primary advantages of machine learning and neural networks are their speed once trained, flexibility
in being trained on both simulated and real data, and capability to solve inverse problems, such as unfold-
ing, which involves correcting distorted events caused by the limited detector resolution to recover their
underlying true distribution [4].

Among ML approaches, generative models offer the most potential for enhancing high-energy physics simu-
lations. In Event generation Deep learning methods can improve both the accuracy and speed of simulations
[12, 11, 7] .

Generative models in high-energy physics must meet criteria of (i) precision, (ii) full uncertainty control,
and (iii) speed. Classical generative network architectures, such as variational autoencoders (VAEs) [21] and
generative adversarial networks (GANs) [25] are fast, but have not yet achieved the precision required by
LHC experiments. Recent advances point to novel generative models like Denoising Diffusion Probabilistic

1

1 INTRODUCTION

Models (DDPMs) and Conditional Flow Matching (CFM) as the most promising candidate for event genera-
tion [10, 31, 27].

Diffusion models are state-of-the-art in generation tasks but depend on an iterative sampling process that
slows down generation. This limitation is particularly problematic for real-time analysis applications and
when large sample volumes are required. To overcome this bottleneck, this thesis explores the use of Con-
sistency Models, a new class of generative models capable of producing high-quality samples in a single step
[43, 42]. Consitency Models are designed for one-step generation but can also perform multi-step sampling,
allowing a flexible trade-off between sample quality and speed [43]. Our implementation of Consistency
Models are trained through a distillation task, meaning they use another model as a "teacher" and attempt
to achieve similar quality. We benchmark this model by generating Z+Jets events at the LHC, a particularly
challenging task for particle physics simulations.

Finally, we evaluate both trained models using 1-dimensional metrics and a classifier metric to quantify
performance and diagnose potential failure modes of generative models. We demonstrate the advantages of
the Consistency Model over Conditional Flow Matching, showing that the Consistency Model can produce
competitive results in terms of both sample quality and generation speed.

The remainder of this thesis is organized as follows. In Chapter 2, we introduce the fundamentals of particle
physics. Chapter 3 covers the basics of machine learning. In Chapter 4, we introcude the theoretical back-
ground of two generative models: Conditional Flow Matching and the Consistency Model. The experimental
results on the Z+Jets Dataset are presented in Chapter 5. Finally, in Chapter 6, we summarize the results and
discuss future work for Consitency Modes for LHC physics.

2

2 PARTICLE PHYSICS FUNDAMENTALS

2 Particle Physics Fundamentals

2.1 Standard model

The Standard model (SM) of particle physics de-
scribes three of the four fundamental forces: elec-
tromagnetic, weak and strong interaction and class-
fies all known elementary particles. The standard
model is formulated as quantum field theory and
the Lagrangian allows to make predictions for par-
ticle collsions in search for new particles. The SM is
symmetric under the Poincaré Group and the gauge
group

SU (3)C ×SU (2)L ×U (1)Y (2.1)

The particles are divided into two classes: fermions
(half-integer spin particles) and bosons (integer-
spin). The fermions are further divided into quarks
and leptons that make up matter. The bosons are
the force carriers of the fundamental forces. Pho-
tons mediate the electromagnetic interaction i.e
force between electrically charged particles, gluons
mediate the strong interaction and charged W and
Z-bosons mediate the weak interaction [36].

Figure 2.1: Standard model of Particle physics with
all elementary particles taken from [19]

2.2 LHC Framework

Particle colliders, such as the Large Hadron Collider (LHC), can be understood as powerful microscopes ob-
serving particles and their properties. However, it’s important to note that the LHC does not directly observe
the fundamental processes themselves. Instead, it detects the byproducts of these processes. The collisions
generate a variety of particles, and the multipurpose detectors such as ATLAS, LHCb, and ALICE record the
final-state particles and their properties, providing indirect evidence of the underlying interactions [17].

These particles are then identified by the LHC’s various subdetectors, each specifically designed to measure
different types of particles and their respective properties:

• Tracking Detectors: Meassures the trajectories of charged particles by tracks the curvature of the par-
ticles in a magnetic field.

• Electromagnetic Calorimeters: Measures path and energy of particle that interact electromagneti-
cally producing electromagnetic showers, such as electrons and photons.

• Hadronic Calorimeters: Measures the energy of particles that interact strongly like protons, neutrons
and pions.

• Muon Detectors: Specialized detectors are dedicated to identifying and measuring muons, which are
highly penetrating particles capable of passing through first layers of the detector without showering.

With the energy and momentum of the particles measured, physicists can reconstruct the properties of
the initial collision products and infer the underlying processes. This reconstruction process is crucial for
interpreting the data and extracting meaningful information about the fundamental interactions occurring
at the LHC.

3

2.3 Kinematic Observables 2 PARTICLE PHYSICS FUNDAMENTALS

2.3 Kinematic Observables

We use the symmetry of particle collisions and the geometry of the detector to define useful kinematic ob-
servables. The four-momentum of a particle is represented as:

p = (E , px , py , pz), (2.2)

where E is the energy and px , py , pz are the momentum components in Cartesian coordinates. The parti-
cle cross sections are invariant under rotation around the collision beam axis. Thus, we parameterize the
transverse momentum of a particle as:

pT =
√

p2
x +p2

y , (2.3)

and define the azimuthal angle φ around the beam axis.

The invariant mass m, which is Lorentz invariant, is given by:

m =
√

E 2 −|p|2, (2.4)

where |p| is the magnitude of the three-momentum. Since collisions take place in the center-of-mass frame
of the proton-proton (pp) system, but not necessarily in the center-of-mass frame of the colliding partons,
the final states of processes like pp → 2jets+ X are often Lorentz-boosted along the beam direction. To
describe this, we express the jet angle in terms of rapidity:

y = 1

2
ln

(
E +pz

E −pz

)
, (2.5)

The differences of rapidity are Lorentz invariant under Lorentz boosts along the beam axis.

Typically, the jet mass resulting from hadronization is small compared to the jet energy. In such cases, we
use the pseudorapidity η, defined as:

η=− ln

(
tan

(
θ

2

))
, (2.6)

where θ is the polar angle relative to the beam axis.

Using these definitions, we obtain a set of kinematic observables that are invariant under Lorentz transfor-
mations along the beam axis and under rotation:

p = (m, pT ,η,φ). (2.7)

We can reconstruct the components of the four-momentum using the following equations:

px = pT sin(φ), py = pT cos(φ), pz = pT sinh(η), E =
√

m2 +|p|2. (2.8)

2.4 Drell-Yan Process at the LHC

The Drell-Yan process is a fundamental mechanism in high-energy physics that describes the production
of a lepton pair in hadron-hadron collisions. First proposed by Sidney Drell and Tung-Mow Yan in 1970
[47], this process serves as a tool to probe the internal structure of hadrons through the annihilation of
quark-antiquark pairs [23]. It is a dominant process in particle collisions, and achieving a high-precision
understanding of it is crucial for many applications because its often a backgroudprocess. Specifically, we
use a dataset of Z + Jets events for our machine learning tasks.

4

2.4 Drell-Yan Process at the LHC 2 PARTICLE PHYSICS FUNDAMENTALS

The Drell-Yan process for Z -boson production and subsequent decay into an electron-positron pair is:

pp → Z → l+l−, (2.9)

where the proton-proton collisions occur at a center-of-mass energy of 13 TeV. The mass and decay width of
the Z -boson are:

MZ = 91.19GeV, ΓZ = 2.49GeV. (2.10)

Figure 2.2: Leading-order Feynman diagram for the Drell-Yan process(Left) and (Right) more realistic Drell-
Yan process involing proton-proton collision. Taken from [5]

The leading-order (LO) contribution to the Drell-Yan process involves the annihilation of a quark and an
antiquark into a virtual photon (γ∗) or a Z -boson, which decays into a lepton pair, as shown in Fig. 2.2. This
process is of significant interest not only at LO but also at higher-order corrections. In particular, next-to-
leading order (NLO) quantum chromodynamics (QCD) corrections, including gluon radiation and quark-
gluon interactions, play a critical role in making precise predictions for cross sections and other observables
[2]. We use a dataset of Z →µ+µ−+ Jets events to train and evaluate the generative models in this thesis.

5

3 MACHINE LEARNING FUNDAMENTALS

3 Machine Learning Fundamentals

Machine learning develops statistical algorithms capable of learning from data. Over the decades, physicists
have utilized and advanced machine learning frameworks in various applications, such as classification,
regression, clustering, and generative models. Recent advancements in the field, driven by improvements
in hardware computing power, software architectures like Transformers, and the increasing amount of data,
have further accelerated the development and application of machine learning.

This brief introduction to deep learning largely follows the lecture notes on modern machine learning for
physics, given by Tilman Plehn at Heidelberg University [38].

3.1 Deep learning

Deep learning, a subset of machine learning, utilizes artificial neural networks to perform various tasks.
Unlike traditional methods that require predefined features and patterns, neural networks can extract core
patterns through a training process. Neural networks can be understood as a fit function with a huge number
of model parameters trying to approximate an underlying unknown function.

fϑ(x) ≈ f (x) (3.1)

3.1.1 Neural Networks

The key is to think of building blocks that can be combined to solve complex problems. Here, the funda-
mental building block of neural networks is the artificial neuron.

Figure 3.1: Schematic of an artificial neuron. A neuron takes N inputs, denoted as (x1, . . . , xm). Each input is
multiplied by a corresponding scalar called a weight. The output is the sum of these weighted inputs, plus
an additional bias term b, passed through an activation function f . Taken from [16]

y = f

(
m∑

i=1
wi xi +b

)
(3.2)

The purpose of activation functions is to introduce non-linearity and will be discussed in more detail in
Chapter 3.1.2. We can generalize the artificial neural to a multilayer perceptron unit (MLP) that has multiple
outputs and multiple layers, each with different biases and weights.

6

3.1 Deep learning 3 MACHINE LEARNING FUNDAMENTALS

Def. 1 Multilayer Perceptron Unit (MLP)
Let W be a matrix of weights, b the vector of biases, and f the activation function. xn is the output of the
n-th layer and xn−1 is the input:

xn−1 → xn = f[W n xn−1 +bn] (3.3)

Neural networks consist of many neurons that are arranged in layers l = 0, . . . ,L. We define the input layer
as the beginning layer, the intermediate layers as hidden layers, and the last layer, which is the result of the
network, as the output layer.

Figure 3.2: Schematic of a feed-forward neural network. Taken from [46]

Neurons in a given layer work in parallel, and neurons in subsequent layers work in series. We refer to
such networks as feed-forward architectures. In a complete network process, the inputs x are taken, and
then all layers are computed sequentially, resulting in an output layer. The weights wi and bias b resulting
from all artificial neurons are the core of every neural network. They represent the tunable parameters that
are adjusted by the learning algorithm. Each connection is weighted and thus influences the output of the
neuron.

Parameters that are not adapted during the training algorithm, such as the number of hidden layers (depth
of the network), and the number of neurons per layer (width of each layer), are called hyperparameters.

The idea behind this structure is that the last layers correspond to patterns that the network has learned,
while the previous layers still capture fine sub-patterns. Instead of enforcing features and patterns, the net-
work extracts the core pattern through a training process and an associated loss/scoring function.

3.1.2 Activation Functions

To model non-linear data, we need a non-linearity function in the neural network. Specifically, the equation
3.3 without an activation function is an affine transformation that forms a group. This means that chaining
affine transformations together would only result in another affine transformation. To approximate non-
linear data, the activation function is introduced and should fulfill these properties:

1. Non-linearity

2. Differentiable on intervals for backpropagation algorithms and gradient descent (training)

7

3.1 Deep learning 3 MACHINE LEARNING FUNDAMENTALS

3. Computationally inexpensive

The activation function must be differentiable so that the weights can be adjusted during the learning pro-
cess. One of the most common activation functions is the Rectified Linear Unit (ReLU) function.

Def. 2 Rectified Linear Unit (ReLU)

ReLU(x) = max(0, x) =
{

0, if x ≤ 0

x, if x > 0
(3.4)

(Additionally, we also define the derivative of ReLU at 0 to be 0.) While ReLU is computationally efficient, it
has a significant drawback: for inputs less than or equal to zero, the output is zero and its derivative therefor
also zero, causing the neuron to become permanently inactive. To overcome this disadvantage, we can use
the Leaky ReLU function, which has a small slope for negative inputs.

Def. 3 Leaky ReLU

LeakyReLU(x) = max(αx, x) =
{
αx, if x ≤ 0

x, if x > 0
with 0 <α≪ 1 (3.5)

For binary classification tasks, we can use the sigmoid function that normalizes the output of the last layter
to a value between 0 and 1 and can be interpreted as a probability.

Def. 4 Sigmoid

sigmoid(x) = 1

1+exp(−x)
(3.6)

To generalize the sigmoid function to multi-class classification tasks, we can use the softmax function that
normalizeses multiple outputs

Def. 5 Softmax

softmax(xi) = exp(xi)∑n
j=1 exp(x j)

(3.7)

3.1.3 Training Neural Networks

We need a loss function in neural networks to quantify prediction errors, enabling the model to adjust its
parameters and improve accuracy during training. It is a function that maps data and predicted values to
real numbers, providing feedback on the model’s performance. Its primary purpose is to guide the model’s
learning process by minimizing this error, leading to more accurate predictions. The Mean Squared Error
(MSE) loss function is typically used in regression problems, as it calculates the average of the squared dif-
ferences between predicted and actual values in the dataset.

8

3.1 Deep learning 3 MACHINE LEARNING FUNDAMENTALS

Def. 6 Mean Squared Error (MSE) loss
Let n be the number of samples in the dataset, yi the target value of the i-th sample and ŷi the predicted
value

L(y, ŷ) = 1

n

n∑
i=1

(yi − ŷi)2 (3.8)

For binary classification tasks, we can use the Binary Cross Entropy Cross (BCE) loss. It calculates the cross-
entropy loss between the predicted and actual labels of two classes in the dataset. This lossfunction can be
derived from the Likelihood-ratio and KL-divergence.

Def. 7 Binary Cross Entropy (BCE) loss
Let n be the number of samples in the dataset, yi target label of the i-th sample and ŷi the predicted label

L(y, ŷ) =− 1

n

n∑
i=1

yi log(ŷi)+ (1− yi) log(1− ŷi) (3.9)

Backpropagation

Backpropagation is an algorithm used to train neural networks. It calculates the gradient of the loss function
with respect to the network’s weights by applying the chain rule in reverse, starting from the output layer
and moving backward through the hidden layers. This process yields the gradient ∇θL with respect to the
weights, allowing the network to iteratively update them to minimize the loss function [39].

One way of using the gradient of the loss with respect to the weights is to update the weights in the direction
of the negative gradient after every iteration:

θt+1
j = θt

j −η
∂L

∂θ j
(3.10)

Where η is the learning rate. However, this approach is computationally expensive and leads to overall
worse learning performance. An alternative is to accumulate the gradients for a given amout of data called
"batches" and update the weights once after each batch. This approach is called mini-batch gradient de-
scent.

θt+1
j = θt

j −η
〈
∂L

∂θ j

〉
batch

(3.11)

During the training process, the same dataset can be used multiple times to update the model’s weights.
Each complete pass through the entire dataset is referred to as an epoch.

After initializing the network with random weights θ ∼ O(1), a complete training protocol consists of cal-
culating the forward pass of the network, computing the loss, backpropagating the gradients, and updating
the weights. This process is repeated until the loss converges.

Since the loss function is not a priori convex, it is possible that the network only converges to a local min-
imum. We can overcome this problem by using mini-batch gradient descent and an advanced optimiza-
tion algorithm such as Adam that includes momentum and adaptive learning rates. Futhermore, we face
multiple challenges such as overfitting, vanishing gradients and biased data that can be overcome by using
regularization techniques that will be discussed in chapter 5.5.

9

3.1 Deep learning 3 MACHINE LEARNING FUNDAMENTALS

3.1.4 Transformer and Self-Attention

The Transformer is an architecture originally designed for various language processing tasks, such as trans-
lating sentences from one language to another. Since its introduction, it has been successfully applied to a
wide range of applications, including image recognition, speech recognition, and other domains. The core
innovation of the Transformer is the self-attention mechanism, which enables the model to learn contextual
relationships, such as those between words in a sentence, more effectively than previous approaches [44].

Attention Mechanism

The attention mechanism [44] operates on three learnable matrices, W k , W q , and W v , which are applied to
input vectors xi (e.g., words in a sentence). These matrices transform the input vectors into keys, queries,
and values, respectively:

keys: ki =W k xi , queries: qi =W q xi , values: vi =W v xi (3.12)

The attention matrix Ai j is computed by taking the dot product of the query and key vectors, scaled by the
inverse square root of the dimension of the key and query vectors for numerical stability. The result is then
normalized using the softmax function:

Ai j = Softmax

(
qi ·k j√

dk

)
(3.13)

This Attention matrix is applied to the value vectors, yielding a set of output vectors:

yi =
∑

j
Ai j v j (3.14)

The attention matrix can be interpreted as encoding the contextual relationships between elements in a
sequence; for example, in a sentence, the meaning of a word depends on its context within the sentence. The
dot product measures the similarity between the query and key vectors, helping to identify the most relevant
context for each word. Given that there are often multiple different ways to construct these relationships,
the simple attention mechanism is extended to a multi-head attention mechanism. We define a number of
heads h and compute an independent attention matrix for each head. The resulting output vectors yi from
each head are then concatenated:

yi = Concat(y1
i , . . . , yh

i) (3.15)

After the attention mechanism, the output is passed through a fully connected feed-forward network, which
further transforms the data. This architecture is powerful because it allows for parallel computation, signif-
icantly improving efficiency over previous sequential models like RNNs.

Transformer Architecture

At its core, a Transformer consists of an encoder and a decoder. The encoder processes the input sequence
and generates a representation that captures the relevant information, while the decoder takes this rep-
resentation and generates the output sequence. Both the encoder and decoder are composed of multiple
layers of self-attention mechanisms and feed-forward networks. The decoder also includes an additional at-
tention mechanism that focuses on the output of the encoder, allowing it to condition the generated output
on the entire input sequence. The Transformer’s ability to model complex dependencies between sequence
elements and its efficiency in training make it a foundational model in modern machine learning [44]. Note
that in our application, we do not have an encoder because we are doing unconditional generation

10

4 NOVEL GENERATIVE NETWORKS

4 Novel Generative Networks

Generative models are a class of deep learning algorithms designed to estimate and sample from an un-
known data distribution. A generative model learns the underlying patterns and features of the data in
order to generate new similar data. In general, we use a known prior density pl atent , such as a Gaussian
distribution, from which we can sample and reshape it to a more complicated distribution pd at a :

r ∼ pl atent (r) → fϑ(r) ∼ pd at a(x) (4.1)

Since we have no labels or truth information about the training data, generative network training is consid-
ered unsupervised. The most common generative models are Variational Autoencoders (VAE), Generative
Adversarial Networks (GAN), Invertible Neural Networks (INN), and Diffusion models. In this chapter, we
will focus on Conditional Flow Matching and Consistency Models.

4.1 Conditional Flow Matching

The notion of Conditional Flow Matching (CFM) is to use continuous time evolution from noise, such as a
Gaussian distribution, to a data distribution via an ordinary differential equation (ODE) . Its dynamics are
analogous to fluid dynamics (hence the term "velocity field"), describing the process of flowing from an
initial state to a target distribution. We construct a vector field that represents the flow from latent space,
e.g., pure noise, to data space through an ordinary differential equation [31, 13].

Def. 8 Velocity Field
Let x = (x1, ..., xd) ∈ Rd be the datapoints in the d dimensional dataspace. Let v : [0,1]×Rd → Rd be a
time dependent vector field with the mapping x(t) : [0,1]×Rd → Rd

d x(t)

d t
= v(x(t), t) (4.2)

x(t = 0) = xd at a (4.3)

Later we will see that v(x(t), t) is exactly our Neural Network predicting the velocity field and allowing the
generation of new data by solving the ODE from t = 1 to t = 0. The velocity field obeying eq 4.3 is equivalent
to a probability density p(x, t) solving eq 4.4 by using the continuum equation:

∂p(x, t)

∂t
+∇x [p(x, t)v(x, t)] = 0 (4.4)

Proof in Appendix A
Again, in analogy to fluid dynamics, this means that instead of looking at the dynamics of individual data
points in the data space, it’s equivalent to solving the dynamics of the probability density. This is important
because it allows us to use multiple samples to estimate the velocity field that generates the probability
density.

We choose a Gaussian distribution to sample as the inital point (t = 1) and define the endpoint (t = 0) as
datapoint. The CFM model therefore has following boundary conditions:

p(x, t) →
{

pdata(x) with t → 0

platent(x) =N (x;0,1) with t → 1
(4.5)

Since we have chosen a Gaussian distribution, we can define a path from data to a Gaussian distribution
using a linear trajectory. We define a time evolution from the phase space x(t = 0) (Data) to x(t = 1) (Noise)

11

4.1 Conditional Flow Matching 4 NOVEL GENERATIVE NETWORKS

as:

x(t |x0) = (1− t)x0 + tϵ→
{

x0 t → 0

ϵ∼N t → 1
(4.6)

As a consequence we can generate x(t |x0) by sampling

p(x, t |x0) =N (x; (1− t)x0, t) (4.7)

Equation 4.7 fullfills by construction the boadry condition of eq 4.5

p(x,0) =
∫

d x0 p(x,0|x0) pdata(x0) =
∫

d x0δ(x −x0) pdata(x0) = pdata(x), (4.8)

p(x,1) =
∫

d x0 p(x,1|x0) pdata(x0) =N (x;0,1)
∫

d x0 pdata(x0) =N (x;0,1). (4.9)

We can obtain the velocity field by combining eq 4.6 and eq 4.3

v(x(t |x0), t |x0) = d

d t
[(1− t)x0 + tϵ] =−x +ϵ (4.10)

We know that this velocity field solves the continuum equation for p(x, t |x0) by construction. From the
continuum equation we can derive uncondtional vectorfield:

∂p(x, t)

∂t
=

∫
d x0

∂p(x, t |x0)

∂t
pdata(x0)

=−
∫

d x0∇x [v(x, t |x0)p(x, t |x0)]pdata(x0)

=−∇x

[
p(x, t)

∫
d x0

v(x, t |x0)p(x, t |x0)pdata(x0)

p(x, t)

]
=−∇x

[
p(x, t)v(x, t)

]
(4.11)

by defining the velocity field as

v(x, t) =
∫

d x0
v(x, t |x0)p(x, t |x0)pdata(x0)

p(x, t)
(4.12)

The key point is that the conditional velocity field in eq. 4.10 is only defined by a pre-determined data point
x0. Therefore, its not possible to start from noise t = 1 and generate new data points. This is different to
4.12, where the velocity field depends only on the current (x,t) and not on the endpoint of the trajectory.
Most importantly, we showed that it is possible to estimate the uncondtional velocity field that generates
the probability density by using multiple conditional samples from the data distribution [31, 13].

Training

Encoding the velocity field in a Neural Network (NN) is a regession task vϑ = v . Therefore, we use the Mean
squared error (MSE) as loss function:

LF M = E[(vϑ(x, t)− v(x, t))2] (4.13)

However, the unconditional vector field is not tractable. Lipman et al. [31] derive that the loss of the condi-
tional velocity field and the unconditional velocity field differs only by a constant. (Hence, ∇LF M =∇LC F M .)
We can therefore rewrite the flow-matching loss in terms of the conditional flow-matching loss.

LC F M = E[(vϑ(x(t |x0), t)− d

d t
x(t |x0))2] = E[(vϑ((1− t)x0 + tϵ, t)− (ϵ−x0))2] (4.14)

12

4.1 Conditional Flow Matching 4 NOVEL GENERATIVE NETWORKS

A full training protocol consists of first drawing a sample t ∼U (0,1) from a uniform distribution, a random
data point x ∼ D , and a random noise vector ϵ∼N . We then calculate a point on the linear trajectory x(t).
Next, we compute the vector field by taking the derivative of the trajectory and compare it to the vector field
obtained from the neural network. The quadratic deviation between these two is our loss function.We repeat
this process until the loss converges. This algorithm is illustrated in figure 4.1 and more details can be found
in the algorithm 1.

Figure 4.1: Training Conditional Flow Matching. Inspired from [12]

Sampling

A well trained model can generate new samples by solving the ODE from t = 1 to t = 0. We start by drawing a
sample from the latent distribution x1 ∼ pl atent =N and calculate its time evolution by numerically solving
the ODE backwards in time from t = 1 to t = 0.

x0 = x1 −
∫ 1

0
vϑ(x(t), t)d t (4.15)

This is an incredibly powerful method because it allows us to use advanced ODE solvers to generate new
samples, surpasing most generative models in terms of sample quality and speed. For example, the Euler
method aprroximates the ODE solution by updating the state of a system at discrete time steps taking only
the current state into account:

xn+1 = xn +∆t vϑ(xn , tn) (4.16)

Where ∆t is a small time step (e.g ∆t = 0.01). For the Conditional flow matching model we use the Runge-
Kutta method [22]. What’s important here is that the network is repeatedly used to obtain a final solution.

Algorithm 1 CFM Training

Input: dataset D, initial model parameter ϑ, learn-
ing rate η, Neural Network NN
repeat

Sample x ∼ D , t ∼U (0,1) and ϵ∼N
x(t) = (1− t)x + tϵ
v(t) =−x +ϵ
vϑ = NN(xt , t)
L = MSE(vϑ, vt)
Update ϑ←ϑ−η∇ϑL

until Convergence

Algorithm 2 CFM Sampling

Input: CFM Model vϑ(·, ·)
Sample x(t) ∼N , t = 1
x(t = 0) = solveODE(vϑ, x(t), t (1 → 0))
Output: x(t = 0)

13

4.2 Consistency Models 4 NOVEL GENERATIVE NETWORKS

4.2 Consistency Models

Overview

Diffusion models are state-of-the-art in generation tasks but depend on an iterative sampling process that
causes slow generation. This is particularly limiting for real-time applications and when generating a large
number of samples. To solve this problem, we aim to use Consistency Models, a new family of generative
models capable of producing high-quality samples in a single step. They are, by design, one-step generators
but can perform multi-step sampling, trading off sample quality for speed. Consistency Models are trained
through a distillation task, meaning they use another model as a "teacher" and attempt to achieve similar
quality [43, 42].

Architecture

Figure 4.2: Schematic of Consistency Models. They learn to map any point xt on the ODE trajectory to its
origin (e.g. x0 for generative modeling. Taken from [43]

Def. 9 Consistency Function
Given a solution trajectory x(t) of an ODE where x(0) = xdata and x(1) = xlatent, the consistency function
f is defined as:

f : (xt , t) → xdata (4.17)

f (x(t), t) = f (x(t ′), t ′) ∀t , t ′ ∈ [0,1] (4.18)

A consistency function has the property of self-consistency, meaning that for any pair of (xt , t) and (xt ′ , t ′) on
the same ODE solution of trajectory , the function returns the same consistent output: f (x(t), t) = f (x(t ′), t ′).
Additionally, the boundary condition f (x0,0) = x0 must be satisfied. The idea is illstruated in fig 4.2 for any
solution trajectory. The goal is to train a model fϑ that approximates this consistency function by enforcing
the self-consistency property:

fϑ ≈ f (4.19)

The boundary condition is crucial for training because it allows us to approximate the trajectory solution
from t = 0 to t = 1. To address potential trivial solutions f = 0, we use a parameterization:

fϑ(x(t), t) =
{

x for t = 0

Fϑ(x(t), t) for t ∈ (0,T)
(4.20)

For numerical stability, we use a small ϵ instead of 0 (e.g., ϵ= 10−3). Alternatively, we use a skip connection:

fϑ = cskip(t)x + cout(t)Fϑ(x(t), t) (4.21)

14

4.2 Consistency Models 4 NOVEL GENERATIVE NETWORKS

where cskip and cout are differentiable functions such that cskip(0) = 1 and cout(0) = 0, fulfilling the boundary
conditions. We adopt the second parameterization in our experiments identical to [43, 42].

For the model architecture, we are not constrained, and we can utilize existing neural network architectures
such as ResNet ,U-Net, Fully connected layers or Transformers.

Training Consistency Models via Distillation

The distillation method for training consistency models is based on training with a pre-trained diffusion
model. In practice, we use a Conditional Flow Matching model vϑ(xt , t) as the "teacher" model. In contrast
to Conditional Flow Matching, where we train a time-dependent velocity field that solves the ODE (4.3), the
consistency models try to directly learn the solution trajectories as a function that maps f (xt , t) → x0 in a
single step. This means that the overall training goal is to approximate the consistency function by enforcing
the self-consistency property f (x(t), t) = f (x(t ′), t ′) by first obtaining two points on the trajectory and then
using a regression task. Similar to Conditional Flow Matching, we use a linear trajectory from noise to data:

x(t |x0) = (1− t)x0 + tϵ→
{

x0, t → 0

ϵ∼N (0,1), t → 1
(4.22)

x(t) is directly obtained by sampling from

p(x, t |x0) =N (x; (1− t)x0, t) (4.23)

In addition to that, we can obtain an accurate estimate of the next point on the trajectory x(t+∆t) by running
one discretization step of a numerical ODE solver:

x(t +∆t) = x(t)+hφ(x(t), t , vθ) (4.24)

where h is the small discretization step size and vθ the pre-trained model. For example, when using an Euler
solver, we use the formula:

x(t +∆t) = x(t)+∆t vϑ(xt , t) (4.25)

We train the consistency model by minimizing its output differences on the self consitency pairs (x(t), t)
and (x(t +∆t), t +∆t). This motivates our following consistency distillation loss for training consistency
models.

Def. 10 Consistency Distillation Loss

LC D := E
[(

fθ(xtn+1 , tn+1)− fθ(xtn , tn)
)2

]
(4.26)

A full training protocol is illustrated in Figure 4.3. It consists of first drawing a sample t ∼ U (0,1) from a
uniform distribution, a data sample x ∼ D , and a random noise vector ϵ∼N (0,1). We then calculate a point
along the linear trajectory x(t). Next, we compute an estimate of the next point on the trajectory x(t +∆t)
using the pre-trained model by running one discretization step of an ODE solver. We then compare the
output of the neural network on the pair (x(t), t) with the output on the pair (x(t +∆t), t +∆t) and calculate
the loss function. We repeat this process until the loss converges. More details can be found in the algorithm
4 taken from [43, 42].

Sampling

A well-trained Consitency model can generate new samples by drawing from the latent distribution r ∼
pl atent and passing it through the network. The sampling quality can be improved by using a multi-step

15

4.3 Limitations of Generative Networks 4 NOVEL GENERATIVE NETWORKS

Figure 4.3: Consistency model training algorithm

sampling method: The multiple step sampling starts by sampling a point x ∼N (0,1) and passing it through
the network like the single step iterations. Next, we inject noise, depending on the number of iterations,
into this output via x(t) = (1− t)x + ϵt and pass it again through the neural network. With each iteration,
we inject progressively less noise. We repeat this process until we reach the desired number of iterations.
The advantages is we have the flexibility to trade off computation time for sample quality after the model is
trained. Details of this algorithm can be found in the algorithm 4.

Algorithm 3 Consistency Distillation (CD)

Input datasetD, initial model parameter θ, learn-
ing rate η, ODE solver Φ(·, ·;φ), d(·, ·), λ(·), and µ

θ− ← θ

repeat
Sample x ∼D and n ∼U [[1, N −1]]
Sample xtn+1 ∼N (x; t 2

n+1I)
x̂Φtn

← xtn+1 + (tn − tn+1)Φ(xtn+1 , tn+1;φ)
L(θ,θ−;φ) ←

λ(tn)d(fθ(xtn+1 , tn+1), fθ− (x̂Φtn
, tn))

θ← θ−η∇θL(θ,θ−;φ)
θ− ← stopgrad(µθ−+ (1−µ)θ)

until Convergence

Algorithm 4 Multistep Consistency Sampling

Input: Consistency Model, sequence of time-
points t1, t2, ...tn ,
Sample x(tn) ∼N , t = 0
for n = 1 to N −1 do

sample ϵ∼N (0, I)
t = t + 1/N
x(tn+1) = (1− t)x +xϵ
x = fϑ(x(t), t)

end for
Output: x

4.3 Limitations of Generative Networks

A trained generative network can exhibit multiple failure modes:

1. Incorrectly learned phase space boundaries

2. Under- or overpopulated distribution tails

3. Washed-out features

Generative networks often struggle with specific challenges, such as accurately replicating hard edges in
data such as a data cutoff or sharp peaks (e.g resonance curves of particle physics events).

16

4.3 Limitations of Generative Networks 4 NOVEL GENERATIVE NETWORKS

To evaluate the generative quality we use two tools:

1. A set of 1 dimenionals metrics

2. A classifier trained to distinguish generated data from real data

4.3.1 1D Metrics

A straight forward benchmark to compare distributions is to measure the difference between the true and
generated data with a metric. We can use the Wasserstein distance and the energy distance:

Def. 11 Wasserstein distance
Given two 1D probability mass functions, u and v, the Wasserstein distance between the distributions is:

l1(u, v) = inf
π∈Γ(u,v)

∫
R×R

|x − y |dπ(x, y) (4.27)

where Γ(u, v) is the set of (probability) distributions on R×R whose marginals are u and v on the first
and second factors respectively. For a given value x, u(x) gives the probability of u at position x and the
same for v(x). If U and V are the respective CDFs of u and v, this distance also equals to:

l1(u, v) =
∫ +∞

−∞
|U −V | (4.28)

Def. 12 Energy distance
The energy distance between two one dimensinonal distributions u and v equals to

D(u, v) =p
2l2(u, v) =

(
2
∫ ∞

∞
(u − v)2

) 1
2

(4.29)

4.3.2 Classifier metric

While metrics provide valuable insights, they may not capture complex correlations or subtle issues that are
invisible in 1-dimensions. The classifier serves as both a performance metric and a diagnostic tool, offering
a more comprehensive evaluation of the generated data. Neural network classifiers are usually trained on
the BCE Loss:

L= 〈− logD(x)
〉

x∼p1
+〈− log(1−D(x))

〉
x∼p2

(4.30)

where p1 and p2 are the two distributions to be classified and D(x) ∈ [0,1] is the neural network prediction
(D(x) = 0 → p1 and D(x) = 1 → p2). A perfectly trained model would minimise this loss. We can derive
an expression for the output D(x) of a perfectly trained network depending on p1, p2 by varying the loss
function with respect to D(x) and setting it to zero: δL

δD = 0

D(x) = p1(x)

p1(x)+p2(x)
(4.31)

We can rewrite this solution as an estimate of the likelihood ratio

tLR = p1

p2
= D(x)

1−D(x)
(4.32)

17

4.4 Related literature 4 NOVEL GENERATIVE NETWORKS

This is a powerful result because it shows that a perfectly trained classifier can be used to estimate the like-
lihood ratio between two distributions, meaning we are able to reweight one distribution p1 into the other
p2 by using the likelihood ratio.

p1 = p2
D(x)

1−D(x)
(4.33)

This property can be used as a diagnostic tool to see if the classifier is able to distinguish between the two
distributions and if it actually learns the likelihood ratio. However, in reality, the classifier is not able to
learn the likelihood ratio perfectly and the reweighted distribution is just an approximation of the target
distribution [20].

Receiver Operating Characteristic (ROC) Curve

The Receiver Operating Characteristic (ROC) curve is commonly used to evaluate the performance of binary
classifiers. It plots the True Positive Rate (TPR) against the False Positive Rate (FPR), where these rates are
defined as:

T PR = T P

T P +F N
F PR = F P

F P +T N
(4.34)

• True Positive Rate (TPR): The proportion of correctly identified positive instances out of all actual
positives.

• False Positive Rate (FPR): The proportion of incorrectly identified positive instances out of all actual
negatives.

Where (TP) is True Positives, FP (False Positives), (TN)True Negatives and (FN) means False Negatives.

To illustrate the idea: a classifier that perfectly distinguishes all inputs would have a TPR of 1 and an FPR of
0, resulting in a constant line that runs from (0,0) to (1,1). In contrast, a random guessing (50/50) classifier
would produce a diagonal line from (0,0) to (1,1), as the TPR would be directly proportional to the FPR.

The ROC curve is especially useful for comparing the performance of generative models. In the case of a
well-trained generative model, the generated data closely mimics real data. As a result, when a classifier is
trained on distinguishing between real and generated data, a perfect generative model would cause the clas-
sifier to perform no better than random guessing, leading to an ROC curve near the diagonal, corresponding
to an Area Under the Curve (AUC) of 0.5. On the other hand, if the generative model produces data that is
easily distinguishable from real data, the classifier will perform better, resulting in a ROC curve farther from
the diagonal, with an AUC closer to 1.

Therefore the performance of a generative model can be quantified using the AUC of the ROC curve, which
ranges from 0 to 1. An AUC of 0.5 indicates no discriminative ability (random guessing) of the classifier,
while an AUC of 1 indicates perfect discrimination. Meaning a AUC close to 0.5 suggests a good gernerative
model performance [20].

However, reducing performance to a single value like the AUC can oversimplify the model’s behavior. There-
fore, in addition to the AUC, we also examine the ROC curve itself as a diagnostic tool, which can highlight
potential issues such as outliers or specific regions where the model underperforms [20].

4.4 Related literature

There are other multiple destillation techniques that aim to simplify sampling from a trained model by fine-
tuning or training a new model to produce samples with fewer function evaluations.

18

4.4 Related literature 4 NOVEL GENERATIVE NETWORKS

In Bespoke Solvers for generative flow models a framework is introduced to create custom ODE solvers that
are optimized for a specific trained model . In short, these solvers are designed to be consistent and parameter-
efficient, meaning they require fewer ODE steps to achieve high-quality sampling. The gain in speed is still
limited by the fact that the model requires multiple Network evaluations to generate samples [41].

In Knowledge Distillation in Iterative Generative Models for Improved Sampling Speed they directly regressed
the trained models samples via the following loss function

L= 〈
DK L(pteacher (x0|xT), pstudent (x0|xT))

〉
xT

(4.35)

where pteacher and pstudent refer to the teacher and student models, respectively. This loss does not in-
corporate the self-consistency property. Furthermore, the teacher models must be deterministic, and the
models are unable to perform multi-step sampling, trading compute for efficiency [32].

In Diffusion Probabilistic Model Made Slim they are reducing the computational complexity of Diffusion
Probabilistic Models (DPMs) with fewer model parameters while preserving their high image generation
quality [26].

We are particularly interested in Consistency models because they offer several advantages:

1. One-step generation by design: This enables faster generation, which addresses a significant bottle-
neck in many AI applications.

2. Speed-performance trade-off: Consistency models allow for adjustments between speed and perfor-
mance, providing more flexibility.

3. Unconstrained Network architecture: Freedom in model design and implementation.

Existing literature already demonstrates good performance in simulation-based inference and detector sim-
ulations [9, 40].

19

5 EXPERIMENTS

5 Experiments

This chapter focuses on the results obtained from training a Consistency Model on LHC events. We first
introduce the benchmark model, CFM, using the Z boson as the main dataset. Then, we explain our specific
Consistency Model architecture and the obtained results. Additionally, in Sec. 5.5, we demonstrate how
classifiers can be utilized to evaluate the performance of generative models. We summarize our results in
Sec. 5.6 and discuss the implications of our findings.

5.1 Dataset

The Conditional Flow Matching and the Consistency Models are trained on unweighted events at the hadroniza-
tion level. Detector effects (e.g., reconstruction errors) are excluded because they soften sharp phase space
features, meaning that our method will perform even better on reconstructed objects. We choose a dataset
involving the production of leptonically decaying Z bosons, with a variable number up to three QCD jets,
because its a challenging benchmark process for LHC events. The neural networks must learn to model an
extremely sharp Z resonance peak, while the presence of jets, which involve complex QCD effects, multiplies
the difficulty of reconstructing proper kinematics. The dataset is defined as:

pp → Zµµ+ {1,2,3} Jets (5.1)

We use the identical dataset from previous research involving INN, CFM, DDPM and Autoregressive Trans-
former [12, 13]. This data is simulated with SHERPA 2.2.10[8] , consisting of 5.4M events (4.0M + 1.1M + 300k
) at 13 TeV. We use CKKW [15] merging to generate events with up to three jets, including ISR, parton shower,
and hadronization, but no pile-up. The final state of the training sample is defined using the FastJet 3.3.4
[14] with the anti-kT algorithm [14]. We use a typical cutoff:

pT, j > 20 GeV and ∆R j j > 0.4 (5.2)

where pT, j is the transverse momentum of the jet, and ∆R j j is the separation between two jets in the detec-
tor, defined as:

∆R j j =
√
∆Φ2

j j +∆η2
j j (5.3)

Here, ∆Φ and ∆η are the differences in azimuthal angle and pseudorapidity between two jets, respectively.

The jets and muons are ordered by transverse momentum pT . Since jets have a finite invariant mass, our
final state dimensionality is three for each muon, plus four degrees of freedom per jet, i.e., 10 dimensions
for Z +1 Jet, 14 dimensions for Z +2 Jets, and 18 dimensions for Z +3 Jets.

Leptons:{pT ,η,φ} (5.4)

Jets:{pT ,η,φ,m} (5.5)

We examine multiple datasets with increasing numbers of jets because the task of reconstructing the Z res-
onance becomes increasingly difficult, and we are interested in later assessing the scaling capability of the
Consistency Models with increasing complexity.

Momentum conservation is not guaranteed, as some final-state particles might escape detection (e.g., due
to the jet algorithm). Since the global azimuthal angle is a symmetry of LHC events, we train on azimuthal
angles relative to the muon, thus reducing the dimensionality to 9, 13, and 17 dimensions.

Preprocessing

Preprocessing is a crucial step in the training of neural networks. This accelerates the training process and
improves the performance of the model. Preprocessing is reversible and later on the output is transformed

20

5.2 Training Conditional Flow Matching 5 EXPERIMENTS

back into the original form. We already reduced the dimensionality of the data due to the global rotational
symmetry of the detector. Note that each lepton or reconstructed jet is represented by a 4-vector:

{pT ,η,φ,m} (5.6)

Since we can extract a global threshold in jet pT , we represent the variables in terms of:

pT = log(pT −pT,min) (5.7)

to approximate a Gaussian shape, matching the Gaussian latent space distribution of the generative model.
Since the global azimuthal angle is a symmetry of LHC events, we train on azimuthal angles relative to the
muon with the largest transverse momentum, within the range of ∆φ ∈ [−π,π]. A transformation into ∆φ=
artanh(∆φ/π) leads to an approximately Gaussian distribution. For all phase space variables, we apply a
centralization and normalization step:

q̃i = qi − q̄i

σ(qi)
(5.8)

since neural networks tend to work better with normalized values ∼O(1).

5.2 Training Conditional Flow Matching

The networks are implemented using PyTorch [37] with the ADAM [30] optimizer and a cosine annealing
learning rate schedule. The setup for the CFM model is described in Chapter 3 and is consistent with pre-
vious literature [28]. The hyperparameters of the networks are described in table 7.1. The Transformer
network was also implemented using PyTorch [35, 37].

The CFM is trained on the Z +1Jet dataset and we immediately conclude that Transformer perform better
than MLPs. The MLPs version need way more parameters, longer training time and the features are more
washed out. We adjust the network with an increasing number of jets due to the rising complexity and
dimensionality of the data. We choose a linear trajectory from noise to data 4.6.

Results

In Fig 5.1 We show the kinematic distributions for our training data ("Train"), generated data of the CFM
model with Transformer architecture ("TraCFM") and the overall dataset ("True"). We train exclusively on
the Z boson dataset with a specific jet number Z + {1,2,3}. Additionally, one can see the deviation from the
training data using pmodel

ptr ai n
and expressed as a percentage:

δ% = 100 · |Model −Tr uth|
Tr uth

(5.9)

Note that Z + Jet s is 9,14,18 dimensional but we only plot the one example plot for the 1D histrogams and
look at reconstructed objetcts like Ml l and ∆Ri j . We checked that all one dimensional distributions are
learned to percent-level precision. The full kinematic distributions can be found in the appendix.

21

5.2 Training Conditional Flow Matching 5 EXPERIMENTS

10−4

10−3

10−2
N

or
m

al
iz

ed

Z+1 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,j1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+1 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

75 80 85 90 95 100 105 110
M`` [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.2

0.4

N
or

m
al

iz
ed

Z+2 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

0 1 2 3 4 5 6 7 8
∆Rj1j2

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+2 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

75 80 85 90 95 100 105 110
M`` [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.2

0.4

N
or

m
al

iz
ed

Z+3 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

0 1 2 3 4 5 6 7 8
∆Rj1j2

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+3 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

75 80 85 90 95 100 105 110
M`` [GeV]

0.1

1.0

10.0

δ[
%

]

Figure 5.1: CFM generated data for Z+1Jets (top), Z+2Jets (middle) and Z+3Jets (bottom) on 1Mil. events

For the Z +1 jets process, the transverse momentum is learned with high precision. However, the tail regions
show deviations from the true values. The Z-peak resonance is also accurately captured. Our analysis indi-
cates that Conditional Flow Matching (CFM) effectively models the full complexity of Z +1 jet. We further
examine correlations, such as the relationship between the pseudorapidities ηl1 and ηl2, and the difference
in azimuthal angles ∆φ, both of which are learned with high precision.

CFM can be trained on more challenging datasets, including events with two and three jets. In events in-
volving multiple jets, Quantum Chromodynamic (QCD) effects cause an enhancement in the rate when the
jets are close to each other. This leads to a sharp cutoff in the angular separation Ri j , imposed by the jet

22

5.3 Training Consistency Models 5 EXPERIMENTS

algorithm. However, we observe that the CFM does not accurately capture the ∆Ri j distribution and fails to
represent the sharp cutoff, a common limitation in generative models.

It is important to note that for this failure mode, there is an existing workaround known as the magic trans-
formation, which can be applied to the data, but it was not implemented in our approach [12]. Additionally,
in the Z + 3 jets scenario, the CFM struggles to reconstruct the Z-peak, producing a slightly broader reso-
nance curve. this is mostly due to the small amount of training data (300K) compaired to 1.1M and 4.0M
from one and two jets

As mentioned earlier, we use the CFM model as both a benchmark and a teacher model for training the
Consistency Model.

5.3 Training Consistency Models

The network is also implemented using PyTorch [37] and ADAM [30] with a one-cycle learning rate sched-
ule.The hyperparameters can be seen in the table 7.2. We adjust the networks with an increasing number of
jets due to the rising complexity and dimensionality of the data. For the network parameterization

fϑ = cski p (t)x + cout (t)Fϑ(x(t), t) (5.10)

we choose

cskip(t) = σ2
d at a

(t −ϵ)2 +σ2
d at a

, cout(t) = σd at a(t −ϵ)√
σ2

d at a + t 2
(5.11)

which clearly satifies cski p (ϵ) = 1 and cout (ϵ) = 0 with σd at a = 0.5 and ϵ = 1e −4 [43]. For training to obtain
xt+1 we use the Euler method as an ODE solver with the CFM model. For the training process we chose a
time step of ∆t = 0.01.

xt+1 = xt +0.01vϑ(x(t), t) (5.12)

Additionally, we used a linear trajectory similar to the one in CFM from noise to data.

x(t) = (1− t)xo +ϵt (5.13)

Training details

The CM must be trained for a significantly longer time period than the CFM model to achieve competitive
results. Due to the high noise loss, we chose a large batch size of 16384. The size Model of the CM is approx-
imately the same as the CFM model and all hyperparameters can be seen in table 7.2. We discovered that
Transformer outperform Multi-Layer Perceptrons (MLPs), so we focused our discussion on the Transformer
architecture, which aligns with the CFM results.

For multi-step sampling, we employed a linear noise injection method. This approach uses the same linear
trajectory as described in 5.13 and select a number of steps (n). This process involves taking equal-distance
steps from noise to data.

Additionally, we implemented various setups using different Ordinary Differential Equation (ODE) solvers,
such as HEUN, and explored different noise trajectories. However, we found that the framework using the
EULER solver with linear trajectories provides a stable solution to the problem. We did not observe any
significant improvements with the other setups.

After training the Consistency models, we are flexible with the trade-off between sample quality and speed.
We conclude in Chapter 5.7 that 7 steps is optimal for CM multistep sampling and plot our results with

23

5.3 Training Consistency Models 5 EXPERIMENTS

this configuration. We show the kinematic distributions (Fig 5.2) for our benchmark model CFM ’TraCFM,’
the generated data of the CM with additional information about the number of multistep sampling steps
(’CM+X,’ where X is the number of steps), and the overall dataset (’True’). We generated data consisting of
(1.0M, 1.0M, 200K) events for one, two, and three jets, respectively. Single Step generated data can be found
in the appendix 7.1.

Results

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+1 jet exclusive

TraCFM
CM+7
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,j1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+1 jet exclusive

TraCFM
CM+7
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

75 80 85 90 95 100 105 110
M`` [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.2

0.4

N
or

m
al

iz
ed

Z+2 jet exclusive

TraCFM
CM+7
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

0 1 2 3 4 5 6 7 8
∆Rj1j2

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+2 jet exclusive

TraCFM
CM+7
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

75 80 85 90 95 100 105 110
M`` [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.2

0.4

N
or

m
al

iz
ed

Z+3 jet exclusive

TraCFM
CM+8
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

0 1 2 3 4 5 6 7 8
∆Rj1j2

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+3 jet exclusive

TraCFM
CM+8
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

75 80 85 90 95 100 105 110
M`` [GeV]

0.1

1.0

10.0

δ[
%

]

Figure 5.2: CM generated data for Z+1Jet (top), Z+2Jets (middle) and Z+3Jets (bottom) on 1Mil. Events

24

5.4 Wasserstein and Energy Metric 5 EXPERIMENTS

Z+1Jets In Figure 5.2, the Z resonance peak in the top-right plot is slightly wider compared to the CFM
model and the training data. Additionally, the transverse momentum PT (top left in Figure 5.2) is generated
with percent-level precision and similar deviation to the CFM model in the tails. The CFM model performs
slightly better with fewer deviations in the tails of the Z resonance peak in the top-right figure.

Z+2Jets For the more challenging dataset with Z boson and two jets, as shown in Figure 5.2 (middle), the
Consistency Model is also able to generate accurate kinematics to a high degree of precision in the one-
dimensional outputs, which can be found in the appendix. For the most challenging reconstructed objects,
we observe that in the Z+2 jets scenario, the ∆R j1 j2 interpolates around the hard cutoff at ∆R j1 j2 = 0.4, indi-
cating that the model struggles to learn this sharp feature. This error is expected, given that the CM is trained
on the CFM and uses the same preprocessing.

Z+3Jets For the most challenging dataset with a Z boson and three jets, which can be seen at the bottom of
Figure 5.2, the sharp feature in ∆R j1 j2 and other jet configurations exhibits similar failure modes to those
observed in the two-jet scenario. The Z resonance peak is now wider and significantly deviates from the
CFM samples and the data. This issue is partly due to the limited number of training events (300K). Since
the CFM model already performs suboptimally on this dataset, the cumulative errors result in a wider Z
resonance peak of the CM model.

Figure 5.3 shows an example of the difference in single step and multistep with seven iterations. The single
step generation is noiser and the features are washed out, resulting in a wider Z peak and larger tails. The
multistep sampling is able to improve the sample quality. We can see that the Z peak is sharper and the tails
are reduced.

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+2 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

75 80 85 90 95 100 105 110
M`` [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+2 jet exclusive

TraCFM
CM+7
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

75 80 85 90 95 100 105 110
M`` [GeV]

0.1

1.0

10.0

δ[
%

]

Figure 5.3: Difference in Mutlistep sampling vs Single step sampling for Consistency Model Z+2Jets

Our interest lies in the trade-off between sample quality and speed. Additionally, we are eager to understand
the behavior of these improvements and to quantify the sample quality. Therefore, in the next chapter, we
are going to evaluate the sample quality with different metrics.

5.4 Wasserstein and Energy Metric

We calculate the Wasserstein distance and energy distance for the Conditional Flow Matching (CFM) and
Consistency Model (CM) using 1.000.000 generated events. The metrics quantify the difference between the
dataset and generated samples on the reconstructed Z resonance peak. To obtain statistical uncertainties,
the process is repeated 10 times. The results are shown in Figure 5.4 and Table 5.1. We evaluate the CM with
different multistep iterations: (1,2,4,8,16,32). The figure shows the deviation from the CFM model as C M

C F M .
Our results indicate that the CM generally improves sample quality with increasing iterations.

25

5.5 Classifier Metric 5 EXPERIMENTS

0 5 10 15 20 25 30
Sample Iterations

1

2

3

4

5

6

7

W
as

se
rs

te
in

m
et

ri
c

C
M

C
F
M

Z+2Jets

Z+3Jets

Z+1Jets

0 5 10 15 20 25 30
Sample Iterations

1

2

3

4

5

6

7

E
n

er
gy

m
et

ri
c

C
M

C
F
M

CM Z+1Jets

CM Z+2Jets

CM Z+3Jets

Figure 5.4: Waterstein and Energy distance of CM compaired to CFM

Table 5.1: 1D metrics of CFM, CM single step and CM multistep, Where W is the Wasserstein distance and E
is the Energy distance

1D Metrics Z+1Jets Dataset (×10−1) Z+2Jets Dataset (×10−1) Z+3Jets Dataset (×10−1)
Model Network eval. WMZ (↓) EMz (↓) WMZ (↓) EMz (↓) WMZ (↓) EMz (↓)

CFM 68 0.95 ± 0.07 0.20 ± 0.01 1.15 ± 0.08 0.20 ± 0.01 2.86 ± 0.25 0.41 ±0.09

CM Single Step 1 3.37 ± 0.18 0.62 ± 0.02 6.45 ± 0.10 1.27 ± 0.02 17.26 ± 0.31 3.49 ± 0.04
CM Multistep 2 2.87 ± 0.06 0.53 ± 0.02 5.58 ± 0.11 1.10 ± 0.02 16.48 ± 0.43 3.35 ± 0.05
CM Multistep 4 2.66 ± 0.15 0.38 ± 0.01 4.02 ± 0.15 0.67 ± 0.02 13.41 ± 0.29 2.74 ± 0.04
CM Multistep 8 3.14 ± 0.06 0.38 ± 0.01 3.66 ± 0.12 0.50 ± 0.01 11.41 ± 0.19 2.23 ± 0.04
CM Multistep 16 4.24 ± 0.14 0.56 ± 0.01 4.58 ± 0.10 0.62 ± 0.01 10.72 ± 0.20 1.87 ± 0.03
CM Multistep 32 5.78 ± 0.14 0.82 ± 0.01 6.66 ± 0.17 0.92 ± 0.02 10.53 ± 0.22 1.60 ± 0.03

However, this improvement is only observed up to approximately 5-7 steps. Beyond this point, artifacts
begin to accumulate with additional steps in mutlistep sampling, resulting in worse metric scores. This
observation is consistent with findings in the literature [40]. Given that our primary interest lies in the speed
and efficiency of the model, this limitation does not pose a significant problem for our objectives.

5.5 Classifier Metric

1D metrics can be a good initial indicator of performance, but they are not able to capture errors hidden in
the 1D histograms, such as false correlations. Therefore, we train a classifier on samples from the generative
network (CFM or CM) with label 0 and on samples from the data distribution (label 1) to use it as a better
metric and diagnostic tool for identifying the failure modes of generative networks.

The classifier model is a simple feedforward neural network with 5 hidden layers and 256 neurons each. We
use the binary cross entropy loss and the ADAM optimizer. Overfitting is prevented by using dropout and
early stopping. Overall hyperparameters can be found in table 7.3. The classifer is trained on all datasets Z +
{1,2,3}Jets with the configurations: {Dat a,C F M } {Dat a,C M } and {C F M ,C M }. The last one is particularly
interesting because it tests whether the CFM and CM have different failure modes.

We train the classifier on the same observables as the generator. Additionally, we feed the classifier recon-
structed objects like ∆Ri j and Ml l :

{pT,i ,∆Φi ,i−1, Mi }∪ {∆Ri j }∪ {Ml l } (5.14)

A trained classifer can be used to evaluate the performance of the generative network with the AUC score
and ROC curved described in Chapter 4. To test if the classifier is able to extract the log likelihood ratio, we

26

5.5 Classifier Metric 5 EXPERIMENTS

reweight the samples from the generative network and compair the reweighted distribution with the target
distribution.

w(x) = pd at a

pmodel
= D(x)

1−D(x)
with D(x) = pd at a

pd at a +pmodel
(5.15)

with the assumption that the classifier D(x) learns the density ratio.

We examine in detail at the classifier trained on the CM model with Z+3Jets, which is the most challenging
dataset and exhibits the most interesting failure modes. The other datasets are not shown here but results
are summarized in the table 5.2 and in the figure 5.7.

0.0 0.5 1.0
False Positive Rate

0.5

1.0

T
ru

e
P

os
it

iv
e

R
at

e

TraCFM Z+3J

AUC = 0.549

0.0 0.5 1.0 1.5 2.0
w(x)

0

1

2

3

4

N
or

m
al

iz
ed

TraCFM Z+3J DATA

TraCFM

10−2 10−1 100 101 102

w(x)

10−6

10−5

10−4

10−3

10−2

10−1

100

N
or

m
al

iz
ed

TraCFM Z+3J DATA

TraCFM

0.0 0.5 1.0
False Positive Rate

0.5

1.0

T
ru

e
P

os
it

iv
e

R
at

e

CM+1 Z+3J

AUC = 0.621

0 1 2 3 4
w(x)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

CM+1 Z+3J DATA

CM

10−2 10−1 100 101 102

w(x)

10−6

10−5

10−4

10−3

10−2

10−1

100

N
or

m
al

iz
ed

CM+1 Z+3J DATA

CM

0.0 0.5 1.0
False Positive Rate

0.5

1.0

T
ru

e
P

os
it

iv
e

R
at

e

CM+10 Z+3J

AUC = 0.587

0 1 2 3 4
w(x)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
or

m
al

iz
ed

CM+10 Z+3J

DATA

CM

10−2 10−1 100 101 102

w(x)

10−6

10−5

10−4

10−3

10−2

10−1

100

N
or

m
al

iz
ed

CM+10 Z+3J DATA

CM

Figure 5.5: ROC and AUC score (left), classifier weights (Middle), classifier weights with log scale of Z+3Jet
Models

The CFM model generates Z+3Jets with high precision. However, the Z resonance peak is slightly wider,
and there is still false interpolation in the ∆Ri j distribution. Despite this, other distributions are accurately
captured, resulting in an AUC score of 0.549, which is close to the diagonal line and indicates good perfor-
mance. The weight distribution (figure 5.5 top) is peaked around one with small tails, which reflects the
known issues with ∆Ri j and the wider Z resonance peak.

27

5.5 Classifier Metric 5 EXPERIMENTS

In contrast, the classifier trained on the CM model for Z+3Jets, using one-step generation, shows different
behavior. In figure 5.5 middle)The ROC curve is notably farther from the diagonal line, with an AUC score
of 0.621. This suggests that the generative model struggles to capture the data distribution effectively. The
weight distribution now shows two peaks around one and significant tails, indicating deviations from the
data distribution and poorer sample quality. This is mainly due to the washed-out features in the kinematic
distributions, such as ∆Ri j and Ml l .

Performing multiple-step sampling with 10 multistep iterations improves the sample quality. The weights
are now more peaked around one with reduced tails, and the AUC score improves to 0.587, with the ROC
curve moving closer to the diagonal line. This indicates that the sample quality has improved.

Reweighting the samples generated by the CM model with the classifier weights brings the samples into
better alignment with the true data distribution. This is evident from a sharper Z peak and reduced tails in
the distribution. Additionally, the ∆Ri j distribution is now more accurately captured, further enhancing the
precision of the generator’s output.

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

Z+1 jet exclusive

CM+10
Reweighted CM
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηl2

0.1
1.0

10.0

δ[
%

]

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+1 jet exclusive

CM+10
Reweighted CM
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

75 80 85 90 95 100 105 110
Mll

0.1
1.0

10.0

δ[
%

]

0.0

0.2

0.4

N
or

m
al

iz
ed

Z+2 jet exclusive

CM+7
Reweighted CM
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

0 2 4 6 8
Rij

0.1
1.0

10.0

δ[
%

]

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+2 jet exclusive

CM+7
Reweighted CM
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

75 80 85 90 95 100 105 110
Mll

0.1
1.0

10.0

δ[
%

]

0.0

0.2

0.4

N
or

m
al

iz
ed

Z+3 jet exclusive

CM+10
Reweighted CM
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

0 2 4 6 8
Rij

0.1
1.0

10.0

δ[
%

]

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+3 jet exclusive

CM+10
Reweighted CM
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

75 80 85 90 95 100 105 110
Mll

0.1
1.0

10.0

δ[
%

]

Figure 5.6: CM reweighted Samples. Z+1 Jets(Top), Z+2Jets (Middle) and Z+3Jets (Bottom)

28

5.6 Performance and Comparison 5 EXPERIMENTS

5.6 Performance and Comparison

0 20 40 60
Network Evaluations

0.50

0.55

0.60

0.65
A

U
C

S
co

re

CM Z+2Jets

CM Z+1Jets

CM Z+3Jets

CFM Z+2Jets

CFM Z+1Jets

CFM Z+3Jets

0 200 400 600 800
Sample Time [s] of 500.000 samples

0.50

0.55

0.60

0.65

A
U

C
S

co
re

CM Z+1Jets

CM Z+2Jets

CM Z+3Jets

CFM Z+1Jets

CFM Z+2Jets

CFM Z+3Jets

Figure 5.7: AUC Score of CFM, CM against the Sample Time (Right) and the number of Network Iterations
(Left)

Table 5.2: AUC Score and Generation time of CFM and CM for Z Boson+Jets Dataset

Class. Metrics Dataset Z+1J Dataset Z+2J Dataset Z+3J
Network eval. AUC GEN. Time [s] AUC GEN Time. [s] AUC GEN. Time[s]

CFM (68, 62, 60) 0.528 496.19 ± 0.8 0.530 716 ± 0.9 0.551 846 ± 0.9

CM 1 0.561 7.8 ± 0.1 0.558 11.6 ± 0.1 0.641 15 ± 0.1
CM 2 0.552 15.6 ± 0.1 0.552 23.1 ± 0.2 0.620 32 ± 0.2
CM 4 0.542 31.2 ± 0.2 0.540 46.3 ± 0.2 0.592 62 ± 0.3
CM 7 0.537 54.6 ± 0.3 0.538 81.1 ± 0.3 0.591 109 ± 0.4
CM 8 0.538 62.4 ± 0.3 0.538 92.2 ± 0.4 0.592 124 ± 0.5
CM 16 - - 0.539 184.5 ± 0.1 0.583 248 ± 0.1

In Figure 5.7 and table 5.2, we examine the overall AUC performance of the Consistency and Conditional
Flow Matching Models, along with their generation speed. We provide not only an estimate of the sample
time for 500,000 samples but also a comparison of network evaluations. For the Consistency Models, the
number of multistep iterations is flexible, allowing us to generate samples with varying network evaluations.
We train three classifiers for all generated samples and obtain an AUC uncertainty of 0.001. In table 5.2, we
only show the average AUC score.

For the Conditional Flow Matching model, we measured the number of times the ODE solver called the
CFM model and compared this to the Consistency Model with different generation steps. Depending on the
dataset, the CFM maps from noise to data on average in 68 steps for Z+1j, 62 steps for Z+2j, and 60 steps for
Z+3j. It is important to note that using faster ODE settings does not improve CFM generation speed while
preserving sample quality. We tested this with faster ODE solver settings and observed that for Z+1 Jets, the
CFM achieved an AUC of 0.65 with 32 network iterations, indicating that speedup via the ODE solver alone
is not feasible.

We observe that the speedup factor for the Consistency Model scales linearly with the number of iterations,
ranging from 5 to 60 times. We conclude that a Consistency Model with 7 iterations is optimal for matching
CFM performance, providing speedup of 10 times while maintaining the best trade-off between speed and
quality.

29

6 CONCLUSION AND OUTLOOK

6 Conclusion and Outlook

As the Large Hadron Collider (LHC) enters a new phase of precision measurements, the demand for fast and
accurate simulations becomes critical to process the immense volume of data produced. Machine learning
techniques present a promising approach to enhancing data analysis at every stage of the LHC’s processing
pipeline.

In this thesis, we implemented an event generation model for LHC events using both a Conditional Flow
Matching Model and Consistency Models, based on a Transformer architecture. The objective was to accel-
erate event generation while maintaining high-quality samples. Our results demonstrate that Consistency
Models improve sampling speed by a factor of 5 to 60, depending on the number of generation steps. The
optimal configuration achieved a seven-step iteration, resulting in a sampling speed improvement of ap-
proximately 10-fold compared to CFM, while maintaining comparable performance in terms of AUC.

We conclude that Consistency Models are powerful tools for accelerating simulations in score-based diffu-
sion models at the LHC. Given the rapid advancements in machine learning applications within particle
physics, it is likely that ML will become an essential tool for future high-luminosity LHC experiments.

Notably, Consistency Models perform well with the same hyperparameters as CFM, offering a straightfor-
ward distillation process. However, during training, we observed that Consistency Models required signifi-
cantly longer training times. This limitation, widely recognized in the literature, has been recently addressed
by an optimized training algorithm [24, 45]. Future research could investigate these techniques to further
improve training efficiency.

A more advanced setup, particularly moving beyond the linear trajectory and Euler method, could improve
sample quality. Exploring alternative numerical methods and trajectories is a promising direction for future
research.

Finally, event generation is only the first step. Future work could focus on the development of conditional
generative models. Additionally, adapting the network architecture to allow Consistency Models to solve
inverse problems is an interesting task. Furthermore, the Consistency Models literature already suggests
a training approach that eliminates the need for CFM as a teacher model. For a final implementation, we
would use a Bayesian network to achieve better uncertainty control. For high-dimensional problems, Latent
Consistency Models offer potential, as Latent Diffusion models have demonstrated superior performance in
video, audio, and image generation [33, 34]. In conclusion, these advancements would contribute to more
efficient and accurate simulations.

30

REFERENCES REFERENCES

References

[1] GEORGES AAD et al. „Observation of a new particle in the search for the Standard Model Higgs boson

with the ATLAS detector at the LHC“. In: Physics Letters B 716.1 (2012), pp. 1–29.

[2] GUIDO ALTARELLI, R KEITH ELLIS, and G MARTINELLI. „Large perturbative corrections to the Drell-Yan

process in QCD“. In: Nuclear Physics B 157.3 (1979), pp. 461–497.

[3] GIORGIO APOLLINARI et al. High-Luminosity Large Hadron Collider (HL-LHC). Technical Design Report

V. 0.1. Tech. rep. Fermi National Accelerator Lab.(FNAL), Batavia, IL (United States), 2017.

[4] MATHIAS BACKES et al. „An unfolding method based on conditional Invertible Neural Networks (cINN)

using iterative training“. In: SciPost Physics Core 7.1 (2024), p. 007.

[5] FALK BARTELS et al. Studying the Z Boson with the ATLAS Detector at the LHC. Version 1.2, December

11, 2020. 2020. URL: https://www.physi.uni-heidelberg.de/Einrichtungen/FP/anleitungen/F91.pdf.

[6] JAMES BEACHAM et al. „Physics beyond colliders at CERN: beyond the standard model working group

report“. In: Journal of Physics G: Nuclear and Particle Physics 47.1 (2019), p. 010501.

[7] SEBASTIAN BIERINGER et al. „Calomplification—the power of generative calorimeter models“. In: Jour-

nal of Instrumentation 17.09 (2022), P09028.

[8] ENRICO BOTHMANN et al. „Event generation with Sherpa 2.2“. In: SciPost Physics 7.3 (2019), p. 034.

[9] ERIK BUHMANN et al. „CaloClouds II: ultra-fast geometry-independent highly-granular calorimeter

simulation“. In: Journal of Instrumentation 19.04 (2024), P04020.

[10] ANJA BUTTER and TILMAN PLEHN. „Generative Networks for LHC events“. In: Artificial intelligence for

high energy physics. World Scientific, 2022, pp. 191–240.

[11] ANJA BUTTER et al. „GANplifying event samples“. In: SciPost Physics 10.6 (2021), p. 139.

[12] ANJA BUTTER et al. „Generative networks for precision enthusiasts“. In: SciPost Physics 14.4 (2023),

p. 078.

[13] ANJA BUTTER et al. „Jet Diffusion versus JetGPT–Modern Networks for the LHC“. In: arXiv preprint

arXiv:2305.10475 (2023).

[14] MATTEO CACCIARI, GAVIN P SALAM, and GREGORY SOYEZ. „FastJet user manual: (for version 3.0. 2)“.

In: The European Physical Journal C 72 (2012), pp. 1–54.

[15] STEFANO CATANI et al. „QCD matrix elements+ parton showers“. In: Journal of High Energy Physics

2001.11 (2002), p. 063.

[16] CHRISLB. ArtificialNeuronModel. Wikimedia Commons. 2005.

[17] ATLAS COLLABORATION. „Technical Design Report for the ATLAS Inner Detector: Inner Tracker“. In:

CERN Technical Design Report (1997). CERN-LHCC-97-16. URL: https://cds.cern.ch/record/527822/

files/p3.pdf.

[18] ATLAS COLLABORATION et al. „The ATLAS experiment at the CERN Large Hadron Collider: a descrip-

tion of the detector configuration for Run 3“. In: arXiv preprint arXiv:2305.16623 (2023).

[19] CUSH. Standard Model of Elementary Particles. Wikimedia Commons. Accessed: 2024-09-08. 2014.

URL: https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg.

[20] RANIT DAS et al. „How to understand limitations of generative networks“. In: SciPost Physics 16.1

(2024), p. 031.

[21] CARL DOERSCH. „Tutorial on variational autoencoders“. In: arXiv preprint arXiv:1606.05908 (2016).

31

https://www.physi.uni-heidelberg.de/Einrichtungen/FP/anleitungen/F91.pdf
https://cds.cern.ch/record/527822/files/p3.pdf
https://cds.cern.ch/record/527822/files/p3.pdf
https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg

REFERENCES REFERENCES

[22] JOHN R DORMAND and PETER J PRINCE. „A family of embedded Runge-Kutta formulae“. In: Journal of

computational and applied mathematics 6.1 (1980), pp. 19–26.

[23] SIDNEY D DRELL and TUNG-MOW YAN. „Massive lepton-pair production in hadron-hadron collisions

at high energies“. In: Physical Review Letters 25.5 (1970), p. 316.

[24] ZHENGYANG GENG et al. „Consistency Models Made Easy“. In: arXiv preprint arXiv:2406.14548 (2024).

[25] IAN GOODFELLOW et al. „Generative adversarial networks“. In: Communications of the ACM 63.11

(2020), pp. 139–144.

[26] YANJUN HE et al. „The Annotated Transformer: A Data-Driven Study of Transformer Family Variants“.

In: arXiv preprint arXiv:2211.17106 (2022).

[27] JONATHAN HO, AJAY JAIN, and PIETER ABBEEL. „Denoising diffusion probabilistic models“. In: Ad-

vances in neural information processing systems 33 (2020), pp. 6840–6851.

[28] NATHAN HUETSCH et al. „The Landscape of Unfolding with Machine Learning“. In: arXiv preprint

arXiv:2404.18807 (2024).

[29] MARTINA JAVURKOVA. „The Fast Simulation Chain in the ATLAS experiment“. In: EPJ Web of Confer-

ences. Vol. 251. EDP Sciences. 2021, p. 03012.

[30] DIEDERIK P KINGMA. „Adam: A method for stochastic optimization“. In: arXiv preprint arXiv:1412.6980

(2014).

[31] YARON LIPMAN et al. „Flow matching for generative modeling“. In: arXiv preprint arXiv:2210.02747

(2022).

[32] ERIC LUHMAN and TROY LUHMAN. „Knowledge Distillation in Iterative Generative Models for Im-

proved Sampling Speed“. In: arXiv preprint arXiv:2101.02388 (2021).

[33] SIMIAN LUO et al. Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step In-

ference. 2023. arXiv: 2310.04378 [cs.CV].

[34] SIMIAN LUO et al. „LCM-LoRA: A Universal Stable-Diffusion Acceleration Module“. In: arXiv preprint

arXiv:2311.05556 (2023).

[35] PIERRE M NUGUES. „Self-Attention and Transformers“. In: Python for Natural Language Processing:

Programming with NumPy, scikit-learn, Keras, and PyTorch. Springer, 2024, pp. 425–447.

[36] PARTICLE DATA GROUP. „Review of Particle Physics“. In: Progress of Theoretical and Experimental

Physics 2022.8 (2022), p. 083C01. DOI: 10.1093/ptep/ptac097. URL: https://pdg.lbl.gov/.

[37] ADAM PASZKE et al. „Pytorch: An imperative style, high-performance deep learning library“. In: Ad-

vances in neural information processing systems 32 (2019).

[38] TILMAN PLEHN et al. „Modern machine learning for LHC physicists“. In: arXiv preprint arXiv:2211.01421

(2022).

[39] DAVID E RUMELHART, GEOFFREY E HINTON, and RONALD J WILLIAMS. „Learning representations by

back-propagating errors“. In: nature 323.6088 (1986), pp. 533–536.

[40] MARVIN SCHMITT et al. „Consistency Models for Scalable and Fast Simulation-Based Inference“. In:

arXiv preprint arXiv:2312.05440 (2023).

[41] NIV SHAUL et al. „Bespoke Solvers for Generative Flow Models“. In: arXiv preprint arXiv:2310.19075

(2023).

[42] YANG SONG and PRAFULLA DHARIWAL. „Improved techniques for training consistency models“. In:

arXiv preprint arXiv:2310.14189 (2023).

[43] YANG SONG et al. „Consistency models“. In: arXiv preprint arXiv:2303.01469 (2023).

32

https://arxiv.org/abs/2310.04378
https://doi.org/10.1093/ptep/ptac097
https://pdg.lbl.gov/

REFERENCES REFERENCES

[44] ASHISH VASWANI. „Attention is all you need“. In: arXiv preprint arXiv:1706.03762 (2017).

[45] FU-YUN WANG et al. „Phased Consistency Model“. In: arXiv preprint arXiv:2405.18407 (2024).

[46] RAMON PETER WINTERHALDER. „How to GAN, Novel simulation methods for the LHC“. PhD the-

sis. U. Heidelberg, 2024. URL: https : / / www. thphys. uni - heidelberg . de / ~plehn / includes / theses /

winterhalder_d.pdf.

[47] TUNG-MOW YAN. „Drell-Yan Mechanism“. In: UNIVERSE-TAIPEI 3.3 (2015), pp. 45–50.

33

https://www.thphys.uni-heidelberg.de/~plehn/includes/theses/winterhalder_d.pdf
https://www.thphys.uni-heidelberg.de/~plehn/includes/theses/winterhalder_d.pdf

7 APPENDIX

7 Appendix

7.1 Hyperparameters

Table 7.1: CFM Hyperparameters of CFM on Z+Jets Dataset

CFM Hyperparameters Z+1Jet Dataset Z+2Jets Dataset Z+3Jets Dataset

Input dim 10 15 19
Output dim 9 14 18
Network Transformer Transformer Transformer
Embedding dim 64 64 128
Feedforward dim 256 256 512
Decode layers 6 8 6
Encoder layers 1 1 1
Self attention Heads 4 4 4
Model parameters 450K 585K 1.7M

Loss MSE MSE MSE
Batch size 16384 16384 8192
LR Scheduling Cosine annealing Cosine annealing Cosine annealing
Learning rate 3e-4 3e-4 1e-4
Epochs 300 500 10.000
Training Events 3.5M 1M 250K

Generated Events 1M 1M 300K
ODE Solver scipy.solve_ivp scipy.solve_ivp scipy.solve_ivp
ODE setting atol: 1.0e-06 1.0e-06 1.0e-06
EULER 1.0e-3 1.0e-3 1.0e-3

Table 7.2: CM Hyperparameters of CFM on Z+Jets Dataset

CM Hyperparameters Z+1Jet Dataset Z+2Jets Dataset Z+3Jets Dataset

Input dim 10 15 19
Output dim 9 14 13
Network Transformer Transformer Transformer
Embedding dim 64 64 128
Feedforward dim 512 256 512
Decode layers 6 8 6
Encoder layers 1 1 1
Self attention Heads 4 4 4
Model parameters 690K 580K 1.7M

Loss MSE MSE MSE
Batch size 16384 16384 4096
LR Scheduling Cosine annealing Cosine annealing Cosine annealing
Learning rate 3e-4 3e-4 1e-4
Epochs 2.000 3.000 10.000
Training Events 3.5M 1M 250K

Generated Events 1M 1.0M 300K
EULER 1.0e-3 1.0e-3 1.0e-3

34

7.2 Mathematics 7 APPENDIX

Table 7.3: Hyperparamters of Classification model for conditional flow matching and consitency model gen.
data

Hyperparameters CFM,CM and Training Dataset
Z + {1,2,3jets}

Network MLP
Input dim 10, 17, 23
Layers 5
Hidden dim 256

Learning rate 1e-4
Batch size 1.024
Activation function ReLU
Loss MSE

Training Data (3M Data, 3M Gen. Samples)
regularisation Early stopping, Dropout 10%
epochs 500

7.2 Mathematics

Invariant Z Mass Calculation

To calculate the invariant mass of the two leading leptons in the event, we use:

M 2
l l = E 2

l l − p⃗2
l l (7.1)

Since the leptons are treated as massless, we use El = |pl |. Given the geometric relationship for the trans-
verse momentum: pT = p sin(θ), where θ is the polar angle, we can write the expression for the invariant
mass as:

M 2
l l = 2Pt ,1Pt ,2

(
1

sin(ϑ1)sin(ϑ2)
−cos(ϕ1 −ϕ2)− 1

tan(ϑ1) tan(ϑ2)

)
(7.2)

Using the relationship between η and ϑ:

sinh(η) = 1

tan(ϑ)
cosh(η) = 1

sin(ϑ)
(7.3)

and hyperbolic trigonometric identities we can rewrite eq 7.2, we obtain:

M 2
l l = 2Pt ,1Pt ,2

(
cosh(η1 −η0)−cos(ϕ1 −ϕ2)

)
(7.4)

CFM Theorem 1

give a vectorfield vt (x|x1) that generates the coditional probablity path pt (x|x1), for any q(x1) the marginal
vector field vt generated the marginal probability path pt . Meaning vt pt satisfy the continuity equation

d

d t
pt (x) =

∫ (
d

d t
pt (x|x1)

)
q(x1)d x1 =−

∫
div

(
vt (x|x1)pt (x|x1)

)
q(x1)d x1 (7.5)

=−div

(∫
vt (x|x1)pt (x|x1)q(x1)d x1

)
=−div

(
vt (x)pt (x)

)
(7.6)

7.3 Kinematics

35

7.3 Kinematics 7 APPENDIX

10−6

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+1 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,l1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

Z+1 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηl1

0.1

1.0

10.0

δ[
%

]

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+1 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,l2 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed

Z+1 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−4 −3 −2 −1 0 1 2 3 4
φl2

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

Z+1 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηl2

0.1

1.0

10.0
δ[

%
]

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+1 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,j1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.2

0.4

0.6

N
or

m
al

iz
ed

Z+1 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−4 −3 −2 −1 0 1 2 3 4
φj1

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

Z+1 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηj1

0.1

1.0

10.0

δ[
%

]

10−5

10−3

10−1

N
or

m
al

iz
ed

Z+1 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

0 10 20 30 40 50
µj1 [GeV]

0.1

1.0

10.0

δ[
%

]

10−6

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+1 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,l1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

Z+1 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηl1

0.1

1.0

10.0

δ[
%

]

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+1 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,l2 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed

Z+1 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−4 −3 −2 −1 0 1 2 3 4
φl2

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

Z+1 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηl2

0.1

1.0

10.0

δ[
%

]

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+1 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,j1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.2

0.4

0.6

N
or

m
al

iz
ed

Z+1 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−4 −3 −2 −1 0 1 2 3 4
φj1

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

Z+1 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηj1

0.1

1.0

10.0

δ[
%

]

10−5

10−3

10−1

N
or

m
al

iz
ed

Z+1 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

0 10 20 30 40 50
µj1 [GeV]

0.1

1.0

10.0

δ[
%

]

Figure 7.1: CFM and CM + 1Jets

36

7.3 Kinematics 7 APPENDIX

10−6

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+2 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,l1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

Z+2 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηl1

0.1

1.0

10.0

δ[
%

]

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+2 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,l2 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed

Z+2 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−4 −3 −2 −1 0 1 2 3 4
φl2

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

Z+2 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηl2

0.1

1.0

10.0
δ[

%
]

10−3

10−2

N
or

m
al

iz
ed

Z+2 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,j1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

Z+2 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−4 −3 −2 −1 0 1 2 3 4
φj1

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

Z+2 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηj1

0.1

1.0

10.0

δ[
%

]

10−5

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Z+2 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

0 10 20 30 40 50
µj1 [GeV]

0.1

1.0

10.0

δ[
%

]

10−6

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+2 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,l1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

Z+2 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηl1

0.1

1.0

10.0

δ[
%

]

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+2 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,l2 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed

Z+2 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−4 −3 −2 −1 0 1 2 3 4
φl2

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

Z+2 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηl2

0.1

1.0

10.0

δ[
%

]

10−3

10−2

N
or

m
al

iz
ed

Z+2 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,j1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

Z+2 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−4 −3 −2 −1 0 1 2 3 4
φj1

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

Z+2 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηj1

0.1

1.0

10.0

δ[
%

]

10−5

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Z+2 jet exclusive

TraCFM
CM+1
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

0 10 20 30 40 50
µj1 [GeV]

0.1

1.0

10.0

δ[
%

]

Figure 7.2: CFM and CM + 2Jets

37

7.3 Kinematics 7 APPENDIX

10−6

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+3 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,l1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

Z+3 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηl1

0.1

1.0

10.0

δ[
%

]

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+3 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,l2 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+3 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−4 −3 −2 −1 0 1 2 3 4
φl2

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

Z+3 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηl2

0.1

1.0

10.0
δ[

%
]

10−3

10−2

N
or

m
al

iz
ed

Z+3 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,j1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

Z+3 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−4 −3 −2 −1 0 1 2 3 4
φj1

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

Z+3 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηj1

0.1

1.0

10.0

δ[
%

]

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Z+3 jet exclusive

Train
TraCFM
True

0.8
1.0
1.2

m
o
d

el
T

ra
in

0 10 20 30 40 50
µj1 [GeV]

0.1

1.0

10.0

δ[
%

]

10−6

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+3 jet exclusive

TraCFM
CM+7
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,l1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

Z+3 jet exclusive

TraCFM
CM+7
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηl1

0.1

1.0

10.0

δ[
%

]

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+3 jet exclusive

TraCFM
CM+7
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,l2 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+3 jet exclusive

TraCFM
CM+7
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−4 −3 −2 −1 0 1 2 3 4
φl2

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

N
or

m
al

iz
ed

Z+3 jet exclusive

TraCFM
CM+7
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηl2

0.1

1.0

10.0

δ[
%

]

10−3

10−2

N
or

m
al

iz
ed

Z+3 jet exclusive

TraCFM
CM+7
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

20 40 60 80 100 120 140
pT,j1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

Z+3 jet exclusive

TraCFM
CM+7
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−4 −3 −2 −1 0 1 2 3 4
φj1

0.1

1.0

10.0

δ[
%

]

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

Z+3 jet exclusive

TraCFM
CM+7
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

−6 −4 −2 0 2 4 6
ηj1

0.1

1.0

10.0

δ[
%

]

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

Z+3 jet exclusive

TraCFM
CM+7
Data

0.8
1.0
1.2

m
o
d

el
T

ra
in

0 10 20 30 40 50
µj1 [GeV]

0.1

1.0

10.0

δ[
%

]

Figure 7.3: CFM and CM + 3Jets

38

8 ACKNOWLEDGEMENTS

8 Acknowledgements

ich bin sehr dankbar dafür, dass Tilman Plehn mir die Möglichkeit gegeben hat, in der Forschungsgruppe
mitzuarbeiten. Es war für mich nicht nur interessant, einen ersten tatsächlichen Einblick in die Forschung
zu bekommen, sondern auch die Erfahrung hat mich tief beeindruckt. Besonders dankbar bin ich dafür,
dass ich mit Nathan Huetsch zusammenarbeiten konnte. Nathan hat mir bei vielen Problemen geholfen,
zahlreiche Fragen beantwortet und war gleichzeitig eine Person, zu der ich aufschaue – eine Inspiration, wie
ich mich weiterentwickeln möchte. Ich bin auch dankbar für die Forschungsgruppe, die trotz meiner kurzen
und eher unscheinbaren Arbeit häufig nachgefragt und Interesse gezeigt hat. Ich habe mich sehr willkom-
men gefühlt und es war mir eine Ehre, von so vielen intelligenten und inspirierenden Menschen umgeben zu
sein. Ich möchte mich bei Marius, Dominik, Valentin, Roman und Jan bedanken für die gemeinsame Zeit im
Studium. Ich werde mein Leben lang auf diese Zeit zurückblicken und im kern an euch denken. Ebenso bin
ich meinen Freunden aus der Heimat sehr dankbar. Besonders möchte ich meiner Familie für ihre Unter-
stützung danken: meiner wunderbaren Mutter und meinen liebevollen Geschwistern. Auch meinem Vater
möchte ich danken, der all das nicht mehr miterleben konnte, aber immer in meinen Gedanken bei mir ist.

9 DECLARATION

9 Declaration

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel benutzt habe.

Heidelberg, den 16.09.2024, ...

Mobile User

	1 Introduction
	2 Particle Physics Fundamentals
	2.1 Standard model
	2.2 LHC Framework
	2.3 Kinematic Observables
	2.4 Drell-Yan Process at the LHC

	3 Machine Learning Fundamentals
	3.1 Deep learning
	3.1.1 Neural Networks
	3.1.2 Activation Functions
	3.1.3 Training Neural Networks
	3.1.4 Transformer and Self-Attention

	4 Novel Generative Networks
	4.1 Conditional Flow Matching
	4.2 Consistency Models
	4.3 Limitations of Generative Networks
	4.3.1 1D Metrics
	4.3.2 Classifier metric

	4.4 Related literature

	5 Experiments
	5.1 Dataset
	5.2 Training Conditional Flow Matching
	5.3 Training Consistency Models
	5.4 Wasserstein and Energy Metric
	5.5 Classifier Metric
	5.6 Performance and Comparison

	6 Conclusion and Outlook
	7 Appendix
	7.1 Hyperparameters
	7.2 Mathematics
	7.3 Kinematics

	8 Acknowledgements
	9 Declaration

