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Abstract

In the last few years, it has been shown that neural networks can be applied

to particle physics to improve discrimination between various collider signatures

and their backgrounds. We present an optimized, physics-inspired neural

network for quark and gluon jet discrimination. On a pure sample, our Deep

Neural Network outperforms a conventional Boosted Decision Tree and has

comparable performance to an image-based Convolutional Network. We also

show the performance of our network in simulated invisible Higgs + monojet

events, where a lower discrimination power is achieved, partly because both

signal and background events can contain quark jets and gluon jets.

Zusammenfassung

In den letzten Jahren wurde gezeigt, dass Neuronale Netzwerke in der Teilchenphysik

die Diskriminierung von Detektorsignalen und deren Untergrund verbessern

können. Wir präsentieren ein physik-motiviertes Deep Neural Network für

quark-gluon jet Klassifikation. Das Netzwerk zeigt eine bessere Diskriminierung

als Boosted Decision Trees und eine vergleichbare mit bild - basierten Convolutional

Netzwerken. Wir wenden weiterhin das Netzwerk auf simulierte unsichtbare

Zerfälle von Higgs bosonen zusammen mit einem Monojet an. Die Diskriminierung

ist hier schlechter, auch weil Signal und Untergrund jeweils Quark und Gluon

Jets enthalten.





Contents

1 Introduction 1

2 Background 3

2.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Particle Colliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Setup and Analysis 12

3.1 Simulation of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Performance of LoLa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Comparing to a CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Tagging Monojets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Conclusion 28



1 Introduction

The Standard Model has enjoyed outstanding success since the prediction of the Higgs

boson [1–3] and the confirmation of its existence by the ATLAS collaboration [4] and the

CMS collaboration [5]. The Standard Model is self-consistent up to a very high energy,

namely the Planck energy. This success is dampened by the fact that the Standard Model

does not include gravity, and therefore still has to be joined up with General Relativity.

Moreover, there are several phenomena which current physics cannot explain. Since 2012

(the confirmation of the existence of the Higgs boson), there has been more and more

concentrated effort to look for physics beyond the Standard Model (BSM). Some of

those phenomena which do not get described correctly by the Standard Model include

neutrino oscillations [6] and the baryon asymmetry.

An exciting field is the search for Dark Matter (DM), which could potentially explain

multiple discrepancies between theory and measured reality. There have been a multitude

of proposals for the detection of dark matter at particle accelerators (for a review see e.g.

[7]). Because it is still unclear what properties the new matter must have the predictions

differ very much. The Higgs sector is here of importance because some BSM theories

would allow the Higgs boson to decay to DM invisibly.

The last years have shown that looking for new physics has become increasingly difficult.

The lack of observation of dark matter at particle accelerators means that experimentalists

need to go to higher energy, while also increasing the precision and efficiency of the

analysis. In the last 20 years, a new field in Science has emerged that reflects the jump in

computer performance and the size of data to process. This data science especially had

a breakthrough with the rise in the performance of machine learning algorithms. Mainly,

Deep Learning has achieved new heights of performances with the invention of efficient

algorithms and new structures. The yearly competition of imgnet has shown the efficiency

of convolutional networks for classifying objects in pictures [8], and we will continue to

expect an even better performance.

It has been shown in the last few years, that machine learning and especially neural

networks might also have a useful application in particle physics. One drawback of deep

learning is for instance, that networks require large amounts of training data. Huge

amounts of data have always been generated at colliders, which therefore begs the question

of whether machine learning can be applied in the analysis.

There are various phenomenological studies using neural networks to show that the multi-

variate analysis can be outperformed. This has been shown for quark and gluon jet

discrimination and top tagging though many other fields will be explored in the future. The

studies are using different variations of neural networks like Convolutional Neural Networks

(CNNs) or densely connected networks. CNNs outperform high-level variables, but if

enough high-level information is included the improvement in performance is saturated [9].

Boosted Decision Trees are among the methods that are currently used, so there is a

baseline to compare performance to. These consist of simple classification algorithms that

make use of previously constructed input. Boosted means here that for performance gain
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multiple such trees are trained, so that the final decision can be a mean of the output of

the trees or that best performing models can be chosen at each instance of training.

In this work we want to concentrate on using neural networks, specifically a physics-

inspired deep neural network, to look at the discrimination power on quark and gluon

jets, Higgs + monojet and Z + monojet events at proton - proton collisions with a beam

energy of
√
s = 13 TeV. We will start with an explanation of the physics involved, as

well as the technical side of neural networks. We then describe the sample generation

procedure, and present our results. We will then compare our model to a previous work

of Schwartz et al. [10]. We will then apply our quark-gluon tagger to a benchmark BSM

scenario, invisible Higgs decays in association with monojets. Finally we will summarize

our results and give an outlook to future prospects.
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Figure 1: The Standard Model. Taken from [11].

2 Background

2.1 Standard Model

2.1.1 Particles

The Standard Model consists of elementary particles, which are sorted into families, where

members have similar traits. All particles are assumed to be infinitely small in size and

can have zero mass depending on the particle. Fig. 1 shows a table of every particle with

additional information.

The particles can be divided into fermions and bosons, which consequently get assigned

a half-integer spin and integer spin. The Fermions can be further divided into three

generations of quarks and leptons. The leptons are the electron, the muon and the tau,

and each lepton has a neutrino counterpart. The Standard Model assumes the mass of

the neutrinos to be zero.

The quarks consist of two quarks per generation, historically named up, down, charm,

strange, top and bottom. The top quark mass is too high for the top quark to exist long

enough to form bound states.

2.1.2 Interactions

The fundamental particles interact with each other through three different fundamental

forces, mediated by the bosons. The bosons consist of five particles, and mediate the forces

in the following way. The massless photon γ, which has charge zero, is the mediating
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particle of the electromagnetic force; W±- and Z0-bosons mediate the weak force, and

gluons the strong force.

Not every particle experiences every force. The weak force and the electromagnetic force

act on all fermions and the strong force acts only on quarks and gluons. The strong

attraction of quarks leads to the formation of hadrons, which can be further divided into

baryons, which consist of three quarks, and mesons, which consist of a quark and antiquark

pair. Exotic hadrons with five quarks have already been observed at LHCb [12]. These

are called pentaquarks.

The strong force leads to a phenomenon called ‘color confinement’, which prohibits the

existence of stable particles with non-zero color charge. This confinement is a result of the

gluons, as mediator of the strong force, having color charge themselves, unlike photons

which have electric charge zero.

2.1.3 Higgs Boson

The Higgs boson is a scalar boson with spin zero. It is a consequence of the Higgs-

mechanism [13]. The Higgs mechanism explains the non-zero mass of the gauge bosons

W+, W− and Z0 which mediate the weak force. The Higgs boson is of considerable

interest in the search for new physics, because the Higgs can potentially couple to any

singlet gauge field φ. This would imply a decay of the Higgs to φφ (provided low enough

mass mφ), therefore looking for invisible decays of the Higgs is important for BSM. A

decay to φφ then means, that it is not detectable anymore, if there are no additional

interactions involving φ. We call that an invisible decay.

2.2 Particle Colliders

In particle colliders the idea is to use the high energy collision of particles to (temporarily)

produce new and other particles. The high energy is needed to overcome the electrostatic

repulsion and to provide the energy for the masses of particles. There are different

accelerators depending on the accelerated particles and targets.

The LHC is the biggest particle accelerator to this day. It is a proton-proton collider

having a beam energy of up to
√
s = 13 TeV. Multiple experiments are running with beams

supplied by the LHC. Every experiments measures the electric charge of the particles as

well as the energy stored in the calorimeters. Additional information is gained by tracking

the way of the particles through the detector. A running experiment produces a lot of

data in a very short time. When two proton beams collide there is not only one collision

happening but several at the same time. The subsequent fragments will also interact with

each other. It is therefore necessary to have tools to separate the events of interest (Signal)

from the ones that only appear to be signal-like (Background). A higher instantaneous

luminosity of the particle collider will also lead to more particles produced (pile-up), so

there is need for good discrimination algorithms besides higher precision of the measuring

devices.

There are two more phenomena leading to even more particles to distinguish. Initial State
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Figure 2: Example Feynman diagrams for signal (left) and background (right) of Higgs
boson production.

Radiation and Final State Radiation can produce particles outside of the hard-scattering

processes happening in the primary collision.

2.2.1 Quark and Gluon Jets

Jets are a common occurrence in particle colliders. They are a result of the strong force

and color confinement. When a quark pair gets separated the potential energy between

those will rise. When the force pulling the quarks apart is high enough the connection will

break and with the set-free energy a new pair of particles will be produced. This follows

out of confinement because a single quark cannot exist on its own because every quark

has a color charge. Only ‘white’ particles i.e. particles with a net color charge of zero can

be stable. The newly created pair of quarks will also drift apart. This process repeats and

leads to a multitude of particles flying in the same direction. The cluster of particles is

called a jet. In particle trackers they have a characteristic look.

As described there is in theory an initial particle (it does not necessarily have to be a pair)

that induces a jet. We distinguish between quark and gluon jets in this work, referencing

the initializing particle in the name. This is a theoretically well-defined name, although

in practice it can be unclear what that means [14]. In particle colliders only final-state

products are measured not initial-state particles. Additionally, it is possible for the initial

particles to interact in ways that make it harder to define what the initiating particle of

the jet is.

Jets are a natural way of discriminating background and signal. In many processes the

signal is either combined with a quark jet while the background comes with a gluon jet

or the other way around. Fig. 2 shows the leading order Feynman diagram for the single

Higgs production in association with a jet. Gluon fusion is the production channel with

the highest cross section. The top loop is only one possibility, though because the Higgs

boson couples to the mass, it is the most likely process happening. A gluon is produced,

which will generate a jet. The background Feynman diagram in Fig. 2 consists of a Z

boson together with a quark jet.

Although the source of the jets are two different particles, the constituents and shape of

the jet can be quite similar. Therefore methods and variables have been constructed for

the discrimination of a quark jet and a gluon jet. We will later show and explain these

variables.

One main difference between quark and gluon jets is in their radiation pattern. The

probabilities to emit a quark from a gluon or a gluon from a quark are linked to the color
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factors. When calculating to leading order the ratio of the average number of particles

in a jet will be ~CA
CF

[15], where CF = 4/3 is the color-factor for a gluon emission from a

quark, and CA = 3 the color-factor associated with a gluon emission from a gluon. We

therefore expect on average 9/4 times more constituents in a gluon jet.

2.3 Machine Learning

2.3.1 Boosted Decision Trees

Boosted Decision Trees (BDT s) are multivariate classifiers. They are an improvement over

Decision Trees extending the machine-learned cut flow to multiple trees. This is done to

avoid overfitting. A Decision Tree is made up of several branches, where binary decisions

are made. The following subsets are divided further till the final subsets theoretically only

contain signal events or background events. The input to an BDT are often specifically

constructed variables. We will introduce these variables for quark and gluon jets later.

This classification technique is widely used in particle physics as they are reliable and

make choices on reconstructible parameters. In this work we want to focus on a different

sector of Machine Learning, though we will use performances from BDTs for comparisons.

2.3.2 Deep Neural Networks

In the last few years Deep Learning and especially neural networks have shown remarkable

performances on a variety of tasks. The basic idea is very simple though the complete

architecture can be very complex. Neural networks are a category of Machine Learning and

can be trained either supervised or unsupervised. We will focus on supervised learning,

where we have access to truth labels on the data.

The simplest neural net one can build contains one layer. This layer can hold multiple

neurons but to make it even less complex, one can start with one neuron. This neuron has

an input in the form of some real number x and an output, once again in the form of some

real number y. The linear transformation on the input by one neuron can be written as:

y(x) = σ(wx+ b). (1)

This neuron has a weight w and a bias b, which are called parameters. These are adjusted

in the training of the neural network. σ is a placeholder for a so-called activation function.

These are often non-linear, and we will explain them later.

Making the architecture more complex means making the network deeper (adding more

layers) or broader (adding more neurons to layers). The first layer receives the input,

and is therefore called the input layer. The succeeding layers are called hidden, they only

receive input from the previous layer. The last layer is not hidden and called the output

layer.
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2.3.3 Dense Layer

The most basic layer is the Dense Layer. A neuron in a dense layer is connected to (receives

input from) every neuron in the previous layer. Every connection has a weight and every

neuron has a bias. The output is also called activation. The activation alj of neuron j in

layer l is therefore [16]:

alj = σ

(∑
k

wljka
l−1
k + blj

)
= σ(zlj). (2)

The sum is over every neuron in the previous layer l − 1. The output zlj before the

application of the activation function σ will be important later.

2.3.4 Backpropagation

The Backpropagation algorithm is the heart of the learning feature of neural networks.

It makes use of the loss function to compute updates for the weights in each layer. We

will use the gradient descent algorithm. The basic guiding principle is the gradient of this

loss function with respect to each weight. Updating the weights in the direction of the

negative gradient is supposed to find a (local) minimum and therefore minimize the loss

overall. The update done is further weighted with a factor η called the learning rate. The

procedure is the following:

vt = η∇aCt (3)

at+1 = at − vt. (4)

The computation takes the following form: the network gets some input x and produces

some output y, from which the loss function can be calculated. The error is then back-

propagated by calculating the gradient of the loss function with respect to the individual

weights. This is multiplied with a learning rate and then the weights get updated by

subtracting this error. After this procedure the network is ready to receive new input, to

further minimize the error.

2.3.5 Loss Function

There are several choices for loss functions (also called cost functions). The obvious and

most easiest to understand is the mean-squared-error:

C(w, b) =
1

2n

∑
x

|y(x)− a|2 (5)

This function simply measures the squared error C from the predicted output a = σ(wx+b)

of the network to the actual result y. The size of the training sample set is n. The loss in

this case can be dominated by outliers. There are more sophisticated loss functions, we

7



will implement the cross entropy:

C = − 1

n

∑
(y ln a− (1− y) ln(1− a)) (6)

This loss function comes from information theory and usually results in better performance,

avoiding the so-called learning slow down [16]. Unlike the mean-squared-error the cross

entropy is always high when the error is high and small when the error is small, therefore

exhibiting some features during training that leads to a faster convergence.

2.3.6 Optimizers

Besides the parameters of the network, there are also hyperparameters, which is what one

would change when optimizing a network. The parameters themselves will get updated

through the backpropagation. The learning rate is one such parameter. The most well

know optimization method is the stochastic gradient descent (SGD). After setting the

learning rate the algorithm will randomly sample the data and update the parameters

based on the loss. The SGD can be extended by various methods aimed to use more

information than just one gradient, and several methods were created, like Adam [17],

Adagrad [18], Adadelta [19], RMSProp [20]. I will briefly explain the Adam optimizer.

The learning rate η is not a fixed hyperparameter anymore, but rather defined per parameter.

The parameter θ at step t for t > 1 can be computed with the following algorithm:

gt = ∇θft(θt−1) (7)

mt = β1mt−1 + (1− β1)gt (8)

vt = β2vt−1 + (1− β2)g2t (9)

m̂t =
mt

(1− βt1)
(10)

v̂t =
vt

(1− βt2)
(11)

θt = θt−1 − η
m̂t

(
√
v̂t + ε)

, (12)

where β1, β2 and ε are hyperparameters, that weren’t changed during this work based on

recommandations in Ref. [17]. β1, β2 are generally close to 1, and ε a small parameter

close to 0.

The Adam optimizer includes methods to further improve on the gradient. An exponentially

decaying average of the gradient (Eq. (8)), and an exponentially decaying average of the

squared gradient (Eq. (9)) is kept, and bias corrected in Eq. (10) and (11). Adam, like

SGD, gives better results for a network if batch training is used, instead of taking the whole

training data set and updating the parameters based on the mean error of all samples,

batch training only uses a randomized batch for each update. This, on the one hand,

introduces statistical fluctuation into the updates which can help avoid getting stuck in a

local minimum, on the other hand, updates are done more often leading to smaller steps

and better control with the hyperparameter of the batch size, which can be tuned.
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2.3.7 Activation

There are several choices at each layer of the network for the activation function σ. A

breakthrough in the performance of neural networks was achieved when the Rectified

Linear Unit (short: ReLU ) function was applied to hidden layers [21]. It has the following

definition:

ReLU(x) =

x, if x > 0

0, if x ≤ 0
= max(0, x), (13)

and has several advantages over common tanh or sigmoid functions. The gradient is easy

and fast to compute, there is no learning slow down because of vanishing gradients and the

input is not projected unto (0,1). The last advantage can be a disadvantage if the ReLU

function is the activation function for the output layer, so there is a different function

applied. The softmax function has the benefit of being a probability distribution. It is

defined as follows, with the output z (see Eq. (2)) of the neuron j in the layer l:

softmax(zlj) =
ez

l
j∑

k e
zlk
. (14)

The output of the network can therefore be seen as a probability. The most useful cut for

a two class classification then needs to be determined by some metric, for example on a

ROC curve.

2.3.8 Regularization

A common problem in the training of neural networks is overtraining. The backpropagation

algorithm is only concerned with minimizing errors. The network can consist of over

100,000 parameters meaning that with sufficient time and parameters nearly any data

can be fitted correctly. But rather than an accuracy of 100% we want the network to

understand the fundamental difference between the classes we are trying to predict. So

instead of letting the network pick up on things that are potentially only a statistical

deviation which can happen for a small sample set, we want the network to gain some

generalization power. Overfitting means that the performance on the training data gets

better, while the performance on the testing data stays the same or gets worse. With

Regularization one can avoid overfitting the network by introducing penalties for updates

most commonly associated with overfitting. This often means dependence on a singular

weight. There are two regularization methods applied in this work.

Dropout is a method appplied during training. With a certain rate α random neurons

in one layer will get deactivated, so that the network will get trained without those

connections. The performance will be worse during training, because of a smaller architecture

with missing neurons, but a higher generalization is achieved in the final result. This is

a result of the bias-invariance trade-off where one needs to find an optimal point between

generalization and fitting.
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L2-Regularization introduces an additional term in the loss function:

CL2 = C +
λ

2n

∑
w

w2, (15)

where λ is the strength of the regularization, a hyperparameter that needs to chosen. The

squared sum of the weights in the cost will lead to smaller weights getting favoured by the

optimizer. This is once again motivated by the notion that large weights typically lead to

a drop in performance and should be avoided.

2.3.9 Weight initialization

Once weights and biases are chosen it is clear how the networks gets updated parameters

during training. This algorithm does not include the initial state the network is in. A

good way of initializing the weights is obviously choosing the weights out of a normal

distribution with mean zero. The initial state of the network is very important, the

complex structure of parameter space can lead to convergence problems if the parameters

are not initialized properly. The parameters in one layer will get drawn out of a normal

distribution with different standard deviations, there are two that are important for this

work. Glorot-normal (also called Xavier-normal) is defined by

stddev =

√
2

(in+ out)
(16)

and He-normal is defined by

stddev =

√
2

in
(17)

where in is the number of input connections to the layer and out the number of output

connections. These were proposed in Ref. [22] and [8] respectively.

2.3.10 LoLa

LoLa is a neural network developed by Kasieczka et al. in Ref. [23]. It is a feed-forward

network with two custom layers called Lorentz Layer and Combination Layer. Originally

developed for tagging top jets over QCD background there is reason to believe that other

particle jet events can also be tagged with it. This network is trained on the output of a

usual collider simulator, meaning that it is fed with four-momentum of detected particles.

After the transformation done in the CoLa and LoLa there are three dense layers, the first

two are ReLU-activated and the output layer softmax-activated. The layers generally have

a decreasing amount of neurons, the last layer only has two, giving out a probability for

signal and background. The softmax-activation means that the output sums up to one.

The CoLa is a Combination Layer which aims to improve performance by adding linear

combinations of the input vectors instead of relying on the network to do that itself.

The input 4-momenta kµ,i get multiplied with a matrix Ci,j . This matrix has trainable

elements with the additional feature to include an identity matrix. With the identity
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matrix included an untouched copy of the 4-vectors is included in the output of CoLa.

The general form of Ci,j is

Ci,j =


1 0 . . . 0 C1,N+2 . . . C1,M

0 1
... C2,N+2 . . . C2,M

...
...

. . . 0
...

...

0 0 . . . 1 CN,N+2 . . . CN,M

 . (18)

when the input is N 4-vectors and M −N linear combinations should be included. M is

a hyperparameter that needs to be tuned. These 4-vectors (now k̃j) then get transformed

in the Lorentz Layer (LoLa):

k̃j → k̂j =


m2(kj)

pT (kj)

w
(E)
jm E(km)

w
(d)
jmd

2
jm

 . (19)

This should only be a loss-less rotation in observable space aimed to make the important

information for the network easy to learn. A full description can be found in Ref. [23].

The LoLa makes use of the Minkowski metric, appearing in the first and last entry. This

Layer was edited for this work to adapt the network for quark and gluon jets.
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3 Setup and Analysis

3.1 Simulation of Events

We simulate our particle collision with Pythia v.8215 [24]. This is a high energy physics

event simulator, which gives us full control over the generated samples. Along with Sherpa,

it is used in particle phenomenology to work with collider physics data without some of the

drawbacks in real-world applications. It is very important to note that these simulators

work with perturbation approximation of the complete theory and therefore only produce

results accurate to a certain extent. Additionally, it has been shown that using Sherpa

or Pythia can lead to different results that DNNs are sensitive to [10, 25]. The general

procedure of the simulators is the following. Matrix elements for the production of particles

out of the initial ones are calculated. Light particles are radiated; heavier particles are

decayed. Subsequent QCD radiation is emitted. This is called showering. Finally, the

hadronization to hadrons and their decays is computed.

Both event generators use Monte-Carlo-methods by repeatedly random sampling the

phase-space, in order to obtain numerical results. Because we are dealing with a large

number of samples that leads to a sufficient approximation of real jet events.

The generated events are then processed in Delphes [26]. This is a fast-detector simulator

which applies first real-world based cuts and requirements on our samples. Delphes offers

the possibility to simulate explicit particle experiments (i.e. ATLAS or CMS). We require

the detector-level particles to have |η| < 2.5 and pT ≥ 1 GeV. This is due to spatial and

precision constraints in real-world experiments.

Delphes does not automatically identify jets. This is done using FastJet [27] v3.1.3, a

program developed to allow different jet finding algorithms. We use a jet cone radius of

R = 0.4 and cluster the particles into anti-kT jets [28]. The anti-kT jet finding algorithm is

infrared and collinear safe and is resilient against pile-up for high energies at the LHC [28].

The samples we are producing and using are pure in the sense that every other process is

excluded. We do not have any unrelated processes in our samples which would require us

to further apply cuts.

3.1.1 Quark and Gluon Jets

For our pure quark and gluon jet samples we use Pythia and simulate dijet events and

keep the subprocesses gg/qq̄ → qq̄ and qg → qg switched on for quark jets; for gluon

jets we keep the subprocess gg/gḡ → gg switched on. The process qg → qg is not taken

into account here, because this would then not be pure quark-gluon jets. We require the

summed transverse momentum of the constituents (written as pT,j) to be between 200 and

220 GeV.

We produce 700000 events of quark and gluon jets and split them up for further use. The

data shown to the network during training is the training data as well as the validation

data, the networks parameters and hyperparameters are updated according to predictions

on these. The testing data is fed to the network after the optimization is done to calculate
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Figure 3: Jet composition of H+j as function of pT,j

the ROC on an statistically independent sample. The samples Training, Validating and

Testing have size 60%, 20% and 20%.

3.1.2 Monojets

For our samples of invisible Higgs + jet decays with according Z + jet background we use

Sherpa. The Higgs is kept as stable particle in H+jets, and the Z is decayed to neutrinos.

The resulting events are either quark or gluon jets. The events tagged as signal are usually

gluon jets, in Fig. 3 we show the jet composition of H+jet and Z+jet as function of pT,j .

The events tagged as background are quark jets as well as gluon jets, the background is

more pure than the signal as seen in Fig. 3.

We produce multiple samples for training, validating and testing, the samples contain jets

with different pT,j . We chose the slices 200-250 GeV, 300-350 GeV, 400-450 GeV, 500-550

GeV to sample the behaviour of the network. Each of the slices contain ~ 500,000 events

which are again split up into 60% training, 20% validating and 20% testing.

3.2 Performance of LoLa

DeepTopLoLa was originally written for boosted hadronic top quark decay vs. QCD

background discrimination. To start off, we trained the network with default parameters

to confirm its integrity. We use Keras [29] with a Theano [30] backend on a GPU cluster

with GeForce GTX Titan GPUs.

Fig. 4 in the attachment shows an example ROC curve. The data is from a training with

default parameters. A ROC curve or Receiver-Operating-Characteristic curve will be our

method to show a network’s performance. Plotted is 1/false positive rate for a given true

positive rate. There is an intuitive explanation for these plots. The networks output is the

probability it is sure that the input was signal-like. A true positive is therefore a signal

event that gets identified as such. A false positive is a background event that gets falsely

labelled as signal from the network. The higher 1/(false positive rate) is, for a given true

positive rate, the better is the network. The worst a network can do is random guessing.

Then the false positive rate is as high a the true positive rate. In a ROC curve that is a

diagonal line between (0,0) and (1,1). If a curve is even lower than that, we can simply
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Figure 4: ROC curve for default setup on top vs QCD discrimination

negate the output and get a performance above the diagonal line.

From the ROC curve we can infer another metric for comparisons of different networks.

The area under the curve (shortened to AUC) will give us a quick way of summarizing the

networks performance. The worst case of random guessing has an AUC of 0.5, while the

theoretical limit is an AUC of 1. In Fig. 4 we see an example ROC curve with an AUC

of 0.69. The training and testing was done on top vs. QCD samples. This is obviously

a different task to quark-gluon jet discrimination, but it illustrates that a optimization of

a network can lead to very different results (a typical top tagger has an AUC upwards of

0.90).

The architecture of the model can be summarized in terms of the categories presented in

Sec. 2.3. The LoLa layer takes as input 30 4-momenta, sorted by pT . After that two dense

layers with ReLU-activation functions follow, they have 100 and 50 units each; the last

dense layer has two units and is softmax-activated. The optimization is done with SGD

with a learning rate of 0.005. The loss gets computed as mean squared error.

For final performances it is obviously of interest to get a high true positive rate with the

lowest false positive rate possible. The point of the best performance is not trivial to see

in ROC curves, so we will later also show significance improvement characteristic (SIC)

curves, where Signal/
√
Background is plotted.

To specialize LoLa and to help the network learn faster we consider several variables

14



designed for quark and gluon jet discrimination [31]. They are defined below:

nPF =
∑
iPF

1 (20)

wPF =

∑
iPF

pT,i∆Ri,jet∑
iPF

pT,i
(21)

pTD =

√∑
iPF

p2T,i∑
iPF

pT,i
(22)

C =

∑
iPF ,jPF

ET,iET,j(∆Rij)
0.2

(
∑

iPF
ET,i)2

(23)

xmax =
max(pT,i)∑

iPF
pi

(24)

∑
iPF

pi · 0.95 =

N95∑
iPF

pi, (25)

where the sum is over the jet constituents, which are particle flow (PF ) objects. These

include charged particles, neutral hadrons and photons. We define:

pjet =
∑
iPF

pi (26)

ηi = log

(
Ei + pi,z
Ei − pi,z

)
(27)

Φi = arctan2(pi,x, pi,y) (28)

∆Φij = |Φi − Φj | (29)

∆̃Φij =

∆Φij if ∆Φij ≤ π

2π −∆Φij if ∆Φij > π
(30)

∆Rij =

√
(ηi − ηj)2 + ∆̃Φ

2

ij . (31)

Some remarks to them:

As we have already described quark and gluon jets differ in their number of constituents.

It is therefore useful to include this number. We expect the number of constituents to be

higher on average in gluon jets.

wPF weighs the distance from the jet axis with the transverse momentum. Particles with

a large deviation from the jet axis are therefore weighted less when they are soft. wPF

contains information about the spread around the jet axis. We expect gluon jets to ‘spread’

more than quark jets.

pTD is a measure for how many outliers in terms of transverse momentum are in the

jet. For equal distribution among the constituents it tends to one, for an asymmetric

distribution it tends to zero. We expect quark jets to have a higher pTD because the

particles radiate less.

C is a two point correlation function. It correlates the transverse energies ET of the
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Figure 5: Histograms of the quark-gluon variables (part 1). Truth is computed with
every event, LoLa and BDT is computed only with the 30% most signal- (or
background-) like events. These are the correctly-identified events where LoLa
and the BDT outputs the highest probability.

constituents while also taking their distance into account. As we already expect the gluon

jets to spread more, we therefore also expect the energies of the constituents to be less

aligned with the jet axis.

xmax is the highest share of pT of one constituent in the jet. This variable is motivated

by a variable with the same name in Ref [10] that works on images, where xmax would

correspond to the highest fraction of total pT contained in a single pixel. We expect quark

jets to have a higher xmax based on the fact that gluon jets radiate more.

N95 is the minimum number of constituents required to get 95% of the whole jet pT . The

95 is chosen like in Ref. [10], although there it was defined per pixel, This could, like

in [32], be adjusted to a lower number, this fine-tuning was not done.

We computed the variables for the quark-gluon samples mentioned in Section 3.1.1 and

binned them to make histograms. They are shown in Fig. 5 and 6, labelled as truth

(black). We see a clear separation in most cases, though there is some overlap.

It is therefore of interest to see if and how the variables are correlated. We show a 2d

histogram plot for the variables in Fig. 7 and 8.

Like expected, we see some correlation between the variables. The variable N95 is clearly

correlated to nPF , we can already see in their one-dimensional histograms that they only

differ by a constant. A correlation between pTD and xmax can be seen, although pTD takes

more into account than just the highest fraction (it is sensible to any outlier). Whenever
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Figure 6: Histograms of the quark-gluon variables (part 2). Truth is computed with
every event, LoLa and BDT is computed only with the 30% most signal- (or
background-) like events. These are the correctly-identified events where LoLa
and the BDT outputs the highest probability.

we see low correlation it is likely that the variables contain different information about

the separation of quark and gluon jets. We see little correlation between pTD and nPF ,

nPF and xmax, and C and xmax.

The correlations imply that for a higher efficiency in terms of computing power and

complexity it is possible to exclude certain variables, though this work will not focus

on that.
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Figure 7: 2d histograms for the variables for quark jets.
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Figure 8: 2d histograms for the variables for gluon jets.
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points is just for visibility and does not correspond to actual data. Right: A loss
curve with stagnation during training, likely caused by non-optimal intialization
functions for the weights.

3.2.1 Maximizing Performance

We present several ways we examined to maximize the performance of LoLa not just in

terms of the metric AUC but also concerning time of training and training sample size.

An instantaneous improvement in convergence can be made by switching the optimizer

from SGD to Adam. As described, Adam will introduce new hyperparameters and can

lead to quicker convergence. A problem we encountered early on is a stagnation of loss

with subsequent normal behaviour. Fig. 9 (right) shows an example loss. The source to

this problem, as it only occurs during the initial stages of the training, can be the weight

initializing functions. Choosing correct functions is of importance for convergence time

as seen in Fig. 9 (right). Setting the functions to ‘glorot-normal’ or, as in Ref [10], to

‘He-normal’ improves convergence. We see slightly better performance with ‘He-normal’

weight initialization.

In contrast to top decay with QCD background the number of constituents is higher and

seems to be important for LoLa to discriminate quark / gluon jets. An initial sample had

to be revised to include all jet constituents. In the samples themselves the constituents are

ordered with decreasing pT , so including more constituents automatically means including

softer ones. We show the performance of the network measured in AUC in Fig. 9 (left)

as function of the number of constituents that the network sees during training.

If we only consider the five particles with highest pT the area under the curve is already

over 0.80. The most information therefore seems to be in those particles. For the best

performance we need to include 25 or more constituents. We can see that at roughly

n = 25 the signal (truth) in Fig. 6 has its maximum.

The number of training samples used gives a look inside the networks training procedure.
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variables on their own.

By limiting the number in training, one can check if a sufficient amount is used in full

training. This is also part of an optimization, the training time scales of order O(n) with

the training sample size n. In Fig. 10 we show the AUC as function of n. It can be seen

that a higher n would result in minimal performance gain. The logarithmic scaling of the

axis further implies that training would take exponentially more long. It is therefore not

useful to increase the size of the training sample beyond the range we consider.

Although we included specific variables for the jet discrimination, LoLa is a very general

network for particle physics discrimination appliances. We checked if an inclusion of the

variables improves performance. An unchanged result would mean that LoLa is able to

construct its own methods, maybe even reconstructing parts of the variables. A closer

look at what networks specifically pay attention to has been done in Ref. [33].

We chose three settings of the network to compare the performance. For the first, no

quark-gluon variables were enabled and the network only worked with the transformed

4-vectors in LoLa. For the second, the quark-gluon variables are included, and for the

last, only the quark-gluon variables were switched on. The network was trained five times

with each setting, to give a meaningful result with an error. Training was stopped after

100 epochs, only for the last setting training was continued until epoch 200. Fig. 10 shows

the mean loss function, with standard deviation as error. The choice of 100 epochs was

more than enough, only the last setting needed more time to converge to a minimum.

The performances each have AUC scores which can be averaged. Table 1 shows the AUC

for each setting.

Some experimentation was made on how deep the network is. This included adding a
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LoLa + qg variables 0.84358± 0.00005

qg variables 0.8437 ± 0.0001

LoLa 0.84369± 0.00008

Table 1: Comparison of Performance with variables switched off/on

fourth and fifth dense layer, again with ReLU activation, though because no improvement

could be observed, these layers were removed again to keep the computation time low.

The maximal performance on quark-gluon samples processed in Delphes reaches an AUC

of 0.84. The ROC curve is shown in Fig. 11, with the label Delphes. To see what events

are ideal for the network to classify, we take the 30% that are correctly identified events

that have the highest prediction output of the network and plot again the histograms of

the variables. The same is done for the BDT. They are shown in Fig. 5 and 6 labelled

LoLa and BDT. We see that the BDT is closer to the truth. That gives some information

about the output probability of LoLa. While its performance is slightly better, it is further

away from the truth in the histograms. LoLa therefore has more events that are classified

correctly but have a low output probability. We can see that no event with n between

20 and 30 is in the 30% best identified events. Comparing the signal to the background

histograms we always see a clear separation between them. That means in terms of the

variables the events are very different; only these events produce a high output probability

in LoLa.

The final model has the following architecture. CoLa is the first layer, followed by LoLa

with the additional quark-gluon variables. After LoLa there are two dense layers with

100 and 50 units, both have a ReLU activation function. A dropout with rate 0.2 is

applied after the first dense layer and with rate 0.1 after the second dense layer. An

L2 regularization with strength 0.0005 is applied to both dense layers. The weights are

initialized with He normal functions. The final dense layer has two units and is softmax

activated. The learning rate is 0.0001 and we train with a batch size of 128.

3.2.2 Switching to Constituent Level

The variables defined in Eqs. (20 - 25) are working at jet-level. This means that for one

event or jet each variable only has one value. This value is assigned to the jet. LoLa works

on a constituent-level, taking 4-vectors as input to the network. Constituent-level means

that for each constituent in the jet a value is defined. To bring the jet-level variables to

the constituent-level they were edited to be defined per constituent. This includes taking

out the denominator in most cases and removing sums over the jet constituents. Some

variables are can not be defined in this way (e.g. the number of constituents would be

just one for every constituent), so they were not included. The stripped down versions of

the variables are:

22



wPF,i = pT,i∆Ri,jet (32)

(pTD)i = p2T,i (33)

The variablesNPF , xmax, N95 are not included anymore, because they cannot be defined on

a constituent-level. For C, three different versions are implemented. Instead of summing

over the index j we can also maximize or minimize over it. This is motivated by the

treatment for the fourth entry in Ref. [23] (Equation 6). They can be written like:

Csum =
∑
jPF

ET,iET,j(∆Rij)
0.2 (34)

Cmin = min
jPF

ET,iET,j(∆Rij)
0.2 (35)

Cmax = max
jPF

ET,iET,j(∆Rij)
0.2 (36)

In this new form the variables are appended to the output-vector of LoLa as defined in

Eq. (19). A thorough analysis of whether each variation is necessary to include is not

done, because computation time is low we just include every variation. The performance

in AUC does not change, in fact, because of a faster implementation, the computation

time for one epoch goes down. This means that we have a faster implementation while

getting the same performance.
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Figure 11: A BDT and LoLa on samples either processed in Delphes or taken directly from
Pythia.

3.2.3 Impact of detector simulation

As already noted, the output of Monte-Carlo event simulators seems to differ, especially

impacting the performance of networks on quark-gluon jet discrimination. This is also

true for information degradation in detector simulator like Delphes. Fig. 11 shows the

performance on samples after processing by Delphes and taken directly from Pythia. We

see a drop in AUC and it is clear that the BDT and LoLa perform better when having more

precise particle-level information that is unaffected by detector smearing. The simulated

detector effects therefore make a difference. The drop in performance is bigger for the LoLa

network, atleast in the range of 0.2 to 0.8 true positive rate. LoLa seems to gain more

discrimination power when bypassing Delphes in the preprocessing steps. Real-world data

would obviously be already smeared-out when coming out of a detector, so this gain in

discrimination is only theoretical, though one has to note that the fast-detector simulation

that Delphes does might not be a perfect recreation of real detector effects.
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Figure 12: Left: ROC curve of LoLa, on Delphes processed samples, final state samples
from Pythia and a reconstructed ROC curve from Ref. [10]. Right: SIC curves
of the classifiers with a SIC curve from the reconstructed ROC curve of Ref. [10].

3.3 Comparing to a CNN

A different approach to quark-gluon discrimination has been proposed in Ref. [10]. The

output of a detector gets interpreted as a picture, making the use of Convolutional

Networks possible. The images fed to the network are in the (η, φ) space, while pixel

intensities correspond to the transverse momentum that get measured by the calorimeters.

Using Fig. 5 in Ref. [10] we can check if our network has a reasonable performance. In

Fig. 12 (left) we show the ROC curve for LoLa and for the CNN. The curve for the CNN

was reconstructed using EasyNData [34]. The performance is very similar, the CNN seems

to be better at a low quark jet efficiency and slightly worse at a high quark jet efficiency,

crossing over at 0.5 quark jet efficiency. We have to note though, that the reconstruction

with EasyNData has an error that is not pictured here. Especially in the low positive rate

the reconstruction is rather inaccurate, as one can see for a Quark Jet Efficiency of 0.2.

Nevertheless, the comparison shows that LoLa performs reasonably well on quark-gluon

jet samples.

A SIC curve is a useful way to show the signal over background discrimination power of a

network. Here, the signal efficiency divided by the square root of the background efficiency

is plotted as function of the signal efficiency. The curve has the same behaviour as the

Gaussian significance S/
√
B. This curve has a maximum, at which point the best ratio

for discrimination is achieved. In Fig. 12 (right) we show the SIC curve for the BDT,

LoLa and the CNN. We see that the reconstruction probably has a large error, especially

for low quark jet efficiency. Maximum classification power is achieved at ~0.4 quark jet

efficiency for the CNN, while Lola peaks at ~0.55. It is visible that LoLa performs better

for a quark jet efficiency of 0.5 and higher.
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X 200 - 250 300 - 350 400 - 450 500 - 550 quark-gluon

200 - 250 0.794 0.664 0.645 0.634 0.769

300 - 350 0.678 0.781 0.645 0.635 0.744

400 - 450 0.590 0.641 0.772 0.701 0.694

500 - 550 0.655 0.664 0.718 0.734 0.674

quark-gluon 0.686 0.662 0.636 0.634 0.844

Table 2: Performance on monojet samples. The network is trained on the sample
corresponding to the row and tested on sample corresponding to the column.

3.4 Tagging Monojets

Identifying the invisible decay of the Higgs boson together with a monojet is a very useful

application of quark-gluon tagging. One naturally expects a drop in performance, because

the sample is impure, meaning that it contains quark jets labelled as signal and vice versa.

It is clear from Fig. 13 (left) that the learning takes longer and is not as efficient as before.

The slow learning would imply that a higher learning rate leads to the same result in fewer

epochs, but we do not observe this behaviour. Instead, the loss then converges to a higher

point. Therefore, a low learning rate is still used, but the number of epochs for training is

increased. Fig. 13 (right) shows an experimental training with a scheduled learning rate

drop at 400 epochs and 800 epochs. The final gain in performance is only minimal, the

learning rate drop mostly helps in stabilizing the model during training.

An equal behaviour is observed with an increased batch size, where the loss converges fast

towards a minimum that is above the minimum priorly achieved.

The final model for monojet discrimination has the same architecture as the model for

quark-gluon discrimination, though the training is continued up to 1000 epochs. The

training time therefore is much longer, around 24 hours.

To study the performance on monojet samples, we train the network on all samples with

different pT,j separately, as well as on the pure quark-gluon jet samples and test all

instances on all samples, so that the generalization power of each instance is recorded.

Table 2 shows the performance in terms of AUC. The indicator in each column and row

mentions the range of the pT,j of each sample in GeV. The model is trained on the slice

indicated by the row and tested on the slice indicated by the column.

We observe, that the best performance of 0.794 is obtained on the samples with the lowest

pT,j . As expected the network does the best when tested in the range it was trained on,

though the performance clearly decays with higher pT,j , in the range of 500 - 550 GeV

pT,j the AUC is only 0.734.

The network trained on pure quark-gluon samples (which are in the range of 200 - 220

GeV pT,j), also has its best performance on the sample with 200 - 250 GeV pT,j , besides

the already observed performance of 0.844 on pure quark-gluon jets.

It is important to note that no exact statistical errors can be given. To be able to give

an error, the network would have to be trained multiple times in a row, which was not

possible due to time constraints. A rough error estimation can be given, because the AUC
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Figure 13: Left: Default loss curve on 200 pT,j monojet samples. Right: Validation loss
curve on 300 pT,j monojet samples with a scheduler for learning rate.

was calculated in each epoch, though only on the validation sample. Extrapolating to the

test sample, every AUC given in table 2 has an uncertainty of about 0.002. This error

only comes from the forced update to the weights of the network, so decreasing the change

by lowering the learning rate would lead to a smaller error here. Training the network

multiple times in a row would allow the computation of a true statistical error, when the

optimizer would converge to a different minimum. Our network is stable enough though,

that the given rough error is a good estimate of the real error.
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4 Conclusion

In this thesis we have studied a physics-inspired DNN applied to quark-gluon jet discrimination

on pure samples and further on monojet samples. We edited the output of a custom layer

to specifically include quark-gluon variables, designed to make the discrimination and

learning process easier. The quark-gluon jet samples were produced with Pythia and we

described the processes and cuts applied to simulate real events.

The performance, measured in AUC, is shown to be proportional to the number of training

samples used. We show that the number of events used in the final performance is enough

to saturate performance, while still allowing a reasonable computing time.

Additionally, we show that performance is dependent on the number of constituents

included in the jet. The shown histograms indicate that we are able to include all

constituents in the final performance because computation time is not too high. We

saw the performance already reaching its maximum before including every constituent.

We studied whether the newly included variables have a positive effect on performance.

They do not, but we see an equal performance when only training on the quark-gluon

variables. This could mean, that a maximum of information is captured in both the

quark-gluon variables as well as the 4-vectors computed in LoLa.

The impact of a detector on the discrimination power of the network was studied with

Delphes and compared to the performance of a BDT. LoLa outperforms a conventional

BDT in both cases. The gain on Delphes processed samples is minimal but noticeable,

while the performance on final state events is clearly better.

We compare the performance of LoLa on quark-gluon jet samples to a Convolutional

Neural Network that works with images in the φ− η plane and see a similar, if not better

in some areas, performance. Especially for a high signal efficiency our DNN shows a better

discrimination.

On samples processed in Delphes within a range of 200 - 220 GeV of pT,j we can reach a

performance of 0.84 AUC. The training takes about two to three hours.

The performance of the network was tested on monojet samples, specifically produced

to simulate invisible Higgs decays with invisible Z decays as background. The invisible

Higgs decay is to be understood as new physics. While clearly expecting some loss,

because both signal and background contain quark and gluon jets, the best performance

reaches 0.794, which is only slightly worse than on pure quark-gluon samples. We studied

the performance on multiple samples with different pT,j , seeing that a lower pT,j leads

to a better discrimination. The generalisation power was tested as well, by choosing

the training sample to have a different pT,j than the testing sample, we saw that the

discrimination power largely carries over.

The network was also trained on pure quark-gluon jet samples and then tested on the

monojet samples, to gain an insight of how much the network can generalize the distinction

between quark and gluon jets. The AUC is lower than for training on monojet samples,

though it is still in an acceptable range.
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LoLa is better than a conventional BDT for discriminating quark and gluon jets. We can

especially improve performance working with final state events. A good separation can

be achieved on invisible Higgs decays vs. according background. The currently most used

production channel for the Higgs boson is through weak boson fusion. This channel has

a very clean signature, in contrast to the channel investigated here. WBF will therefore

continue to be the most relevant production channel, although it has the downside that is

has a small cross section. Our approach with a DNN shows the potential of quark-gluon

jet discrimination to the less studied Higgs+jet channel.
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