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Abstract

In hadron-hadron collisions, e. g. at the Large Hadron Collider (LHC) at CERN in Geneva, one
of the most promising signatures for physics beyond the Standard Model is jets plus missing
transverse energy. In supersymmetric theories the most abundant production channels leading
to jets plus a very large amount of missing transverse energy are pairs of heavy coloured
particles: squarks and gluinos. To exclude or discover supersymmetric particles, it is essential
to predict accurate theoretical cross sections for squark and gluino production and to study
the shapes of kinematic distributions.

In this thesis, different subtraction methods for on-shell divergences in supersymmetric pro-
cesses with the Monte Carlo generators MadGraph/MadEvent [5] and Pythia [34] are
studied. Additionally, multijet matching and a comparison of jet matching to a full NLO
calculation is performed using MadGolem for the NLO. The kinematic distributions for all
subtraction methods agree well. The numerical subtraction that is implemented in Mad-
Graph/MadEvent shows a slight dependence on the width. The NLO calculation is found
to have a softer pT spectrum as compared to MLM-jet matching. A comparison of diagram
removal and analytical on-shell subtraction at the full NLO yields a softer pT spectrum for the
diagram removal.

Abstract (in deutscher Übersetzung)

Eine vielversprechende Signatur in Kollisionen von Hadronen, wie sie z.B. am LHC am CERN in
Genf erzeugt werden, ist "Jets plus fehlende transverse Energie". In supersymmetrischen The-
orien werden mit dieser Signatur hauptsächlich Paare von schweren, farbgeladenen Teilchen
erzeugt, sogenannten Squarks und Gluinos. Um die Existenz supersymmetrischer Teilchen
auszuschließen oder zu bestätigen, sind möglichst genaue Vorhersagen für die Größe von
Wirkungsquerschnitten oder den Verlauf verschiedener kinematischer Verteilungen entschei-
dend.

In der vorliegenden Arbeit werden verschiedene Methoden untersucht, um On-Shell-Divergen-
zen in supersymmetrischen Prozessen zu beheben. Dafür werden verschiedene kinematische
Verteilungen mit Hilfe der Monte-Carlo-Generatoren Pythia [34] und MadGraph/Mad-
Event [5] analysiert. Außerdem werden Prozesse mit unterschiedlicher Jet-Multiplizität ver-
glichen und ein Vergleich zur nächsthöheren Ordnung (NLO) mit Hilfe von MadGolem gezo-
gen. In allen Methoden ist der Verlauf kinematischer Verteilungen übereinstimmend. Für die
numerische Methode in MadGraph/MadEvent wird eine Abhängigkeit von der Zerfallsbre-
ite festgestellt. Jet-Matching weist, verglichen zu Simulationen in der nächsthöheren Ordnung,
ein leicht härteres Spektrum für den transversalen Impuls auf. Ein Vergleich zwischen einer
analytischen On-Shell-Subtraktion und dem expliziten Entfernen von potenziell resonanten Di-
agrammen zeigt, dass in letzterem Fall signifikante Beiträge zu größeren transversen Impulsen
im Spektrum vernachlässigt werden.



Contents

1 Motivation and outline 1

2 Theoretical background 3
2.1 Phenomenological aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Supersymmetry and the MSSM . . . . . . . . . . . . . . . . . . . 3
2.1.2 Relevance of squark-gluino production . . . . . . . . . . . . . . . 4

2.2 Technical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 QCD and jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Jet matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Double counting and subtraction schemes . . . . . . . . . . . . . . 9

3 Subtraction methods 14
3.1 Kinematics and parameters . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Gluon radiation versus diagram removal . . . . . . . . . . . . . . . . . . 15

3.2.1 Distribution in transverse momentum pT . . . . . . . . . . . . . . 15
3.2.2 Distribution in rapidity y . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Numerical subtraction in MadGraph/MadEvent . . . . . . . . . . . . 19
3.3.1 Distribution in transverse momentum pT and rapidity y . . . . . . 19
3.3.2 Dependence on the width . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Different mass hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Prospino scheme: Comparison of matched samples with the NLO 26
4.1 Dependence on the width . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Full NLO versus MLM matching . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 NLO Prospino versus NLO diagram removal . . . . . . . . . . . . . . . . 28

5 Multijet matching 30

6 Conclusions 32



1 Motivation and outline

The Standard Model of particle physics (SM) is a theory describing the electromagnetic,
weak and strong interactions really successfully. It has been able to predict the results
of various experiments and agrees perfectly with almost all current experimental data.

Nevertheless, there are several theoretical problems and open questions [25,31]. The SM
describes only three of the four known fundamental forces. It does not include a theory
of gravity. In addition, no candidate for dark matter is provided by the SM: According
to cosmological measurements [27] dark matter makes up about one quarter of the whole
matter content of the universe, whereas visible matter only contributes 5% [18,20].

Furthermore, the SM predicts the existence of the Higgs boson. The Higgs boson is a
consequence of the Higgs mechanism, which is supposed to give masses to the gauge
bosons W and Z of the SM as well as to the fermions through electroweak symmetry
breaking. But, as of this writing, this particle has not yet been discovered. Neither can
the SM explain the evident asymmetry between baryonic and antibaryonic matter; with-
out the asymmetry, the universe would not contain any matter but photons only. Other
problems are the hierarchy or fine-tuning problem as well as gauge coupling unification
[24].

Considering all these aspects it is clear that even though it is an extremely successful
effective theory, the SM has to be extended to some underlying deeper theory that can
provide solutions to these open questions and problems. Various new models are based
on Supersymmetry [24], such as the Minimal Supersymmetric extension of the Standard
Model (MSSM).

Since signs of new physics beyond the SM are expected at higher energy scales, there
are many experiments looking for such signals. For instance, the Large Hadron Collider
(LHC), a proton-proton collider at CERN in Geneva, has been running and producing
a large amount of data since 2009. It is constructed to find the Higgs boson as well as
to discover new physics beyond the SM. To interpret the measurements correctly, it is
crucial to make precise predictions for different theories beforehand. This is done with
the help of Monte Carlo simulations.

In theory and in a realistic simulation of particle collisions several problems exist. There
are for example divergences (ultraviolet, infrared and on-shell) that do not appear in
nature and thus have to be removed from the theory. In this work, different methods
used in Monte Carlo simulations for the purpose of removing on-shell divergences are
studied.
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The thesis is structured as follows: In chapter 2, the basic theoretical concepts that un-
derlie this work are reviewed. A brief introduction into phenomenological and technical
aspects is given. In chapter 3, different theoretically motivated concepts and methods for
removing on-shell divergences are analysed with the help of the Monte-Carlo generators
MadGraph/MadEvent [5] and Pythia [34]. The analytical on-shell subtraction is
studied in more detail in chapter 4. Different jet multiplicities are compared in chapter 5.
I conclude in chapter 6.
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2 Theoretical background

This chapter gives a brief introduction into the theoretical background of this work. In
section 2.1, the basic ideas and concepts of Supersymmetry and the MSSM are sketched.
The relevance of squark-gluino production is reviewed. In section 2.2, essential technical
concepts are described: jets in QCD, the idea of jet matching and different methods
that are used in this work to remove on-shell divergences.

2.1 Phenomenological aspects

2.1.1 Supersymmetry and the MSSM

Many of the theories desribing new physics that have been proposed so far are based on
Supersymmetry (SUSY) [24]. This new symmetry provides solutions to several problems
in the SM. Among others, SUSY can solve the fine-tuning problem and the deeply
connected hierarchy problem.1 It leads to the desired unification of the electromagnetic,
weak and strong interactions and provides a candidate for the dark matter particle. In
this model, the dark matter particle is a WIMP (Weakly Interacting Massive Particle).

Supersymmetry is a symmetry that relates bosonic to fermionic fields. There are var-
ious models that make use of this general concept. This work is based on a Minimal
Supersymmetric extension of the Standard Model, the MSSM. It features a minimal set
of fields and couplings.

For each field in the SM there is a supersymmetric partner that has the same quantum
numbers except for spin. The particle spectrum can be found in table 2.1. The super-
partners of the quarks are provided with indices for left- and right-handed particles. As
they are bosons, these indices do not correspond to chirality, but indicate that they are
the partners of the left- and right-handed quarks, respectively. Their left- and right-
handed nature is reflected in their gauge couplings (e. g. the left-handed squarks couple
to the W-boson, whereas the right-handed ones do not). More details can be found in
[24].

1In the SM, there is no explanation for the huge range of forces between the weak force and gravity.
Neither can it explain why the Higgs particle is light if there are large quadratic quantum corrections
to its mass. This would involve an extreme fine-tuning. SUSY can provide a solution to this problem
because the supersymmetric partners would precisely cancel the leading quantum corrections.
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SM content SUSY partners
field spin field spin

gauge field W±, Z, γ, g 1 gaugino W̃±, Z̃, γ̃, g̃ 1
2

Higgs H 0 Higgsino H̃ 1
2

quark qL/R
1
2 squark q̃L/R 0

lepton lL/R
1
2 slepton l̃L/R 0

Table 2.1: This table provides an overview of all fields in the MSSM. For each SM field, there
is a supersymmetric partner that has the same quantum numbers except for spin.

In the MSSM, a so-called R-parity conservation is imposed. As a consequence, SUSY
particles can only be produced pairwise: R is defined as R= (−1)2S+3B+L with S being
the spin, B the baryon number and L the lepton number. For SUSY particles therefore
holds R= −1, whereas for SM particles R= 1. R-parity is a multiplicitive quantity. If
R-parity is conserved, then SUSY particles can only appear in pairs.

The MSSM involves many free parameters that have to be fixed. In this work, I use
a modified SPS1a-benchmark point (SPS1a1000) and, for reasons of comparison to an
inverted gluino-squark mass hierarchy, the benchmark point SPS8 [7]. Current bounds
on the masses of supersymmetric particles derived from the so far negative searches at
colliders [2,6,15] imply that the gluino mass should be larger than the prediction in the
SPS1a benchmark point. For this reason, I use a modified SPS1a-benchmark point, in
which the gluino mass is set to a larger value. All parameters are listed in table 2.2.

2.1.2 Relevance of squark-gluino production

The search for SUSY is one of the main purposes the LHC has been constructed for.
In hadron-hadron collisions coloured particles are created. For this reason squarks and
gluinos, the coloured particles in the MSSM, would be produced most abundantly. As
a consequence of R-parity conservation, SUSY particles only appear in pairs. The most
interesting processes thus are the production of a squark pair, a gluino pair or the
associated production of a squark and a gluino [2, 6, 8, 15,30].

To set exclusion limits on the masses of SUSY particles or, in case of discovery, determine
their masses and properties, it is crucial to predict precise theoretical cross sections for
squark and gluino production. This search is done for the signature jets plus missing
transverse energy: Since gluinos and squarks are coloured particles, they radiate off
gluons and lead to a cascade of subsequent coloured particles. In the detectors, jets
plus an additional amount of missing transverse energy are observed due to the lightest
supersymmetric particle (LSP). The LSP is colour-neutral, stable as a consequence of
R-parity and escapes the detectors unobserved.

The main difference to SM background processes is that a large amount of missing
transverse energy is expected [30]. In order to enhance the signal, the parameter ’missing
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specification parameter value comment
mũL

561 GeV
SPS1a1000 mũR

549 GeV
mg̃ 1000 GeV due to current bounds from SUSY searches

mũL
1113 GeV

SPS8 mũR
1077 GeV

mg̃ 839 GeV
√
s 7 TeV center-of-mass energy

nevents 500000 number of requested events
µF , µR

1
2 · (mũL

+mg̃) factorisation and renormalisation scales
PDFs CTEQ6L1 parton distribution function

run parameters ickkw 1 MLM-type matching
ktscheme 2 Pythia pT ordered
bwcutoff 15 for the definition of on-shell
xqcut 60 GeV minimum kT -jet-measure between partons
|η| ≤ 5 cut on pseudo-rapidity for quarks
Rij ≥ 0.4 angular distance between two jets

Table 2.2: Important parameters used in this work. The first two parts list the masses coming
from two different Snowmass benchmark scenarios, a modified version of SPS1a and
SPS8. The widths for these particles are set to zero. All other parameters from
the SPS benchmark points, which are irrelevant for this study, can be found in [7].
The third part lists the important parameters that are used in MadGraph/Mad-
Event and Pythia in this work.

transverse energy’ has to be restricted from below.

The leading order Feynman diagrams for squark-gluino production are shown in fig-
ure 2.1. All Feynman diagrams in this thesis have been created using the LATEX tool
FeynMF [29].

2.2 Technical aspects

2.2.1 QCD and jets

At the LHC, protons are accelerated and brought to collisions. Protons are non-fun-
damental particles. They are hadrons that are built up of smaller, elementary particles:
quarks and gluons. The interactions of quarks and gluons are described by the theory
of Quantum Chromodynamics (QCD), a non-abelian gauge theory of the strong force.
To extract new physics from data a deep understanding of the usual SM physics, i. e. in
this case especially QCD processes, is important.

To analyse the data, usually a separation in background and signal is done. Background
is the simulation of all particles and interactions that are known and unterstood so far.
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Figure 2.1: Leading order Feynman diagrams for associated squark-gluino production through
proton-proton collisions: qg → g̃ũL

Signal refers to new particles to be found or understood. This includes simulations of
new physics based on different theories as well as the experimental data. Simulating the
background properly is a difficult task because coloured particles radiate off gluons and
produce a lot of other particles via QCD radiation and decays. Since possible signs of
new physics are strongly influenced by this radiation or even hidden it is crucial to predict
their features properly. If new physics in form of new strongly interacting particles exists
at the TeV scale, typically large amounts of energy and missing transverse energy in the
detectors as well as several hard jets from the decay of these heavy particles are observed
[3, 30,31].

Jets

Due to colour confinement in QCD, all freely existing particles have to be colour-neutral.
Quarks and gluons as coloured particles are combined to colour-neutral hadrons through
a fragmentation and hadronisation process. For this reason, no free quarks are observed
in the detectors, but tracks of bunches of particles. These narrow cones of particle tracks
generated by hadronisation are called jets. It is not trivial to identify different jets, as
they are usually boosted together, i. e. they are not really separated and overlap.

There are various jet algorithms and jet definitions that describe and allow to reconstruct
those jets in order to extract the original process. Here, a kT -jet algorithm [12] is used.
In order to exemplify the procedure, this jet algorithm is described in more detail. The
procedure for this algorithm is common to all recombination algorithms.

Example: kT -jet algorithm The basic lines of the procedure can be summarised as
follows:

1. A list of preclusters is singled out, i. e. lists of 4-momentum-vectors ordered by
decreasing 4-momentum.
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2. For each precluster the value of di = (kiT )2

and for each pair of preclusters dij = min
(
(kiT )2, (kjT )2

)
· (Rij)2

D

is calculated where

• kT is the transverse momentum

• Rij is the angular distance, R =
√

(∆φ)2 + (∆y)2

• ∆φ is the difference of the polar angles φi and φj

• ∆y is the difference of the rapidities yi and yj

• D is an algorithm-specific value (D ≈ 1)

3. The minimal value dmin of all d’s from preclusters is determined:

dmin = min
(
{di, dij}

)
.

If

• dmin is one of the dij’s, a combined precluster is built out of the two preclusters
by adding their 4-momenta. The procedure restarts at point 2.

• dmin is one of the di’s, this precluster is defined as jet. If there are any objects
left on the list of preclusters, the procedure starts again at point 2, excluding
this jet. Otherwise it ends here.

2.2.2 Monte Carlo simulation

According to the factorisation theorem in QCD (see e. g. [19, 31]) one can factorise the
cross sections for hadronic collisions at high energies into a so-called ’hard scattering’
process, which is at parton level, and parton distribution functions:

σtot =
∫ 1

0
dx1

∫ 1

0
dx2

∑
jk

fj(x1)fk(x2)σjk(x1x2s).

The fi are parton distribution functions (PDFs) describing the probability to find a
parton, i. e. a quark or a gluon, inside the hadron (here proton) for a specific xi; xi is the
momentum fraction of one parton inside the proton and s is the center-of-mass energy
of the two colliding protons.

The cross section at parton level can be calculated perturbatively in QCD. The parton
distribution functions take into account the non-perturbative part of the process. There,
an order-by-order calculation of the matrix elements is not valid. To describe this non-
perturbative part properly there are formalisms available like e. g. the Parton Shower
(PS) formalism [31]. Parton showers can describe processes at arbitrary high orders
in αs, but only in the leading logarithmic approximation of transverse momentum. It
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describes the evolution of quarks and gluons by taking into account probabilities for
splitting into further partons.

In order to simulate data at colliders and detect possible deviations from the SM, Monte
Carlo simulations are performed. There are various Monte Carlo simulators, adequate
for different purposes. In this work, I use a combination of MadGraph/MadEvent
[5] and Pythia [34].

The procedure is as follows: MadGraph creates the matrix elements for a specified
process. MadEvent generates events on a statistical basis at parton level and the
cross sections are computed. Thanks to an interface between MadGraph/MadEvent
and Pythia, the generated events can be used in Pythia, where the events at parton
level are showered according to a specific shower scheme. If desired, Pythia decays the
final particles and simulates the subsequent hadronisation process.

By means of this strategy, one can quite realistically simulate the experimental signature
of collisions at hadron colliders like the LHC. For a comparison with the full NLO the
yet-to-be-published MadGolem, which is an expansion of MadGraph/MadEvent
to NLO, is used.

2.2.3 Jet matching

The Parton Shower formalism is by construction only valid in the limit of soft (low
energy) and collinear (small angles with respect to the beam) gluon radiation. For hard
and widely separated gluon radiation jets this description breaks down and perturbative
matrix element calculations have to be used. The Matrix Element approach, i. e. an
order-by-order calculation in the strong coupling constant αs, however, diverges in the
limit of soft and collinear emission. In this regime, the strong coupling constant αs takes
values of order O(1) and therefore a perturbative approach is no longer valid.

As both regimes coexist, it is essential for a complete description of the events to consider
the full matrix elements for the underlying hard processes as well as the parton showers
that describe the evolution of the hard partons into jets of hadrons. The exact limits in
phase space between the two are not clearly defined. Thus, for each event it has to be
decided which of the two descriptions shall be applied.

Different methods solving this problem are so-called matching schemes. Examples are
the CKKM scheme [14], the Lönnblad scheme [21] or the MLM scheme [22, 23]. The
crucial aim of all these schemes is to avoid double counting of events as well as regions
where none of the two descriptions applies. An important condition for all matching
schemes is to require smooth transitions between the regions that are described by parton
showers, i. e. for values smaller than Qmatch, and the regions described by the Matrix
Element approach, i. e. values larger than Qmatch, where Qmatch is the scale separating
those two. In addition, the distributions should not depend on the matching scale, so
they have to be stable under its variation.
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In my thesis, I use specific version based on the MLM scheme, the kT -jet MLM scheme [3]
implemented in MadGraph/MadEvent. In the following part, I will briefly explain
the basic steps in this procedure of jet matching.

kT -jet MLM scheme

In the kT -jet MLM scheme one first generates all events with different parton multi-
plicities. The final-state partons are then clustered according to a kT -jet algorithm as
explained in section 2.2.1. The kT -value is limited to be above some cutoff scale:

kT > QME
cut .

The event at parton level is then sent to Pythia for showering. Before hadronisation
and the decay of the particles will take place, the partons are again clustered into jets
using the kT -jet algorithm. The momentum is restricted to some lower limit

Qmatch > QME
cut .

These jets are then compared to the original partons from the event before showering.
A jet is matched to a closest parton if the jet measure fulfills

kT (parton,jet) < Qmatch.

Exceptions are the highest-multiplicity samples, i. e. samples with the largest number of
partons, where smaller transverse momenta are allowed:

kT < QME
softest.

Only events where all jets are matched to partons are kept. If two partons are for example
too close to create two distinct jets, the event is rejected. This procedure prevents double
counting and is infrafred and collinear safe. Furthermore, the MLM scheme ensures that
parton shower radiation is limited to its appropriate (soft and collinear) regions of phase
space.

In the following parts of this thesis, I will use the terms ’final state partons’ and ’jets’
synonymously, keeping in mind how they are related.

2.2.4 Double counting and subtraction schemes

A theoretical problem in the simulation of these events is double counting2 due to reso-
nant diagrams [3].

2Double counting is not specific to supersymmetric processes. It can also appear in usual SM processes
when a final state can be reached through different cascades of particles.
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Figure 2.2: Feynman diagram for the production of a squark and a gluino with an
additional quark jet: gg → g̃g̃(∗) → g̃q̃q̄. The quark jet and the squark are
produced via a gluino. Depending on the mass hierarchy, this gluino propagator
can be on-shell, leading to a resonance. However, if the gluino is on-shell, this
particular process is already taken into account in the production of two gluinos
with the subsequent decay of the gluino into a squark and a quark.

In order to illustrate how double counting arises, associated squark-gluino production is
considered. This process is of special interest in searches for SUSY, see section 2.1.2. A
subprocess in squark-gluino production through proton-proton collisions is:

gg → g̃q̃ (at order α2
s).

At NLO there are processes like

gg → g̃g̃ → g̃q̃q̄ (at order α3
s).

A Feynman diagram for this NLO process is depicted in figure 2.2. If the mass hierarchy
is given as mg̃ > mq̃, there is an on-shell contribution to the matrix element when the
momentum flow reaches the gluino mass. This on-shell contribution is already included
in the Born process gg → g̃g̃ with the subsequent decay g̃ → q̃q̄ for example through the
Parton Shower formalism. Thus, one has to subtract it properly to avoid double counting
if one wants to add the associated squark-gluino and the gluino pair production rates not
only at LO, but also at NLO. For this purpose there are different kinds of subtraction
schemes.

In chapter 3, the characteristics of different subtraction methods are compared by
analysing different distributions. In this section, the theoretical ideas are considered.

Method A. Only radiation of gluons allowed

A method to avoid double counting and remove on-shell divergences is to consider ad-
ditional gluon jets only since in this case there are no resonant diagrams left. Processes
involving gluon jets which are radiated off the final states are dominant as compared
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Figure 2.3: Example for an event as it is produced by MadEvent. For each event
there is a PDG code which assigns the particle, a number marking the particle as
initial, final or intermediate state, the values of the 4-momenta, spins etc.

to others – in the present example additional quark jets, in which heavy intermediate
particles (squarks and/or gluinos) are involved. Such contributions are phase-space sup-
pressed by inverse powers of the mass of these intermediate states. For this reason,
considering only gluon jets is a reasonable assumption. Although it is a very simple
method and violates gauge invariance, it is a numerically valid approximation which can
be seen also in chapter 3.

Method B. Explicit diagram removal

Another possibility is to explicitly remove the resonant diagrams [3,30], i. e. all diagrams
involving a resonant gluino (or, in case of an inverted squark-gluino mass hierarchy, a
resonant squark). This procedure also violates gauge invariance, but it is a reasonable
approximation for small widths of the resonant state, i. e. for Γ/m� 1. The interference
terms are neglected in this scheme. They are usually proportional to Γ/m, so one can
neglect them for small widths. The disadvantage of this method is that also off-shell
contributions away from the pole are removed. These contributions might contribute
significantly to the total rate and are in this scheme neglected.

Method C. A numerical subtraction in MadGraph/MadEvent

MadGraph/MadEvent provides a method which is a hybrid between a gauge-invariant
subtraction and the diagram removal [3]. During the procedure of generating the events
a file is created that lists all the events that are produced. This includes the values
of 4-momentum vectors, the spin configuration, the identities of the particles and their
status. An example for an event can be seen in figure 2.3. Before showering, one can
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use the Excres parameter (excluded resonance) implemented in MadGraph/Mad-
Event and Pythia. To mark a particle as excluded resonance one just has to add the
line Excres=Npdg to the configuration file pythia-card for each particle one wants to
exclude as intermediate resonant particle. Npdg is the code corresponding to the Particle
Data Group for that particle [11].

Events containing excluded resonant propagators are rejected before they are passed to
Pythia. The information about a particle being resonant is listed in the event file.
There each particle is flagged as initial (-1), final (1) or intermediate resonant (2) state
(marked in green in figure 2.3). The 2 appears if the particle is an intermediate on-shell
particle. On-shell is defined by

|M −mp| ≤ Γp · bwcutoff, (2.1)

where M is given by the momentum, mp is the physical mass, Γp the width of the
particle and bwcutoff can be set in the run-card. This is a configuration file in which
all parameters for the event generation, e. g. the CMS energy, statistics and various cuts
on kinematic variables can be set. The default value for bwcutoff is 15 and used in this
work.

In this scheme, the width is not necessarily the physical width of the particle. It is only
used as some cutoff parameter in phase space. Since the definition of on-shell depends
on this value the cross section might also depend on the variation of this width. This
possible dependence is further studied in section 3.3.

In summary, using the Excres option resembles a numerical cut in phase space: in
contrast to diagram removal where the whole diagram is removed, regions around the
singularities depending on the parameters in equation 2.1 are cut off.

Method D. An analytical subtraction: Prospino scheme

In order to handle double counting in the Prospino scheme [8, 9], first a separation
of the process in off-shell and on-shell contributions is done. To see this explicitly, the
example process from above (gg → g̃g̃(∗) → g̃q̃q̄) is considered. The notations g̃∗ and g̃
stand for off-shell and on-shell gluinos, respectively. For computational convenience, a
remapping of the phase space is done. The matrix element is split into a resonant and
a regular part:

|M|2 = |Mres + Mreg|2 = |Mres|2 + 2 · |Mres ·Mreg∗|+ |Mreg|2 (2.2)
with Mres = Mgg→g̃g̃→g̃q̃q̄ and Mreg = Mgg→g̃g̃∗→g̃q̃q̄.

To regularise the potentially divergent propagator, a finite width Γos for the possible
on-shell particles is introduced as a mathematical cutoff. The plain propagator is then
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transformed into a Breit-Wigner (BW) propagator:

1
p2 −m2

os
→ 1

p2 −m2
os + imΓos

(2.3)

(with Γos = Γg̃)

After integration over phase space the resonant part gives the same contribution as the
one from the Born process with the subsequent decay:

gg → g̃g̃ × g̃ → q̃q̄.

So the on-shell part in the present example is for each phase space point subtracted as
follows:

σ =
∫

2+1jet
(dσreg + dσres(Γg̃)− dσCT (Γg̃)) (2.4)

with dσCTLO (Γg̃) = σgg→g̃g̃ ·
mg̃Γg̃/π

(p2 −m2
g̃)2 +m2

g̃Γ2
g̃

·BR(g̃ → q̃q̄)

In terms of diagrams, this corresponds to the following:

dσ

 g

g

q̄

g
g̃

g̃
q̃

− dσ

 g

g

g̃
g

g̃

× ’BW’× BR


q̄

q̃



After the subtraction the width is set back to zero, since it serves only as mathematical
cutoff. In the small-width limit, the Breit-Wigner turns into a δ-distribution:

lim
Γg̃�mg̃

1
(p2 −m2

g̃)2 +m2
g̃Γ2

g̃

→ π

mg̃Γg̃
· δ(p2 −m2

g̃). (2.5)

The Breit-Wigner term in equation 2.4 is then replaced by a δ-distribution, giving the
on-shell condition.

This procedure is gauge-invariant, preserves the spin correlation and furthermore, the
dependence on the regulator Γos cancels in the end. It is not yet implemented in the LO
in MadGraph/MadEvent. Instead, it is part of the automated full NLO package
MadGolem. For finite width the Prospino scheme is implemented in MC@NLO
[17].
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3 Subtraction methods

In this chapter I use the methods to handle on-shell divergences in MadGraph/Mad-
Event interfaced with Pythia and compare their behaviour for distributions of the
differential cross section depending on the transverse momentum and the rapidity of the
heavy final states.

3.1 Kinematics and parameters

Since collisions of two hadrons that consist of partons are considered, the kinematics is
not as simple as e. g. in electron-positron scattering. The centre-of-mass frame (CMS) of
the partons is not the same as the CMS of the hadrons, which is in this case the lab frame
of the collision. For simplicity, the partonic CMS is assumed to be boosted along the
beam axis (z-axis), i. e. all partons inside the proton have zero transverse momenta.

In order to have a useful description of the kinematics one needs to find boost-invariant
variables. An adequate choice of variables is (pT , y, φ). The transverse momentum pT is
not affected by a longitudinal boost. The rapidity y, defined as

y = 1
2 ·

E + pz
E − pz

, (3.1)

where z is the longitudinal beam axis, is additive under Lorentz-boosts. Hence, the
shape of dσ/dy stays the same after a Lorentz boost with a constant velocity β. The
azimuthal angle φ (angle around the beam axis) is also boost-invariant.

The parameters are set according to table 2.2 unless stated otherwise. Since the LHC
is currently running at a centre-of-mass energy

√
s = 7 TeV, I use this value. To get

enough statistics, the number of events randomly generated by MadEvent is set to
500000 using the MultiRun-feature of MadGraph/MadEvent. For the PDF of the
partons inside the proton, I use CTEQ6L [33] with four active flavours. The factorisation
and renormalisation scales µ0

F and µ0
R are set to the average mass of the heavy final

states. For the matching procedure I use a MLM-type matching, implemented in Mad-
Graph/MadEvent as described in section 2.2.3.

Several cuts on variables are applied. They are used to separate the hard matrix element
part (hard jets) from the parton shower (soft and collinear jets). The minimum kT -jet
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measure between the partons is set to 60 GeV, as it is recommended in [3]. The pseu-
dorapidity of the jets is restricted to |η| ≤ 5. These variables can be further restricted
in a detector simulation to reject more background processes and therefore enhance the
signal as well as to simulate realistic detectors which for example can not cover the full
range of pseudorapidity. This is not done here.

With the help of MadGraph the scattering process of two incoming protons is gener-
ated. The outgoing particles are a gluino and a squark, where for simplicity only the
lightest squark is used, i. e. the superpartner ũL of the left-handed up quark. A second
process is added, which involves an additional hard jet: a gluon or an (anti-)quark,
where without loss of generality only up quarks are considered. Other generations and
down-type quarks are neglected. This will not change the qualitative results but only
the total cross section, which is not important here. The jets can be final state radiated
(FSR) or initial state radiated (ISR).

All distributions in this thesis are for events including (0+1) additional hard jets, i. e. the
matching of leading order processes and leading order plus one additional hard jet, unless
stated otherwise. MadEvent randomly generates events, which are then showered by
Pythia. Both final states, the squark and the gluino, are set stable so they will not
decay into lighter particles during the showering procedure. This is done in order to
study the differences in the treatment of on-shell divergences; including the decay would
not add new phenomenological features.

3.2 Gluon radiation versus diagram removal

The methods A (gluon radiation) and B (diagram removal), introduced in section 2.2.4,
are compared. All distributions are obtained by a combination of MadAnalysis (see
[4]) and Grace [32]. MadAnalysis is a simple analysis tool available as additional
package in MadGraph/MadEvent with output in ASCII files.

3.2.1 Distribution in transverse momentum pT

Assuming the z-axis to be the beam axis, the transverse momentum is given as

pT =
√
p2
x + p2

y. (3.2)

The distributions are shown in figure 3.1. The dependence of the differential cross
section on the transverse momentum is plotted for the two final state particles, the
gluino and the squark. The distributions are for both methods normalised to their total
cross section, respectively. For each diagram the green curve is created using method A,
whereas the red one follows from B.
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Figure 3.1: The normalised differential cross section dσ
dpT

for the two final states
(gluino and squark). The red lines correspond to diagram removal, the green
ones to gluon radiation only. The red and green distributions look very similar.
The values for the total cross sections are different in the two methods, but the
interesting point is their kinematical distribution.

The distributions in general for both heavy final states are very similar. The distribution
for the gluino is slightly harder, which means that it is shifted to larger values of pT in
comparison to the distribution for the squark. This makes sense because the gluino has
a larger mass than the squark in SPS1a1000, which I used here.3

The shapes of the distributions for method A and B do agree well. There is no significant
difference. This agreement can be explained by the suppression in phase space: Diagrams
with gluon jets radiated off the final state particles do not involve an intermediate heavy
particle, whereas in contrast diagrams with quark jets radiated off the final states include
an intermediate squark and/or a gluino. As the matrix elements and thus also the cross
sections are proportional to powers of the inverse mass of the intermediate particles,
diagrams with final state quark jets are suppressed. Hence, gluon jets are preferred
produced and the main part of the population of the pT spectrum comes from those
events. Thus, the simplification of only allowing for gluon jets is reasonable.

Despite this, the total cross section values for both cases are different. It has been found
that, as expected, for method A the cross section is smaller compared to method B.
This can not be seen in the plots, as the distributions are normalised to their total cross
sections, because the main focus here is on the shape of the distributions.

The difference between method A (gluon radiation) and method B (diagram removal)

3The difference is even more significant, if one compares in addition the distributions of the two heavy
particle final states to the ones for the (massless) SM-particles, i. e. the extra jet.
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Figure 3.2: The normalised differential cross section dσ
dpT

for the two final states, in-
cluding the distribution involving only quark jets for consistency check.
The green line corresponds to method A, the red line to method B. The blue line
shows the distribution where only quark jets are involved, including diagram re-
moval by hand for diagrams involving potentially on-shell gluinos. The shape is
basically the same so consistency is confirmed.

is that in the first case, quark jets are neglected. To check for consistency, the distri-
bution with only quark jets – removing the potentially resonant diagrams by hand –
is additionally plotted in figure 3.2: Since the shape for gluon radiation is very similar
to the one for diagram removal, the shape for quark radiation, excluding potentially
resonant diagrams, is expected to be also very similar, provided that all distributions
are normalised such that their integral yields 1. This expectation is confirmed as can be
seen in figure 3.2.

The value for the cross section is now even smaller. This fact becomes clear by the
same arguments as before: due to the masses of the intermediate particles, in this case
squarks or gluinos, quark jets are suppressed in comparison to gluon jets.

3.2.2 Distribution in rapidity y

The rapidity y of a particle with energy E, mass m and momentum p is given by

y = 1
2 ln E + pL

E − pL
= 1

2 ln (E + pL)2

m2 + p2
T

= ln E + pL
mT

= 1
2 ln 1 + β cos θ

1− β cos θ = artanh(β cos(θ)). (3.3)
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Figure 3.3: The normalised differential cross section dσ
dy depending on the rapidity

y for each of the two final states. The red curves correspond to method B,
the green ones to method A. In both final states, the shapes of the distributions
agree quite well.

Here pL is the component of the momentum along the beam axis, θ is the polar angle
and β = p/E the velocity. In the limit of massless particles (E ≈ |~p|), the rapidity y is
the same as the pseudorapidity η:

y = E + pL
E − pL

≈ 1 + cos θ
1− cos θ = − ln

(
tanh θ2

)
= η (3.4)

The distributions for method A (green line) and method B (red line) are shown in
figure 3.3. In general, all distributions show a similar shape. The differential cross
section satisfies

dσ

dy
(−y) = dσ

dy
(y). (3.5)

This symmetry is expected, as there is no reason why there should be a preferred di-
rection of emission in the angle θ. Analysing equation 3.3, the distributions for heavier
particles are supposed to be more narrow, whereas lighter particles have a wider ’plateau’
around y = 0, since the rapidity y is proportional to the inverse mass. This consider-
ation is confirmed in figure 3.3: the gluino yields a more narrow distribution than the
squark.4

The distributions for the two subtraction methods are very similar for both cases of final

4The difference is again even more significant if one compares these distributions to the ones for the
SM particles, as they are much lighter and hence have a wider plateau.
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Figure 3.4: The normalised differential cross section dσ
dy of the rapidity of the two

final states. The red and green lines are the same as before. The blue line
corresponds to the method where only quarks in the final state are allowed and
the diagrams with s-channel gluinos are removed by hand. The shape is basically
the same.

states. The shapes agree very well. Small deviations result from statistical fluctuations.
As in section 3.2.1, the distributions are normalised to their total cross sections, which
differ for both methods as explained previously. To ensure that the methods in these
distributions remain consistent, figure 3.4 additionally illustrates the distribution of
quark jets. Again, the profiles of the distributions are very similar.

3.3 Numerical subtraction in MadGraph/MadEvent

3.3.1 Distribution in transverse momentum pT and rapidity y

As discussed in section 2.2.4, the combination of MadGraph/MadEvent and
Pythia provides the possibility to exclude specific particles as resonant intermediate
states. In order to study this method further, differential cross section depending on
the rapidity and the transverse momenta of the final state particles are compared to the
two previous ones: gluon radiation and the explicit diagram removal. The results can
be seen in figure 3.5 and figure 3.6.

The shape of method C, i. e. using the Excres option in MadGraph/MadEvent,
agrees with the other two distributions. The main difference is that, because depending
on equation 2.1 more events are rejected with respect to method A and B, the shape
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Figure 3.5: The normalised differential cross section dσ
dpT

dependent on the trans-
verse momentum of the two final states. The green line corresponds to
method A, the red one to method B. For the violet distribution, the Excres
option in MadGraph/MadEvent has been used. In spite of less statistics, it
agrees quite well with the other two methods.

shows more statistical fluctuations for the same number of requested events. To improve
the appearance of the shape and eliminate the large statistical fluctuations, one therefore
has to request more statistics beforehand in method C. The peak of the distribution for
the Excres method in the gluino rapidity seems to be shifted slightly towards a positive
value. It has been confirmed that this is only due to statistics: With more statistics
these fluctuations disappear and the distribution is also symmetric to y = 0.

3.3.2 Dependence on the width

As explained in section 2.2.4, this way of eliminating the resonant events depends on the
width of the on-shell particle, see equation 2.1. To see this explicitly, the dependence
of the cross section on this value is studied. Here, the width does not need to be the
physical width. It is used only as a regulator.

To see how the cross section qualitatively changes when changing the gluino width, the
parameter is varied and to each width the value for the cross section that is given by
Pythia after showering is assigned. The result can be found in figure 3.7. The depen-
dence of the cross section in the diagram removal method is also plotted for comparison.
When removing explicitly potentially on-shell divergent diagrams, there is, as expected,
almost no dependence. The slight dependence comes from the fact that there are still di-
agrams left which involve (in this case) a gluino in the t-channel. These are not on-shell
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Figure 3.6: The normalised differential cross section dσ
dy depending on the rapidity

of the gluino and the squark. The green line corresponds to method A, the
red one to method B and the violet one has been created using the Excres
option in MadGraph/MadEvent. The three methods agree in the shapes of
the distributions. The small deviation for the Excres method is due to statistical
fluctuations, as many events are lost in this method and therefore the statistics
are not as large as for the other two methods.

divergent diagrams and are therefore not removed.

Using the numerical method, there is a strong dependence on the width. The shape
nonetheless seems reasonable. If a very large width is used, then according to equa-
tion 2.1 almost all potentially resonant events contain on-shell particles, as there is no
way for the momentum flow to be outside the region that is defined to be on-shell.
Hence, in the limit of very large widths, diagram removal and the numerical subtraction
of on-shell divergences is effectively equivalent. In the limit of very small widths, the
cross section seems to diverge. This is clear because the width is used as regulator: if
the regulator goes to zero, the singular region will be reached. Thus, the cross section
diverges.

As there are no errors assigned to the values of the cross section in Pythia and these
values strongly depend on the specific procedure used in Pythia, figure 3.7 only gives
a qualitative impression. Physically more meaningful than total cross sections given by
Pythia are distributions in different kinematic variables.

To that aim, the differential cross section of one final state particle, the squark ũL,
dependent on the transverse momentum is chosen and plotted for three different widths:
Γg̃ = 10−3 GeV, 10−2 GeV and the physical width Γphysg̃ = 130.9 GeV, corresponding
to the SPS1a1000. The physical width has been calculated by the tool SDECAY [26],
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Figure 3.7: Dependence of the cross section on the width using the Excres option
and for comparison in the diagram removal scheme. The red points cor-
respond to diagram removal, the green ones have been created using the Excres
option. Removing the potentially resonant diagrams by hand does not significantly
depend on the width as expected. As the cutoff for the Excres option depends
on the width, this results also in a quite strong dependence on the width for the
cross section.

that calculates all decay widths and branching ratios for supersymmetric particles. The
resulting plots can be seen in figure 3.8.

For diagram removal, changing the width does not significantly alter the shape. Con-
sidering method C, i. e. the numerical subtraction, there are small changes in the shapes
while varying the width. The distribution gets slightly harder, i. e. it is shifted to larger
values of the transverse momentum, for larger widths. For smaller widths, this method
seems to favour the lower pT bins, whose events are less likely to fall into the subtracted
region of the phase space.
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Figure 3.8: Dependence of the differential cross section on the width, using the
Excres option and for comparison in the diagram removal scheme. The
first row corresponds to the Excres option, whereas the second row comes from
diagram removal. The values for the widths in the three columns are 10−3, 10−2

and the physical gluino width 130.9 GeV, respectively. When removing the dia-
grams by hand, there is no significant dependence on the width. In the Excres
procedure, one can see a slight dependence on the width as the spectra get slightly
harder for larger widths. In the case of a very large width, the shapes for diagram
removal and the numerical subtraction of on-shell divergences tend to converge,
which is in agreement with figure 3.7.

23



Figure 3.9: The normalised differential cross section dσ
dpT

depending on the trans-
verse momentum of the two final states. The green line corresponds to
the modified SPS1a benchmark point, the yellow line to the SPS8 benchmark
point where the mass hierarchy is inverted. In the SPS8, the shape for the gluino
is slightly harder compared to the one in the SPS1a1000 and even more for the
squark. This is due to the set of masses for the heavy coloured particles, which
is in this scenario larger than in the SPS1a1000. The gluino mass is only slightly
changed to a smaller value in the SPS8, whilst the squark masses in contrast are
almost twice as large.

3.4 Different mass hierarchy

As the original benchmark point SPS1a is already ruled out by experiments and currently
an inverted mass hierarchy (mg̃ < mq̃) seems to be more likely, the benchmark point
SPS8 is considered. The parameters can be found in table 2.2. Again, the dependence of
the differential cross sections on the rapidity and the transverse momentum, respectively,
are plotted. For simplicity, for both benchmark points the subtraction method A (only
gluon radiation) is used. The results are shown in figure 3.9 and figure 3.10.

There are significant differences in the distributions. The pT distributions in the bench-
mark scenario SPS8 are slightly shifted to larger transverse momenta. This can be
explained by the fact that the heavy particles’ masses are significantly larger in this
scenario than in the SPS1a1000. The mass of the gluino is slightly smaller in the SPS8,
but in contrast the squark masses are almost twice as large.

This mass difference also explains the differences in the shapes of the y distributions. For
the gluino, the distributions for the two benchmark points only differ by a small extent.
For the squark, however, there is a significant difference. The shape for the SPS8 is
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Figure 3.10: The normalised differential cross section dσ
dy depending on the rapidity

of the two final states. The green line represents the modified SPS1a bench-
mark scenario, the yellow line the SPS8. The spectrum for the gluino is only
fractionally more narrow in the SPS8 compared to the SPS1a1000. The shape for
the final state squark differs significantly in the two scenarios. Due to the almost
twice as large masses for the squarks, the form is more narrow.

much more narrow because its mass in this scenario is almost twice as large. For further
studies one could compare the different subtraction methods also in this scenario, but
in principle, it will be similar to the studies for SPS1a1000.
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4 Prospino scheme: Comparison of
matched samples with the NLO

As the Prospino method [8, 9], i. e. the analytical on-shell subtraction, is not imple-
mented yet at leading order in MadGraph/MadEvent, a comparison between the
different subtraction methods is not possible in MadGraph/MadEvent yet. But it
is part of the NLO package MadGolem and therefore analyses can be done at the full
NLO but not including parton showers. The studies in section 4.2 and section 4.3 follow
closely those in [10].

4.1 Dependence on the width

In the Prospino on-shell subtraction, the width of the on-shell particle is used as
regulator. For this reason, the dependence of any physical observable on the width is
supposed to cancel in the end. To see this, a scan of the cross section in the variable
αos = Γg̃/mg̃ is done in MadGolem. As the subtraction only takes place in the real
correction sector, only one subprocess containing potentially on-shell contributions is
considered: two gluons scattering into a squark, a gluino and an additional anti-up quark.
For comparison, this study is also done for the diagram removal in this subchannel, which
is not expected to depend significantly on the width. The resulting plot can be seen in
figure 4.1.

The green data points are created using a number of integration points of 10 million,
50 iterations and an accuracy of 10−4 to reduce the errors and obtain a very precise
result. The diagram removal as reference does not need to be studied in detail here, so
to reduce computation time only 10000 points, 50 iterations and an accuracy of 10−3

are used. The diagram removal shows no significant dependence on the width. A slight
dependence comes from t-channel gluinos, see explanation in 3.7.

In the Prospino scheme [8,9], the cross section starts to rise for very large widths and
approaches the rate for diagram removal, whereas for very small ones the errors rise.
In between, the cross section is constant while changing αos and thereby the width. In
the limit of very small values of αos, the singular region of phase space is reached and
therefore the errors by the MC integration get larger. In the limit of very large αos,
almost all diagrams involving potentially on-shell intermediate states are removed, i. e.
it is effectively the same as diagram removal.
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Figure 4.1: Dependence of the cross section on the gluino width in the Prospino
scheme. Here, only one subprocess, i. e. gg → g̃ũL including only additional
real emission at NLO, is shown. It is in this case negative which comes from the
definition of the counter terms for the divergences. The sum of all NLO corrections
is positive as well as the LO. For comparison, the results using diagram removal
are shown.

There is a significant difference in the rates for the two methods, i. e. diagram removal
and Prospino. In diagram removal, significant contributions are neglected: all diagrams
involving a potentially resonant intermediate heavy particle, in this case a gluino, are
completely removed, no matter if they are really on-shell or not. In the Prospino
scheme, the off-shell contributions are also taken into account and only events in the
singular region are subtracted.

4.2 Full NLO versus MLM matching

Experimentally meaningful is the comparison of the full NLO in MadGolem to the
matched sample at leading order in MadGraph/MadEvent plus one additional jet.
For more precise studies, one could also take into account two additional jets. But in
chapter 5 one can see that this can be neglected as a very small correction.

The full NLO matrix elements are generated in MadGolem. For this purpose, the LHC
design energy of 14 TeV, a number of integration points of 30000, 15 iterations and an
accuracy of 10−5 is used. The benchmark scenario SPS8 is chosen, where the squark
masses are larger than the gluino mass. The process generation is divided into three
subfolders, the leading order (LO), virtual corrections and real corrections. Dimensional
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Figure 4.2: pT distribution for the squark ũL in NLO (LO, real and virtual correc-
tions) and in comparison with MLM-type matching using the Excres
flag in MadGraph/MadEvent. The NLO has been created in the framework
of MadGolem, the MLM-type matching in MadGraph/MadEvent, interfaced
with Pythia. For the subtraction of on-shell singularities, the Excres option is
used. The green line corresponds to the MLM-type matching. It is harder than
the NLO distribution. This makes sense, as there are extra recoil jets in the jet
matching that lead to a harder pT spectrum.

regularisation is used to regularise the ultraviolet and infrared divergences. The resulting
UV poles are absorbed in the renomalisation procedure, while for the infrafred a Catani-
Seymour subtraction [13] is used. For the latter the subtraction parameter α = 10−3 is
chosen. This is the reason for the negative virtual corrections. The resulting plot can
be seen in figure 4.2.

The green dashed line corresponds to the MLM-type matching. The on-shell singularities
in this case are removed with method C, the Excres option. The pT spectrum for the
MLM-type matching is harder than the NLO. This makes sense, as there are additional
recoil jets for the jet matching coming from the parton shower. These lead to a recoil
of the heavy particles and hence larger values of the transverse momenta.

4.3 NLO Prospino versus NLO diagram removal

From a theoretical point of view, the comparison between diagram removal, which is
an approximation for removing on-shell singularities and consequent double counting,
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Figure 4.3: Comparison between the diagram removal by hand (green dashed line) and the
Prospino analytical on-shell subtraction (black full line), both at NLO. The di-
agram removal gives a softer pT spectrum.

and the fully analytical subtraction of on-shell parts in the Prospino scheme is worth
studying. [8,9]. Both pT distributions are computed at NLO in MadGolem. As already
pointed out, no showering effects are taken into account. The plots can be found in
figure 4.3. The green dashed line corresponds to the NLO with diagram removal, the
black line to the NLO with analytical on-shell subtraction.

The pT spectrum, where the potentially resonant diagrams are removed by hand, is
shifted to smaller values of the transverse momentum compared to analytical on-shell
subtraction. The difference in this case is significant. If the diagrams that contain po-
tentially on-shell particles are explicitly removed, one neglects contributions that might
be important. Not only the part of phase-space, where these diagrams include on-shell
particles, is cut off, but the whole diagram is removed. Events coming from those con-
figurations, i. e. including an intermediate off-shell heavy particle (in this case a gluino)
outside the singular region, contribute in general to larger transverse momenta. This is
why the spectrum is softer for diagram removal, because these events are not included.

In the analytical on-shell subtraction, only the resonant parts are subtracted for each
phase space point. There events including intermediate off-shell heavy particles are
not neglected and lead therefore to a harder spectrum. Hence the analytical on-shell
subtraction is a significant improvement to diagram removal.
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5 Multijet matching

So far, only one additional jet has been considered in the studies of this work. In prin-
ciple, there can be more than just one additional jet. To that purpose, the matching of
(0+1) additional jets is compared to the matching of (0+1+2) additional jets. The nota-
tion (0+n) means that the computation in leading order (0) plus computations including
n additional jets are merged. As in all previous studies, a MLM-type matching imple-
mented in MadGraph/MadEvent is used, as well as the benchmark point SPS1a1000.
The resulting plots can be found in figure 5.1 and figure 5.2.

Figure 5.1: The normalised differential cross section dσ
dpT

depending on the trans-
verse momentum of the two heavy final states. The violet curve includes
jet matching with (0+1+2) additional hard jets, whereas the green curve includes
only (0+1) additional jet. Both are created using method A, i. e. allowing only for
gluons as additional jets to then remove on-shell singularities. The two shapes do
not differ significantly.
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Figure 5.2: The normalised differential cross section dσ
dy in the rapidity of two final

state particles. The green line corresponds to jet matching with (0+1) jet,
whereas the violet one also includes a second additional jet. For both curves,
only gluon jets are used to avoid on-shell singularities coming from intermediate
gluinos. The shapes are very similar, so the influence of the second jet is negligible.

There are no significant differences in the shapes of the two different multiplicity samples.
The total cross section values differ slightly, but the distributions for the differential cross
sections in the two kinematic variables do not. Thus, it is a reasonable approximation
to study distributions including only one additional hard jet.

This agreement between (0+1)-jet matching and (0+1+2)-jet matching shows that the
parton shower approximation for the second additional jet is actually quite good. The
parton shower describes the emission of jets in all orders in αs, but only up to a certain
transverse momentum. As there is no significant difference in the differential cross
section of the two multiplicity samples, the main parts of the events populating the
different bins can be assigned to the matching of one additional hard jet and the parton
showers. A second jet does not contribute significantly, which means that its main effect
is already taken into account by the parton showers. This is further discussed in [30].
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6 Conclusions

In this work, different methods to handle on-shell singularities and the related dou-
ble counting problem were studied. To that endeavour, kinematic distributions of the
differential cross section for two kinematic variables, the rapidity and the transverse
momentum, respectively, were compared.

In summary, allowing only for extra gluon jets and the explicit diagram removal are gauge
violating methods but numerically lead to very similar shapes. Using the Excres flag
in MadGraph/MadEvent [5] and Pythia [34], i. e. numerically subtract the on-shell
divergences, is in general an improvement to the former methods since not the diagrams
are removed, but only those events containing an on-shell particle. This method uses a
somehow arbitrary phase space cut which acts as a numerical counterterm to subtract
the on-shell singularities. Its results dependent on the width of the on-shell particle,
which is due to the definition of ’on-shell’ in the context of this method. However, the
numerical performance is also similar to diagram removal and gluon radiation only.

The most precise method is the fully analytical subtraction of the on-shell singularities
in the Prospino scheme [8, 9], which is gauge invariant. It is part of the full NLO
computation, implemented in MadGolem. Hence, no parton showers were used in this
method. Comparing the full NLO, using the analytical subtraction, to jet matching
(here: MLM-type matching) yields two similar kinematic distributions. Jet matching is
to a small extent harder because there are extra recoil jets from the parton shower.

At full NLO, diagram removal and analytical on-shell subtraction were also compared.
The former yields a softer distribution. This can be assigned to the fact that by removing
diagrams, interference terms as well as potentially significant contributions, coming from
the those diagrams with off-shell intermediate particles, to the process are neglected. It
is therefore much more improved to use the analytical on-shell subtraction, where only
those events involving on-shell intermediate particles are subtracted.

In future projects, the Prospino scheme as fully analytical on-shell subtraction should
be implemented at LO in MadGraph/MadEvent: then, an analysis including par-
ton showers could be done and therefore also a comparison between the numerical sub-
traction in MadGraph/MadEvent and the analytical on-shell subtraction in the
Prospino scheme. Furthermore, additional distributions, e. g. in the invariant mass,
can be studied for a comparison of different subtraction methods.

At the horizon, projects like POWHEG [1,16,28] and MC@NLO [17] promise the com-
bination of the full NLO and the parton showers.
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