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Abstract

The upcoming Square Kilometre Array is set to deliver a three-dimensional tomo-
graphic view of hydrogen gas distribution mapping structure formation in the early uni-
verse. The complex nature of the underlying 21cm signal requires new analysis meth-
ods more sophisticated than traditional statistical methods. Lightcones (LCs) intended
to model SKA data are simulated using 21cmFAST. Six key cosmological and astrophys-
ical simulation parameters are varied in the LC dataset. Machine learning methods are
employed to perform parameter regression on the LCs. A vision transformer (ViT) archi-
tecture is shown to outperform a previously top-performing convolutional neural network.
The foundation model SKATR is developed for the LCs. It employs a ViT encoder archi-
tecture in an unsupervised pretraining schedule. In pretraining the encoder learns an
embedding by contrasting a masked embedded view with the full LC embedding. SKATR
is shown to retain a 144-dimensional informative summary of the LCs. In transferring to
LCs with distinct qualities not seen in pretraining, the summary is able to learn realistic
noise modeled after SKA detector influences by 21cmSense. Furthermore it is able to learn
a simulation parameter not observed during training.

Zusammenfassung

Das kommende Square Kilometre Array soll eine dreidimensionale tomographische
Ansicht der Wasserstoffgasverteilung liefern, die die Strukturbildung im frühen Univer-
sum abbildet. Die komplexe Natur des zugrundeliegenden 21cm-Signals erfordert neue
Analysemethoden, die anspruchsvoller sind als traditionelle statistische Methoden. Light-
cones (LCs), die SKA-Daten modellieren sollen, werden mit 21cmFAST simuliert. Sechs
wichtige kosmologische und astrophysikalische Simulationsparameter werden in dem LC-
Datensatz variiert. Methoden des maschinellen Lernens werden eingesetzt, um eine Pa-
rameterregression für die LCs durchzuführen. Es wird gezeigt, dass eine Vision Trans-
former (ViT) Architektur ein zuvor leistungsfähiges Faltungsneuronales Netzwerk über-
trifft. Das Foundation Model SKATR wird für die LCs entwickelt. Es verwendet eine
ViT-Encoder-Architektur und unbeaufsichtigtes Vortraining. Beim Vortraining lernt der
Kodierer eine Einbettung, indem er die Gleichheit zwischen einer maskierten Einbettung
mit der vollständigen LC-Einbettung maximiert. Es wird gezeigt, dass SKATR eine 144-
dimensionale informative Zusammenfassung der LCs liefert. Bei der Übertragung auf LCs
mit neuen Eigenschaften die im Vortraining nicht enthalten waren, ist die Zusammenfas-
sung in der Lage, realistisches Rauschen zu erlernen, das nach realistischen Bedingungen
des SKA von 21cmSense modelliert wurde. Außerdem ist sie in der Lage, einen Simula-
tionsparameter zu erlernen, der im Vortraining nicht enthalten war.
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1 INTRODUCTION

1 Introduction

The Square Kilometre Array (SKA)* is an upcoming radio interferometer project designed to
improve the sensitivity and survey speed of current radio telescopes by an order of magni-
tude [19]. This will give an unprecedented view of the early Universe and is anticipated to
give new insights ranging from cosmological structure formation and galaxy evolution to mod-
ifications of gravity and dark energy, as well as dark matter [12].
The SKA will allow the study of the period Cosmic Dawn (CD), where the first galaxies and
stars form, as well as the Epoch of Reionization (EoR), which marks the ionization of the in-
tergalactic medium (IGM). Large-scale structural information during these eras is captured by
the intensity of the redshifted 21cm line emitted in the forbidden spin-flip of hydrogen. While
current telescopes such as LOFAR [9] and HERA [6] are limited to a statistical detection of
the 21cm signal, the SKA will have a three-dimensional tomographic view of the 21cm signal
and thus track hot gas distribution over the early evolution of the universe [12]. Both the
complex non-Gaussian structure of the data and its size of many hundreds of petabytes [19]
require the development of new signal analysis methods. Simulation-based inference is per-
formed on low-dimensional statistics such as power spectra. While these statistics have the
advantage of capturing physically interpretable structures, much of the information contained
in the original data is lost. Modern machine learning methods offer considerable potential
for improvement. Employing simulation-based inference based on SKA-inspired data simula-
tions has been shown to bring significant improvements over traditional methods. In Ref. [14,
15] the use of Convolutional Neural Network (CNN) architectures and conditional invertible
neural network (cINNs) on simulated data shows a robust inference of astrophysical and cos-
mological parameters.
Expanding on these works, we explore the deployment of a foundation model on SKA data.
First, simulated SKA-like data in the form of light cones (LCs) is generated using 21cmFAST.
The six simulation parameters varied in the simulation of the LCs pose the regression task
for this work. To find a robust encoder architecture, a vision transformer (ViT) is explored
and compared to the previously established CNN architecture [14]. We develop a foundation
model termed SKA Transformer (SKATR) that retains an informative low-dimensional sum-
mary of the high-dimensional simulated LCs. This summary is probed on different datasets
and varying training conditions.

*https://www.skatelescope.org
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2 SKA PHYSICS

2 SKA Physics

Cosmic Dawn (CD), marking the formation of the universe’s first luminous sources, and the
Epoch of Reionization (EoR), when the earliest stars and galaxies ionized the surrounding
intergalactic medium (IGM), represent crucial periods in cosmic history. By mapping the spin-
flip transition of neutral hydrogen known as the 21cm line, we can generate 3D tomographic
light cones of these formative billion years [14]. In addition to exploring the formation and
evolution of early stars and galaxies, 21cm intensity mapping offers a promising method for
investigating our cosmic concordance model at redshifts z >> 6. This technique can provide
insights into the nature of dark energy, potential modifications to gravity, and the charac-
teristics of dark matter (DM). Recently, radio interferometers have focused on detecting the
redshifted 21cm radiation to explore the EoR and CD. The upcoming Square Kilometre Array
(SKA) aims to deliver a 3D tomography through 21cm line emission.

Figure 1: Scheme of the redshift eras observable by the SKA. Illustration taken from
Ref. [12].

The 21cm signal serves as a cosmological probe by mapping the spatial distribution of
neutral hydrogen and the ionization state of the intergalactic medium (IGM). This signal is
typically expressed as the difference between the 21cm brightness temperature and the cosmic
microwave background (CMB) temperature, T�, measured along a line of sight at a given
observed frequency, ⌫ [12], as shown in

�T (⌫) =
TS � T�
1+ z

(1� e�⌧⌫0 ). (1)
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3 MACHINE LEARNING

3 Machine Learning

In recent times, large amounts of data and computational power have brought about the ad-
vent of Machine Learning (ML) in the natural sciences. By repeating what in practical terms is
nothing more than matrix multiplication and on large amounts of data, the advent of ML has
opened new possibilities and given way to insights previously difficult to attain.
In ML a model is a task and is iteratively improved depending on its performance. The per-
formance of a model is measured by a metric referred to as a loss function. Minimizing this
loss is equivalent to optimizing the model, which can be considered as the model "learning"
the objective. The minimization of the loss is achieved through gradient descent. Gradient
descent refers to an algorithm where the impact of model parameters on the loss is calculated
by considering the output of the model or just taking the derivative. This gradient dictates to
which extent a given weight is adjusted.

3.1 Learning Tasks

3.1.1 Supervised Learning

A supervised learning task is one where a model is asked to predict pre-defined labels on a
dataset. The loss is defined based on the prediction of the model and the label of a given data
point. Perhaps the simplest loss function to consider is the mean absolute error defined as

MAE=
1
n

nX

i=1

|yi � ŷi | . (2)

As it grows linearly with the difference between prediction and label, it corrects as much for
small deviations as it does for large ones. This is often undesirable, as the statistical nature of
data means that fitting it perfectly corresponds to fitting statistical variations. This is known
as overfitting, which is a common and recurring issue in Machine Learning.
The Mean squared error (MSE)

MSE=
1
n

nX

i=1

(yi � ŷi)
2 (3)

counterfeits this behaviour by weighing large deviations stronger, allowing for statistical vari-
ation to persist.

3.1.2 Unsupervised Learning

In unsupervised learning, there is no assumed truth to predict. An example contrastive learning
a set of augmentations are applied to the data. This results in different views of each instance
in the data. The dissimilarity between different augmentations is minimized in order to learn
the augmentations.
The set of augmentations may include transformations which the system is invariant under
(i.e. rotations, reflections, translations). In training, this invariance is learned by the network.
Furthermore, augmentations may reduce the informational content. Ideally, the network will
learn to predict the missing information.

In unsupervised learning, there is no assumed truth to predict. Instead, the goal is to dis-
cover the underlying structure or patterns within the data without explicit labels. This is done
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by exploring the relationships, similarities, and differences between the data points. An exam-
ple for unsupervised learning is contrastive learning, where a set of augmentations is applied
to the data. This results in different views of each instance in the data. The model is trained
to minimize the dissimilarity between these different views of the same instance, effectively
learning useful representations that capture the essential characteristics of the data. By doing
so, the model learns to distinguish between different instances based on the underlying fea-
tures that are consistent across various augmentations. This approach helps in learning robust
feature representations without the need for labelled data, making it a powerful method in
the realm of unsupervised learning.

3.2 Neural network

A network is employed to process some input of data into a desired output. To achieve this,
the network must learn on a training set. It has a set of free parameters that are updated
repeatedly in training until the network’s output is optimal. The available data is generally
divided into three splits, see Tab. 1.

split purpose typical size

training find network parameters 60-80%
validation track training performance 10-20%

test test final performance 10-20%

Table 1: Data splits used in the different stages of a ML network employment.

In training, one aims to find a global minimum in the loss function with respect to the
parameters. Training is performed over a set of epochs. In one epoch, the network sees the
whole training set once. Throughout each epoch, the entire training set is passed through the
network in batches, with the loss being aggregated across these batches. At the end of an
epoch, the parameters are updated through gradient descent. The parameter j at epoch i + 1
is updated to

✓ i+1
j = ✓ i

j �⌘
@ L
@ ✓ i

j

(4)

in terms of the parameter of the previous epoch ✓ i
j and the gradient in respect to the loss

L. The learning rate ⌘ dictates the degree to which the parameters are updated and is a
hyperparameter of training. A learning rate that is too large may overshoot an optimum set
of parameters, while one that is too small may get stuck in local minima. The gradients are
calculated using backpropagation, which uses the chain rule to propagate the effect of a given
parameter on the loss backward through the network.

3.2.1 Multi Layer Perceptron

A Multi Layer Perceptron (MLP) is perhaps the most basic architecture in ML. It consists of
multiple layers, which each contain a set of neurons. Each neuron of a layer is connected to
all neurons of the previous layer. A scheme of the data flow is shown in Fig. 2. The first layer is
given by a data instance and the last layer is the network output. The layers in between contain
the learned structure and are referred to as ’hidden layers’. The neurons encode information as
scalars. The value of a neuron j in a layer i is given by a weighted aggregation of the previous
neurons

x i
j =
X

k

f i(wi
k j x

i�1
k ), (5)
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Figure 2: A dedication of the structure of an MLP.
The MLP consists of an input layer, one or more hidden layers, and an output layer.
Each neuron in a layer is connected to every neuron in the subsequent layer, form-
ing a fully connected network. The neurons apply a weighted sum of their inputs
followed by an activation function, as indicated by the red lines within the neurons.
This introduces non-linearity into the model. The hidden layers capture the learned
features and representations, while the output layer produces the final prediction.
Illustration taken from Ref. [16].

where the weights wi
k j dictate the influence of the k-th neuron of the previous layer. These

weights are the model’s free parameters and are learned during training. Between layers, an
activation function fi may act. Activation functions introduce non-linearities into the model,
allowing it to learn more complex representations. The most typical activation function is the
rectified linear unit (ReLU) given by

f (x) =max(0, x) (6)

The ReLu sets all negative input values to zero while leaving positive values unchanged. This
has the effect of creating a sparse representation, as only some neurons are activated (i.e., have
non-zero outputs) for any given input. Other commonly used activation functions include the
sigmoid function, given by

Sigmoid(z) =
1

1+ e�z
, (7)

which squashes the input into a range between 0 and 1. The softmax function converts a
vector into probabilities that sum to one as

Softmax(zi) =
ezi

PK
j=1 ezj

, (8)

where: zi is the i-th element of the input vector z, K is the number of elements in the vector z.
Depending on the desired structure, different activation functions are employed. has different
properties and can be chosen based on the specific requirements of the neural network model.
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3.2.2 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a type of neural network architecture designed to
process and analyse data with a grid-like topology, such as images. Unlike the fully connected
layers in an MLP, CNNs use convolutional layers to extract local patterns in the data. A scheme
of the architecture is seen in Fig. 3.

Figure 3: This figure illustrates the general architecture of a Convolutional Neural
Network (CNN). The input is typically an image, represented as a multichannel ma-
trix. The network consists of a sequence of layers, beginning with convolutional
layers, which apply a set of filters to extract feature maps from the input. Illustration
taken from Ref. [16].

The fundamental building blocks of a CNN are convolutional layers, pooling layers, and
fully connected layers. In a convolutional layer, neurons are arranged in feature maps, and
each neuron is connected only to a local region of the previous layer. This local connection al-
lows CNNs to capture spatial structure in the data, where lower layers detect basic features like
edges, and higher layers detect more complex patterns like shapes or objects. The operation
performed in a convolutional layer is defined as

x i
j = f i

ÇX

k

wi
k j ⇤ x i�1

k

å
, (9)

where ⇤ denotes the convolution operation, wi
k j are the filter weights, and f i is the activation

function. The filters, also known as kernels, slide over the input feature maps to produce
output feature maps, capturing essential input features. Pooling layers are typically inserted
between convolutional layers to progressively reduce the spatial dimensions of the data, which
helps to decrease the computational load and reduce the risk of overfitting the data. The most
common type of pooling is max-pooling, which selects the maximum value from a patch of the
feature map, as defined by

x i
j =max(x i�1

m,n), (10)

where m and n index the local patch in the feature map. This operation retains the most
prominent features while discarding less significant information. After several convolutional
and pooling layers, the final output is often passed through one or more fully connected layers,
similar to an MLP. In a 3D CNN, the convolutional layers apply 3D kernels to the input data,
enabling the network to capture spatial and temporal features simultaneously. The pooling
operations in 3D CNNs similarly reduce the dimensionality across all three axes.
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3.2.3 Vision Transformer

A Vision Transformer (ViT) is a transformer architecture applied to two or higher-dimensional
data, such as images. Originally introduced in the context of natural language processing
(NLP) through the seminal work “Attention is All You Need” [17], transformers have become a
dominant architecture in Natural Language Processing (NLP) due to their ability to model long-
range dependencies effectively and their computational efficiency. The success of transformers
in NLP led to their adaptation for visual data processing, giving rise to the ViT. A scheme of
the ViT is shown in Fig. 4.

Figure 4: Scheme of the Vision Transformer for image classification. The input image
is split into patches, flattened, and projected into embeddings, combined with posi-
tion encodings. These embeddings pass through a series of transformer encoders,
where self-attention captures global dependencies. The output from the token is
processed by an MLP head. Illustration taken from Ref. [7].

In a ViT, the input image is first divided into a grid of patches, which are then flattened into
vectors. Each vector is treated as a token, similar to words in a sentence for NLP tasks. These
tokens are embedded and augmented with positional encodings to retain spatial information.
The resulting sequence of token embeddings is fed into a standard transformer model, where
the key innovation lies in the self-attention mechanism. This mechanism enables the model
to weigh the importance of different tokens relative to each other, effectively capturing global
context and dependencies within the image. The self-attention mechanism in a ViT operates
by computing a weighted sum of values, where the weights are determined by the similarity
between queries and keys. Mathematically, for a given token i, the attention score for token
j is calculated as the dot product of the query Qi and key Kj , scaled by the square root of the
dimensionality of the key vectors, and then passed through a softmax function

Attention(Qi , Kj , Vj) = softmax

Ç
QiK>jp

dk

å
Vj

where the query Qi = WQ xi , key Kj = WK x j , and value Vj = WV x j vectors are computed
from the input token embeddings xi and x j using the learned weight matrices WQ, WK , and
WV , respectively. The self-attention mechanism in a ViT operates in parallel across all tokens.
This allows for parallelization and thus computational efficiency. Unlike CNNs, which typi-
cally focus on local features by convolutions, ViTs can model long-range interactions. Another
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key advantage of ViTs is their scalability. As transformers are known to perform better with
increasing data sizes[17], ViTs make use of large datasets to learn richer representations. The
generalization to three dimensions is straightforward. In a 3D ViT, the input data is divided
into 3D patches or cubes instead of 2D patches, allowing the model to process. These 3D
patches are flattened and embedded like before.

3.3 Foundation Model

A foundation model uses unsupervised training to learn the general structure expressed by a
dataset. It is typically trained over many epochs to attain many views of the data. This training
is called pretraining. The foundation model is then used to train on some "downstream" task
called. In pretraining, an unsupervised training is employed to attain an informative represen-
tation. Contrastive learning is used to maximise the similarity between different equivalent
views of the data. Augmentations are applied that reflect symmetries the data is intended to
reflect. In the process of maximising the similarity between these different views, the aug-
mentations are learned and lead to an encoding informative of these. Another point would be
shareability which is related to data efficiency. If I want to solve a language task, it is easier
for one to download a pretrained model than to train on 1 trillion words myself.

3.3.1 Use cases

Foundation models can serve several purposes. In compressing the data, the model reduces
the dimensionality, aiming to retain all information present. During pretraining, the model
learns to capture the underlying structure this allows for efficient data handling, especially in
the context of interpretability. Foundation models need fewer examples of the data in down-
stream training, as it has already seen many views in pretraining. By pretraining on a large
dataset, the model develops a generalized understanding of the data, which can be adapted to
new, related tasks with much smaller datasets. This also enables transfer learning, where new
aspects may be picked up in downstream training that weren’t present in a distinct pretraining
dataset. As fewer views of the data are necessary, the computational efficiency is expected
to be higher than training from scratch. The representations yielded by a foundation model
are expected to be more regularized. This results in a greater training stability and generally
makes downstream training less sensitive to hyperparameter tuning. In general, foundation
models leverage large data volumes to achieve higher performance in downstream tasks. The
pretraining process allows the model to learn a broad range of features and nuances from
the data, which can then be fine-tuned to excel in specific applications. Foundation models
promote shareability and reuse across different applications. Since pretraining requires sub-
stantial resources, sharing pretrained models enables others to build upon them without the
need to start from scratch.

3.3.2 Operation Modes

Foundation models can operate in several modes. The relevant modes will be the “Free” and
the “Summary” mode.

In the free mode, the model weights obtained during pretraining are left trainable during
the fine-tuning phase on the downstream task. This approach allows for maximum flexibility,
enabling the model to adapt extensively to the new data and task-specific requirements. By
allowing all the weights to be adjusted, the model can potentially achieve superior perfor-
mance, as it can leverage the full capacity of its learned representations to optimize for the
new task. Fine-tuning in Free mode is computationally expensive and may require significant
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resources. Additionally, this is less informative in terms of understanding the specific con-
tributions of different components of the pretrained model, as all parameters are subject to
change and representations are high-dimensional. The Summary mode focuses on generating
a compressed, informative summary of the pretrained model’s weights. This mode involves
computing a summary vector of minimal dimensionality, designed to be maximally informative
about the pretraining dataset. Typically, this summary vector is derived from the final state
of the model and may involve techniques such as averaging over model weights or attention
layers to reduce dimensionality while retaining critical information. The resulting summary
vector serves as a condensed representation of the pretrained knowledge, which can then be
used for downstream tasks with minimal additional training.

9



4 DATA

4 Data

4.1 Simulated lightcones

Dataset # LCs Sim. res. [Mpc] DS Shape [voxels] LC size [MB] Total size [GB]
HRx1 5038 1.42 None [140,140, 2350] 176 885
HRx2 5038 1.42 x2 [70,70, 1175] 22.0 110
HRx5 5038 1.42 x5 [28, 28,470] 1.41 7.10
HRnoise

x1 5012 1.42 None [140,140, 2350] 351 1,761
HRnoise

x2 5012 1.42 x2 [70,70, 1175] 43.9 220
HRnoise

x5 5012 1.42 x5 [28, 28,470] 2.81 14
LRx2 34741 2.84 x2 [70,70, 1175] 22.0 763
LRx5 34741 2.84 x5 [28, 28,470] 1.41 49

Table 2: Overview of the available datasets.
HR ^= high resolution, LR ^= low resolution, DS ^= downsampling.
Dataset subscripts indicate the DS factor.

The database used in this work is given by a set of lightcones (LCs). An LC is a 3D object
composed of voxels that represent the 21cm brightness temperature fluctuations �Tb(x , y, z)
with on-sky coordinates x and y , and redshift z as introduced in Sect. 2.

redshift z

on-sky coordinates 

x

y

Figure 5: Example of a LC as generated with 21cmFAST. Illustration adapted from
Ref. [14].

An illustration is given in Fig. 5. The LCs are simulated using version 3 [13] of 21cm-
FAST [11] code†. This seminumerical code is comparable to full hydrodynamic simulations. It
models the scales of low-frequency radio telescopes quite well, while being significantly more
efficient to run at the same time.
21cmFAST generates LCs by evolving coeval cubes with redshift as follows. Initial perturba-
tions are sampled using Gaussian random fields that correspond to the matter distribution
in the early universe. Thus, obtained density and velocity fields are evolved using first- and
second-order perturbation theory based on the Zel’dovich approximation [20], which is suf-
ficient for large-scale structure formation. Collapsed regions of dark matter halos within the
evolved density field are identified. The ionization state of hydrogen is found by tracking the
ionizing photons produced by galaxies formed within these dark matter halos. To find ionized
regions, the number of ionizing photons produced by galaxies within these halos is calculated
and propagated through the inter galactic medium (IGM). Given the density and ionization

†https://github.com/21cmFAST/21cmFAST
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state fields along with the spin temperature of hydrogen dependent on gas temperature, the
differential brightness temperature of the 21 cm signal is computed[19].
Two sets of LCs generated on two different simulation resolutions are available, as summarized
in Tab. 2. The high resolution (HR) dataset HR was created prior to this work [14] and the
low resolution (LR) dataset was simulated as part of this work. The subtext for each dataset
indicates the resolution downsampling (DS) factor r. In DS a set of LC voxels is summarized
into a single voxel. The light cone dimensions are thus reduced by r in all three dimensions.
Here r is relative to the maximum resolution dataset HR (LRx2 is not downsampled as it was
already simulated at half the resolution of HR, while LRx5 is its downsampled variant with a
DS factor of 2.5). The dataset HR and its noised variant HRnoise were taken from Ref. [14]
while the LRx2 dataset was simulated using a wrapper for 21cmFASTv3‡. The wrapper uti-
lizes CPU parallelization along with other features that increase computational efficiency and
speed. As introduced in Sect. 3.2.3 and Sect. 3.3 both ViTs and foundation models are expected
to scale well with data size. Thus, the low-resolution dataset LR was created to expand upon
the existing data volume. As later shown in Sect. 6.1.1 the lower simulation resolution leads
to LR being uninformative of the warm darm matter (WDM) mass mWDM which structurally
sets LRx2/LRx5 apart from HRx2/HRx5.
In 21cmFAST, a plethora of simulation parameters are used. A subset of six free simulation
parameters is sampled evenly across a range, ensuring a flat prior distribution. Parameter
sampling ranges as well as the fixed simulation parameters are set in agreement with the sim-
ulation configuration of HR [14]. This configuration assumes a cosmological constant and
flatness, setting the fixed simulation parameters to Planck measurements [1].
The six free simulation parameters include four astrophysical and two dark matter parameters
and are sampled as follows:

• Warm dark matter (WDM) mass mWDM 2 [0.3, 10]keV
Current constraints point towards values > 3.1keV [18]. The relatively wide limits allow
for a large variability in LC behaviour. Towards the upper limit, the WDM free-streaming
scale approaches that of cold dark matter (CDM) and structure formation exhibits behaviour
akin to CDM;

• Dark matter density parameter ⌦m 2 [0.2,0.4]
Strongly controls structure formation. A relatively wide range is chosen, most of which
pertains to Planck limits [1];

• Minimum virial temperature Tvir 2 [104,105.3]K
Sets the minimum virial temperature of halos contributing to star formation. The lower
limit is needed for sufficiently efficient atomic cooling;

• Ionization efficiency ⇣ 2 [10,250]
A composite parameter proportional to the
– fraction of ionizing photons escaping a galaxy;
– fraction of galactic gas contained in stars;
– number of ionizing photons per baryon in stars;
and dependent on the typical number density of recombinations for hydrogen in the IGM.
The range allows for a diverse range of recombination scenarios;

• Specific X-ray luminosity LX 2 [1038, 1042]erg s�1 M�1
� yr

Integrated luminosity with energy < 2 keV per unit star formation rate escaping host galax-
ies. Range contains observational and simulation limits [8];

• X-ray energy threshold for self-absorption by host galaxies E0 2 [100, 1500]eV
X-rays of energies below E0 do not escape their host galaxy. The range is motivated by

‡https://github.com/astro-ML/21cm-wrapper
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simulations of high-redshift galaxies [10];

The LC size is 200M pc and the redshift range is z 2 [5,35]. The number of voxels in the
redshift dimension is dependent on ⌦m. Voxels in excess of the redshift limit given by the voxel
dimensions seen in Tab. 2 are cut off.
As performed in Ref. [14], SKA mock observational LCs HRnoise are attained by adding noise
to HR. Depending on the redshift, different thermal noise levels are calculated using the op-
timistic noise scenario given by 21cmSense§ and applied. Thermal noise aims to reflect noise
observed in the integrated SKA-Low stage 1 observations [4].

4.2 Preprocessing

Voxel values and simulation parameter labels of each LC are shifted and normalized to lie
within the unit range [0, 1]. At each training epoch, random transformations are applied, that
reflect the LC symmetries. These include:

• 90� rotations in the spatial coordinates;
• Flip in the spatial coordinates;

ensuring that they do not compose the identity, so we can keep the identity in the preprocessing
augmentations.

§https://github.com/jpober/21cmSense
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5 Models

5.1 SKATR

We propose SKATR, a foundational transformer model designed for use on SKA data. Employ-
ing an unsupervised training framework [2], SKATR uses a ViT encoder architecture to attain
an informative compressed representation in the form of a 144 dimensional summary vector.

Figure 6: SKATR dataflow scheme.
In pretraining, SKATR attains an encoding through its pretraining schedule. In down-
stream regression, a frozen weight forward pass is performed on the regression train-
ing LC, and encoder ViT embedding is calculated. An average of the attention heads
yields the summary vector. Upon this summary, an MLP is trained to perform regres-
sion. In the case of scratch regression, an independent ViT is trained using the same
MLP structure to regress the six simulation parameters.

An overview of SKATR dataflow is shown in Fig. 6.

5.1.1 Model architecture

The goal of pretraining is to learn an encoding f✓ that produces informative representations
of the data without using any labels. The LCs pertain to a high-dimensional voxel space that
is expected to be highly compressible. We explore encoders that map to a low-dimensional
embedding space.

Different pretraining schedules are tried. The most rudimentary schedule we investigated
is SimSiam ??. It combines ideas from previous work in computer vision ?? into a uniquely
simple architecture. The largest problem to overcome is representation collapse in contrastive
learning. SimSiam solves this by employing two encoder networks on different views of the
data, where only one is trained. From this encoder, a smaller predictor maximizes the similarity
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between the two encodings. This preatraining schedule was ultimately abandoned as we did
not see successful downstream parameter regression.

To train the encoder, we adopt JEPA, a self-supervised learning framework developed in
unsupervised image [2] and more recently video [3] learning applications.

Figure 7: Scheme of SKATR pretraining and downstream simulation parameter re-
gression.

A scheme of SKATR pretraining is shown in Fig. 7. The setup involves two ViTs with identi-
cal architectures: a context encoder f✓ and a target encoder g� . In training, a LC (for simplicity
the batch is omitted) is divided into a set of N patches x = {xi}Ni=1 and a masked view x̃ is
generated by sampling a set of patch locations M to be dropped yielding

x̃ = {xi 2 x | i /2 M} . (11)

The masked and original LCs are embedded as context z̃ and target z representations by the
context encoder f✓ and target encoder g� respectively.

z̃ = f✓ ( x̃) , z = g�(x) . (12)

Given the context representation z̃, another transformer h predicts the target representation

p = h (z̃) . (13)

The above prediction is repeated four times for four different samples of masked views x̃ .
The loss function is the mean absolute error between p and z at the locations of the masked
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patches. In full, this reads

Lpretrain =

Æ
1
|M |
X

i2M

��gi
�(x)� hi

 ( f✓ ( x̃))
��
∏

pdata(x), ptransform( x̃ | x)
(14)

where ptransform( x̃ | x) is a distribution over possible masks of x . Given that the above loss is
not contrastive, there is a risk of representation collapse if Lpretrain is optimized with respect
to all sets of parameters ✓ ,�, [5]. To avoid this, only the context encoder and predictor
parameters are updated via gradient descent. The target encoder parameters � instead follow
the exponential moving average of the context encoder parameters ✓ ,

�i+1 = ⌧�i + (1�⌧)✓i , (15)

where ⌧ is a momentum hyperparameter controlling the rate at which the target encoder
follows the context encoder.

To get the masked views x̃ from the full LC patches x , multi-block patch masking is applied.
Out of the four predictions made per LC, two of the masked views are sampled from long-range
and two from short-range masks, following the general structure introduced in JEPA [3]. The
patches that compose a view x = {xi}Ni=1 correspond to the three-dimensional structure of the
LC. The masks are a union of Nblocks three-dimensional patch blocks in embedding space. One
set of block dimensions is sampled for a number of blocks according to the sampling mode:
The number of blocks and

• short-range: 8 blocks with spatial fraction 2 [0.1, 0.2]
• long-range: 2 blocks with spatial fraction 2 [0.6,0.8]

where the spatial fraction gives the fraction of patches to mask in the spatial dimensions. The
redshift dimension is masked entirely for both modes. The blocks pertain to a spatial aspect
ratio 2 [0.75, 1.5].
The masked patches are all set to the same value, which is initialized randomly and is a free
parameter during training. This allows the network to learn to distinguish masked patches
from informative ones by separating them in the embedding space.

5.1.2 Model training

Three foundation models were trained on 33250, 26000 and 18750 LCs of LRx5. In down-
stream regression the performance of these was nearly the same. As the model trained on
18750 retained the best regression results by a small margin, it was employed through. This
model was trained over 1000 epochs on the h100 GPU.The training took almost 5 days.

5.2 Architectures

5.2.1 ViT architectures

We use a ViT architecture for the encoders f✓ , g� and h using the x5 adaptation. The hy-
perparameters settled on are as follows. For the x2 variant patch dimensions of [7, 7,25] are
used and for the x5 variant [4, 4,10]. Regression performance is observed to be sensitive to
changes in the patch size. While the x2 variant uses a hidden dimension of 96, the x5 variant
uses a larger space of 144. The lower choice for the x2 variant is significant, as for higher
dimensions regression becomes unstable. The architecture depth is 2 for x2 and 4 for x5. The
depth did not have a significant influence on performance. The number of attention heads if
4 for both variants.
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5.2.2 CNN architectures

There are two architectures x2 and x5. The layer structure is seen in Fig. 8

z-stride

Figure 8: Schematic representation of the CNN architecture (adapted from Ref. [14]).
Layers of the network are shown in orange and red. The z-stride is given by the x2
and x5 architectures. The fourth dimension corresponding to the filter is not shown.
Instead, the number of filters is indicated above each layer. The Global Average
Pooling (GAP) is shown in purple.

The x2 variant summarized in Fig. 3 was robustly tested and optimized.

Layer Shape
Input Layer (70, 70, 1175, 1)
3x3x51 Conv3D (68, 68, 23, 32)
3x3x2 Conv3D (66, 66, 22, 32)
2x2x1 Max Pooling (33, 33, 22, 32)
3x3x2 Conv3D (31, 31, 21, 64)
1x1x0 Zero Padding (33, 33, 21, 64)
3x3x2 Conv3D (31, 31, 20, 64)
2x2x1 Max Pooling (15, 15, 20, 64)
3x3x2 Conv3D (13, 13, 19, 128)
1x1x0 Zero Padding (15, 15, 19, 128)
3x3x2 Conv3D (13, 13, 18, 128)
Global Average Pooling (128)
3x Dense with ReLu activations (128)
Dense (6)
Trainable Parameters: 636,838

Table 3: x2 CNN Architecture; see Fig. 8 for a schematic overview.

The x5 variant summarized in Fig. ?? was adapted only for data scaling studies. Hyperpa-
rameters were not explored. Only the z-stride was matched to match the dimension reduction
of the x2 variant in the first layer.

5.3 Simulation parameter regression

The simulation parameter regression is performed on an MSE loss. The data splits for the for
HR datasets are 75% training 10% validation and 15% testing. In the case of LR a dedicated
test set of 1000 LCs was used. The remaining LCs are split according to 75% training 10% val-
idation. In applying the foundation model to regression, the different operation modes intro-
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Layer Shape
Input Layer (28, 28, 470, 1)
3x3x20 Conv3D (26, 26, 23, 32)
3x3x2 Conv3D (24, 24, 22, 32)
2x2x1 Max Pooling (12, 12, 22, 32)
3x3x2 Conv3D (10, 10, 21, 64)
1x1x0 Zero Padding (12, 12, 21, 64)
3x3x2 Conv3D (10, 10, 21, 64)
2x2x1 Max Pooling (5, 5, 21, 64)
3x3x2 Conv3D (3, 3, 20, 128)
1x1x0 Zero Padding (5, 5, 20, 128)
3x3x2 Conv3D (3, 3, 18, 128)
Global Average Pooling (128)
3x Dense with ReLu activations (128)
Dense (6)
Trainable Parameters: 627,910

Table 4: x5 CNN Architecture; see Fig. 8 for a schematic overview.

duced in 3.3.2 are applicable. On early tests, we find that the free mode yields no performance
gain over the summary mode on regression. As the summary mode is both computationally
cheaper and more informative, it is used throughout. The summary vector is computed as a
mean over the context encoder f✓ attention heads to be of dimension of 144. In downstream
regression, this summary vector is calculated once for each LC with no training on the back-
bone. A fully connected MLP of shape [144,64, 64,6] is trained upon this summary to regress
the simulation parameters. Training is performed until the validation loss has not improved
for 40 epochs. Typical training times on an a30 GPU are 3 hours.
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6 Results

6.1 Data studies

To get a general overview of the data, the two datasets HR and LRx2 4.1 and their relevant
downsamples are studied. As a measure of the information content about the six simulation
parameters contained in the datasets, the ViT architectures 5.2.1 perform parameter regres-
sion. Training is performed as described in Sect. 5.3.

6.1.1 Dataset comparison

To investigate the effect of reducing the simulation resolution for the newly generated dataset
LRx2, it is compared against HRx2.

The six panels in Fig. 9 show the network predictions as a function of the true simula-
tion parameters. For better readability and to gain a measure for network uncertainty, the
parameter values are binned along the x-axis. The mean and standard deviation of the net-
work predictions in these binned intervals are displayed. The mean and deviation of the two
networks in each bin are offset slightly from one another to be able to distinguish them visu-
ally. The black diagonals indicate the ideal prediction curve. The subpanels show the mean
absolute relative error

MARE =
1
n

nX

i=1

����
truthi � predi

truthi

���� (16)

of predictions to the true parameters in each bin containing n samples. This error is asymmet-
rical, as observed in the mW DM panel. The horizontal dashed lines indicate the average of
this error and quantify the performance in the regression of each parameter.
On most parameters, the regression on LRx2 yields a more accurate prediction. This is re-
flected in the lower mean MARE as well as a lower prediction variance. This may be explained
by the larger data size of LRx2 which improves network training. A behaviour present in the
regression of all parameters is the ’prior window’ effect. A limited prior window given by the
sampling ranges of simulation parameters 4.1 leads to a biased prediction at the borders of
these windows. This results in the characteristic s-shape of the network predictions, where
parameter values at the low ends are overpredicted and values at the high end are under-
predicted. Depending on the parameter, different network behaviours are apparent, ranging
from an almost perfect regression to the presence of a significant fraction of outliers along
with degeneracies.

• Warm dark matter (WDM) mass mWDM
In HRx2, the network learns to regress mWDM to some degree for values Æ 3. In LRx2, the
network shows that it cannot learn this relationship because it provides a constant predic-
tion, regardless of the true simulation mWDM.Since it is learnt on dataHRx2 but not on LRx2,
the lower simulation resolution of LR means that it becomes uninformative for mWDM. This
may be due to mWDM being sensitive to small frequency scales [15] that aren’t resolved in
the lower resolution simulations. Removing mWDM along with ⌦m from the regression loss
has been shown to improve the regression of the remaining parameters [14]. As mWDM
contributes as a constant offset to the regression loss, the network effectively has one less
parameter to learn and is not forced to adjust its weights to compromise on other parame-
ters. This is also expected to contribute to the overall better regression on LRx2.

• Dark matter density parameter ⌦m; Specific X-ray luminosity LX; Ionization efficiency ⇣
Both datasets yield an accurate prediction in all parameters. The truth parameter values
mostly lie within network deviations. On LRx2, predictions are both more accurate and
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Figure 9: Comparing HRx2 (blue circles) to the lower simulation resolution dataset
LRx2 (red triangles) by scratch ViT simulation parameter regression.
The six panels show the network predictions as a function of the true simulation
parameters. Parameter values are binned along the x-axis. The mean and standard
deviation in each bin are displayed. The black diagonals indicate the ideal predic-
tion curve. The subpanels show the mean absolute relative error in each bin. The
coloured dashed lines indicate the mean in this error.
The warm dark matter (WDM) mass mWDM is only predicted in HRx2. The dataset
LRx2 is thus regarded to be uninformative of mWDM. The predictions on the other
parameters are more accurate on LRx2. The information lost due to the lower sim-
ulation resolution of LRx2 seems to be outweighed by the greater data size, as well
as not needing to regress mWDM. The loss of small-scale information may help the
network to more easily capture large-scale information relevant to the remaining five
parameters.
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have less variance. The dominating mismatch seems to be attributable to the prior window
effect.

• X-ray energy threshold for self-absorption by host galaxies E0
Both datasets yield the same regression behaviour, where predictions worsen for larger val-
ues. Scenarios of large E0 become indistinguishable [15] as radiation that does not escape
its host galaxy for a value of E0 will continue to be confined for greater values of E0.

• Minimum virial temperature Tvir
While in HRx2 Tvir is only robustly predicted for values ¶ 4.25, LRx2 yields an accurate
prediction all throughout with smaller deviations. Though the poor accuracy for Æ 4.25
was previously explained by a degeneracy with mWDM [15], it was robustly predicted on
HRx2.

Overall, the information lost due to the lower simulation resolution of LRx2 seems to be out-
weighed by the greater data size as well as not needing to regress mWDM. The loss of small-
scale information can make it easier for the network to capture large-scale information that
is relevant for the other five parameters. In the subsequent analysis, LRx2 will be regarded as
uninformative of mWDM.

6.1.2 Downsampling comparison

To understand the effect of downsampling the datasets, parameter regression on LRx2 and
LRx5 is compared.

The subpanels in Fig. 10¶ show that all predictable parameters are regressed more accu-
rately and confidently in the downsampled variant LRx5. While the higher resolution variant
LRx2 may contain information that is lost in downsampling, the information retained that is
relevant to regression is expected to be more densely distributed in the smaller voxel space.
This may make the loss landscape smoother, and thus training on it easier and more stable. As
training is on the order of four times faster on the x5-downsampled variations and predictions
are generally better, the downsamples will be used where possible in the following sections.

¶In this type of plot comparing model regression the scales incorrect and should be switched for E0 and Lx
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Figure 10: Comparing LRx2 (blue circles) to its downsampled variant LRx5 (red tri-
angles) by scratch ViT simulation parameter regression.
The six panels show the network predictions as a function of the true simulation
parameters. Parameter values are binned along the x-axis. The mean and standard
deviation in each bin are displayed. The black diagonals indicate the ideal predic-
tion curve. The subpanels show the mean absolute relative error in each bin. The
coloured dashed lines indicate the mean in this error.
Regression is more accurate and of lower variability on the downsampled variant
LRx5. By downsampling, the smaller voxel space is expected to be more densely pop-
ulated with information relevant to regression. This may make the loss landscape
smoother, and thus training on it easier and more stable.
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6.2 Architecture comparison

The adaptation 5.2.2 of the CNN architecture established in previous work on SKA simulation-
based inference [14] is compared against the ViT architecture 5.2.1. The benchmark task is a
regression of the simulation parameters. Training is performed as described in Sect. 5.3.

6.2.1 Regression performance

To most fairly compare the ViT architecture to Ref. [14] both networks are compared on the
x2 variants. This is because our ViT architecture is not optimized for the full resolution and
our adaptation of the CNN is only optimized for full resolution and x2-downsampled variants.

Figure 11: Comparing our adaptation of the original CNN architecture [14] (blue
circles) and ViT (red triangles) architectures by simulation parameter regression on
the downsampled variant HRx2.
The six panels show the network predictions as a function of the true simulation
parameters. Parameter values are binned along the x-axis. The mean and standard
deviation in each bin are displayed. The black diagonals indicate the ideal prediction
curve. The subpanels show the mean absolute relative error in each bin. The coloured
dashed lines indicate the mean in this error.
The ViT consistently makes more accurate predictions with lower variability than
the CNN. The networks show the same predictive behaviours across the different
parameters.

The regression behaviour of the CNN and ViT network seen in Fig. 11 largely show the
same success and failure modes discussed previously 6.1.1. The ViT consistently makes more
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accurate predictions with lower variability than the CNN. The mean MARE in five of the six
parameters is lower, and variations turn out smaller.

6.2.2 Data scaling

To study the scaling behaviour of the two architectures with growing data size, networks are
trained on regression on the x5-downsampled variant LRx5 with varying training set sizes.
Due to the high computational cost of training a batch of networks, the study is performed
on the x5-downsampled variant LRx5. The high-resolution dataset HRx5 was not selected as it
contains approximately 7x fewer LCs and therefore does not allow a sufficiently large range of
data sizes to be analysed. As mentioned in the previous section 6.2.1, this comparison is not
entirely fair, since the x5 CNN architecture adaptation was not optimized fully 5.2.2. As the
optimization of the architecture is expected to affect the networks independent of training set
size, the scaling behaviour should still be observable but can not be compared to the ViT in
absolute terms.

In Fig. 12 the data scaling behaviour of the CNN and ViT architecture is shown. The mean
of the normalized absolute error

NAE =

Pn
i=1

��truthi � predi

��
Pn

i=1 |truthi |
(17)

in parameter, prediction is shown as a function of the number of training set LCs. The data
points indicate the mean and standard deviation of a minimal ensemble of three independently
trained networks. The dotted lines indicate a polynomial fit intended to approximate the
scaling behaviour. The difference in the NAEs between the two architectures can be considered
constant across the training set sizes and points to the same scaling behaviour. Increasing
the data size improves performance most when only a few training LCs are available. This
improvement plateaus but remains observable until the maximum number of roughly 33k
training LCs is reached.
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Figure 12: Comparing data scaling behaviour of CNN (blue circles) and ViT (red tri-
angles) networks on simulation parameter regression on the downsampled variant
of the large dataset LRx5.
Each mean normalized absolute error (NAE) in parameter prediction is shown as a
function of the number of training set LCs. The data points indicate the mean and
standard deviation of three networks. The dotted lines indicate a polynomial fit in-
tended to approximate the scaling behaviour.
The difference in the NAEs between the two architectures can be considered constant
across the training set sizes and points to the same scaling behaviour. Increasing the
amount of data improves performance the most when only a few training LCs are
available. This improvement plateaus but remains observable until the maximum
number of training LCs available is reached. The absolute NAEs are not considered
representative, as the CNN adaptation is not fully optimised for x5 downsample vari-
ants.
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6.3 SKATR summary

The behaviour of the SKATR 5.1 summary is investigated in various contexts. Comparisons are
made on the regression of simulation parameters in reference to the ViT architecture previously
shown to outperform the CNN architectures 6.2.1. Downstream SKATR regression is performed
as introduced in Sect. 5.3, where a fully connected MLP is trained on the SKATR summary
vector. The ViT 5.2.1 trained from scratch gives the baseline performance and shares the same
architecture as the SKATR encoder networks. As SKATR foundation models are only available
for employment on the x5 dataset variants, these will be used throughout. The test split is
independent of both downstream and pretraining splits.

6.3.1 Regression performance

SKATR is first employed on LRx5, the largest dataset and the same it was pretrained on.

In Fig. 13, the SKATR summary is compared against the scratch ViT. It is observed that the
Downstream SKATR summary regression matches the scratch ViT network in all parameters
up to marginal differences except for the specific X-ray luminosity LX. In the Specific X-ray
luminosity LX the SKATR summary is slightly less predictive of truth parameters. The networks’
regression prediction behaviours are similar on all parameters. The near match in performance
suggests that the SKATR summary is as informative of the regression parameters as the high-
dimensional freely trained scratch ViT embedding. Since the backbone weights are frozen in
downstream training, it can be concluded that SKATR has learned to summarize LCs into a
nearly fully informative summary.
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Figure 13: Comparing downstream on the SKATR summary (red triangles) regres-
sion performance on LRx5 parameter regression against the scratch ViT (blue circles).
SKATR encoders and the ViT share the same architectures. Regression training is per-
formed on the same dataset as SKATR pretaining 5.1.
The six panels show the network predictions as a function of the true simulation
parameters. Parameter values are binned along the x-axis. The mean and standard
deviation in each bin are displayed. The black diagonals indicate the ideal predic-
tion curve. The subpanels show the mean absolute relative error in each bin. The
coloured dashed lines indicate the mean in this error.
Downstream SKATR summary regression matches the scratch ViT network up to
marginal differences in all parameters except for the specific X-ray luminosity LX.
Network behaviours are similar on all parameters. The SKATR summary can be con-
sidered nearly as informative of the regression parameters as the scratch ViT embed-
ding.
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6.3.2 Data efficiency

In this section, the data efficiency of the SKATR summary is investigated. The number of train-
ing LCs available for downstream/scratch training is varied to study the impact of restricted
data availability. A minimal ensemble of three networks is trained at each data size. On these,
the mean model performance and its standard deviation are calculated.

6.3.2.1 Pretraining dataset

Networks are trained on LRx5, the same dataset as used during SKATR pretraining.

Figure 14: Comparing data efficiency of the SKATR summary downstream (red trian-
gles) on the basis of regression performance on LRx5 parameter regression against the
scratch ViT (blue circles). SKATR encoders and the ViT share the same architectures.
Regression training is performed on the same dataset as SKATR pretaining 5.1.
The mean normalized absolute error (NAE) in parameter prediction is shown as a
function of the number of training set LCs. The data points indicate the mean and
standard deviation of three networks. The dotted lines indicate a polynomial fit in-
tended to approximate the scaling behaviour.
The downstream SKATR summary performs significantly better when only a few hun-
dred LCs are available. This gap shrinks with increasing data size. The SKATR sum-
mary requires fewer training LC examples.

As seen in Fig. 14 the summary network yields better performance for low data availability
and is matched by the scratch model as the number of regression training LCs increases. The
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difference is most pronounced with a number of training LCs in the order of a few hundred, but
remains up to Æ 25000 training LCs. In this regime, the pretraining schedule has effectively
given the SKATR summary many more views of the data. The SKATR summary thus requires
fewer LC examples to attain the same predictive power as the scratch ViT.

As seen in the parameter-wise data efficiency of the SKATR summary 15, the previously
observed 6.3.1 deficiency in the prediction of LX is observed. It is apparent that this predictive
deficiency is small but is shown by the network variance to be statistically significant. Thus,
the SKATR summary is not as informative of LX as the scratch ViT embedding.

6.3.2.2 Transfer learning

To study the robustness of the SKATR summary, the comparison made in the previous section
is repeated on the high simulation resolution dataset HRx5. Contrary to the SKATR pretraining
dataset LRx2, the HR dataset is informative of the WDM mass mWDM 6.1.1 and is thus struc-
turally distinct from the pretraining dataset. Furthermore, SKATR pretraining did not include
the mock noise present in HRnoise. This enables the study of the effect of realistic detector
influences on the SKATR summary. These two structural differences in the data set are used to
investigate how the summary performs in transfer learning when confronted with a structure
that has not been shown before.

The parameter wise SKATR summary data efficiency on HRx5 shown in Fig. 16 reflects the
previously observed structure in all parameters up to the WDM mass mWDM. Downstream
SKATR summary regression matches the scratch ViT network up to marginal differences in
these parameters, including the previously observed deficiency in the prediction of LX 6.3.2.1.
Notably, the downstream SKATR summary learns mWDM, which the pretraining dataset LRx5
was not informative of. It can be concluded that the SKATR summary can transfer what it has
learned in pretraining to the newly apparent parameter mWDM.
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Figure 15: Comparing parameter-wise data efficiency of the SKATR summary down-
stream (red triangles) on the basis of regression performance on LRx5 parameter re-
gression against the scratch ViT (blue circles). SKATR encoders and the ViT share the
same architectures. Regression training is performed on the same dataset as SKATR
pretraining 5.1.
The six panels show the normalized absolute error in parameter prediction as a func-
tion of the number of training LCs. The data points indicate the mean and standard
deviation of three networks. The dotted lines indicate a polynomial fit intended to
approximate the scaling behaviour.
The previously observed 6.3.1 deficiency in the prediction of LX is observed and
shown to be statistically significant. In this parameter, the SKATR summary is not
as informative as the scratch ViT embedding.
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Figure 16: Comparing parameter-wise data efficiency of the SKATR summary down-
stream (red triangles) on the basis of regression performance on HRx5 parameter
regression against the scratch ViT (blue circles). SKATR encoders and the ViT share
the same architectures. The regression training dataset HRx5 is distinct from the
dataset LRx5 used in SKATR pretraining 5.1. In particular, HRx5 is informative of the
mWDM while LRx5 is not 6.1.1.
The six panels show the normalized absolute error in parameter prediction as a func-
tion of the number of training LCs. The data points indicate the mean and standard
deviation of three networks. The dotted lines indicate a polynomial fit intended to
approximate the scaling behaviour.
Downstream SKATR summary regression matches the scratch ViT network up to
marginal differences in all parameters, except for the previously observed deficiency
in the prediction of LX 6.3.2.1. Importantly, this includes mWDM, which the SKATR
pretraining dataset was not informative of. It can be concluded that the SKATR sum-
mary can transfer what it has learned in pretraining to the newly apparent parameter
mWDM. 30
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Figure 17: Comparing parameter-wise data efficiency of the SKATR summary down-
stream on HRx5 (red triangles) and HRnoise

x5 (blue circles) on the basis of regression
performance. The regression training dataset HRnoise

x5 is distinct from the dataset
LRx5 used in SKATR pretaining 5.1. In particular, HRnoise

x5 is both informative of the
mWDM 6.1.1 and contains mock noise 4.1 where LRx5 does not satisfy either aspect.
The six panels show the normalized absolute error in parameter prediction as a func-
tion of the number of training LCs. The data points indicate the mean and standard
deviation of three networks. The dotted lines indicate a polynomial fit intended to
approximate the scaling behaviour.
The Downstream SKATR summary predictions show different behaviours on the
noised dataset HRnoise

x5 . On Tvir the predictions are worse or equal for all data sizes.
On ’E0’, LX and ⇣ the predictions are better for few LCs and worse for many. In the
case of mWDM and ⌦m the predictions are improved all throughout. On average, the
predictions are of similar quality as the unnoised dataset HRx5. It can be concluded
that the SKATR summary exhibits a structure that is robust to learning noise.
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In Fig. 17 the SKATR summary parameter regression is compared between the unnoised
dataset HRx5 and its noised variant HRnoise

x5 . The summary exhibits a different behaviour on
the noised dataset. For the minimum virial temperature Tvir the predictions are worse or
equal for all data sizes. For the X-ray energy threshold of self-absorption by host galaxies E0’,
the predictions for the specific X-ray luminosity LX and the ionisation efficiency ⇣ are better
for a few LCs and worse for many. In the case of WDM mass mWDM and the dark matter
density parameter ⌦m predictions are improved all throughout. A tentative explanation for
these discrepancies is that adding noise reduces the information about small-scale structures.
As certain parameters are more sensitive to small- and others to large-scales, the accuracy
on parameters more sensitive to small-scales would decrease. Yet despite the WDM mass
mWDM being more sensitive to small-scale information [14] it is predicted more accurately in
the noised dataset HRnoise

x5 . A more refined explanation poses that the loss of information is
redshift-dependent as the strength in added noise increases with redshift. Thus, more small-
scale information is lost with growing redshift. This results in a disproportionate increase in
the predictive power of large-scales for high redshifts (and a disproportionate decrease in the
predictive power of small-scales for high redshifts). On average, the predictions are of similar
quality as the unnoised dataset HRx5. It can be concluded that the SKATR summary exhibits a
structure that is robust to learning the noise modelled after realistic detector influences present
in HRnoise

x5 .
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7.1 Summary

The foundation model SKATR is successfully developed and deployed on 21cmFast noised LCs.
The database of simulated LCs is expanded and investigated using simulation parameter re-
gression. The ViT architecture used in SKATR is shown to outperform the CNN used in previous
work. The SKATR summary is shown to yield an informative representation of the LCs that is
robust to learning LC effects not seen during pretraining.

The data studies showed that dataLRx2 is uninformative of mWDM. The information lost
due to the lower simulation resolution of dataLR seems to be outweighed by the greater data
size as well as not needing to regress mWDM. The loss of small-scale information may help the
network to more easily capture large-scale information relevant to the remaining five parame-
ters. It is shown that parameter regression on downsampled LCs is more accurate and of lower
variability. In downsampling, the smaller voxel space is expected to be more densely popu-
lated with information relevant to regression. This may make the loss landscape smoother,
and thus training on it easier and more stable.
Comparing CNN to ViT architectures shows the same predictive behaviour. The ViT consis-
tently makes more accurate predictions with lower variability than the CNN. This justifies the
adoption of ViT architectures as the encoders used in SKATR. Increasing the number of train-
ing LCs improves performance most when few training LCs are available. This improvement
plateaus but remains observable until the maximum number of roughly 33k training LCs is
reached. Thus, a further expansion of the database is expected to increase accuracy in simu-
lation parameter regression.
The SKATR summary is examined on the available data in various regression regimes. For
unnoised LCs, the summary retains a LC representation fully informative of the simulation pa-
rameters, except for a slight decrease in predictive power on the specific X-ray luminosity LX.
The summary data efficiency for LCs taken from the same low-resolution dataset as used for
pretraining is found to be statistically significant for Æ 25000 downstream training LCs. The
summary is shown to learn new structures not present in pretraining LCs. By taking advantage
of the low-resolution pretraining LCs not being informative of mWDM the summary is shown to
fully learn the mWDM parameter despite it being absent in pretraining. The summary exhibits
a qualitatively different behaviour on noised LCs. Compared to the unnoised LCs, some pa-
rameters are predicted more and others less robustly, depending on the number of regression
training LCs. Explaining this discrepancy by certain parameters being more sensitive to small-
and others to large-scale structures is inconsistent. In the case of mWDM small-scale informa-
tion is more relevant, yet it is predicted more accurately in the noised LCs. Overall, noised
LC predictions are of comparable accuracy as unnoised LCs. Consequently, SKATR is shown
to retain a 144-dimensional informative summary of 21cmFAST light cones (LCs), accounting
for realistic noise modeled after SKA detector influences.

7.2 Outlook

There are many possible avenues for foundation models on SKA data. Firstly, there are several
ways of improving the current model performance.

Though in early tests, the SKATR free model showed no improvement over the SKATR
summary in parameter regression, no firm restriction was attained on the validity of the free
model. Reasons as to why the free model currently does not show at least equal performance
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to the summary should be investigated in more detail. While scratch training continues to yield
better regression past 33k light cones, pre-training seems to plateau after 15k LCs. This might
be due to the summary’s low dimensionality. For long pretraining epochs, a higher-dimensional
summary given by the ViT encoder hidden dimension may yield an improvement as it gives
the model a larger encoding space to retrain information. Currently, the summary is a simple
mean of the attention heads. More sophisticated summary schedules could be explored to
retain more information contained in the heads. As pretraining is expected to profit more from
data size than the downstream task, this indicates that pretraining could be optimized further.
Pre-training hyperparameters, such as different masking schedules, could be investigated more
quantitatively. Furthermore, additional augmentations could be explored. Noise has already
been shown to improve performance on some simulation parameters. This effect could be
used to attain an improved representation during pretraining. Preprocessing that employs a
clamping of large and negative LC values using the function

T (x) = sgn(x) · log (|x |+ 1) , (18)

was observed to yield better regression performance, but was not adopted for the final results.
The interpretability of the informative SKATR summary attained is an area of particular po-
tential. Summary studies could investigate the structure retained in the summary vector. For
example, a visualization of the summary could identify clusters or correlation. Certain parts
of the summary vector could be identified to correlate with regressing a certain simulation
parameter.
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