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Abstract

The search for possible sneutrino-antisneutrino oscillations lead to a vi-
able point in the the parameter space of the (𝐵 − 𝐿)SSM extension of the
MSSM. For this parameter set 𝑍′ → 𝑒+𝑒− events in proton-proton colli-
sions at a center-of-mass energy of 13 TeV are analysed. By extrapolation to
higher masses a 𝑍′ resonance could be excluded at 95 % confidence level for
masses less than 3.2 TeV for a luminosity of 20 fb−1, 3.9 TeV for 100 fb−1,
and 5.4 TeV for 3000 fb−1 in the dielectron channel.

Zusammenfassung

Die Suche nach Sneutrino-Antisneutrino-Oszillationen im (𝐵 − 𝐿)SSM
führte zu einem Set von Parametern, für welche nun der 𝑍′ Zerfall in Elektron-
Positron-Paare untersucht wird. Dazu werden Protonen betrachtet, die bei
einer Schwerpunktsenergie von 13 TeV kollidieren. Mit einer Sicherheitswahr-
scheinlichkeit von 95 % konnte eine 𝑍′ Resonanz unter 3.2 TeV für eine Lu-
minisität von 20 fb−1, unter 3.9 TeV für 100 fb−1 und unter 5.4 TeV für
3000 fb−1 ausgeschlossen werden.

i



Contents
1 Introduction 1

2 Theoretical Background 3
2.1 The Standard Model and its Symmetry Groups . . . . . . . . . . . . 3
2.2 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Mass Spectrum of the MSSM . . . . . . . . . . . . . . . . . . 6
2.2.2 𝑅-parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 EWSB in the MSSM . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 SUSY Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 The 𝐵 − 𝐿 Supersymmetric Standard Model 10
3.1 Particle Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 SUSY Breaking and GUT Scale Boundary Conditions . . . . . . . . . 11
3.3 Right-handed Sneutrino-antisneutrino Oscillation . . . . . . . . . . . 12

3.3.1 The Chargino Chain . . . . . . . . . . . . . . . . . . . . . . . 12

4 Parameter Space 14
4.1 Expansion of the GUT Input Parameter Set . . . . . . . . . . . . . . 14
4.2 Search of a Parameter Set for the Chargino Chain . . . . . . . . . . . 14
4.3 𝑍′ Mass Dependance of the Benchmark Point . . . . . . . . . . . . . 16

5 Event Analysis 20
5.1 Dielectron Event Generation: Simulation of Signal and Background . 20
5.2 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 The Significance of a Signal and CL𝑠 Limits . . . . . . . . . . . . . . 24
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Conclusion 33

References 34

ii



1 Introduction
The Standard Model (SM), describing fundamental particles and their interactions,
has become a well-tested physics theory. Within its domain the SM successfully
explains and precisely predicts a wide variety of experimental results. However,
there are phenomena which cannot be explained by the Standard Model. It neither
includes a quantum theory of gravity nor dark matter. For instance, according to
cosmology only a small fraction of the universe’s total energy is made up by SM par-
ticles. Also the SM does not provide enough CP violation to explain the baryonic
matter-antimatter asymmetry of the universe. Further, the hierarchy problem and
experimentally observed neutrino oscillations cannot be explained in the SM where
neutrinos are massless [8, 19].

Supersymmetry (SUSY) is an approach that unifies the gauge couplings, solves
the hierarchy problem, provides a candidate for dark matter and explains elec-
troweak symmetry breaking (EWSB). However, there is no evidence for SUSY yet.
In addition, there are still problems that SUSY cannot address such as neutrino
masses, the strong CP problem and the 𝜇 problem. Therefore, the relevance of
exploring non-minimal SUSY extensions is rising. In this work we will introduce
the (𝐵 − 𝐿) Supersymmetric Standard Model (BLSSM) that contains an additional
𝑈(1)𝐵−𝐿 gauge group. It uses right-handed sneutrino fields to provide a solution for
the existence and smallness of left-handed neutrino masses and also includes a dark
matter candidate. With the availability of higher energies in experiments, e.g. at
the Large Hadron Collider (LHC), the production of new particles and thus evidence
for an extension of the SM is expected [19].

The impetus for this project is the paper “Right-handed sneutrino-antisneutrino
oscillations in a TeV scale supersymmetric 𝐵 − 𝐿 model” by Elsayed et al. [15].
Therein they discussed prospects of examining SUSY partners of the right-handed
neutrino in the BLSSM. Elsayed et al. proposed two decay chains that could probe
sneutrino oscillations. The motivation for these channels is their non-vanishing sig-
nals in a detector. While the paper assumed that a pure sample of sufficient size
of these chains could be extracted from the LHC data, it proved difficult to find a
valid point in the parameter space of the BLSSM that would allow such events.

One of the decay chains examined by Elsayed et al. contains a 𝑍′ as an interme-
diate state. The 𝑍′ is a boson arising from the additional symmetry group in the
BLSSM. As the ATLAS detector at the LHC searches for high-mass resonances de-
caying to dielectron or dimuon final states, it is interesting to study these decays for
the 𝑍′ in the BLSSM. In this Bachelor thesis 𝑍′ → 𝑒+𝑒− processes will be analysed
for a parameter set originally aimed on sneutrino oscillation phenomenology. Fur-
ther, we will calculate exclusion limits for the 𝑍′ mass and thus restrict the BLSSM.

The work is organized as follows: An overview over the SM and the MSSM is
given in Section 2 followed by an outline of the BLSSM in Section 3. Therein, the
common parameters of the MSSM and the BLSSM are presented since in Section 4
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the parameter space of the BLSSM is considered without universal soft supersym-
metry breaking terms. Then we will present the analysis of 𝑍′ to dielectron decays
in Section 5 where we introduce the CL𝑠 method to calculate exclusion limits on the
𝑍′ mass. Finally, we will briefly summarize and give an outlook.
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2 Theoretical Background
In this section we will first consider the SM and then go over to the MSSM as an
extension of the SM that realizes supersymmetry.

In particle physics, quantum mechanical models of subatomic particles are con-
structed with a quantum field theory, i.e. a field characterized by quantum oper-
ators. Particles are then treated as excited states of an underlying physical field.
The SM describes electromagnetic, weak and strong interaction by quantum gauge
theories. Gauge theories are field theories, in which the Lagrangian is invariant un-
der a continuous group of local transformations. These gauge transformations form
a Lie group which is referred to as the symmetry group or the gauge group of the
theory. Associated with the group is the Lie algebra of group generators whereby
each group generator corresponds to a gauge field with quantum states, so-called
gauge bosons.

2.1 The Standard Model and its Symmetry Groups
The SM includes 17 fundamental particles which can be divided into fermions and
bosons. Fermions have half-integer spin and occur in two basic types called quarks
and leptons, which are the building blocks of matter. Bosons have integer spin and
two kinds exist in the SM. Gauge bosons have spin 1 and are responsible for medi-
ating forces whilst the Higgs boson has spin 0 and gives mass to the fundamental
particles. The elementary particles of the SM are shown in Figure 1. The fermions
occur in three generations with two types each.

Figure 1: Elementary particles of the SM. Image taken from [14].
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The SM describes three (of the four) known forces, each mediated by gauge
bosons as force carrier: electromagnetism by photons, the weak force by 𝑊 ± and 𝑍
bosons, and the strong force by gluons. Not included is the gravitational force. With
these forces interactions between the different groups of particles can be described.
The strength of a force is given by the so-called coupling constant, a dimensionless
number determined by the charge of a force. The fine structure constant

𝛼𝑒 = 𝑒2

4𝜋ℏ𝑐 ≈ 1
137 (2.1)

provides a measure for the electromagnetic force. In analogy, colour charge de-
termines a coupling constant 𝛼𝑠 for the strong force and weak charge a coupling
constant 𝛼𝑊 for the weak force. The strong coupling has magnitude of order 1
for hadrons and decreases at smaller distances, whereas the weak coupling is in the
order of 1/30 [18]. If we consider colour charge and include antiparticles, there are
61 particles in total as demonstrated in Table 1.

Types Generations Antiparticle Colours Total
Quarks 2 3 Pair 3 36
Leptons 2 3 Pair 0 12
Gluons 1 1 Own 8 8
𝑊 boson 1 1 Pair 0 2
𝑍 boson 1 1 Own 0 1
Photon 1 1 Own 0 1
Higgs 1 1 Own 0 1

61

Table 1: Full particle content of the SM

The gauge group of the SM is

𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 (2.2)

Here 𝑆𝑈(3)𝐶 represents the strong force since gluons are gauge bosons of the sym-
metry group 𝑆𝑈(3) and carry color charge indicated by the index 𝐶. The gauge
structure 𝑆𝑈(2)𝐿×𝑈(1)𝑌 unifies electromagnetic interactions and weak interactions
where the 𝑌 stands for the weak hypercharge. The reason for the index 𝐿 is that left-
handed fermions transform under both 𝑆𝑈(2)𝐿 and 𝑈(1)𝑌 , whereas right-handed
fermions only transform under 𝑈(1)𝑌 . Due to massless neutrinos in the SM there
is no right-handed state of the neutrino. Hence, leptons appear as shown in Table 2.

In the unbroken electroweak theory the gauge fields are an isotriplet of 𝑊𝜇 for
𝑆𝑈(2)𝐿 and a singlet 𝐵𝜇 for 𝑈(1)𝑌 which lead to the massless gauge bosons 𝑊 +,
𝑊 −, 𝑊 0 and 𝐵0. However, interactions with the Higgs field give rise to sponta-
neous symmetry breaking, also called electroweak symmetry breaking (EWSB). As
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weak isospin doublets weak isospin singlets

(𝜈𝑒
𝑒 )

𝐿
(𝜈𝜇

𝜇 )
𝐿

(𝜈𝜏
𝜏 )

𝐿
𝑒𝑅, 𝜇𝑅, 𝜏𝑅

( ̄𝑒
̄𝜈𝑒
)

𝑅
( ̄𝜇

̄𝜈𝜇
)

𝑅
( ̄𝜏

̄𝜈𝜏
)

𝑅
̄𝑒𝐿, ̄𝜇𝐿, ̄𝜏𝐿

Table 2: Lepton sector in the SM

a consequence, gauge and fermion fields obtain masses and a new neutral scalar par-
ticle appears, the Higgs boson. Mixing of the 𝑊 0 and the 𝐵0 result in the massless
gauge boson 𝛾 and the massive gauge boson 𝑍. Altogether, we get one massless
gauge boson 𝛾, three massive gauge bosons 𝑊 +, 𝑊 −, 𝑍 and the Higgs boson 𝐻.

EWSB further leads to mixing of quark flavours, also known as generation mix-
ing. Here, the weak eigenstates become linear superpositions of the mass eigenstates.
With 𝑑′

𝐿, 𝑠′
𝐿, 𝑏′

𝐿 being combinations of 𝑑𝐿, 𝑠𝐿, 𝑏𝐿, the states can be written as dis-
played in Table 3.

weak isospin doublets weak isospin singlets

( 𝑢
𝑑′)

𝐿
, ( 𝑐

𝑠′)
𝐿

, ( 𝑡
𝑏′)

𝐿
𝑢𝑅, 𝑐𝑅, 𝑑𝑅; 𝑡𝑅, 𝑠𝑅, 𝑏𝑅

(
̄𝑑

�̄�′)
𝑅

, ( ̄𝑠
̄𝑐′)

𝑅
, ( �̄�

̄𝑡′)
𝑅

�̄�𝐿, ̄𝑐𝐿, ̄𝑑𝐿; ̄𝑡𝐿, ̄𝑠𝐿, �̄�𝐿

Table 3: Quark sector in the SM

Because the SM does not include any 𝜈𝑅 fields, neutrinos cannot obtain mass
and mixing among the three massless neutrino states has no meaning. If the neu-
trino is massless, there is no need to for right-handed neutrinos and left-handed
antineutrinos [7].

2.2 Supersymmetry
The SM is completely successful for low-energy phenomena but a new framework
will be necessary at the Planck scale (≈ 10 ⋅ 1019 GeV), where gravitational effects
become important. Also the SM does not explain the mass spectrum, the reason
for three generations or the difference between the gauge couplings of strong and
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electroweak forces. It is assumed that there is a higher symmetry from a very large
mass scale 𝑀𝜒 onwards. One idea is that above 𝑀𝜒 all gauge couplings become the
same coupling 𝛼𝐺, while below 𝑀𝜒 spontaneous symmetry breaking results in sep-
arate couplings 𝛼𝑖 for the different groups. The Grand Unification Theory (GUT)
poses the idea that 𝑆𝑈(3), 𝑆𝑈(2) and 𝑈(1) are subgroups of a larger symmetry
group 𝐺 where quarks and leptons belong to the same multiplets. Attempts for a
realistic GUT include proposals such as 𝐺 = 𝑆𝑈(5) and 𝐺 = 𝑆𝑈(10). Unlike in
the SM, in supersymmetric models the gauge couplings can unify. Therefore, SUSY
might be a hint for a GUT [7, 22].

SUSY is an attempt to unify the treatment of particles with different spins.
Consequently, fermions and bosons are related to each other. Every fundamental
particle is associated with a so-called superpartner having similar properties but a
spin differing by 1/2. The partners are called sparticles and their names are shown
in Table 4. For fermions a prefix “s-” and for bosons a suffix “-ino” is added to the
original name. Due to symmetry breaking the photino, zino, winos and Higssinos
are not mass eigenstates [7].

Particle Spin Sparticle Spin
quark 𝑞𝐿, 𝑞𝑅 1

2 squark ̃𝑞𝐿, ̃𝑞𝑅 0
lepton ℓ𝐿, ℓ𝑅 1

2 slepton ̃ℓ𝐿, ̃ℓ𝑅 0
photon 𝛾 1 photino ̃𝛾 1

2
gluon 𝑔 1 gluino ̃𝑔 1

2
W boson 𝑊 1 wino �̃� 1

2
Z boson 𝑍 1 zino ̃𝑍 1

2
Higgs 𝐻 0 Higgsino �̃� 1

2

Table 4: Supersymmetric particles

2.2.1 Mass Spectrum of the MSSM

The simplest extension of the SM that realizes supersymmetry is the Minimal Su-
persymmetric Standard Model (MSSM). It can unify the gauge couplings, solve the
hierarchy problem, provide a candidate for dark matter and explain electroweak
symmetry breaking (EWSB). However, there are still aspects the MSSM cannot
address such as neutrino masses, the strong CP problem, and the 𝜇 problem.

Table 5 and Table 6 show the fundamental particles of the MSSM. For quarks
and leptons only the first generation is displayed. In Table 5 chiral supermultiplets
are labelled by their superfields. It is a standard convention to define all chiral
supermultiplets by left-handed fields. The multiplets of the right-handed fermions
are described by their charge conjugates, indicated by the superscript 𝑐. Capital
letters indicate 𝑆𝑈(2)𝐿-doublet chiral supermultiplets while small letters stand for
𝑆𝑈(2)𝐿-singlet chiral supermultiplets [22].
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Particle Spin 1
2 Sparticle Spin 0 𝑆𝑈(3)𝐶 𝑆𝑈(2)𝐿 𝑈(1)𝑌

�̂� (𝑢𝐿, 𝑑𝐿) (�̃�𝐿, ̃𝑑𝐿) 𝟑 𝟐 1
6

�̂�𝑐 quarks 𝑢𝑐 squarks �̃�𝑐 �̄� 𝟏 −2
3

̂𝑑𝑐 𝑑𝑐 ̃𝑑𝑐 �̄� 𝟏 1
3

�̂� leptons (𝜈𝑒, 𝑒𝐿) sleptons ( ̃𝜈𝑒, ̃𝑒𝐿) 𝟏 𝟐 −1
2

̂𝑒𝑐 𝑒𝑐 ̃𝑒𝑐 𝟏 𝟏 1

�̂�𝑢 Higgs (�̃�+
𝑢 , �̃�0

𝑢) Higgsinos (𝐻+
𝑢 , 𝐻0

𝑢) 𝟏 𝟐 1
2

�̂�𝑑 (�̃�0
𝑑 , �̃�−

𝑑 ) (𝐻0
𝑑 , 𝐻−

𝑑 ) 𝟏 𝟐 −1
2

Table 5: Chiral supermultiplets of the MSSM

Particle Spin 1 Sparticle Spin 1
2 𝑆𝑈(3)𝐶 𝑆𝑈(2)𝐿 𝑈(1)𝑌

gluon 𝑔 gluino ̃𝑔 𝟖 𝟏 0
𝑊 bosons 𝑊 ±, 𝑊 0 winos �̃� ±, �̃� 0 𝟏 𝟑 0
𝐵 boson 𝐵0 bino �̃�0 𝟏 𝟏 0

Table 6: Gauge supermultiplets of the MSSM

2.2.2 𝑅-parity

𝑅-parity is a symmetry introduced to distinguish SM particles and their superpart-
ners. Some supersymmetric Lagrangians are invariant under transformations of a
global 𝑈(1)𝑅 symmetry, which act differently on the component fields of the super-
fields. If the phase, which parametrizes the 𝑅 transformations, is restricted to 𝜋,
supersymmetry generators can either have 𝑅 charge +1 or −1. This is often referred
to as 𝑅-parity. SM particles have 𝑅 = 1 while their superpartners have 𝑅 = −1 [19].

𝑅-parity can be calculated with baryon number 𝐵, lepton quantum number 𝐿
and spin 𝑠:

𝑅 = (−1)3(𝐵−𝐿)+2𝑠 (2.3)

Under conservation of 𝑅-parity sparticles are always produced in pairs and they
decay, either directly or in a 𝑅-conserving cascade process, into a stable sparticle,
the lightest supersymmetric particle (LSP). Hence, the Universe must be filled with
LSPs. From cosmology we know that dark matter particles need to carry no electric
or color charge. If the LSP is neutral in this sense, it seems to be a viable candidate
for dark matter [22].

The MSSM is defined to conserve 𝑅-parity. This decision is motivated phe-
nomenologically by proton decay constraints and the hope that the LSP provides a
good candidate for dark matter. However, it is also possible that 𝑅-parity is broken
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or replaced by some other symmetry [22].

2.2.3 EWSB in the MSSM

As EWSB causes mixing of the Higgs and the gauge bosons in the SM, it also leads
to mixing of the Higgs bosons and the Higgsinos with the electroweak gauginos.

After EWSB, the complex Higgs doublets (𝐻+
𝑢 , 𝐻0

𝑢) and (𝐻0
𝑑 , 𝐻−

𝑑 ) form the
longitudinal modes of the 𝑊 +, 𝑊 −, 𝑍 vector bosons and the five mass eigenstates
ℎ0, 𝐻0, 𝐴0, 𝐻+, 𝐻−. The neutral Higgsinos �̃�0

𝑢, �̃�0
𝑑 and the neutral gauginos �̃�0,

�̃� 0 combine to four mass eigenstates called neutralinos: 𝜒0
𝑖 with 𝑖 = 1, 2, 3, 4.

The charged Higgsinos �̃�+
𝑢 , �̃�−

𝑑 and the winos �̃� +, �̃� − mix to two charged mass
eigenstates called charginos: 𝜒±

𝑖 with 𝑖 = 1, 2. By convention, these particles are
labelled in ascending order of their masses:

𝑚𝜒0
1

< 𝑚𝜒0
2

< 𝑚𝜒0
3

< 𝑚𝜒0
4

𝑚𝜒±
1

< 𝑚𝜒±
2

Neutralinos and charginos all have spin 1/2. Since the lightest neutralino 𝜒0
1 is the

LSP for a wide range of parameter space, it is a strongly favoured candidate for
dark matter in the MSSM [22].

2.2.4 SUSY Breaking

If SUSY were an exact symmetry of nature, sparticles would have the same mass as
their SM partners and should have been detected in experiments which is not the
case. Hence, SUSY must be a broken theory and the superpartners must have larger
masses than observable so far. Many mechanisms have been explored to explain how
MSSM superpartners obtain their mass. Two of the most popular ones are

1. Gravity Mediated SUSY Breaking (SUGRA), where gravity acts as the mes-
senger for SUSY breaking, and

2. Gauge Mediated SUSY Breaking (GMSB), where the transmission interaction
is the same gauge interaction of the SM.

Both of these theories assume the existence of a hidden sector, which is responsible
for the symmetry breaking, and an interaction transmitting the breaking to the vis-
ible sector [19].

Soft SUSY Breaking is a attempt to explain the mass differences between parti-
cles and their superpartners while preserving the coupling structure of the MSSM.
This is parametrized by the following Lagrangian

ℒsoft
MSSM = − 1

2 (𝑀1�̃��̃� + 𝑀2�̃��̃� + 𝑀3 ̃𝑔 ̃𝑔 + h.c.) (2.4)

− (�̃�𝑐𝑇𝑢�̃�𝐻𝑢 − ̃𝑑𝑐𝑇𝑑�̃�𝐻𝑑 − ̃𝑒𝑐𝑇𝑒�̃�𝐻𝑑 + h.c.) (2.5)
− 𝑚2

𝐻𝑢
|𝐻𝑢|2 − 𝑚2

𝐻𝑑
|𝐻𝑑|2 − 𝜇𝐵𝜇(𝐻𝑢𝐻𝑑 + h.c.) (2.6)

− �̃�∗𝐦𝟐
𝐐�̃� − �̃�∗𝐦𝟐

𝐋�̃� − (�̃�𝑐)∗𝐦𝟐
�̄��̃�𝑐 − ( ̃𝑑𝑐)∗𝐦𝟐

̄𝐝
̃𝑑𝑐 − ( ̃𝑒𝑐)∗𝐦𝟐

�̄� ̃𝑒𝑐 (2.7)
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𝑀1, 𝑀2 and 𝑀3 are the bino, wino and gluino bare mass terms. The scalar couplings
𝑇𝑢, 𝑇𝑑, 𝑇𝑒 are complex 3 × 3 matrices corresponding to Yukawa couplings, whereas
𝐦𝟐

𝐐, 𝐦𝟐
𝐋, 𝐦𝟐

�̄�, 𝐦𝟐
̄𝐝, 𝐦𝟐

�̄� are hermitian 3 × 3 matrices. 𝑚2
𝐻𝑢

, 𝑚2
𝐻𝑑

and 𝜇𝐵𝜇 are scalar
squared-mass terms, where 𝑚2

𝐻𝑢
and 𝑚2

𝐻𝑑
are real while the Higgs mass squared-

mass term is expressed in terms of the complex parameter 𝐵𝜇 and the higgsino mass
parameter 𝜇 [13].

This Lagrangian introduces in total 105 new parameters compared to the SM.
However, the hypothesis of soft supersymmetry breaking universality states that all
mass matrices are proportional to the unit matrix and that the scalar couplings are
proportional to their corresponding Yukawa matrix, i.e.

𝐦𝟐
𝐐 = 𝑚2

𝑄𝟙, 𝐦𝟐
𝐋 = 𝑚2

𝐿𝟙, 𝐦𝟐
�̄� = 𝑚2

�̄�𝟙, 𝐦𝟐
̄𝐝 = 𝑚2

̄𝑑𝟙, 𝐦𝟐
�̄� = 𝑚2

̄𝑒𝟙 (2.8)

𝑇𝑢 = 𝐴𝑢0𝐲𝐮, 𝑇𝑑 = 𝐴𝑑0𝐲𝐝, 𝑇𝑒 = 𝐴𝑒0𝐲𝐞, (2.9)

where the parameter 𝐴𝑖0 is called trilinear coupling. Furthermore, in the minimal
supergravity theory (mSUGRA) it is assumed that at GUT scale

1. soft-breaking scalar masses are universal

𝑚2
0 = 𝑚2

𝐻𝑑
= 𝑚2

𝐻𝑢
(2.10)

𝑚2
0 = 𝑚2

𝑄 = 𝑚2
𝐿 = 𝑚2

�̄� = 𝑚2
̄𝑑 = 𝑚2

̄𝑒 (2.11)

2. gaugino masses are universal

𝑀1/2 = 𝑀1 = 𝑀2 = 𝑀3 (2.12)

3. trilinear couplings are universal

𝐴0 = 𝐴𝑢0 = 𝐴𝑑0 = 𝐴𝑒0 (2.13)

This leads to five parameters: 𝑀1/2, 𝑚2
0, 𝐴0, 𝐵𝜇 and 𝜇. It is possible to express the

parameters 𝐵𝜇 and 𝜇 via tan 𝛽 and |𝜇|, where the former is defined as the ratio of
the Higgs vacuum expectation values (VEV):

tan 𝛽 ≡ ⟨𝐻0
𝑢⟩

⟨𝐻0
𝑑⟩ (2.14)

Therefore, the MSSM mass spectrum in the mSUGRA model is determined by four
unknown parameters and a sign:

𝑀1/2, 𝑚2
0, 𝐴0, tan 𝛽, sgn 𝜇 (2.15)

This model is also refered to as constrained MSSM (CMSSM) [17, 19, 22, 23].
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3 The 𝐵 − 𝐿 Supersymmetric Standard Model
The BLSSM is a 𝑅-parity conserving extension of the MSSM where an extra 𝑈(1)𝐵−𝐿
local gauge symmetry is postulated such that the full gauge group becomes

𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 × 𝑈(1)𝐵−𝐿 (3.1)

The invariance of the Lagrangian under this symmetry implies the existence of an
additional gauge boson beyond the SM ones, the mass eigenstate 𝑍′, and an extra
SM singlet scalar, the heavy Higgs. Besides, it is necessary to introduce three
singlet fermion fields due to anomaly cancellation conditions. These fermions are
called right-handed neutrinos 𝜈𝑅.

The 𝐵 − 𝐿 extension is motivated by two present observations: non-vanishing
neutrino masses and the observed baryonic asymmetry in the universe, presumably
due to CP violation. Both can be solved by introducing the right-handed neutrinos.
Furthermore, the additional particles in this model lead to interesting signatures
different from the SM results, which could be measured at the LHC [20].

3.1 Particle Content
Table 7 shows the particle content of the BLSSM. The superfield ̂𝜈𝑐 represents the
right-handed neutrinos. Moreover, two Higgs Superfields ̂𝜂 and ̂̄𝜂, called bileptons,
responsible for breaking the 𝐵 − 𝐿 symmetry are added [15].

Superfield Spin 1
2 Spin 0 Gen. 𝑆𝑈(3)𝐶 𝑆𝑈(2)𝐿 𝑈(1)𝑌 𝑈(1)𝐵−𝐿

�̂� 𝑄 �̃� 3 𝟑 𝟐 1
6

1
6

�̂�𝑐 𝑢𝑐 �̃�𝑐 3 �̄� 𝟏 −2
3 −1

6
̂𝑑𝑐 𝑑𝑐 ̃𝑑𝑐 3 �̄� 𝟏 1

3 −1
6

�̂� 𝐿 �̃� 3 𝟏 𝟐 −1
2 −1

2
̂𝑒𝑐 𝑒𝑐 ̃𝑒𝑐 3 𝟏 𝟏 1 1

2
̂𝜈𝑐 𝜈𝑐 ̃𝜈𝑐 3 𝟏 𝟏 0 1

2

�̂�𝑢 �̃�𝑢 𝐻𝑢 1 𝟏 𝟐 1
2 0

�̂�𝑑 �̃�𝑑 𝐻𝑑 1 𝟏 𝟐 −1
2 0

̂𝜂 ̃𝜂 𝜂 1 𝟏 𝟏 0 −1
̂̄𝜂 ̃̄𝜂 ̄𝜂 1 𝟏 𝟏 0 1

Table 7: Chiral superfields of the BLSSM

The extra gauge boson in the BLSSM is named 𝐵′. Analogous to EWSB, the
bosons 𝐵, 𝐵′ and 𝑊 0 mix to physical mass eigenstates 𝛾, 𝑍 and 𝑍′. Thus the
extra gauge boson is known as 𝑍′ and is coupled to SM fermions by non-vanishing
𝐵 − 𝐿 quantum numbers. Since the 𝑍′ could decay into a pair of leptons, there is
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a promising channel for searching it at the LHC.

Further, due to the presence of two Abelian gauge groups, 𝑈(1)𝑌 and 𝑈(1)𝐵−𝐿,
combined with the given particle content there is an additional effect called gauge
kinetic mixing. It does not exist in the MSSM or other SUSY models with only
one Abelian gauge group. One the one hand, gauge kinetic mixing leads to the
mixing of the complex Higgs doublets with the bileptons 𝜂, ̄𝜂. These four addi-
tional degrees of freedom from the bileptons become the longitudinal mode of the
𝑍′ and the mass eigenstates ℎ′, 𝐻′, and 𝐴0

𝜂. One the other hand, a mixing of the
MSSM neutralinos with the additional gauginos is induced, i.e. the mixing between
�̃�0

𝑑 , �̃�0
𝑢, �̃�0, �̃� 0, �̃�′, ̃𝜂, ̃̄𝜂. Thus, there are seven neutralinos in total now, refered to

as 𝜒0
𝑖 with 𝑖 = 1, … , 7 [4, 21, 23].

3.2 SUSY Breaking and GUT Scale Boundary Conditions
With the extra particles in the BLSSM the soft SUSY Breaking terms of the La-
grangian are

ℒsoft
BLSSM =ℒsoft

MSSM − �̃��̃�′𝑀𝐵𝐵′ − 1
2�̃�′�̃�′𝑀𝐵′ − 𝑚2

𝜂|𝜂|2 − 𝑚2
�̄�| ̄𝜂|2

− 𝐦𝟐
�̃�𝑖𝑗( ̃𝜈𝑐

𝑖 )∗ ̃𝜈𝑐
𝑗 − 𝜂 ̄𝜂𝜇′𝐵𝜇′ + 𝑇 𝑖𝑗

𝜈 𝐻𝑢 ̃𝜈𝑐
𝑖 �̃�𝑗 + 𝑇 𝑖𝑗

𝑥 𝜂 ̃𝜈𝑐
𝑖 ̃𝜈𝑐

𝑗 (3.2)

where 𝑖, 𝑗 are generation indices. 𝐵′
𝜇 and 𝐵𝜇 can be chosen to be real and again

mSUGRA motivated GUT scale boundary conditions can be assumed. For the new
SUSY-breaking terms this means:

𝑀𝐵′ = 𝑀1/2 (3.3)
𝐦𝟐

�̃� = 𝑚2
0𝟙 𝑚2

𝜂 = 𝑚2
�̄� = 𝑚2

0 (3.4)
𝑇𝑥 = 𝐴0𝑌𝑥 𝑇𝜈 = 𝐴0𝑌𝜈 (3.5)

At this scale off-diagonal terms are taken to be zero such that 𝑀𝐵𝐵′ vanishes.
Similar to the CMSSM, the parameters 𝐵𝜇, 𝐵𝜇′, 𝜇 and 𝜇′ can be rephrased by
tan 𝛽, tan 𝛽′, |𝜇| and |𝜇′|, where

tan 𝛽′ = ⟨𝜂⟩
⟨ ̄𝜂⟩

(3.6)

This leads to a free parameter set consisting of

𝑀1/2, 𝑚2
0, 𝐴0, tan 𝛽, tan 𝛽′, sgn 𝜇, sgn 𝜇′, 𝑀𝑍′, 𝑌𝑥, 𝑌𝜈 (3.7)

Additional parameters to the MSSM are the mass of the 𝑍′ as well as the Yukawa
matrices 𝑌𝑥 and 𝑌𝜈, where 𝑌𝜈 has been constrained by neutrino data and must be
very small compared to the other couplings in order to explain the light neutrino
masses. Further, we can take 𝑌𝑥 diagonal since it is possible to choose a basis such
that one of the Yukawa matrices is diagonal [21, 23].
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3.3 Right-handed Sneutrino-antisneutrino Oscillation
In the slepton sector, the SUSY Breaking term 𝑇 𝑖𝑗

𝑥 𝜂 ̃𝜈𝑐
𝑖 ̃𝜈𝑐

𝑗 in the Lagrangian leads
to a splitting of the sneutrino states into real (scalar) and imaginary (pseudoscalar)
parts. The result are 6 scalar states ̃𝜈𝑆 and 6 pseudoscalar states ̃𝜈𝑃 . In general,
the masses of scalar sneutrinos and pseudoscalar sneutrinos are different [21, 23].

While mixing between left- and right-handed sneutrinos is quite suppressed, be-
tween right-handed sneutrinos and right-handed antisneutrinos it seems plausible
considering the associated Yukawa couplings. Whereas ̃𝜈𝐿 and ̃𝜈∗

𝐿 are mass eigen-
states, there is mass splitting and mixing between the right-handed sneutrino ̃𝜈𝑅
and antisneutrino ̃𝜈∗

𝑅. The eigenvalues can be expressed as

𝑚2
̃𝜈𝑅1,2

= 𝑚2
̃𝜈𝑅

± Δ𝑚2
̃𝜈𝑅

(3.8)

where 𝑚2
̃𝜈𝑅

denotes the average heavy right-handed sneutrino squared mass given
by

𝑚2
̃𝜈𝑅

= 1
2(𝑚2

̃𝜈𝑅1
+ 𝑚2

̃𝜈𝑅2
) (3.9)

and Δ𝑚2
̃𝜈𝑅

stands for the mass splitting between the sneutrinos. The eigenstates
are then given by

̃𝜈𝑅1
= ̃𝜈𝑅 cos 𝛼 + ̃𝜈∗

𝑅 sin 𝛼 ̃𝜈𝑅2
= −𝑖( ̃𝜈𝑅 sin 𝛼 − ̃𝜈∗

𝑅 cos 𝛼) (3.10)

Here the mixing angle 𝛼 depends on the sneutrino and antisneutrino mass difference
Δ𝑚2

̃𝜈𝑅
. For the right-handed (left-handed) sneutrinos the mass splitting is charac-

terized by the size of the right-handed (left-handed) neutrino masses. Hence, the
mass splitting of right-handed sneutrinos is large and we can take 𝛼 = 𝜋

4 to obtain
the following mass eigenstates [15].

̃𝜈𝑅1
= 1√

2
( ̃𝜈𝑅 + ̃𝜈∗

𝑅) ̃𝜈𝑅2
= −𝑖√

2
( ̃𝜈𝑅 − ̃𝜈∗

𝑅) (3.11)

3.3.1 The Chargino Chain

While Elsayed et al. suggested two decay chains to analyse sneutrino oscillations
in [15], here only the one containing a 𝑍′ is considered and will be refered to as
chargino chain. It is shown in Figure 2. Requiring all intermediate states to be on
mass-shell constrains the mass spectrum as follows:

𝑀𝑍′ > 𝑀 ̃𝜈𝑅1,2
> 𝑀�̃�±

1
> 𝑀�̃�0

1
(3.12)

In this decay mode a 𝑍′ is produced by a quark-antiquark-pair in a proton-
proton-collision. Provided the aforementioned mass spectrum (3.12) it can decay
into two right-handed sneutrinos ( ̃𝜈𝑅1

and ̃𝜈𝑅2
). These can then produce a lepton

and a chargino. The latter can further decay into the lightest neutralino �̃�0
1, which
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𝑍′

̃𝜈𝑅1

̃𝜈𝑅2

�̃�±
1

�̃�∓
1

ℓ∓

�̃�0
1

𝑊 ±

ℓ±

�̃�0
1

𝑊 ∓

̄𝑞

𝑞

̄𝑞
𝑞

̄𝑞
𝑞

Figure 2: The chargino chain

we want to be the LSP, and a 𝑊 boson that can decay hadronically.

Since conservation of helicity applies to strong, weak and electromagnetic inter-
actions and holds in the relativistic limit, left-handed particles remain left-handed
and right-handed particles remain right-handed in scattering processes at high en-
ergies [9].

The eigenstates ̃𝜈𝑅1
and ̃𝜈𝑅2

are composed of equal combinations of ̃𝜈𝑅 and ̃𝜈∗
𝑅

as shown in (3.11) so they can decay into leptons or antileptons, i.e. into �̃�+
1 ℓ−

or �̃�−
1 ℓ+, with equal probability. Hence, the signal for the chargino chain consists

of a same- or opposite-sign lepton pair plus two quark jets and missing energy
for the LSPs. Signatures with same-sign leptons provide evidence for sneutrino-
antisneutrino oscillation. If there was no oscillation, the 𝑍′ would decay into ̃𝜈𝑅 ̃𝜈∗

𝑅
which would only lead to opposite-sign lepton pairs [15].
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4 Parameter Space
The parameter space of the BLSSM was explored in order to find a parameter set
that can produce the chargino chain and is allowed by theory. For numerical calcu-
lations SARAH [28, 29, 30] version 3.3.1 and SPheno [25, 26] version 3.3.3 were used.
The Mathematica package SARAH calculates vertices, mass matrices, renormalization
group equations (RGEs), and loop corrections as well as the source code for SPheno
for a given model. Then the mass spectrum and branching ratios of particle decays
can be derived with SPheno. Event analysis was carried out with MadGraph and
CheckMATE as will be presented in Section 5.

4.1 Expansion of the GUT Input Parameter Set
At first, we considered a scenario motivated by mSUGRA with the unknown param-
eters given in (3.7). However, this parameter set proved difficult for our purposes.
Attempts to find a suitable energy spectrum for the chargino chain while respecting
experimental constraints were not successful. The main problem with this set of
parameters was that the sneutrino masses could not be made small enough without
being in conflict with the Higgs boson mass 122 GeV < 𝑀ℎ < 131 GeV [2].

As a consequence, we expanded the mSUGRA inspired set of parameters by
allowing more of the GUT scale breaking terms to vary independently. While the
parameters 𝐴0, tan 𝛽, sgn 𝜇, 𝑀𝑍′ , tan 𝛽′ and sgn 𝜇′ were kept, 𝑚0 and 𝑀1/2 are
split into the parameters shown in Table 8. The expanded GUT input set then
provided sufficient freedom to find viable points in the parameter space.

GUT scale new
parameter parameter
𝑚0 𝑚𝑄

𝑚𝐿
𝑚𝐻𝑢
𝑚𝐻𝑑
𝑚 ̃𝜈
𝑚𝜂
𝑚�̄�

𝑀1/2 𝑀1 = 𝑀𝐵
𝑀2 = 𝑀𝑊
𝑀3 = 𝑀𝐺
𝑀𝐵′

Table 8: Expansion of the GUT parameters

4.2 Search of a Parameter Set for the Chargino Chain
First it was noticed that high values for the matrix elements of 𝑌𝑥 lead to small 𝑚2

̃𝜈
which would even become negative. A maximum acceptable value for degenerate 𝑌𝑥
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𝜈𝑅 𝜈𝐿 𝜒±
1 𝜒0

1 ℎ
𝑚𝑄 ⊗ ⊗ ○ ○ ⊘
𝑚𝐿 ⊗ ⊗ ○ ○ ⊘
𝑚𝐻𝑢

⊗ ⊘ ○ ○ ○
𝑚𝐻𝑑

⊗ ○ ○ ○ ○
𝑚 ̃𝜈 ⊗ ⊘ ○ ○ ○
𝑚𝐵 ⊘ ⊘ ⊗ ⊘ ○
𝑚𝑊 ⊗ ⊘ ⊗ ⊗ ○
𝑚𝐺 ○ ○ ⊘ ⊘ ⊘
𝑚𝐵′ ⊗ ⊗ ⊘ ⊘ ⊗
tan 𝛽 ○ ⊘ ⊘ ○ ⊘
tan 𝛽′ ⊗ ⊘ ○ ○ ○
𝐴0 ⊗ ○ ⊘ ⊘ ⊘

Table 9: Relationships between expanded GUT parameters and masses of chargino
chain spectrum. ⊗ describes sizeable, ⊘ small but noticeable, and ○ subtle influence.

matrix elements was found to be approximately 0.43. For the rest of the analysis
we set the Yukawa matrices diagonal and chose the following values:

𝑌𝑥 = ⎛⎜
⎝

0.43 0 0
0 0.1 0
0 0 0.43

⎞⎟
⎠

, 𝑌𝜈 = ⎛⎜
⎝

0.001 0 0
0 0.00025 0
0 0 0.0001

⎞⎟
⎠

, (4.1)

It is assumed that the four possible combinations of the signs of 𝜇 and 𝜇′ provide
physically equivalent mass spectra which are slightly shifted by other parameters.
Thus, in this study both signs were chosen to be positive, i.e. sgn 𝜇 = sgn 𝜇′ =
+1. Further, the 𝑍′ mass was set to be 2000 GeV. Then we used the remaining
parameters to find promising points in the parameter space.

In the first place, a parameter set satisfying the mass condition (3.12) was
searched for. Due to the fixed input 𝑀𝑍′ = 2000 GeV we looked for sneutrino
masses of less than 1000 GeV, chargino masses of 200 to 300 GeV and the lightest
neutralino being the LSP with a mass of approximately 100 GeV. It was hard to
obtain low enough masses of the sneutrinos and charginos while keeping the Higgs
mass higher than 124 GeV. Moreover, it posed difficulties to keep a mass difference
between the charginos and the neutralinos.

The main challenge while exploring the parameter space was that the parameters
are coupled to each other. For every point in the parameter space the dependency
of the masses on one certain parameter differs. Still, some general relationships were
be found. In the following, the parameters shall be discussed only in view of the
masses relevant in the chargino chain. However, saying that one parameter influences
a certain mass does not exclude the fact that it also influences other masses. Table 9
displays which parameters have a considerable impact on a particular particle mass.

After a region in the parameter space meeting the mass conditions was found,

15



branching ratios were also taken into account. The desired set should have high
branching ratios for decay modes to the chargino chain and small branching ratios
for other processes. A first benchmark point in the parameter space is given by the
input parameters shown in Table 10 producing the mass spectrum given in Table 11.
This point will be refered to as Set 1.0 and provide a basis for further analysis.

Looking at the scalar und pseudoscalar sneutrino masses in Table 11, we observe
the following:

𝑚( ̃𝜈𝑆
4 ) = 𝑚( ̃𝜈𝑃

2 )
𝑚( ̃𝜈𝑆

5 ) = 𝑚( ̃𝜈𝑃
3 )

𝑚( ̃𝜈𝑆
6 ) = 𝑚( ̃𝜈𝑃

4 )

These are the mass eigenstates ̃𝜈𝐿 as we know that no mass splitting occurs between
the left-handed sneutrinos.

Parameter Value

𝑀𝑍′ 2000 GeV
sgn 𝜇 1
sgn 𝜇′ 1
tan 𝛽 10.0001
tan 𝛽′ 1.30
𝑀𝐵 600 GeV
𝑀𝑊 480 GeV
𝑀𝐺 3000 GeV
𝑀𝐵′ 100 GeV
𝐴0 800 GeV
𝑚𝑄 3200 GeV
𝑚𝐿 1600 GeV
𝑚 ̃𝜈 400 GeV
𝑚𝐻𝑢

1100 GeV
𝑚𝐻𝑑

1520 GeV
𝑚𝜂 1100 GeV
𝑚�̄� 1520 GeV

Table 10: Parameter Set 1.0

4.3 𝑍′ Mass Dependance of the Benchmark Point
For this thesis, we studied 𝑍′ → 𝑒+𝑒− processes in the regime of Set 1.0. Fig-
ure 3 shows a scan of the parameter space in terms of 𝑀𝑍′ and tan 𝛽′ around the
benchmark point highlighted in red. White space displays the regions where no
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Particle Mass [GeV]

𝑍′ boson 𝑍′ 2000.00

Scalar sneutrinos ̃𝜈𝑆
1 424.11
̃𝜈𝑆
2 1473.73
̃𝜈𝑆
3 1473.73
̃𝜈𝑆
4 1609.10
̃𝜈𝑆
5 1616.06
̃𝜈𝑆
6 1616.08

Pseudoscalar sneutrinos ̃𝜈𝑃
1 441.63
̃𝜈𝑃
2 1609.10
̃𝜈𝑃
3 1616.06
̃𝜈𝑃
4 1616.08
̃𝜈𝑃
5 1861.97
̃𝜈𝑃
6 1861.97

Charginos 𝜒±
1 339.61

𝜒±
2 4045.78

Neutralinos 𝜒0
1 248.92

𝜒0
2 339.43

𝜒0
3 715.40

𝜒0
4 1669.91

𝜒0
5 2419.41

𝜒0
6 4044.95

𝜒0
7 4045.44

Higgs bosons ℎ0 128.48
𝐻0 366.98
ℎ′ 2835.20
𝐻′ 4196.10
𝐴0 2060.76
𝐴0

𝜂 4186.59
𝐻+ 4187.43

Table 11: Mass spectrum for Set 1.0
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valid spectrum could be calculated by SPheno because scalar masses squared be-
come negative or solutions to tadpole equations do not exist. The dark blue points
are allowed points in the parameter space. The resolution is 50 GeV in terms of the
𝑍′ mass and 0.01 for tan 𝛽′. For the original value tan 𝛽′ = 1.3 in Set 1.0, only
𝑍′ masses between 1300 GeV and 2200 GeV are valid as marked by the blue lines.
Consequently, we can vary 𝑀𝑍′ within this mass interval while keeping all other
parameters fixed and analyse corresponding 𝑍′ resonances.

Figure 3: Study of the expanded GUT parameter space in the 𝑀𝑍′-tan 𝛽′-plane for
Set 1.0. The red dot indicates the benchmark point given by Set 1.0, blue lines mark
the valid 𝑍′ mass intervall for tan 𝛽′ = 1.3.

In Figure 4 the branching ratio of the 𝑍′ decaying into a dielectron pair is
illustrated. The step indicates that new decaying possibilities arise with higher
masses. From Figure 5 we see that it is the 𝑍′ → 𝐻0 + 𝑍 decay that has an
increasing branching fraction for 𝑍′ masses above 1800 GeV. However, within the
allowed mass interval the branching ratios for the dielectron pair vary from the value
at 𝑀𝑍′ = 2000 GeV by less than 3 %. Therefore, a constant branching fraction of
0.1 was taken for the analysis.
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Figure 4: Branching ratio of the 𝑍′ → 𝑒+𝑒− decay for Set 1.0 as a function of 𝑀𝑍′ .
The reason for the bend is the process 𝑍′ → 𝐻0 + 𝑍 that is possible for masses
higher than 1800 GeV.
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BR(Z ′− > qd + q̄d)

BR(Z ′− > qu + q̄u)

BR(Z ′ → l+ + l−)

BR(Z ′ → νL + νL)
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BR(Z ′ → h0 + Z)

BR(Z ′ → H0 + Z)

BR(Z ′ → ν̃1 + ν̃2)

BR(Z ′ → W+ +W−)

Figure 5: Branching ratios of 𝑍′ decays for Set 1.0 as a function of 𝑀𝑍′ . The three
generations of quarks and leptons have the same branching ratios respectively. 𝑞𝑢
are up-type quarks, 𝑞𝑑 are down-type quarks, 𝑙 denotes leptons and 𝜈 neutrinos
where the index indicates left- and right-handedness. ̃𝜈𝑖 are the right-handed sneu-
trino mass eigenstates, 𝜒0

𝑖 are neutralinos, and ℎ0, 𝐻0, 𝑍, 𝑊 ± are the boson mass
eigenstates as in 2.2.3.
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5 Event Analysis
In this section we compare decays of the 𝑍′ into dielectron final states in the
BLSSM with SM dielectron events. Therefore, 𝑍′ and SM events are generated
with MadGraph [6] and then cuts are applied with CheckMATE [10, 11, 12, 16, 27].
We find the 95 % confidence level for excluding the 𝑍′ as signal phenomenon using
the CL𝑠 method. Finally, the exclusion limits of the 𝑍′ mass are calculated.

5.1 Dielectron Event Generation: Simulation of Signal and
Background

Both event generation and calculation of cross sections were done with MadGraph.
The software package MadGraph is an event generator that produces sets of particles
with given momenta and quantum numbers according to their cross sections. For
this study the BLSSM was implemented in MadGraph and the SPheno output was
modified to become an parameter input file for MadGraph [5].

In the study of proton-proton collisions it is important to keep in mind that
protons are composite particles made up of quarks and gluons, also refered to as
partons. Thus, the scattering of two protons results in the collision of partons. The
probability of finding a certain parton in the proton is given by particle distribution
functions (PDFs). MadGraph uses experimentally determined PDFs to calculate the
scattering correctly. Many of the outgoing particles of a high energy scattering are
unstable particles that decay before they reach the detector. If these particles are
coloured, they will radiate gluons and quarks and eventually build more massive
final state hadrons. These processes are implemented in parton shower and hadro-
nisation routines using the software package Pythia [24].

Our signal events are 𝑝 + 𝑝 → 𝑍′ → 𝑒+𝑒− processes in the regime of Set 1.0
in the BLSSM. These were generated for different 𝑍′ masses. As background we
considered all proton-proton collisions that lead to dielectron events in the SM, that
is the generation of 𝑝 + 𝑝 → 𝑒+𝑒− in the SM.

In order to estimate the cross section error, every process was generated with
two different PDFs, with the default PDF nn23lo1 and for comparism also with
cteq6l1. We used the default renormalization and factorization scale of MadGraph.
That means for signal events the scale was set to 𝑀2

𝑍′ + 𝑝2
𝑇 with 𝑝𝑇 being the

transverse momentum and for background events to the invariant mass squared of
the dielectron pair [1]. This scale was further varied by a factor. Event generation
for both PDFs each with the scalefactors 0.5, 1.0, and 2.0 lead to six cross sections.
Then the minimal and the maximal value were used to obtain the cross section:

𝜎 = 1
2(𝜎max + 𝜎min) (5.1)

Δ𝜎 = 1
2(𝜎max − 𝜎min) (5.2)

We generated 10 000 events for both signal and background using standard
MadGraph cuts where we demanded a lepton transverse momentum of at least
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20 GeV. The center-of-mass energy was chosen to be 13 TeV. First, the valid param-
eter region of 𝑍′ masses between 1300 GeV and 2200 GeV was investigated in steps
of 50 GeV. Here we added an invariant dilepton mass cut of 1000 GeV to ensure
that we obtain enough background events.

In a second step also higher mass resonances were looked at. Because for Set 1.0
𝑍′ masses above 2200 GeV are not allowed, we manually changed the mass parameter
in the input file for MadGraph. Accordingly, also the width of the 𝑍′ had to be
increased. Therefore, the width calculated by SPheno was fitted linearly such that
the width for higher 𝑍′ masses could be calculated. Figure 6 shows the behaviour
of the 𝑍′ width in the regime of Set 1.0. Moreover, the invariant mass cut of the
dielectron pair was adapted. For the analysis of the mass range from 2500 GeV to
4500 GeV we demanded a dilepton mass higher than 2300 GeV and for the mass
range from 4500 GeV to 6000 GeV we demanded more than 4300 GeV.

Figure 6: Width of the 𝑍′ with linear fit 𝑎 = 0.009515 and 𝑏 = −1.153897

5.2 Event selection
CheckMATE was used to create histograms and count the dielectron events in a cer-
tain mass interval. In order to accurately model the LHC reach, CheckMATE uses
Delphes for the detector simulation.

We will first consider histograms in terms of the dielectron invariant mass. Fig-
ure 7 shows histograms of the SM events, where different dielectron mass cuts have
been applied at the Monte-Carlo generator level. In Figure 8 there are histograms
for different 𝑀𝑍′ input values in the BLSSM. The plots clearly display the resonance
of the 𝑍′ boson. Also the increasing width of the peak for higher 𝑍′ masses can be
seen.
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Figure 7: Histograms of the invariant mass of the dielectron pair for SM processes
𝑝 + 𝑝 → 𝑒+𝑒−. At the Monte-Carlo generator level the transverse momentum cut is
𝑝𝑇 > 20 GeV and the dilepton mass cuts are 𝑚𝑒 ̄𝑒 > 1000 GeV (top), 𝑚𝑒 ̄𝑒 > 2300 GeV
(middle), and 𝑚𝑒 ̄𝑒 > 4300 GeV (bottom)
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Figure 8: Histograms of the invariant mass of the dielectron pair for 𝑝 + 𝑝 →
𝑍′ → 𝑒+𝑒− processes in the BLSSM with 𝑚𝑍′ = 1300 GeV (top), 𝑚𝑍′ = 2200 GeV
(middle), and 𝑚𝑍′ = 6000 GeV (bottom). At the Monte-Carlo generator level the
transverse momentum cut is 𝑝𝑇 > 20 GeV and the dilepton mass cuts are 𝑚𝑒 ̄𝑒 >
1000 GeV (top and middle) and 𝑚𝑒 ̄𝑒 > 4300 GeV (bottom)
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For allowed 𝑀𝑍′ values the signal area was chosen to be the interval from
(𝑀𝑍′ − 50 GeV) to (𝑀𝑍′ + 50 GeV). Figure 8 shows that this interval is wide
enough to cover the whole 𝑍′ peak also for the maximal 𝑍′ mass of 2200 GeV in
Set 1.0. When signal and background were analysed for higher 𝑍′ masses, the in-
creased width required bigger signal regions. For the intervall from 5000 GeV to
6000 GeV a signal region of 𝑀𝑍′ ± 100 GeV was chosen after considering the width
at 𝑀𝑍′ = 6000 GeV shown in Figure 8.

A CheckMATE analysis was then carried out for signal and background seperately
to determine the number of oppositly charged dielectron events in the signal area.
This allows the relative number of events to be obtained, i.e. number of events
in the signal region 𝑛 divided by the total number of generated events 𝑁 . Since
the integrated luminosity ℒ is the number of events per cross section, the product
ℒ ⋅ 𝜎 describes the number of events. Then the normalized number of events can be
expressed as follows:

𝑛norm = ℒ𝜎 𝑛
𝑁 (5.3)

For large 𝑛 the standard deviation is given by the square root of 𝑛. Since the
relative cross section error is around 10 %, we will neglect the error of the luminosity.

Δ𝑛 = √𝑛 (5.4)

⇒ Δ𝑛norm
𝑛norm

= √(Δ𝑛
𝑛 )

2
+ (Δ𝜎

𝜎 )
2

(5.5)

Δ𝑛norm = √( 1
𝑛) + (Δ𝜎

𝜎 )
2

𝑛norm (5.6)

In the following, the number of events will always refer to the normalized number
of events. Our analysis will be carried out for luminosities of 20 fb−1, 100 fb−1, and
3000 fb−1.

5.3 The Significance of a Signal and CL𝑠 Limits
The aim of searching experiments in particle physics is to detect predicted phenom-
ena. Then there are two hypothesis, either the phenomenon exists or not. Thereby
“significance” denotes the probability 𝛼 to reject a true hypothesis. Here, the signif-
icance of a signal in the presence of background processes shall be analysed. Let 𝑠 be
the number of signal events, i.e. the events indicating a new phenomenon, and 𝑏 the
number of background events. If the observed number of events 𝑛obs is significantly
greater than 𝑏, the background-hypothesis can be rejected and a discovery claimed;
if 𝑛obs is significantly less than 𝑠 + 𝑏, the signal-plus-background-hypothesis can be
rejected and thus the phenomenon can be excluded. Depending on the value of 𝑛obs
one would either state that the phenomenon exists or not. This means 𝑛obs follows a
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Figure 9: Probability distribution functions and p-values for a given number
of observed events 𝑛obs. The p-value for probability density of the signal-plus-
background-hypothesis 𝑓(𝑛; 𝑠 + 𝑏) is marked in green, and of the background-
hypothesis 𝑓(𝑛; 𝑏) in blue.

binomial distribution. For a small probability of one hypothesis and a large number
of trials the binomial distribution is well approximated by a Poisson distribution.

If 𝜆 is the average number of events in a given interval, then the probability to
count 𝑛 events in this interval is according to the Poisson distribution

𝑓(𝑛; 𝜆) = 𝑒−𝜆𝜆𝑛

𝑛! (5.7)

The variance squared of a Poisson distribution is equal to the mean value.

𝜎 =
√

𝜆 (5.8)

For quantitative statements regarding some hypothesis, so-called p-values are
calculated. Here it is assumed that the signal-plus-background distribution is shifted
to the right, i.e. 𝑠+𝑏 > 𝑏 as shown in Figure 9. Then the p-value of the background-
only-hypothesis is defined as the probability to find a value n greater or equal to
𝑛obs assuming that there is only background:

𝑝𝑏 = 𝑃(𝑛 ≥ 𝑛𝑜𝑏𝑠; 𝑏) = ∫
+∞

𝑛𝑜𝑏𝑠

𝑓(𝑛; 𝑏) (5.9)

For the signal-plus-background distribution the p-value describes the probability to
find 𝑛 ≤ 𝑛𝑜𝑏𝑠 under the assumption that the signal phenomenon exists:

𝑝𝑠+𝑏 = 𝑃(𝑛 ≤ 𝑛𝑜𝑏𝑠; 𝑠 + 𝑏) = ∫
𝑛𝑜𝑏𝑠

−∞
𝑓(𝑛; 𝑠 + 𝑏) (5.10)
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This is the probability to reject a signal-plus-background-hypothesis although it is
true. One usually demands a confidence level of 95 %, i.e. 𝑝𝑠+𝑏 = 𝛼 < 5 %, such
that the probability to falsely exclude an existing phenomenon is less than 5 %. But
if 𝑠 ≪ 𝑏, which means the distributions of 𝑠 + 𝑏 and 𝑏 are very close to each other,
the sensitivity of this values is much weaker than if 𝑠 + 𝑏 is significantly bigger than
𝑏. To take this into accound, in the CL𝑠 method the value used to exclude a signal
is the ratio of the aforementioned p-values:

CL𝑠 ≡ 𝑝𝑠+𝑏
1 − 𝑝𝑏

(5.11)

For 𝑓(𝑛; 𝑠+𝑏) and 𝑓(𝑛; 𝑏) well separated, in a signal-plus-background measurement
1 − 𝑝𝑏 will be slightly less than 1, such that CL𝑠 is dominated by 𝑝𝑠+𝑏. If the dis-
tributions 𝑓(𝑛; 𝑠 + 𝑏) and 𝑓(𝑛; 𝑏) are close to each other, the CL𝑠 value is increased
by the (1 − 𝑝𝑏) denominater and an exclusion due to low sensitivity is prevented.
Therefore, a CL𝑠 value greater than 5 % is used as confidence level to exclude a
signal phenomenon [31, 32].

The CL𝑠 value can be calculated by the number of observed events 𝑛obs, the
number of expected signal events 𝑠 and the number of expected background events
𝑏. We define 𝑠95 to be the number of signal events such that the CL𝑠 is 5 %.
Motivated by current experimental data, we start from the premise that we only
measure SM events. Hence, we assume that the number of observed events will be
equal to the number of background events for the proposed search:

𝑛obs = 𝑏 (5.12)

Then 𝑠95 describes the maximal upper fluctuation of the background at which a
signal phenomenon is still possible. This means any model predicting 𝑠 > 𝑠95 is
ruled out.

5.4 Results
The outcomes showed that for the allowed masses in Set 1.0 only a small number
of background events survived whereas the number of signal events was large in
comparison as can be seen in Figure 10. Since the background events are heavily
suppressed compared to the signal, a plot for the number of background events is
also added. One can expect from these big differences between signal and back-
ground that in this region of the parameter space the model is clearly ruled out.
Proof is given in Figure 11 where the 𝑠95 limit is clearly smaller than the number
of signal events meaning that we exclude a 𝑍′ resonance for these masses.

Although we can exclude the model by all three analyses using different lumi-
nosities, for higher luminosities the number of events increases such that the relative
error is smaller. The errors were estimated by the statistical error of the number
of events and the cross section error according to (5.6). For a luminosity of 20 fb−1

there is still an statistical error of almost 20 % on signal events at 2000 GeV and
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the number of background events is much too small to use the
√𝑛 approximation

for proper errors. In contrast, at luminosities of 100 fb−1 and 3000 fb−1 the errors
on the signal are less than 8 % and 1.5 % respectively. While the maximal error on
the number of background events is less than 12.5 % for 3000 fb−1, for 100 fb−1 it is
almost 70 %.

At higher mass scales the background is effectively zero since the number of
events becomes very small. In Figure 13 the number of signal events and back-
ground events are displayed. When calculating the exclusion limits for very small
numbers of observed events, the boundary 𝑠95 becomes asymptotic with a value of
approximately 2.9 as can be seen in Figure 12. Thus, we are looking for the mass
𝑀𝑍′ when less than three signal events are produced. This is essentially determined
by the cross section of the 𝑍′ → 𝑒+𝑒− process. The exponential decrease of the
cross section is displayed in Figure 15.

The critical regions for the exclusion are shown in Figure 14, where the number
of signal events becomes smaller than the 𝑠95 limit. We use the error of the signal
events to estimate the error of the exclusion limit. Extrapolation and fitting of the
plots lead the intersection points in Table 12.

ℒ 𝑀95 − 2𝜎 𝑀95 − 𝜎 𝑀95 𝑀95 + 𝜎 𝑀95 + 2𝜎
20 fb−1 3102 GeV 3184 GeV 3243 GeV 3291 GeV 3340 GeV
100 fb−1 3800 GeV 3872 GeV 3934 GeV 3991 GeV 4048 GeV
3000 fb−1 5128 GeV 5300 GeV 5445 GeV 5550 GeV 5655 GeV

Table 12: Intersection points of signal, signal ±𝜎, and signal ±2𝜎 with 𝑠95

Taking the average of the upper and lower 1𝜎 error, we obtain the following
results:

𝑀95 = (3243 ± 54) GeV for ℒ = 20 fb−1

𝑀95 = (3934 ± 60) GeV for ℒ = 100 fb−1

𝑀95 = (5445 ± 125) GeV for ℒ = 3000 fb−1 (5.13)
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Figure 10: Normalized number of signal and background events in the signal region
for a luminosity of 20 fb−1. The plots for 100 fb−1 and 3000 fb−1 have the same
behavior for a larger number of events.
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Figure 11: Normalized number of signal events and the 𝑠95 limit on signal events
for a luminosity of 20 fb−1. The plots for 100 fb−1 and 3000 fb−1 have the same
behavior for a larger number of events.
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Figure 12: The 𝑠95 limit as a function of the number of background events for a
luminosity of 20 fb−1. Due to the small number of background events 𝑠95 behaves
asymptotically. The same applies to 100 fb−1 and 3000 fb−1.
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Figure 13: Normalized number of signal and background events in the signal region for lumi-
nosities of 20 fb−1 (top row), 100 fb−1 (middle row) and 3000 fb−1 (bottom row)
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Figure 14: The number of signal events and the 95 % exclusion limit
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Figure 15: Cross section of signal events in a logarithmic scale
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6 Conclusion
The aim of this thesis was to investigate 𝑍′ resonances decaying to a dielectron final
state for a parameter set in the BLSSM that was intended to examine sneutrino-
antisneutrino oscillations. In the given regime it was found that the model can be
excluded for valid 𝑍′ masses in the parameter space if no signal is detected at the
LHC. An extrapolation to higher masses delivered possible exclusion limits on the
𝑍′ mass. We found that 𝑍′ resonances can be excluded below 3.2 TeV for a lumi-
nosity of 20 fb−1, below 3.9 TeV for 100 fb−1, and below 5.4 TeV for 3000 fb−1.

This can be compared to current searches for high-mass resonances decaying to
dilepton final states at the ATLAS detector at the Large Hadron Collider. The
data recorded in proton-proton collisions at a center-of-mass energy of 8 TeV and
an integrated luminosity of 20.3 fb−1 in the dielectron channel in 2012 lead to an
exclusion of a 𝑍′ mass resonance below 2.22 TeV at 95% confidence level [3]. There-
fore, according to our results, the 13 TeV run is expected to significantly improve
the current searches.

33



References
[1] url: https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/FAQ-

General-13?format=pdfarticle (visited on 02/23/2015).
[2] Georges Aad et al. “Observation of a new particle in the search for the Stan-

dard Model Higgs boson with the ATLAS detector at the LHC”. In: Phys.Lett.
B716 (2012), pp. 1–29. doi: 10.1016/j.physletb.2012.08.020. arXiv:
1207.7214 [hep-ex].

[3] Georges Aad et al. “Search for high-mass dilepton resonances in pp collisions
at

√𝑠 = 8â��â��TeV with the ATLAS detector”. In: Phys.Rev. D90.5 (2014),
p. 052005. doi: 10.1103/PhysRevD.90.052005. arXiv: 1405.4123 [hep-ex].

[4] W. Abdallah, S. Khalil, and S. Moretti. “Double Higgs peak in the minimal
SUSY B-L model”. In: Phys.Rev. D91.1 (2015), p. 014001. doi: 10.1103/
PhysRevD.91.014001. arXiv: 1409.7837 [hep-ph].

[5] Johan Alwall et al. “MadGraph 5 : Going Beyond”. In: JHEP 1106 (2011),
p. 128. doi: 10.1007/JHEP06(2011)128. arXiv: 1106.0522 [hep-ph].

[6] J. Alwall et al. “The automated computation of tree-level and next-to-leading
order differential cross sections, and their matching to parton shower simu-
lations”. In: JHEP 1407 (2014), p. 079. doi: 10.1007/-JHEP07(2014)079.
arXiv: 1405.0301 [hep-ph].

[7] Vernon Barger and Roger Phillips. Collider Physics. Ed. by David Pines.
Addison-Wesley Publishing Company, 1987.

[8] Lorenzo Basso, Stefano Moretti, and Giovanni Marco Pruna. “Phenomenology
of the minimal 𝐵 − 𝐿 extension of the Standard Model: the Higgs sector”. In:
Phys.Rev. D83 (2011), p. 055014. doi: 10.1103/PhysRevD.83.055014. arXiv:
1011.2612 [hep-ph].

[9] Alessandro Bettini. Introduction to elementary particle physics. Cambridge
University Press, 2014.

[10] Matteo Cacciari and Gavin P. Salam. “Dispelling the 𝑁3 myth for the 𝑘𝑡 jet-
finder”. In: Phys.Lett. B641 (2006), pp. 57–61. doi: 10.1016/j.physletb.
2006.08.037. arXiv: hep-ph/0512210 [hep-ph].

[11] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “FastJet User Manual”.
In: Eur.Phys.J. C72 (2012), p. 1896. doi: 10.1140/epjc/s10052-012-1896-
2. arXiv: 1111.6097 [hep-ph].

[12] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The Anti-k(t) jet
clustering algorithm”. In: JHEP 0804 (2008), p. 063. doi: 10.1088/1126-
6708/2008/04/063. arXiv: 0802.1189 [hep-ph].

[13] D.J.H. Chung et al. “The Soft supersymmetry breaking Lagrangian: Theory
and applications”. In: Phys.Rept. 407 (2005), pp. 1–203. doi: 10.1016/j.
physrep.2004.08.032. arXiv: hep-ph/0312378 [hep-ph].

[14] Wikimedia Commons. url: http://commons.wikimedia.org/wiki/File:
Standard_Model_of_Elementary_Particles.svg (visited on 04/30/2014).

34

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/FAQ-General-13?format=pdfarticle
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/FAQ-General-13?format=pdfarticle
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1103/PhysRevD.90.052005
http://arxiv.org/abs/1405.4123
http://dx.doi.org/10.1103/PhysRevD.91.014001
http://dx.doi.org/10.1103/PhysRevD.91.014001
http://arxiv.org/abs/1409.7837
http://dx.doi.org/10.1007/JHEP06(2011)128
http://arxiv.org/abs/1106.0522
http://dx.doi.org/10.1007/-JHEP07(2014)079
http://arxiv.org/abs/1405.0301
http://dx.doi.org/10.1103/PhysRevD.83.055014
http://arxiv.org/abs/1011.2612
http://dx.doi.org/10.1016/j.physletb.2006.08.037
http://dx.doi.org/10.1016/j.physletb.2006.08.037
http://arxiv.org/abs/hep-ph/0512210
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
http://dx.doi.org/10.1016/j.physrep.2004.08.032
http://dx.doi.org/10.1016/j.physrep.2004.08.032
http://arxiv.org/abs/hep-ph/0312378
http://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
http://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg


[15] A. Elsayed et al. “Right-handed sneutrino-antisneutrino oscillations in a TeV
scale Supersymmetric B-L model”. In: Phys.Rev. D87.5 (2013), p. 053010. doi:
10.1103/PhysRevD.87.053010. arXiv: 1211.0644 [hep-ph].

[16] J. de Favereau et al. “DELPHES 3, A modular framework for fast simulation
of a generic collider experiment”. In: JHEP 1402 (2014), p. 057. doi: 10.1007/
JHEP02(2014)057. arXiv: 1307.6346 [hep-ex].

[17] Martin Fluder. “The Minimal Supersymmetric Standard Model”. 2010. url:
http://www.itp.phys.ethz.ch/education/fs10/susy.

[18] Francis Halzen and Alan D. Martin. QUARKS AND LEPTONS: An Intro-
ductory Course in Modern Particle Physics. John Wiley & Sons, Inc., 1984.
isbn: 0-471-88741-2.

[19] Roger H.K. Kadala. Topics in supersymmetry phenomenology at the Large
Hadron Collider. 2012. arXiv: 1205.1267 [hep-ph].

[20] Shaaban Khalil. “Low scale 𝐵 − 𝐿 extension of the Standard Model at the
LHC”. In: J.Phys. G35 (2008), p. 055001. doi: 10.1088/0954-3899/35/5/
055001. arXiv: hep-ph/0611205 [hep-ph].

[21] Manuel Krauß. “LHC Phenomenology of a 𝑍′ decaying into supersymmet-
ric particles”. url: http://www.physik.uni-wuerzburg.de/fileadmin/
11030200/Master_Arbeiten/krauss-manuel_master.pdf.

[22] Stephen P. Martin. “A Supersymmetry primer”. In: Adv.Ser.Direct.High En-
ergy Phys. 21 (2010), pp. 1–153. doi: 10.1142/9789814307505_0001. arXiv:
hep-ph/9709356 [hep-ph].

[23] Ben O’Leary, Werner Porod, and Florian Staub. “Mass spectrum of the min-
imal SUSY 𝐵 − 𝐿 model”. In: JHEP 1205 (2012), p. 042. doi: 10.1007/
JHEP05(2012)042. arXiv: 1112.4600 [hep-ph].

[24] Maxim Perelstein. Introduction to Collider Physics. 2010. arXiv: 1002.0274
[hep-ph].

[25] Werner Porod. “SPheno, a program for calculating supersymmetric spectra,
SUSY particle decays and SUSY particle production at 𝑒+𝑒− colliders”. In:
Computer physics communications 153.2 (2003), pp. 275–315.

[26] Werner Porod and Florian Staub. “SPheno 3.1: Extensions including flavour,
CP-phases and models beyond the MSSM”. In: Computer Physics Communi-
cations 183.11 (2012), pp. 2458–2469.

[27] Alexander L. Read. “Presentation of search results: The CL(s) technique”. In:
J.Phys. G28 (2002), pp. 2693–2704. doi: 10.1088/0954-3899/28/10/313.

[28] Florian Staub. “Automatic calculation of supersymmetric renormalization group
equations and loop corrections”. In: JHEP 182.3 (2011), pp. 808–833. arXiv:
1002.0840[hep-ph].

[29] Florian Staub. “Linking SARAH and MadGraph using the UFO format”. In:
JHEP (2012). arXiv: 1207.0906[hep-ph].

[30] Florian Staub. “SARAH”. In: JHEP (2008). arXiv: 0806.0538[hep-ph].

35

http://dx.doi.org/10.1103/PhysRevD.87.053010
http://arxiv.org/abs/1211.0644
http://dx.doi.org/10.1007/JHEP02(2014)057
http://dx.doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346
http://www.itp.phys.ethz.ch/education/fs10/susy
http://arxiv.org/abs/1205.1267
http://dx.doi.org/10.1088/0954-3899/35/5/055001
http://dx.doi.org/10.1088/0954-3899/35/5/055001
http://arxiv.org/abs/hep-ph/0611205
http://www.physik.uni-wuerzburg.de/fileadmin/11030200/Master_Arbeiten/krauss-manuel_master.pdf
http://www.physik.uni-wuerzburg.de/fileadmin/11030200/Master_Arbeiten/krauss-manuel_master.pdf
http://dx.doi.org/10.1142/9789814307505_0001
http://arxiv.org/abs/hep-ph/9709356
http://dx.doi.org/10.1007/JHEP05(2012)042
http://dx.doi.org/10.1007/JHEP05(2012)042
http://arxiv.org/abs/1112.4600
http://arxiv.org/abs/1002.0274
http://arxiv.org/abs/1002.0274
http://dx.doi.org/10.1088/0954-3899/28/10/313
http://arxiv.org/abs/1002.0840[hep-ph]
http://arxiv.org/abs/1207.0906 [hep-ph]
http://arxiv.org/abs/0806.0538 [hep-ph]


[31] The CLs method: information for conference speakers. url: http://www.pp.
rhul.ac.uk/~cowan/atlas/CLsInfo.ps.

[32] J. Wagner. “Physikalisches Praktikum I für Studierende der Physik, Geowis-
senschaften und Mathematik”. url: https://www.physi.uni-heidelberg.
de/Einrichtungen/AP/anleitungen/pap.php.

36

http://www.pp.rhul.ac.uk/~cowan/atlas/CLsInfo.ps
http://www.pp.rhul.ac.uk/~cowan/atlas/CLsInfo.ps
https://www.physi.uni-heidelberg.de/Einrichtungen/AP/anleitungen/pap.php
https://www.physi.uni-heidelberg.de/Einrichtungen/AP/anleitungen/pap.php


Acknowledgement
I want to thank Tilman Plehn for giving me the opportunity to work on this project
and Jamie Tattersall for his guidance. I also have to thank Mike Bisset that he
provided me an insight to particle phenomenology and introduced me to this project.
Many thanks to Ran Lu for his support in terms of software. Also thanks to the
group for answering all kinds of questions.

37



Erklärung
Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 24.2.2015,

Linda Shen

38


	Introduction
	Theoretical Background
	The Standard Model and its Symmetry Groups
	Supersymmetry
	Mass Spectrum of the MSSM
	R-parity
	EWSB in the MSSM
	SUSY Breaking


	The B-L Supersymmetric Standard Model
	Particle Content
	SUSY Breaking and GUT Scale Boundary Conditions
	Right-handed Sneutrino-antisneutrino Oscillation
	The Chargino Chain


	Parameter Space
	Expansion of the GUT Input Parameter Set
	Search of a Parameter Set for the Chargino Chain
	Z' Mass Dependance of the Benchmark Point

	Event Analysis
	Dielectron Event Generation: Simulation of Signal and Background
	Event selection
	The Significance of a Signal and CLs Limits
	Results

	Conclusion
	References

