
Dissertation
submitted to the

Combined Faculty of

Mathematics, Engineering and Natural Sciences

of

Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Peter Sorrenson
Born in: Bloomington, Indiana, USA
Date of oral examination: 22 January 2025

Under the supervision of

Prof. Dr. Tilman Plehn
Prof. Dr. Ullrich Köthe

Free-Form Flows: Generative Models
for Scientific Applications

Referees: Prof. Dr. Tilman Plehn
Prof. Dr. Fred Hamprecht

Abstract

This thesis explores advanced generative modeling techniques with a focus on scien-
tific applications. It addresses two main areas: free-form flows and machine learning
applications in particle physics.

Free-form flows are a novel family of generative models that combine the benefits of
normalizing flows—exact maximum likelihood training and fast generation—with unre-
stricted neural network architectures. This approach overcomes the limitations of tradi-
tional normalizing flows, allowing for more flexible and domain-specific models.

The thesis also presents a collection of machine learning applications in particle physics,
leveraging models with rich representational spaces. These techniques aim to accelerate
the processing of vast data streams from the Large Hadron Collider, potentially uncovering
new physics beyond the Standard Model.

By advancing both the theoretical foundations and practical implementations of generative
models, this work contributes to their increased adoption and impact across diverse sci-
entific disciplines. Applications range from chemistry to particle physics, demonstrating
the broad potential of these methods in modeling complex data distributions.

Diese Dissertation untersucht fortgeschrittene Techniken der generativen Modellierung
mit Fokus auf wissenschaftliche Anwendungen. Sie befasst sich mit zwei Hauptbereichen:
Free-Form Flows und maschinelle Lernverfahren in der Teilchenphysik.

Free-Form Flows sind eine neuartige Familie generativer Modelle, die die Vorteile von nor-
malisierenden Flows (exaktes Maximum-Likelihood-Training und schnelle Generierung)
mit unbeschränkten neuronalen Netzwerkarchitekturen kombinieren. Dieser Ansatz über-
windet die Beschränkungen traditioneller normalisierender Flows und ermöglicht flexi-
blere und domänenspezifische Modelle.

Die Arbeit präsentiert zudem eine Sammlung von Anwendungen des maschinellen Lernens
in der Teilchenphysik, die Modelle mit reichhaltigen Repräsentationsräumen nutzen. Diese
Techniken zielen darauf ab, die Verarbeitung der enormen Datenströme des Large Hadron
Colliders zu beschleunigen und möglicherweise neue Physik jenseits des Standardmodells
aufzudecken.

Durch die Weiterentwicklung sowohl der theoretischen Grundlagen als auch der prak-
tischen Implementierungen generativer Modelle trägt diese Arbeit zu ihrer verstärkten
Anwendung und Wirkung in verschiedenen wissenschaftlichen Disziplinen bei. Die An-
wendungen reichen von der Chemie bis zur Teilchenphysik und demonstrieren das breite
Potenzial dieser Methoden bei der Modellierung komplexer Datenverteilungen.

Acknowledgements

I would like to express my gratitude to my supervisors, Prof. Dr. Ullrich Köthe and
Prof. Dr. Tilman Plehn, for their guidance and support throughout my doctoral studies, as
well as their willingness to allow me to freely explore my interests.

I would like to thank my colleagues and collaborators, particularly Felix Draxler and
Barry Dillon. Warm thanks also go to the entire CVL team, the Plehn group, and all
the other students I interacted with throughout my PhD, especially Armand Rousselot,
Sander Hummerich, Daniel Behrend-Uriarte, Jens Müller, Robert Schmier, Stefan Radev,
Lynton Ardizzone, Luigi Favaro, Nathan Huetsch, Sofia Palacios Schweitzer, and Jonas
Spinner. To everyone: thank you for all the stimulating discussions and the interesting
conversations during lunch breaks.

Most importantly, I thank my wife, Anna, and our baby, Enrico. Without you, I would
never have been so motivated to finish! Enrico, it has been a pleasure completing this
thesis with you sleeping peacefully on my chest.

Funding Statement
I received funding from the following sources provided by the Deutsche Forschungsge-
meinschaft (German Research Foundation):

• Research Training Group GK-1940, Particle Physics Beyond the Standard Model.

• Heidelberg STRUCTURES Cluster of Excellence (Germany’s Excellence Strategy
EXC-2181/1 - 390900948).

Additionally, the following computational resources were utilized to conduct some of the
experiments reported in this thesis:

• Support from the state of Baden-Württemberg through bwHPC and the German
Research Foundation (DFG) via grant INST 35/1597-1 FUGG.

• The Center for Information Services and High-Performance Computing (ZIH) at
TU Dresden.

Contents

1 Introduction 1
1.1 List of publications . 3

1.1.1 Machine learning papers . 3
1.1.2 Particle physics papers . 4

2 Free-Form Flows 7
2.1 Full-dimensional free-form flows . 9

2.1.1 Normalizing flows . 9
2.1.2 Free-form flows compared to normalizing flows 10
2.1.3 Preliminary definitions . 11
2.1.4 Free-form flow estimator . 12
2.1.5 Relaxing the invertibility requirement 14
2.1.6 Error bound . 18
2.1.7 Equivalence of free-form flow to normalizing flow 19
2.1.8 Links between FFF and VAE . 20

2.2 Free-form injective flows . 23
2.2.1 Background . 23
2.2.2 Joint maximum likelihood and manifold learning 26
2.2.3 Maximum likelihood in bottleneck models 29
2.2.4 Towards a well-behaved loss . 30
2.2.5 Relationship to rectangular flows 32
2.2.6 Implementation details . 32

2.3 Manifold free-form flows . 35
2.3.1 Free-form manifold-to-manifold neural networks 36
2.3.2 Manifold change of variables . 36
2.3.3 Loss function . 40

2.4 Experiments . 44
2.4.1 Free-form flows (full-dimensional) 44
2.4.2 Free-form injective flows . 47
2.4.3 Manifold free-form flows . 50
2.4.4 Summary of experimental results 54

3 Machine Learning in LHC Physics 55
3.1 Particle physics at the Large Hadron Collider 55

3.1.1 Fundamental particles and forces 55
3.1.2 Particle collisions and jets . 56
3.1.3 Applications of jet physics . 56

3.2 Improved jet autoencoders . 57
3.2.1 Autoencoder and variational autoencoder 58
3.2.2 Gaussian mixture VAE . 59
3.2.3 Dirichlet VAE . 61
3.2.4 Results . 62
3.2.5 Summary . 65

3.3 Representation learning for jets . 66
3.3.1 Existing jet representations . 66
3.3.2 Contrastive learning . 67
3.3.3 Symmetries and augmentations 68
3.3.4 Network design . 69
3.3.5 Results . 69
3.3.6 Summary . 72

3.4 Generative models for jets I: Normalized autoencoder 73
3.4.1 Energy-based networks . 73
3.4.2 Normalized autoencoder . 74
3.4.3 Results . 75
3.4.4 Summary . 78

3.5 Generative models for jets II: Diffusion models and JetGPT 80
3.5.1 Generative models at the LHC 80
3.5.2 Denoising diffusion probabilistic model 80
3.5.3 Conditional flow matching . 82
3.5.4 Autoregressive transformer . 84
3.5.5 Results . 85
3.5.6 Summary . 87

4 Conclusion 91
4.1 Free-form flows . 91

4.1.1 Unifying view of free-form flows 92
4.2 Machine learning in particle physics . 92
4.3 Common threads . 93
4.4 Future directions . 93

Bibliography 94

Chapter 1

Introduction

At the Large Hadron Collider, billions of particle collisions generate petabytes of data,
yet discovering new physics requires extracting subtle patterns from this vast sea of mea-
surements. This challenge exemplifies a broader trend across sciences: as our ability to
collect data grows exponentially, traditional statistical methods struggle to fully leverage
this wealth of information. The core challenge lies in the inability of traditional meth-
ods to model complex probability distributions. These distributions are fundamental to
describing natural phenomena, capturing the inherent uncertainties in measurements, the
stochastic nature of system evolution, and the multiple solutions that may be consistent
with observations. By learning these underlying distributions, we can solve a variety of
scientifically relevant tasks, thereby accelerating scientific discovery.

Generative models are machine learning methods that learn probability distributions from
samples. Once trained, they can generate synthetic data from the learned distribution.
Often, the most interesting applications involve conditional generative models, which
learn to generate outputs based on specific inputs. Familiar consumer examples include
large language models like ChatGPT, which generate words conditional on preceding text,
and text-to-image models such as Stable Diffusion or DALL-E, which generate images
conditional on text prompts.

Scientific applications frequently involve input-output pairs from simulation data. These
pairs might represent initial conditions and final outcomes, or simulation parameters and
their resulting observations. Some applications, like climate forecasting, focus on generat-
ing outputs from inputs; here, a generative model can produce samples faster than running
expensive simulations while preserving the natural variability in the system. In other cases,
we aim to solve inverse problems: estimating initial conditions from final outcomes, or
inferring system parameters from observations. By training on paired simulation data, we
can build generative models that solve these inverse problems efficiently.

Consider cosmology: while we cannot experiment directly with universe evolution, we
can simulate development under various cosmological models. A conditional generative
model, trained on these simulations, can infer which combinations of parameters (like the
Hubble constant, dark matter density, or universe curvature) most likely produced our ob-
served universe. Similarly, in chemistry, while simulation programs can predict molecular
properties from atomic structures, we often want the reverse: generating molecules with
desired properties. A conditional generative model trained on simulation data can suggest

1

novel molecular structures optimized for specific characteristics like solubility or binding
affinity.

The field has developed several approaches to meet these diverse needs. Current state-of-
the-art methods fall into two main categories:

• Autoregressive models, which generate data one feature at a time (like ChatGPT
generating text word-by-word)

• Transport models, which transform random noise into data through learned map-
pings (including diffusion models, variational autoencoders, and normalizing flows)

Among these, normalizing flows have found particular success in scientific applications,
from astrophysics to particle physics to chemistry. Their appeal stems from three key
properties: simple implementation, stable training, and exact likelihood computation
(meaning they directly optimize the probability of generating the training data without
approximations). This exactness, combined with fast training and generation, makes them
especially valuable when computational resources are limited.

However, traditional normalizing flows face a significant constraint: they require carefully-
designed invertible neural network architectures, which limits their expressiveness. This
restriction makes it challenging to incorporate domain-specific knowledge or architectural
innovations. For example, many molecular properties are invariant to rotation, but building
rotation-equivariant normalizing flows is difficult under the invertibility constraint. Similar
challenges arise when modeling data on non-Euclidean spaces, such as spherical data in
Earth science or angular data in protein structure prediction.

This thesis advances generative modeling for scientific applications through two main
contributions:

First, we introduce free-form flows, a novel family of generative models that preserve the
benefits of normalizing flows while eliminating their architectural constraints. Through
clever use of matrix calculus identities and automatic differentiation software, free-form
flows enable exact maximum likelihood training with unrestricted neural networks, open-
ing new possibilities for domain-specific architectures.

Second, we demonstrate practical applications of advanced machine learning models to
particle physics, focusing on processing the massive data streams from the Large Hadron
Collider. These applications showcase how models with rich representational spaces,
including generative models, can accelerate the search for physics beyond the Standard
Model.

Together, these contributions advance both the theoretical foundations and practical im-
plementations of generative models, enabling their broader adoption across scientific dis-
ciplines. By removing key technical barriers and demonstrating concrete applications, this
work aims to accelerate scientific discovery through more powerful and flexible modeling
tools.

2

1.1 List of publications
In this section, I include the titles, author lists, and abstracts of the eight papers I published
during my PhD.

The papers can be divided into two groups: (i) four machine learning papers in which I took
a leading role (first authorship) in the project and (ii) four papers applying machine learning
in particle physics in which my role was primarily supervision and project guidance.

1.1.1 Machine learning papers
As is the convention in machine learning, authors are ordered by the significance of their
contributions. The first author typically leads the project, conducts the majority of the
research, and writes much of the paper. The last author is typically the senior researcher
or advisor who oversees the project or provides substantial guidance. Asterisks are used
to indicate joint first authorship.

All four papers in this section are first-author or joint-first-author contributions. The first
three concern the free-form flow, while the fourth is a topic in representation learning
which does not appear in the thesis.

Lifting architectural constraints of injective flows

Peter Sorrenson∗, Felix Draxler∗, Armand Rousselot, Sander Hummerich, Lea Zimmer-
mann, Ullrich Köthe

The Twelfth International Conference on Learning Representations (2024)

Abstract Normalizing Flows explicitly maximize a full-dimensional likelihood on the
training data. However, real data is typically only supported on a lower-dimensional
manifold leading the model to expend significant compute on modeling noise. Injective
Flows fix this by jointly learning a manifold and the distribution on it. So far, they have been
limited by restrictive architectures and/or high computational cost. We lift both constraints
by a new efficient estimator for the maximum likelihood loss, compatible with free-form
bottleneck architectures. We further show that naively learning both the data manifold
and the distribution on it can lead to divergent solutions, and use this insight to motivate
a stable maximum likelihood training objective. We perform extensive experiments on
toy, tabular and image data, demonstrating the competitive performance of the resulting
model.

Free-form flows: Make any architecture a normalizing flow

Felix Draxler∗, Peter Sorrenson∗, Lea Zimmermann, Armand Rousselot, Ullrich Köthe

Proceedings of the 27th International Conference on Artificial Intelligence and Statistics
(2024)

Abstract Normalizing Flows are generative models that directly maximize the likeli-
hood. Previously, the design of normalizing flows was largely constrained by the need
for analytical invertibility. We overcome this constraint by a training procedure that

3

uses an efficient estimator for the gradient of the change of variables formula. This en-
ables any dimension-preserving neural network to serve as a generative model through
maximum likelihood training. Our approach allows placing the emphasis on tailoring
inductive biases precisely to the task at hand. Specifically, we achieve excellent results
in molecule generation benchmarks utilizing E(n)-equivariant networks at greatly im-
proved sampling speed. Moreover, our method is competitive in an inverse problem
benchmark, while employing off-the-shelf ResNet architectures. We publish our code at
https://github.com/vislearn/FFF.

Learning distributions on manifolds with free-form flows

Peter Sorrenson∗, Felix Draxler∗, Armand Rousselot∗, Sander Hummerich, Ullrich Köthe

Advances in Neural Information Processing Systems 37 (2024)

Abstract We propose Manifold Free-Form Flows (M-FFF), a simple new generative
model for data on manifolds. The existing approaches to learning a distribution on
arbitrary manifolds are expensive at inference time, since sampling requires solving a dif-
ferential equation. Our method overcomes this limitation by sampling in a single function
evaluation. The key innovation is to optimize a neural network via maximum likelihood
on the manifold, possible by adapting the free-form flow framework to Riemannian man-
ifolds. M-FFF is straightforwardly adapted to any manifold with a known projection.
It consistently matches or outperforms previous single-step methods specialized to spe-
cific manifolds, and is competitive with multi-step methods with typically two orders of
magnitude faster inference speed.

Learning distances from data with normalizing flows and score matching

Peter Sorrenson, Daniel Behrend-Uriarte, Christoph Schnörr, Ullrich Köthe

arXiv:2407.09297 (Under review)

Abstract Density-based distances (DBDs) offer an elegant solution to the problem of
metric learning. By defining a Riemannian metric which increases with decreasing prob-
ability density, shortest paths naturally follow the data manifold and points are clustered
according to the modes of the data. We show that existing methods to estimate Fermat
distances, a particular choice of DBD, suffer from poor convergence in both low and high
dimensions due to i) inaccurate density estimates and ii) reliance on graph-based paths
which are increasingly rough in high dimensions. To address these issues, we propose
learning the densities using a normalizing flow, a generative model with tractable density
estimation, and employing a smooth relaxation method using a score model initialized
from a graph-based proposal. Additionally, we introduce a dimension-adapted Fermat
distance that exhibits more intuitive behavior when scaled to high dimensions and offers
better numerical properties. Our work paves the way for practical use of density-based
distances, especially in high-dimensional spaces.

1.1.2 Particle physics papers
As is the convention in particle physics, authors are listed alphabetically by last name. The
ordering of authors has no other meaning.

4

https://github.com/vislearn/FFF

In all four papers in this section, I did not lead the project or conduct the majority of the
research. My role typically involved proposing promising project ideas and providing the
machine learning know-how to see the project through to fruition.

Better latent spaces for better autoencoders

Barry M. Dillon, Tilman Plehn, Christof Sauer, Peter Sorrenson

SciPost Physics 11, 061 (2021)

Abstract Autoencoders as tools behind anomaly searches at the LHC have the structural
problem that they only work in one direction, extracting jets with higher complexity but
not the other way around. To address this, we derive classifiers from the latent space of
(variational) autoencoders, specifically in Gaussian mixture and Dirichlet latent spaces.
In particular, the Dirichlet setup solves the problem and improves both the performance
and the interpretability of the networks.

Symmetries, safety, and self-supervision

Barry M. Dillon, Gregor Kasieczka, Hans Olischlager, Tilman Plehn, Peter Sorrenson,
Lorenz Vogel

SciPost Physics 12, 188 (2022)

Abstract Collider searches face the challenge of defining a representation of high-
dimensional data such that physical symmetries are manifest, the discriminating features
are retained, and the choice of representation is new-physics agnostic. We introduce
JetCLR to solve the mapping from low-level data to optimized observables though self-
supervised contrastive learning. As an example, we construct a data representation for
top and QCD jets using a permutation-invariant transformer-encoder network and visu-
alize its symmetry properties. We compare the JetCLR representation with alternative
representations using linear classifier tests and find it to work quite well.

A normalized autoencoder for LHC triggers

Barry M. Dillon, Luigi Favaro, Michael Krämer, Tilman Plehn, Peter Sorrenson

SciPost Physics Core 6, 074 (2023)

Abstract Autoencoders are an effective analysis tool for the LHC, as they represent one
of its main goal of finding physics beyond the Standard Model. The key challenge is
that out-of-distribution anomaly searches based on the compressibility of features do not
apply to the LHC, while existing density-based searches lack performance. We present
the first autoencoder which identifies anomalous jets symmetrically in the directions of
higher and lower complexity. The normalized autoencoder combines a standard bottleneck
architecture with a well-defined probabilistic description. It works better than all available
autoencoders for top vs QCD jets and reliably identifies different dark-jet signals.

5

Jet diffusion versus JetGPT — modern networks for the LHC

Anja Butter, Nathan Huetsch, Sofia Palacios Schweitzer, Tilman Plehn, Peter Sorrenson,
Jonas Spinner

arXiv:2305.10475 (Under review)

Abstract We introduce two diffusion models and an autoregressive transformer for
LHC physics simulations. Bayesian versions allow us to control the networks and capture
training uncertainties. After illustrating their different density estimation methods for
simple toy models, we discuss their advantages for Z plus jets event generation. While
diffusion networks excel through their precision, the transformer scales best with the phase
space dimensionality. Given the different training and evaluation speed, we expect LHC
physics to benefit from dedicated use cases for normalizing flows, diffusion models, and
autoregressive transformers.

6

Chapter 2

Free-Form Flows

Normalizing flows have gained significant popularity in scientific applications due to
their ability to provide exact likelihood training and their reliable performance on low-
dimensional datasets. These characteristics make them particularly appealing to re-
searchers and practitioners working with complex scientific problems. However, despite
their advantages, normalizing flows suffer from a major limitation: their restrictive ar-
chitectural design. This inflexibility poses a significant challenge when attempting to
incorporate domain-specific knowledge or use novel architectures tailored to specific sci-
entific problems. The constraints imposed by the normalizing flow framework often
hinder the integration of cutting-edge techniques or problem-specific insights that could
potentially enhance model performance and interpretability.

To address these limitations, this chapter introduces a new framework for building gener-
ative models for scientific applications. This approach retains the desirable properties of
normalizing flows while removing the architectural constraints that have heretofore limited
their adaptability. By doing so, it opens up new possibilities for researchers to design more
flexible and powerful models that can better capture the intricacies of complex scientific
phenomena, ultimately advancing the field of scientific machine learning.

Model development

This chapter covers work published in three papers (Draxler et al., 2024; Sorrenson
et al., 2024b,a). The initial idea for the free-form flow emerged from my study of
self-normalizing flows (Keller et al., 2021) and relative gradient optimization (Gresele
et al., 2020). These works proposed networks structured such that the model weights
directly contribute to the Jacobian calculation by using square weight matrices without
skip connections. They then employ techniques to directly optimize the negative log-
likelihood.

I realized that the main technique used, essentially Jacobi’s formula from matrix calculus,
could be applied to the Jacobian of the entire network. Furthermore, if an inverse function
was known, one could use the Jacobian of the inverse function to make the whole process
computationally tractable. I soon discovered that this framework generalized nicely to
bottleneck models. At this point, I came across rectangular flows (Caterini et al., 2021),
which had a similar concept, though they were less computationally efficient.

Improving upon rectangular flows formed the basis for the first paper, “Lifting architectural

7

constraints of injective flows” (Sorrenson et al., 2024b), with significant contributions from
my co-author Felix Draxler and other co-authors, especially Armand Rousselot and Sander
Hummerich. While working on that paper, we encountered substantial challenges in jointly
training maximum likelihood and manifold learning.

As a next step, we shifted our focus to full-dimensional models, bringing the free-form
flow back to its conceptual origins (Draxler et al., 2024). This significantly simplified both
training and theory. My role in this paper was to expand the theoretical understanding of
the model, while my colleagues conducted experiments.

Finally, discussions between myself, Felix Draxler, and Ullrich Köthe led to the idea of
applying free-form flows to Riemannian manifolds such as spheres and tori (Sorrenson
et al., 2024a). I suggested that simply wrapping the encoder and decoder in a projection
function would probably work. Felix developed a plausible estimator, implemented it,
and found it to be effective. I then provided a more solid theoretical foundation for the
idea, based on Riemannian geometry, while the other co-authors conducted extensive
experiments.

Although the development of free-form flows did not follow a linear path, I will present
them in an order that facilitates understanding:

1. Full-dimensional version: This provides the strongest theoretical foundation and
is conceptually simpler.

2. Bottleneck version: Our initial breakthrough, which generalizes the full-dimen-
sional case.

3. Application to Riemannian manifolds: A subsequent extension that broadens the
applicability to complex geometries.

8

2.1 Full-dimensional free-form flows

Samples:

Decoder gϕLatent p(z)Encoder fθ

Lg
ML

<latexit sha1_base64="PySJSFi+x+x2V2SjdEtLHp19/1k=">AAAC7XichVHLShxBFD12THwlcZIs3QwOgquhJ4i6FF9kYUTBUcERqe4px2KqH1TXCKaZvT/gTrLNLtvkV/RbXHiqbIVExGqq773n3nvqPqJcq8KG4c1I8Gb07bux8YnJqfcfPk7XPn3eL7KBiWU7znRmDiNRSK1S2bbKanmYGymSSMuDqL/m/Afn0hQqS/fsRS6PE9FL1amKhSV0UpvtWKW7suwkwp7FQpdbw+HJg2WScnvLmbVG2Az9qT9XWpXSQHV2stotOugiQ4wBEkiksNQ1BAp+R2ghRE7sGCUxQ015v8QQk8wdMEoyQhDt89+jdVShKW3HWfjsmK9oXsPMOuZ4Nz1jxGj3qqReUN7x/vBY78UXSs/sKrygjMg44Rm/E7c4Y8RrmUkV+VjL65muK4tTLPtuFOvLPeL6jJ941ukxxPreU8eGj+yRI/L2OSeQUrZZgZvyI0Pdd9ylFF5Kz5JWjIJ8htJNn/Vwza3/l/pc2f/abC02F3YXGiur1cLHMYNZzHOrS1jBN+ywjhiX+I0/+BtkwVVwHfx8CA1Gqpwv+OcEv+4B1uCeDw==</latexit>

L̃NLL

<latexit sha1_base64="RC9ZapzwYYy8V4JmE5MwicSgnqw=">AAAC6HichVFNSxtRFD0ZbU3SD6NdSiE0FLoKkyLqUrQWFxZSaDSQhPDm+RLHzBdvXgQ7ZOUf6K64dedWf037W7romeek0ErJG97ce8+997z74SWBnxrX/VFylpafPF0pV6rPnr94uVpbWz9O46mWqiPjINZdT6Qq8CPVMb4JVDfRSoReoE68yX7uP7lQOvXj6Iu5TNQgFOPIH/lSGELD2ut+KMyZFEF2NBtm1tBhppWMo+ZsNqw13KZrT/2x0iqUBorTjms/0ccpYkhMEUIhgqEeQCDl10MLLhJiA2TENDXf+hVmqDJ3yijFCEF0wv+YVq9AI9o5Z2qzJV8JeDUz63jL+9EyeozOX1XUU8pfvF8tNv7vC5llziu8pPTIWLGMn4gbnDFiUWZYRM5rWZyZd2Uwwo7txmd9iUXyPuUfng/0aGIT66njwEaOyeFZ+4ITiCg7rCCf8pyhbjs+pRRWKssSFYyCfJoynz7r4Zpb/y71sXL8vtnaam5+3mzs7hULL2MDb/COW93GLg7RZh0SV7jFHe6dc+eb8925fgh1SkXOK/x1nJvf+mub1g==</latexit>Lrecon.R

Input Reconstruction

Training:

Figure 2.1: Free-form flows (FFF) train a pair of encoder and decoder neural networks with a fast
maximum likelihood estimator LML and reconstruction loss LR. This enables the training of any
dimension-preserving architecture as a one-step generative model. For example, an equivariant
graph neural network can be trained on the QM9 dataset to generate molecules by predicting atom
positions and properties in a single decoder evaluation. (Bottom) Stable molecules sampled from
our E(3)-FFF trained on the QM9 dataset for several molecule sizes.

This section is based on work previously published as “Free-form flows: Make any
architecture a normalizing flow” at AISTATS 2024 (Draxler et al., 2024). All figures are
reproduced from that publication unless stated otherwise.

2.1.1 Normalizing flows
To provide the necessary background for free-form flows, we first need to discuss normal-
izing flows.

Normalizing flows (Rezende and Mohamed, 2015; Kobyzev et al., 2021; Papamakarios
et al., 2021) are generative models that learn a probability density via a parameterized
diffeomorphism f . The probability density is obtained through the change of variables
formula:

p(x) = pZ(f(x)) |f ′(x)| (2.1)

where pZ is a simple latent distribution and where |f ′(x)| is the absolute value of the
determinant of the Jacobian matrix of the transformation. |f ′(x)| is also known as the
Jacobian of f .

Sampling is achieved by first drawing a sample from the latent distribution pZ and then
applying the inverse transformation f−1 to map it back to the data space.

A common strategy to design normalizing flows is through coupling blocks (Dinh et al.,
2015, 2017; Durkan et al., 2019), where f is the composition of a series of blocks, each
with a triangular Jacobian. This structure makes the determinant easy to calculate, making
the above formula tractable.

Normalizing flows are trained by minimizing the negative log-likelihood on a training set:

L = Epdata(x)[− log p(x)] (2.2)

9

2.1.2 Free-form flows compared to normalizing flows

Figure 2.2: Gradient landscapes for a normalizing flow (left), a normalizing flow with reconstruc-
tion loss (center), and a free-form flow (right) in a linear 1D model with f(x) = ax, g(z) = bz,
β = 1, and a zero-mean Gaussian data distribution with standard deviation 1.5. Flow lines
indicate gradient direction, and contours represent gradient magnitude. White dots mark critical
points. We plot gradient magnitudes instead of loss contours, as only gradients are meaningful for
the FFF loss.
The transformation from normalizing flows to free-form flows is shown from left to right. Initially,
only diffeomorphisms are considered (constrained to curves b = a−1). The addition of a recon-
struction loss extends the optimization to the full a-b space. Finally, the normalizing flow loss LNF

is replaced by the FFF maximum likelihood estimator LML, avoiding the costly computation of the
log-Jacobian and its gradient.
The minima of LFFF are the same as those of LNF at (±2/3,±1.5), with an additional saddle
point at a = b = 0, which is not a convergence point in practice. Thus, optimizing the free-form
flow yields the same solutions as the equivalent normalizing flow.
Adapted from Figure 2 in Draxler et al. (2024).

Normalizing flows are designed to satisfy two constraints in order to make them suitable
for maximum likelihood training:

1. Exact invertibility. The change of variables formula relies on the exact invertibility
of f for its validity.

2. Tractable Jacobian. The Jacobian |f ′(x)| is used in the change of variables formula,
so this quantity should not be too computationally expensive.

These requirements typically lead to the design of relatively constrained architectures,
such as coupling blocks (Dinh et al., 2015, 2017; Durkan et al., 2019), or to the use of
continuous-time models (Neural ODEs (Chen et al., 2018; Grathwohl et al., 2019)).

The free-form flow is designed to address both constraints without resorting to particular
architectural requirements – the models used are “free-form,” meaning they can be any
neural network (as long as the input and output dimensions are equal). The solutions are
as follows:

1. Approximate invertibility. Instead of using a single, specially parameterized
model for both forward and backward transformations, we employ two separate
models with independent weights, coupled by a reconstruction loss. We demonstrate
that optimizing over a broader class of functions (Lipschitz continuous) using the
normalizing flow loss combined with a sufficiently weighted reconstruction term

10

yields solutions equivalent to those obtained by optimizing the normalizing flow
loss alone over diffeomorphisms (Theorem 2.1.8).

2. Tractable Jacobian approximation. The log-Jacobian is expensive to evaluate
in general, but only its gradient with respect to model parameters is needed for
optimization via gradient descent. This gradient can be tractably approximated by
combining derivatives from the forward and backward models (Theorem 2.1.4), and
the approximation results in the same optima as using the exact Jacobian (Theo-
rem 2.1.10). For this reason, we can substitute our maximum likelihood surrogate
loss LML (detailed below) in place of the normalizing flow loss LNF.

Figure 2.2 demonstrates these modifications: here the gradient landscape of a linear model
is visualized, showing how optimization changes under (i) the addition of a reconstruction
loss, and (ii) the use of LML in place of LNF.

In this way, the free-form flow can be viewed as a relaxation of normalizing flow training,
with the advantage that optimization is performed over a larger function class (dimension-
preserving, Lipschitz continuous neural networks rather than some parameterization of
diffeomorphisms). Importantly, this alleviates design constraints, making it easier for
practitioners to adapt new methods to their problems.

In the rest of the section, I will state and prove the theorems that justify the validity
of the free-form flow method, followed by additional theoretical results that deepen the
understanding of the method, including an interpretation of the model as a form of
variational autoencoder (VAE).

2.1.3 Preliminary definitions
We need to discuss automatic differentiation and the stop-gradient operation, which are
essential tools in the implementation of free-form flows.

Vector-Jacobian and Jacobian-vector products Automatic differentiation (AD) li-
braries (such as PyTorch, TensorFlow, or JAX) implement vector-Jacobian products as
low-level primitives. This means that products of the form vTf ′(x) can be calculated
from a backward pass through the computational graph of the function f . For this reason,
vector-Jacobian products (VJPs) are known as “backward-mode AD.” More recently, these
libraries have also offered Jacobian-vector products (JVPs) of the form f ′(x)v, which are
computed in parallel with the output of the function (i.e., during the forward pass). This
type of computation is therefore known as “forward-mode AD.” In PyTorch, VJPs and
JVPs are conveniently implemented in the torch.func library.

Definition 2.1.1 (Stop-gradient). The stop-gradient operation SG is a computational
operation that sets the gradients of its input to zero, effectively detaching the input
from the computation graph:

SG[x] = x,
d

dx
SG[x] = 0 (2.3)

This operation deviates from the standard rules of calculus and should be viewed as a
computational flag rather than a proper function. It is particularly useful for computing

11

gradients of the form ∇(SG[a(x)]b(x)) = a(x)∇b(x), which cannot be directly calculated
using standard calculus. The stop-gradient operation is implemented in all deep learning
libraries, such as torch.Tensor.detach() in PyTorch.

Now we are ready to define some loss functions.

Definition 2.1.2 (Free-form flow loss functions).

LNF[f](x) = − log pZ(f(x))− log |f ′(x)| (2.4)
LML[f, g](x, v) = − log pZ(f(x))− SG

[
vTg′(f(x))

]
f ′(x)v (2.5)

LR[f, g](x) = ∥g(f(x))− x∥2 (2.6)
LFFF[f, g](x, v) = LML[f, g](x, v) + βLR[f, g](x) (2.7)

The loss functions are defined per sample x and per random vector v in the case of the
FFF loss. We can also define overall losses such as LFFF[f, g] = Ex,v[LFFF[f, g](x, v)],
where x is always sampled from the training distribution pdata.

Definition 2.1.3 (Well-behaved probability distribution). In the context of this thesis,
we call a probability distribution defined on Rn well-behaved if it satisfies the
following properties:

• Absolutely continuous: This means that the distribution assigns zero proba-
bility to any set with zero Lebesgue measure. In practical terms, it ensures
that the distribution has a well-defined density function.

• Full support: The distribution assigns positive probability to every open
subset of Rn.

• Continuous density: The probability density function of the distribution is
continuous on Rn.

2.1.4 Free-form flow estimator
To prove the theorems, we first need to establish some intermediate results, which are
well-known.

Lemma 2.1.1 (Jacobi’s formula). Let A : R → Rn×n be a matrix-valued function
depending on the scalar variable t. Then

d

dt
|A(t)| = |A(t)| tr

(
A(t)−1dA(t)

dt

)
(2.8)

Equivalently:
d

dt
log |A(t)| = tr

(
A(t)−1dA(t)

dt

)
(2.9)

The proof can be found in standard textbooks on matrix calculus (Magnus and Neudecker,
2019, Theorem 8.1) and on Wikipedia.1 The second expression follows directly from the
definition of the derivative of the logarithm: d

dt
log f(t) = 1

f(t)
d
dt
f(t).

1https://en.wikipedia.org/wiki/Jacobi%27s_formula

12

https://en.wikipedia.org/wiki/Jacobi%27s_formula

Lemma 2.1.2 (Hutchinson trace estimator (Hutchinson, 1989)). Let A ∈ Rn×n be
a matrix and v a random variable such that Ev[vvT] = I. Then

Ev[vTAv] = tr(A) (2.10)

Proof. Use the cyclic property and linearity of the trace:

Ev[vTAv] = Ev[tr(vTAv)] = Ev[tr(AvvT)] = tr(AEv[vvT]) = tr(A) (2.11)

Lemma 2.1.3 (Inverse Jacobian is Jacobian of inverse). Let f : Rn → Rn be a
diffeomorphism. Then

f ′(x)−1 = f−1′(f(x)) (2.12)

Proof. Consider differentiating f−1 ◦ f , which is just the identity function:

∂

∂x
f−1(f(x)) =

∂f−1(f(x))

∂f(x)
· ∂f(x)

∂x
(2.13)

= f−1′(f(x)) · f ′(x) (2.14)
= I (2.15)

Multiplying by f ′(x)−1 from the right leads to the result.

We now present the main result of this section: the gradient of the negative log-likelihood
objective can be efficiently estimated using LML, provided we have access to the inverse
of the forward transformation f .

Theorem 2.1.4 (Free-form flow estimator). Let f : Rn → Rn be a diffeomorphism.
Let pZ and pdata be well-behaved probability distributions on Rn, and let p be the
pushforward of pZ by f−1. Let v ∈ Rn be a random variable such that Ev[vvT] = I.
Then for all x ∈ Rn, LML[f, f

−1] has the same gradient as the negative log-
likelihood:

d

dt
LML[f, f

−1] =
d

dt
Ex [− log p(x)] (2.16)

where f depends on t andx is sampled from pdata. In particular, if f is parameterized
by θ, the gradient with respect to θ is the same:

∇θLML[fθ, f
−1
θ] = ∇θEx [− log pθ(x)] (2.17)

Proof. We know from Section 2.1.1 that

log p(x) = log pZ(f(x)) + log |f ′(x)| (2.18)

Suppose that f depends implicitly on a parameter t. By applying Lemma 2.1.1 to

13

the log-determinant, we find

d

dt
log |f ′(x)| = tr

(
f ′(x)−1 d

dt
f ′(x)

)
(2.19)

to which we can apply Lemma 2.1.3:

d

dt
log |f ′(x)| = tr

(
f−1′(z)

d

dt
f ′(x)

)
(2.20)

where z = f(x). Substituting this result into Equation (2.18) gives

d

dt
log p(x) =

d

dt
log pZ(f(x)) + tr

(
f−1′(z)

d

dt
f ′(x)

)
(2.21)

=
d

dt
log pZ(f(x)) + Ev

[
vTf−1′(z)

d

dt
f ′(x)v

]
(2.22)

=
d

dt
log pZ(f(x)) +

d

dt
Ev
[
SG[vTf−1′(z)]f ′(x)v

]
(2.23)

= − d

dt
Ev
[
LML[f, f

−1](x, v)
]

(2.24)

where we used Hutchinson’s trace estimator (Lemma 2.1.2) and the stop-gradient
operation (Definition 2.1.1). By taking the expectation over x, we obtain:

d

dt
LML[f, f

−1] =
d

dt
Ex [− log p(x)] (2.25)

This proves the first part of the theorem.
To extend this result to the gradient with respect to θ, we note that the parameter t
can be thought of as any component of θ. Since the equality holds for the derivative
with respect to any such component, it also holds for the gradient with respect to
the entire parameter vector θ:

∇θLML[fθ, f
−1
θ] = ∇θEx [− log pθ(x)] (2.26)

This completes the proof of the theorem.

2.1.5 Relaxing the invertibility requirement
In this section, we show that jointly optimizing a normalizing flow loss and a reconstruction
loss yields equivalent results to optimizing the normalizing flow loss alone. Furthermore,
we demonstrate that by incorporating a reconstruction loss with sufficient weight, we
can extend the optimization domain beyond diffeomorphisms to include any Lipschitz
continuous function. This key insight is illustrated visually in Figure 2.2.

We first prove several lemmas, which lead to the main result in Theorem 2.1.8.

Lemma 2.1.5 (Normalizing flow loss learns the training density). Let f : Rn → Rn

be a diffeomorphism with inverse f−1. Let pZ and pdata be well-behaved probability

14

distributions on Rn and let p be the pushforward of pZ by f−1. Suppose that f
minimizes LNF[f]. Then p is well-behaved, and its density function is equal to pdata
almost everywhere.

Proof. First, let’s express the loss function LNF[f] in terms of the Kullback-Leibler
(KL) divergence between pdata and p:

LNF[f] = Ex[− log pZ(f(x))− log |f ′(x)|] (2.27)
= Ex[− log p(x)] (by change of variables formula) (2.28)
= Ex[− log p(x) + log pdata(x)− log pdata(x)] (2.29)
= DKL(pdata∥p) + Ex[− log pdata(x)] (2.30)

Note that Ex[− log pdata(x)] is the entropy of pdata, which is constant with respect
to f . Therefore, minimizing LNF[f] is equivalent to minimizing DKL(pdata∥p).
The KL divergence has two important properties:

1. DKL(pdata∥p) ≥ 0 for all distributions pdata and p.
2. DKL(pdata∥p) = 0 if and only if pdata = p almost everywhere.

When f minimizes LNF[f], it also minimizes DKL(pdata∥p). Given that
DKL(pdata∥p) ≥ 0, the minimum value it can achieve is 0. This minimum is
achieved when pdata = p almost everywhere.
Now, we need to show that p is well-behaved:

1. Absolutely continuous: Since pZ is absolutely continuous and f is a diffeo-
morphism, p is also absolutely continuous.

2. Full support: pZ has full support and f is a diffeomorphism, so p also has
full support on Rn.

3. Continuous density: The density of p is given by p(x) = pZ(f(x))|f ′(x)|.
Since pZ is continuous, f is smooth (as a diffeomorphism), and the determi-
nant is a continuous function of matrix entries, p is continuous.

Therefore, p is well-behaved and its density function is equal to pdata almost every-
where.

Lemma 2.1.6. Let f : Rn → Rn be a Lipschitz continuous function, and let pZ be
a well-behaved probability density function. Then the normalizing flow loss LNF is
bounded from below.

Proof. Recall that the normalizing flow loss is given by:

LNF = Ex [− log pZ(f(x))− log |f ′(x)|] (2.31)

First, consider the term − log pZ(f(x)). Since pZ is well-behaved, it is bounded
above by some constant M . Therefore, − log pZ(f(x)) ≥ − logM for all x.
Next, consider the term − log |f ′(x)|. Since f is Lipschitz continuous, there exists
a constant L > 0 such that ∥f ′(x)∥2 ≤ L for all x, where ∥ · ∥2 denotes the
spectral norm. As |f ′(x)| is the product of the singular values of f ′(x), and the
spectral norm is the maximum singular value, we have |f ′(x)| ≤ Ln. Therefore,
− log |f ′(x)| ≥ −n logL for all x.

15

Combining these bounds, we have:

LNF ≥ Ex [− logM − n logL] = − logM − n logL (2.32)

Thus, LNF is bounded from below by the constant − logM − n logL.

Lemma 2.1.7. Let f : Rn → Rn and g : Rn → Rn be continuous functions that
minimize the reconstruction loss LR[f, g] = Ex[∥x− g(f(x))∥2], where x is drawn
from a distribution with density pdata. Then f is injective on the support of pdata, g
is surjective onto the support of pdata, and g is the inverse of f on the image of f
restricted to the support of pdata.

Proof. Suppose f and g minimize LR[f, g]. This means LR[f, g] = 0, as the
reconstruction loss is non-negative and achieves its minimum at zero.
For LR[f, g] = 0, we must have:

x = g(f(x)) ∀x ∈ support(pdata) (2.33)

From this equation, we can conclude:
• f is injective (one-to-one) on the support of pdata: If f(x1) = f(x2) for some
x1, x2 ∈ support(pdata), then g(f(x1)) = g(f(x2)), which implies x1 = x2.

• g is surjective (onto) onto the support of pdata: Since x = g(f(x)) for all
x ∈ support(pdata), the range of g includes the entire support of pdata.

• g is the inverse of f on f(support(pdata)): For any y ∈ f(support(pdata)),
there exists an x ∈ support(pdata) such that f(x) = y. Then g(y) =
g(f(x)) = x, showing that g inverts f on f(support(pdata)).

Therefore, f is injective on the support of pdata, g is surjective onto the support
of pdata, and g is the inverse of f on the image of f restricted to the support of
pdata.

Theorem 2.1.8 (Reconstruction loss induces invertibility). Consider the optimiza-
tion of LNF[f] + βLR[f, g] over Lipschitz continuous functions f (where f is not
necessarily a diffeomorphism) and C1 functions g. Suppose that the training dis-
tribution pdata and latent prior pZ are well-behaved (and hence have full support).
Then, there exists a critical value βcrit ≥ 0 such that for any β > βcrit, all global
minimizers (f ∗, g∗) of this combined loss function satisfy the following conditions:

1. f ∗ is a diffeomorphism
2. g∗ = (f ∗)−1

3. f ∗ is a global minimizer of LNF[f] restricted to diffeomorphisms

Proof. We will prove this theorem in two steps: first, we’ll show that for sufficiently
large β, any global minimizer (f ∗, g∗) must satisfy LR[f ∗, g∗] = 0. Then, we’ll
show that this implies the three conditions stated in the theorem.
Step 1: Existence of βcrit.
Let L∗

0 = inff,g:LR[f,g]=0 LNF[f] be the infimum of LNF over all pairs (f, g) that

16

achieve perfect reconstruction. L∗
0 is finite by Lemma 2.1.6.

For any pair (f, g), the combined loss LNF[f] + βLR[f, g] is linear in β with a
non-negative slope LR[f, g].
For pairs (f, g) where LR[f, g] ̸= 0, there exists a β large enough such that their
combined loss exceeds L∗

0. Specifically, for:

β > max

(
0,
L∗
0 − LNF[f]

LR[f, g]

)
(2.34)

the combined loss for (f, g) will be greater than L∗
0.

Define βcrit as:

βcrit = sup
f,g:LR[f,g] ̸=0

max

(
0,
L∗
0 − LNF[f]

LR[f, g]

)
(2.35)

For any β > βcrit, all global minimizers (f ∗, g∗) of the combined loss must satisfy
LR[f ∗, g∗] = 0. If not, there would exist a pair (f, g)withLR[f, g] = 0 that achieves
a lower combined loss, contradicting the assumption of global minimization.
Step 2: Implications of LR[f ∗, g∗] = 0.

1. By Lemma 2.1.7, since pdata has full support (as it is well-behaved), f ∗ is
injective on Rn, g∗ is surjective onto Rn, and g∗ is the inverse of f ∗ on the
image of f ∗.
Since pZ is also well-behaved and thus has full support, f ∗ must be surjective
onto Rn to minimize LNF[f

∗]. If it weren’t, there would be regions of the
latent space with zero probability under f ∗

#pdata, leading to infinite LNF[f
∗].

Combining the injectivity and surjectivity of f ∗, we conclude that f ∗ is
bĳective. Since f ∗ is also Lipschitz continuous, it is a diffeomorphism.

2. From point 1, we already have that g∗ = (f ∗)−1.
3. Finally, since f ∗ is a diffeomorphism, minimizing LNF[f

∗] + βLR[f ∗, g∗] is
equivalent to minimizing LNF[f

∗] over diffeomorphisms. Therefore, f ∗ is a
global minimizer of LNF[f] restricted to diffeomorphisms.

Thus, we have shown that for any β > βcrit, all global minimizers (f ∗, g∗) satisfy
the three conditions stated in the theorem.

The above theorem and proof can be generalized to the case where pdata does not have full
support. In this scenario, we need to modify our requirements:

1. f should be Lipschitz continuous only over support(pdata), rather than the entire
Rn.

2. f need not be Lipschitz continuous or even continuous outside support(pdata).

3. g should be defined as the inverse of f on f(support(pdata)).

With these modifications, the theorem still holds, ensuring that for sufficiently large β:

1. f is bĳective from support(pdata) to f(support(pdata)).

2. g = f−1 on f(support(pdata)).

3. f minimizes LNF[f] among all such functions.

17

2.1.6 Error bound
The following theorem bounds the error introduced when approximating the inverse of the
encoder Jacobian matrix with the decoder Jacobian matrix. The bounds demonstrate that
this approximation is accurate when the encoder and decoder are well-matched, with the
error controlled by their degree of mismatch as measured by ∥f ′g′ − I∥F .

Theorem 2.1.9. Let f and g beC1 functions, and let f ′ and g′ denote the Jacobians
of f at x and g at f(x), respectively (we use this shorthand throughout the theorem).
Suppose that f is locally invertible at x, meaning f ′ is an invertible matrix. Let
∥·∥F denote the Frobenius norm of a matrix and let ∇ denote the derivative with
respect to a parameter of f . Then:

1. The absolute difference between ∇ log |f ′| and its trace-based approximation
is bounded:

|tr((∇f ′)g′)−∇ log |f ′|| ≤ ∥(∇f ′)(f ′)−1∥F∥f ′g′ − I∥F (2.36)

2. If we extend the local invertibility of f to invertibility wherever pdata(x) has
support, then the difference in gradients between LML and LNF is bounded:

|∇LML −∇LNF| ≤ Ex
[
∥(∇f ′)(f ′)−1∥2F

] 1
2 Ex

[
∥f ′g′ − I∥2F

] 1
2 (2.37)

Proof. We begin by recalling two key inequalities:
1. The Cauchy-Schwarz inequality for an inner product ⟨·, ·⟩:

|⟨u, v⟩|2 ≤ ⟨u, u⟩⟨v, v⟩ (2.38)

2. The trace forms the Frobenius inner product over matrices: ⟨A,B⟩F =
tr(ATB). Applying Cauchy-Schwarz to this inner product yields:

| tr(ATB)|2 ≤ tr(ATA) tr(BTB) (2.39)
= ∥A∥2F∥B∥2F (2.40)

where ∥A∥F =
√
tr(ATA) is the Frobenius norm of A.

Now, let’s prove the two parts of the theorem:
Part 1. Recall Jacobi’s formula (Lemma 2.1.1):

∇ log |f ′| = tr((∇f ′)(f ′)−1) (2.41)

We can now derive the bound:

|tr((∇f ′)g′)−∇ log |f ′|| =
∣∣tr((∇f ′)g′)− tr((∇f ′)(f ′)−1)

∣∣ (2.42)
=
∣∣tr((∇f ′)(g′ − (f ′)−1))

∣∣ (2.43)
=
∣∣tr((∇f ′)(f ′)−1(f ′g′ − I))

∣∣ (2.44)
≤ ∥(∇f ′)(f ′)−1∥F∥f ′g′ − I∥F (2.45)

where the last line applies the Cauchy-Schwarz inequality.
Part 2. For this part, we need two additional inequalities:

18

3. Jensen’s inequality for a convex function α : R → R:

α(E[x]) ≤ E[α(x)] (2.46)

4. Hölder’s inequality (with p = q = 2) for random variables X and Y :

E[|XY |] ≤ E[|X|2] 12E[|Y |2] 12 (2.47)

Now, we can derive the bound:

|∇LML −∇LNF| = |Ex [tr((∇f ′)g′)]− Ex [∇ log |f ′|]| (2.48)
=
∣∣Ex [tr((∇f ′)(f ′)−1(f ′g′ − I))

]∣∣ (2.49)
≤ Ex

[∣∣tr((∇f ′)(f ′)−1(f ′g′ − I))
∣∣] (2.50)

≤ Ex
[
∥(∇f ′)(f ′)−1∥F∥f ′g′ − I∥F

]
(2.51)

≤ Ex
[
∥(∇f ′)(f ′)−1∥2F

] 1
2 Ex

[
∥f ′g′ − I∥2F

] 1
2 (2.52)

where we apply Jensen’s inequality, then Cauchy-Schwarz, and finally Hölder’s
inequality.

2.1.7 Equivalence of free-form flow to normalizing flow
This key theorem establishes that any critical point of the normalizing flow objective is
also a critical point of the free-form flow loss. While additional critical points may exist,
as illustrated in Figure 2.2, we hypothesize that these points can be easily identified by
their nonzero reconstruction error. Note that we discuss critical points rather than minima
because the FFF loss, due to its use of stop-gradient, is not a proper loss function and only
its gradients are meaningful.

Theorem 2.1.10 (Equivalence of critical points). Let f ∗ be a minimizer of LNF[f]
over diffeomorphisms and let g∗ = (f ∗)−1. Suppose that f ∗ is parameterized by θ
and that ∇θif

∗′(x) is bounded for all x and all i. Then (f ∗, g∗) is a critical point of
LFFF.

Proof. By part 2 of Theorem 2.1.9, at (f ∗, g∗) we have:

|∇θiLML −∇θiLNF| ≤ Ex
[
∥(∇θif

∗′)(f ∗′)−1∥2F
] 1

2 Ex
[
∥f ∗′g∗′ − I∥2F

] 1
2 (2.53)

where f ∗′ = f ∗′(x), g∗′ = g∗′(f ∗(x)).
Since ∇θif

∗′ is bounded by assumption and (f ∗′)−1 is bounded because f ∗ is a
diffeomorphism, the first term Ex [∥(∇θif

∗′)(f ∗′)−1∥2F]
1
2 is finite. The second term

Ex [∥f ∗′g∗′ − I∥2F]
1
2 is zero since f ∗′g∗′ = I. Therefore, the right-hand side of the

equation is zero, implying that the gradients of LML and LNF are equal and thus
zero at (f ∗, g∗).
Given that the reconstruction loss is also at a minimum, (f ∗, g∗) is a critical point
of LFFF.

19

2.1.8 Links between FFF and VAE
Here we establish a connection between free-form flows (FFFs) and variational autoen-
coders (VAEs). Specifically, we demonstrate that the loss function LNF + βLR can be
interpreted as a VAE loss function. This interpretation retains the familiar VAE decoder
while allowing for a more flexible class of VAE encoders.

To begin, let us introduce the necessary notation and provide some context for our analysis.

Our generative model is as follows:

p(z) = N (z; 0, I) (2.54)
pϕ(x|z) = δ(x− gϕ(z)) (2.55)

meaning that to generate data we sample from a standard normal latent distribution and
pass the sample through the generator network gϕ. The corresponding inference model is:

q(x) = data distribution (2.56)
qθ(z|x) = δ(z − fθ(x)) (2.57)

Our goal is to minimize the KL divergence

DKL(q(x)∥pϕ(x)) = Eq(x)
[
log

q(x)

pϕ(x)

]
(2.58)

= Eq(x)
[
− log

∫
pϕ(x, z) dz

]
− h(q(x)) (2.59)

where h denotes the differential entropy. Unfortunately, this divergence is intractable due
to the integral over z (though it would be tractable if g−1

ϕ and log |Jgϕ(z)| are tractable due
to the change of variables formula – in this case, the model would be a typical normalizing
flow). The variational autoencoder (VAE) is a latent variable model that solves this
problem by minimizing the divergence over the joint x and z space. This is an upper
bound to the divergence over just x:

DKL(qθ(x, z)∥pϕ(x, z)) = Eqθ(x,z)

[
log

qθ(x, z)

pϕ(x, z)

]
(2.60)

= Eqθ(x,z)

[
log

q(x)

pϕ(x)
+ log

qθ(z|x)
pϕ(z|x)

]
(2.61)

= DKL(q(x)∥pϕ(x)) + Eq(x) [DKL(qθ(z|x)∥pϕ(z|x))] (2.62)
≥ DKL(q(x)∥pϕ(x)) (2.63)

The inequality comes from the fact that KL divergences are always non-negative. Un-
fortunately, this KL divergence is not well-defined due to the delta distributions, which
make the joint distributions over x and z degenerate. Unless the support of qθ(x, z) and
pϕ(x, z) exactly overlap, which is very unlikely for arbitrary fθ and gϕ, the divergence will
be infinite.

The solution is to introduce an auxiliary variable x̃ which is the data with some added
Gaussian noise:

p(x̃|x) = q(x̃|x) = N (x̃;x, σ2I) (2.64)

20

The generative model over z and x̃ is therefore

p(z) = N (z; 0, I) (2.65)
pϕ(x̃|z) = N (x̃; gϕ(z), σ

2I) (2.66)

and the inference model is

q(x̃) =

∫
q(x)q(x̃|x) dx (2.67)

q(x̃|x) = N (x̃;x, σ2I) (2.68)

qθ(z|x̃) =
∫
q(x)q(x̃|x)qθ(z|x) dx∫

q(x)q(x̃|x) dx (2.69)

Note that qθ(z|x̃) is extremely flexible in comparison to typical VAE variational posteriors
where often a Gaussian with diagonal covariance is used.

Now the relationship between x̃ and z has become stochastic, and we can safely minimize
the KL divergence, which will always take on finite values:

DKL(qθ(x̃, z)∥pϕ(x̃, z)) ≥ DKL(q(x̃)∥pϕ(x̃)) (2.70)

The KL divergence between the noised variables is known as a spread KL divergence D̃KL

(Zhang et al., 2020):

D̃KL(q(x)∥pϕ(x)) = DKL(q(x̃)∥pϕ(x̃)) (2.71)

Theorem 2.1.11 (Link between FFF and VAE). Let fθ be a diffeomorphism and
gϕ be C1. Define the spread KL divergence D̃KL as the KL divergence between
distributions convolved with isotropic Gaussian noise of variance σ2. Let β =
1/(2σ2) and

D = DKL(q(x̃, z)∥p(x̃, z)) (2.72)

Then the following equalities hold:

∇θ(LNF + βLR) = ∇θD and ∇ϕ(LNF + βLR) = ∇ϕD (2.73)

Moreover, we have the inequality:

D ≥ D̃KL(q(x)∥pϕ(x)) (2.74)

Consequently, minimizing LNF + βLR is equivalent to minimizing an upper bound
on D̃KL(q(x)∥pϕ(x)).

Proof. We begin with the identity for differential entropy (Papoulis and Pillai,
2002):

h(Z) = h(X) + E[log |f ′(X)|] (2.75)

where h is the differential entropy, andZ = f(X)with f being invertible. Applying

21

this to our context, we have:

h(q(z|x̃)) = h(q(x|x̃)) + Eq(x|x̃)[log |f ′(x)|] = Eq(x)[log |f ′(x)|] + const. (2.76)

For clarity, we’ll omit θ and ϕ subscripts. Let ϵ be a standard normal variable. We
can now derive D step by step.
First, we start with the KL divergence definition:

D = Eq(x̃,z) [log q(x̃) + log q(z|x̃)− log p(z)− log p(x̃|z)] (2.77)
= Eq(x̃) [−h(q(z|x̃))] + Eq(x̃,z) [− log p(z)− log p(x̃|z)] + const. (2.78)

Using Equation (2.76) and treating h(q(x|x̃)) as constant:

D = Eq(x) [− log |f ′(x)|] + Eq(x̃,z) [− log p(z)− log p(x̃|z)] + const. (2.79)

Next, we change variables from x̃, z to x, ϵ with x̃ = x+ σϵ and z = f(x):

D =Eq(x)q(ϵ)
[
− log |f ′(x)| − log pZ(f(x))− log p(X̃ = x+ σϵ|Z = f(x))

]
+ const. (2.80)

Substituting the Gaussian log-likelihood for p(x̃|z) and discarding constants:

D = Eq(x)q(ϵ)
[
− log |f ′(x)| − log pZ(f(x)) +

1

2σ2
∥x+ σϵ− g(f(x))∥2

]
+const.

(2.81)
Expanding the quadratic term and separating the ϵ-dependent part:

D = Eq(x)q(ϵ)
[
− log |f ′(x)| − log pZ(f(x)) +

1

2σ2
∥x− g(f(x))∥2

+
1

σ
ϵT (x− g(f(x)))

]
+ const. (2.82)

Finally, evaluating the ϵ expectation (noting E[ϵ] = 0) and setting β = 1/(2σ2):

D = Eq(x)
[
− log |f ′(x)| − log pZ(f(x)) + β∥x− g(f(x))∥2

]
+ const. (2.83)

Note that this final expression equals LNF + βLR up to the constant. Since the
constant doesn’t depend on θ or ϕ, we have:

∇θ(LNF + βLR) = ∇θD and ∇ϕ(LNF + βLR) = ∇ϕD (2.84)

We have already established that:

D ≥ DKL(q(x̃)∥pϕ(x̃)) = D̃KL(q(x)∥pϕ(x)) (2.85)

In conclusion, the gradients of LNF + βLR provide an unbiased estimate of D’s
gradients. Thus, minimizing LNF + βLR under stochastic gradient descent con-
verges to the same solutions as minimizing D, which upper bounds the spread KL
divergence between q(x) and pϕ(x).

22

2.2 Free-form injective flows
This section is based on work previously published as “Lifting architectural constraints of
injective flows” at ICLR 2024 (Sorrenson et al., 2024b). All figures are reproduced from
that publication.

This section generalizes the free-form flow to bottleneck models, meaning models with a
latent space of lower dimensionality than the data space.

2.2.1 Background
This section provides essential mathematical background for working with autoencoding
models. While most results presented here are well-established in the literature, we
introduce several key definitions: consistent autoencoders, unique projection domains,
and functional pseudoinverses.

The key result of this section is Theorem 2.2.3, a result commonly used in the literature
that generalizes the change of variables formula to the bottleneck setting.

Definition 2.2.1 (Consistent autoencoder). Let f : RD → Rd be an encoder that
compresses data to a latent space and let g : Rd → RD be a decoder that decom-
presses the latent representation. A full-dimensional model has d = D while a
bottleneck model has d < D. If f ◦ g : Rd → Rd is the identity, then we call f and
g consistent. For example, the forward and inverse function of a normalizing flow
are consistent as f−1 = g.

Definition 2.2.2 (Matrix pseudoinverse). The pseudoinverse (also known as Moore-
Penrose inverse) of a matrix A ∈ Rm×n, denoted A+, is the unique matrix that
satisfies the following four conditions:

1. AA+A = A
2. A+AA+ = A+

3. (AA+)T = AA+

4. (A+A)T = A+A
If A has full rank, then A+ = (ATA)−1AT if m > n or A+ = AT (AAT)−1 if
m < n. If A is square (m = n), then A+ = A−1.

Definition 2.2.3 (Unique projection domain). Let g : Rd → RD with D > d be C1

and injective. The unique projection domain of g, denoted Ug, is the set of points in
RD for which the projection onto the image of g is uniquely defined. Formally,

Ug = {x ∈ RD : ∃!y ∈ Rd such that ∥g(y)− x∥ = inf
z∈Rd

∥g(z)− x∥} (2.86)

where ∃! means “there exists a unique.”

Lemma 2.2.1. The complement of Ug has measure zero.

23

Proof. Let d(x) = infz∈Rd ∥g(z)−x∥ be the distance function from a point x ∈ RD

to the image of g.
1. Lipschitz continuity of d: Let x1, x2 ∈ RD. Let z2 ∈ Rd be such that

∥x2 − g(z2)∥ = d(x2). Then by the triangle inequality:

d(x1) ≤ ∥x1−g(z2)∥ ≤ ∥x1−x2∥+∥x2−g(z2)∥ = ∥x1−x2∥+d(x2) (2.87)

Since we could swap the roles of x1 and x2, we must have:

|d(x1)− d(x2)| ≤ ∥x1 − x2∥ (2.88)

which shows that d is Lipschitz continuous.
2. Differentiability of d almost everywhere: By Rademacher’s theorem, any

Lipschitz continuous function is differentiable almost everywhere. Therefore,
d is differentiable almost everywhere in RD.

3. Ug is the set where d is differentiable: By definition, Ug is the set of points
in RD for which the projection onto the image of g is uniquely defined. This
is precisely the set where the distance function d is differentiable. Therefore,
Ug is the set where d is differentiable.

Since d is differentiable almost everywhere, the set where d is not differentiable
(i.e., the complement of Ug) has measure zero.

Definition 2.2.4 (Functional pseudoinverse). Let g : Rd → RD with D > d be
C1 and injective. The functional pseudoinverse f : Ug → Rd of g is the unique
function that minimizes the reconstruction loss LR = Ex [∥g(f(x))− x∥2], where
x is sampled from a well-behaved probability distribution pdata.

Theorem 2.2.2 (Properties of the functional pseudoinverse). Let g : Rd → RD with
D > d be C1 and injective, and let f : Ug → Rd be its functional pseudoinverse.
Then:

1. f is unique.
2. f and g are consistent, i.e., f ◦ g is the identity on Rd.
3. For all x in the image of g, f ′(x) = g′(f(x))+, where g′(f(x))+ is the matrix

pseudoinverse of g′(f(x)).

Proof.
1. For any x ∈ Ug, there exists a unique y ∈ RD such that ∥y − x∥ =

infy′∈RD ∥y′ − x∥. Since g is injective, there is a unique z ∈ Rd such
that g(z) = y. Therefore, f(x) = z = argminz′∈Rd ∥g(z′) − x∥ is uniquely
defined for all x ∈ Ug, proving the uniqueness of f .

2. Let z ∈ Rd. By definition of f , we have:

f(g(z)) = argmin
z′∈Rd

∥g(z′)− g(z)∥ (2.89)

Since g is injective, the unique minimizer of this expression is z′ = z.
Therefore, f(g(z)) = z for all z ∈ Rd, which means f ◦ g is the identity on

24

Rd.
3. We use the calculus of variations. The reconstruction loss LR has the form:

LR =

∫
pdata(x)∥g(f(x))− x∥2 dx (2.90)

By the Euler-Lagrange equations, we have:

pdata(x)(g(f(x))− x)kg
′
ki(f(x)) = 0 (2.91)

where we use Einstein notation to imply a sum over k. Dividing by pdata and
differentiating with respect to xj:

g′kl(f(x))f
′
lj(x)g

′
ki(f(x))− δkjg

′
ki(f(x)) + (g(f(x))− x)kg

′′
kij(f(x)) = 0

(2.92)
Evaluating on the image of g, using g(f(x)) = x:

g′(f(x))Tg′(f(x))f ′(x) = g′(f(x))T (2.93)

Therefore, f ′(x) = [g′(f(x))Tg′(f(x))]−1g′(f(x))T = g′(f(x))+, which is
the matrix pseudoinverse of g′(f(x)).

Definition 2.2.5 (Matrix volume). The volume of a matrix A ∈ Rm×n, denoted
vol(A), is defined as the product of its singular values. If σi are the singular values
of A, then

vol(A) =

min(m,n)∏
i=1

σi (2.94)

The volume can also be defined in terms of the determinant. Specifically, for a “fat”
matrix A ∈ Rm×n with m < n, we use

vol(A) =
√
|AAT | (2.95)

and for a “skinny” matrix A ∈ Rm×n with m > n, we use

vol(A) =
√
|ATA| (2.96)

If m = n, then the volume of the matrix A is simply the absolute value of its
determinant:

vol(A) = |A| (2.97)

Theorem 2.2.3 (Change of variables across dimensions). Let g : Rd → RD be an
injective C1 function and let f : RD → Rd be its functional pseudoinverse. Then,
the change of variable formula generalizes to:

pX(x) = pZ(f(x)) vol(g
′(f(x)))−1 (2.98)

= pZ(f(x)) vol(f
′(x̂)) (2.99)

25

where x̂ = g(f(x)). Note that this expression only integrates to 1 if we restrict
integration to the image of g. Therefore, it should be regarded as defining a
probability distribution on this manifold, not in the ambient space RD.

Proof. The change of variables formula describes how probability densities trans-
form under an injective “pushforward” function g. We start by deriving this formula
for the case when d = D, meaning g is an invertible function. Let pZ be a base
density and pX the pushforward density obtained by mapping samples from pZ
through g. We can express this as:

pX(x) =

∫
p(x|z)pZ(z) dz (2.100)

=

∫
δ(x− g(z))pZ(z) dz (2.101)

=

∫
δ(x− x̂)pZ(f(x̂))|g′(f(x̂))|−1 dx̂ (2.102)

= pZ(f(x))|g′(f(x))|−1 (2.103)

Here, we used the change of variables x̂ = g(z), implying z = f(x̂) and |g′(z)| dz =
dx̂, with f being the inverse of g.
Now, consider the case where g maps from Rd to RD with d < D. We generalize
the change of variables x̂ = g(z) using z = f(x̂) and vol(g′(z)) dz = dx̂, where f
and g are consistent (see Chapter 5 of Krantz and Parks (2008)). This gives us:

pX(x) =

∫
δ(x− g(z))pZ(z) dz (2.104)

=

∫
δ(x− x̂)pZ(f(x̂)) vol(g

′(f(x̂)))−1 dx̂ (2.105)

This expression defines a probability density in the full ambient space RD (albeit
a degenerate distribution), but we cannot easily remove the integral. However, we
can convert it into an expression resembling the full-dimensional case, but defined
only on the image of g, by restricting integration to the image of g:

pX(x) = pZ(f(x)) vol(g
′(f(x)))−1 (2.106)

Finally, we note that, due to Theorem 2.2.2, f ′(x̂) = g′(f(x))+ and since vol(A+) =
vol(A)−1 for a full rank matrix, we can also write

pX(x) = pZ(f(x)) vol(f
′(x̂)) (2.107)

2.2.2 Joint maximum likelihood and manifold learning
In order to train a model that simultaneously learns a manifold and the density on it, we
define a training objective in two parts:

26

1. Reconstruction loss to bring data close to a low-dimensional manifold.

2. Maximum likelihood on the manifold.

This results in the loss:
Lon

NF + βLR (2.108)
where we use the NF (normalizing flow) subscript to specify an exact maximum likelihood
loss and indicate that it is evaluated on the manifold, i.e., the image of g.

Using Theorem 2.2.3, the maximum likelihood part of the loss has the form:

Lon
NF = Ex [− log p(x̂)] = Ex [− log pZ(f(x)) + log vol(g′(f(x)))] (2.109)

where f is the functional pseudoinverse of g and x̂ = g(f(x)) is the projection onto the
manifold.

Again by Theorem 2.2.3, this loss can alternatively be defined in terms of the encoder
Jacobian f ′(x̂):

Lon
NF = Ex [− log pZ(f(x))− log vol(f ′(x̂))] (2.110)

This form makes the loss more similar to the full-dimensional normalizing flow loss and
to the free-form flow loss used in the previous section. As in free-form flows, we can
approximate this by an unbiased estimator (see Theorem 2.2.5, proven after the following
lemma):

Lon
ML = Ex,v

[
− log pZ(f(x))− vTf ′(x̂)SG[g′(f(x))v]

]
(2.111)

Lemma 2.2.4 (Generalization of Jacobi’s formula to matrix volume). LetA ∈ RD×d

be a full-rank matrix with d ≤ D. Then

d

dt
log vol(A) = tr

(
A+dA

dt

)
(2.112)

Proof. Suppose without loss of generality that A is m × n with m ≥ n. By
definition, vol(A) =

√
|ATA|. Taking the logarithm, we have

log vol(A) =
1

2
log |ATA|. (2.113)

Differentiating with respect to t, we get

d

dt
log vol(A) =

1

2

d

dt
log |ATA|. (2.114)

Using the matrix logarithm derivative formula, we obtain

d

dt
log |ATA| = tr

(
(ATA)−1d(A

TA)

dt

)
. (2.115)

Since d(ATA)
dt

= AT dA
dt

+
(
dA
dt

)T
A, we have

d

dt
log |ATA| = tr

(
(ATA)−1

(
AT

dA

dt
+

(
dA

dt

)T
A

))
. (2.116)

27

Using that tr(B +BT) = 2 tr(B) for any square matrix B, we get

d

dt
log |ATA| = 2 tr

(
(ATA)−1AT

dA

dt

)
. (2.117)

Noting that (ATA)−1AT = A+, we finally obtain

d

dt
log vol(A) = tr

(
A+dA

dt

)
. (2.118)

Theorem 2.2.5 (Free-form injective flow estimator (on-manifold)). Let g : Rd →
RD be a C1 injective function and let f : RD → Rd be its functional pseudoinverse.
Let pZ be a well-behaved probability distribution onRd and let p be the pushforward
of pZ by g. Let v ∈ Rd be a random variable such that Ev[vvT] = I. Denote the
image of g as g(Rd). Then for all x ∈ g(Rd), Lon

ML has the same gradient as the
negative log-likelihood:

d

dt
Lon

ML[f, g] =
d

dt
Ex [− log p(x̂)] (2.119)

In particular, if g (and by extension f) are parameterized by θ, the gradient with
respect to θ is the same:

∇θLon
ML[fθ, gθ] = ∇θEx [− log pθ(x̂)] . (2.120)

Proof. The logic is the same as in the proof of Theorem 2.1.4, but we use the
pseudoinverse instead of the inverse, utilizing Lemma 2.2.4.

d

dt
log p(x̂) =

d

dt
log pZ(f(x)) + tr

(
f ′(x̂)+

d

dt
f ′(x̂)

)
(2.121)

=
d

dt
log pZ(f(x)) + tr

((
d

dt
f ′(x̂)

)
g′(f(x))

)
(2.122)

=
d

dt
log pZ(f(x)) + Ev

[
vT
(

d

dt
f ′(x̂)

)
g′(f(x))v

]
(2.123)

=
d

dt
log pZ(f(x)) +

d

dt
Ev
[
vTf ′(x̂)SG[g′(f(x))v]

]
(2.124)

Therefore,
d

dt
Ex [− log p(x̂)] =

d

dt
Lon

ML[f, g] (2.125)

This naturally extends to the gradient with respect to θ:

∇θLon
ML[fθ, gθ] = ∇θEx [− log pθ(x̂)] (2.126)

28

2.2.3 Maximum likelihood in bottleneck models

t = 1

t = 2

t = 0

Naive gradient computation

t = 1t = 2t = t = 0

Corrected gradient computation

Figure 2.3: Naive training of autoencoders with negative log-likelihood (NLL) can lead to patho-
logical solutions (left). Starting with the initialization (t = 0, black), gradient steps can increase
the curvature of the learned manifold (t = 1, 2, orange). This reduces NLL because the entropy of
the projected data decreases as the points move closer to one another. This effect is stronger than
that of the reconstruction loss. We address this problem by evaluating the volume change off the
manifold (right). This adjustment moves the manifold closer to the data and reduces its curvature
(t = 1, 2, green), until it eventually centers the manifold on the data with zero curvature (t = ∞,
green). Light lines indicate the set of points that map to the same latent point. Data is projected
onto the manifold at t = 2.

In the previous section, we discussed training models with a combination of a reconstruc-
tion and a likelihood term. We might ask what happens if we only train with the likelihood
term, yielding a loss function reminiscent of normalizing flows. Using the exact maximum
likelihood variant, our loss is:

Lon
NF(x) = − log pZ(f(x))− log vol(f ′(x̂)). (2.127)

Unfortunately, optimizing this loss can lead us to learn a degenerate decoder manifold, an
issue raised in Brehmer and Cranmer (2020). Here we expand on their argument.

First, consider that if f and g are consistent, then f(x̂) = f(g(f(x))) = f(x) and the
per-sample loss is invariant to projections: Lon

NF(x̂) = Lon
NF(x). This means that we can

write our loss as:
Lon

NF = Epdata(x)[Lon
NF(x)] = Ep̂data(x̂)[Lon

NF(x̂)], (2.128)

where p̂data(x̂) is the probability density of the projection of the training data onto the
decoder manifold. Now consider that the negative log-likelihood loss is one part of a KL
divergence, and KL divergences are always non-negative:

DKL(p̂data(x̂)∥pθ(x̂)) = −H(p̂data(x̂))− Ep̂data(x̂)[log pθ(x̂)] ≥ 0. (2.129)

As a result, the loss is lower bounded by the entropy of the data projected onto the manifold:

Lon
NF = −Ep̂data(x̂)[log pθ(x̂)] ≥ H(p̂data(x̂)). (2.130)

Unlike in standard normalizing flow optimization, where the right-hand side would be
fixed, here the entropy depends on the projection learned by the model. Thus, the model
could modify the projection such that entropy is as low as possible. We break this
pathology down into two cases:

29

1. A model manifold that does not align with the data manifold but instead inter-
sects it. For example, Brehmer and Cranmer (2020) discuss a case where a linear
model learns to project a data distribution to a single point on the manifold, thus
reducing its entropy to−∞, the lowest possible value. To the best of our knowledge,
this can be fixed by adding noise and a reconstruction loss with sufficiently high
weight. Appendix C in Sorrenson et al. (2024b) contains a proof that characterizes
the solutions for linear models, which are the same as principal component analysis
(PCA) if β ≥ 1/2σ2, where σ2 is the smallest eigenvalue of the data covariance
matrix.

2. A model manifold that concentrates the data by using high curvature. See
Figure 2.3 (left). This newly identified pathological case only occurs in nonlinear
models; hence Brehmer and Cranmer (2020) did not notice this effect in their linear
example. Importantly, this is not fixed by adding a reconstruction loss.

Most existing injective flows avoid this by using a two-stage training process, which first
learns a projection and then the distribution of the projected data in the latent space. To
enable jointly learning a manifold and a maximum-likelihood density on it, we need to
find a fix for the pathology.

2.2.4 Towards a well-behaved loss

Figure 2.4: Representation of ill-defined probability density p̃(x) ∝
pZ(f(x)) vol (f

′(x̂)) e−β∥x̂−x∥
2 (left and center). Solid black lines denote the manifold,

while dashed lines indicate a constant distance from the manifold. The probability density is
constant along the manifold. The width of the cyan bands is proportional to e−β∥x̂−x∥

2 and
represents the probability density along the on- and off-manifold contours. While the density is
reasonable for a flat manifold (left), note that the amount of probability mass associated with
a region of the manifold (bounded by solid lines) is larger at some points off the manifold than
on it when the manifold has curvature (center). This behavior can lead to divergent solutions
when optimizing for likelihood and should be compensated for. The appropriate compensation
factor is the ratio of the volume of a small region on the manifold (small blue square embedded
in green manifold, right) to the equivalent region off the manifold (large blue square, right). The
blue arrows represent an orthonormal frame on the manifold, and the equivalent frame in the
off-manifold region.

30

We show in the following that we can compensate for the pathological behavior of the
on-manifold likelihood loss by evaluating the change of variables term (log-volume term)
off the manifold, rather than on it.

The (per-sample) loss of the FIF model is (here using the exact maximum likelihood term
rather than the surrogate term for the purpose of the derivation):

− log pZ(f(x))− log vol (f ′(x̂)) + β∥x̂− x∥2 (2.131)

Consider the probability density p̃ implied by interpreting this loss as a negative log-
likelihood:

p̃(x) ∝ pZ(f(x)) vol (f
′(x̂)) e−β∥x̂−x∥

2 (2.132)
Unfortunately, this density is ill-defined and leads to pathological behavior (see Figure 2.4).
In order to provide a correction, we need a term that compensates for the volume increase
or decrease of off-manifold regions in comparison to the on-manifold region they are
projected to. This is depicted in Figure 2.4 (right). The blue arrows in the on-manifold
region will span the same latent-space volume as the blue arrows in the off-manifold
region. The change in volume between the depicted on-manifold region and the latent
space is vol(f ′(x̂)), and vol(f ′(x)) between the off-manifold region and the latent space.
Combining these facts means

vol(f ′(x̂))× (volume of on-manifold region)
= vol(f ′(x))× (volume of off-manifold region) (2.133)

and hence the ratio of the volume of the on-manifold region to the off-manifold region is
vol(f ′(x))/ vol(f ′(x̂)). Multiplying p̃(x) by this factor leads to

p̃(x)
vol(f ′(x))

vol(f ′(x̂))
= pZ(f(x)) vol (f

′(x)) e−β∥x̂−x∥
2 (2.134)

and the corresponding negative log-likelihood loss is

− log pZ(f(x))− log vol (f ′(x)) + β∥x̂− x∥2 (2.135)

Note what has changed: f ′(x) (off-manifold Jacobian matrix) has replaced f ′(x̂) (on-
manifold Jacobian matrix).

Using Lemma 2.2.4, the surrogate for the log-volume term is therefore

− tr(f ′(x)SG[f ′(x)+]) (2.136)

In order to maintain computational efficiency, we approximate f ′(x)+ by g′(f(x)):

− tr(f ′(x)SG[g′(f(x))]) (2.137)

which leads to the following off-manifold variant of the maximum likelihood estimator:

Loff
ML = Ex,v

[
− log pZ(f(x))− vTf ′(x)SG[g′(f(x))v]

]
(2.138)

This leads to the following total loss for FIFs:

LFIF = Loff
ML + βLR (2.139)

= Ex,v
[
− log pZ(f(x))− vTf ′(x)SG[g′(f(x))v] + β∥x̂− x∥2

]
. (2.140)

31

With this modification, we discourage pathological solutions involving high curvature. In
Figure 2.3 (right) we can see the effect of the modified estimator: the manifold now moves
towards the data since the optimization is not dominated by diverging curvature. We note
that the modified estimator is also computationally cheaper than the on-manifold variant,
since the vector-Jacobian product vTf ′(x) can reuse the computational graph generated
when computing f(x), rather than having to additionally compute f(x̂) and a subsequent
vector-Jacobian product.

2.2.5 Relationship to rectangular flows
This work is closely related to the previous work on rectangular flows by Caterini et al.
(2021). Both approaches involve jointly training a manifold and a distribution on it, using
stop-gradient to implement a surrogate loss for the maximum likelihood term. However,
they use the on-manifold variant of the loss, which we find to be unstable. Additionally,
their implementation is significantly less efficient compared to ours.

A primary difference lies in the relationship used for the surrogate term. They use the
expression

∇ log vol(Jg) = ∇1

2
Ev
[
SG
[
vT (JTg Jg)

−1
]
JTg Jgv

]
(2.141)

where Jg = g′(f(x)). This approach results in significantly higher computational costs,
mainly because it requires solving an iterative conjugate gradient algorithm to obtain the
product with the inverse matrix.

The second major difference is in the use of models. Rectangular flows use injective
flows (Brehmer and Cranmer, 2020) (also known as invertible autoencoders (Teng and
Choromanska, 2019)), an adaptation to convert normalizing flows into bottleneck models,
to jointly parameterize the encoder and decoder. Despite this, a reconstruction loss is still
necessary to learn the manifold in the data space. Our strategy is to learn the encoder and
decoder separately, without any special architectural constraints. Since they are coupled
by a reconstruction loss (which we need anyway), they become approximate functional
pseudoinverses during optimization.

Our work improves upon rectangular flows by presenting a significantly more efficient esti-
mator, relaxing architectural constraints, and addressing the curvature-related pathologies
that arise from the naive combination of maximum likelihood and manifold (reconstruction
loss) optimization.

2.2.6 Implementation details
In implementing the trace estimator, we have to make a number of choices, each elaborated
below. For a deeper understanding and more technical details, please refer to Appendix D
of Sorrenson et al. (2024b).

Gradient to encoder or decoder

The log-volume term can be formulated either in terms of the Jacobian of the encoder (see
Equation (2.110)) or the decoder (see Equation (2.109)). As discussed in Section 2.2.2,
we find that formulating it in terms of the encoder Jacobian is conceptually appealing. In
practice, it also leads to more stable training. Since the training minimizes the squared

32

norm of f(x) alongside the log-volume term, we speculate that having gradients from
both the squared norm and the log-volume term sent to the encoder allows the encoder to
more efficiently shape the latent space distribution. In addition, sending the log-volume
gradient to the encoder means the decoder must only minimize reconstruction loss, which
implies that it will likely be an approximate pseudoinverse for the encoder, a condition we
require for the accuracy of the surrogate estimator.

Space in which trace is performed

Gradient to encoder Gradient to decoder

Trace in data space − tr (g′(z) (∇f ′(x))) tr ((∇g′(x)) f ′(x))
Trace in latent space − tr ((∇f ′(x)) g′(z)) tr (f ′(x) (∇g′(z)))

Table 2.1: Different possible estimators for the gradient of the log-volume.

A central component of the maximum likelihood estimator is the trace and the Hutchinson
estimator for it. Making use of the cyclic property of the trace, i.e., tr(ATB) = tr(BAT)
for any A,B ∈ RD×d, we can choose which expansion of the trace to estimate:

d∑
i=1

(ATB)ii = tr(ATB) = tr(BAT) =
D∑
i=1

(BAT)ii. (2.142)

The variance of a stochastic trace estimator depends on the noise used but is generally
roughly proportional to the squared Frobenius norm of the matrix. Given two matrices
A,B ∈ RD×d with d < D, it is likely that ∥ATB∥2F < ∥BAT∥2F , due to the larger number
of components in the sum in the latter case.

Transferred to our context: In general, the matrices f ′(x) ∈ Rd×D and g′(z) ∈ RD×d

are rectangular and can be multiplied together in either the f ′(x)g′(z) ∈ Rd×d order or
g′(z)f ′(x) ∈ RD×D order. Since d < D, the former choice will likely result in lower
variance when stochastically estimating the trace.

As a result, when the latent space is smaller than the data space, the preferable estimator is
the one that performs the trace in the latent space, meaning that products in the estimator
have the order f ′(x)g′(z) (see Table 2.1).

Type of gradient

Consider the estimator:

tr ((∇f ′(x)) g′(z)) = ∇Ev
[
vTf ′(x)SG[g′(z)]v

]
(2.143)

Ignoring the stop gradient operation for now, this requires computing terms of the form
vTf ′(x)g′(z)v. In order to avoid calculating full Jacobian matrices, we can implement the
calculation using some combination of vector-Jacobian (VJP) or Jacobian-vector (JVP)
products, which are efficient to compute with backward-mode and forward-mode automatic
differentiation, respectively. Note that we can use the result from one product as the vector
for another VJP or JVP. For example, v1 := (vTf ′(x))T ∈ RD yields a vector, so we can
compute vTf ′(x)g′(z)v = vT1 g

′(z)v via two vector-Jacobian products.

This gives us three choices: (i) backward mode only (two VJPs), (ii) forward mode only
(two JVPs), or (iii) a mix of both (one JVP and one VJP). We opt to use mixed mode.

33

Trace estimator noise

Trace estimators rely on the identity

Ev[vTAv] = tr(AEv[vvT]) = tr(A) (2.144)

meaning that we require only Ev[vvT] = I for the noise variable. The choice of noise
distribution affects the variance of the estimator. Among all noise vectors whose entries
are sampled independently, Rademacher noise has the lowest variance (Hutchinson, 1989).
However, if the entries are sampled from a standard normal distribution and then scaled to
have length

√
d, where d is the dimension of v, the variance of the estimator is comparable

to Rademacher noise (Girard, 1989). This is because the scaled Gaussian noise vectors are
no longer independent, but they cover more directions than Rademacher noise (uniformly
covering the hypersphere, rather than at a fixed 2d points). When using a single Hutchinson
sample, we choose to use scaled Gaussian noise for its low variance and its ability to cover
more directions. When we have more than one Hutchinson sample, we additionally
orthogonalize the vectors as this further reduces variance.

Number of noise samples

We can choose to use between 1 and d noise samples to approximate the expectation in
the trace estimator (with d samples we can calculate the exact trace, so more samples are
not necessary). Denote the number of samples by K. We find that, in general, K = 1 is
enough for good performance, especially if the batch size is sufficiently high.

34

2.3 Manifold free-form flows

Sphere 𝕊2 Torus 𝕋2

Hyperbolic ℍ2 Curved surface

Function in embedding space Project to manifold

Figure 2.5: Manifold free-form Flows (M-FFF) learn generative models on a variety of manifolds.
Left: The learned distributions (colored surface) accurately match the test points (black dots).
Right: We parameterize M-FFF using a neural network in an embedding space, whose outputs are
projected onto the manifold. This enables simulation-free training and inference, and naturally re-
spects the corresponding geometry, yielding fast sampling and continuous distributions regardless
of the manifold.

This section is based on work previously published as “Learning distributions on manifolds
with free-form flows” at NeurIPS 2024 (Sorrenson et al., 2024a). All figures are reproduced
from that publication.

Respects topology Single-step sampling Arbitrary manifolds

Euclidean ✗ ✓ ✓

Specialized ✓ ✓ ✗

Continuous time ✓ ✗ ✓

M-FFF (ours) ✓ ✓ ✓

Table 2.2: Feature comparison of generative models on manifolds.

The free-form flow framework naturally extends to Riemannian manifolds, allowing us to
define a new class of generative models on such manifolds. The resulting manifold free-
form flows (M-FFFs) have distinct advantages over existing approaches (see Table 2.2).
Briefly, existing approaches fall into three categories:

1. Euclidean generative models: These models reduce the problem to learning a
distribution in Euclidean space (Gemici et al., 2016; Falorsi et al., 2019; Kalatzis
et al., 2021; Brofos et al., 2021). A downside is that they may not respect topology;
for example, mapping a sphere to a plane can cause discontinuities.

2. Specialized architectures: These involve coupling blocks for normalizing flows
designed to work on specific manifolds, such as SO(3) (Liu et al., 2023), SU(d)
and U(d) (Boyda et al., 2021; Kanwar et al., 2020), hyperbolic space (Bose et al.,
2020), as well as tori and spheres (Rezende et al., 2020).

3. Continuous-time models: These models parameterize an ODE or SDE in the
tangent space of a Riemannian manifold (Rozen et al., 2021; Falorsi, 2021; Falorsi

35

and Forré, 2020; Huang et al., 2022; Mathieu and Nickel, 2020; De Bortoli et al.,
2022; Chen and Lipman, 2024; Lou et al., 2020; Ben-Hamu et al., 2022). Sampling
and evaluating densities require iterative solving of the differential equation.

2.3.1 Free-form manifold-to-manifold neural networks
In analogy to free-form flows defined in Euclidean space, we learn a pair of free-form
neural networks: an encoder f(x) and a decoder g(z). To respect the geometry of the
setting, these are implemented as manifold-to-manifold functions:

f(x) : M → M, g(z) : M → M (2.145)

We implement such functions using feed-forward neural networks f̃ , g̃ : Rm → Rm that
operate in an embedding space Rm of M, ensuring that their outputs lie on the manifold
by appending a projection π : Rm → M, which maps points from the embedding space
Rm to the manifold M:

f(x) = π(f̃(x)), g(z) = π(g̃(z)) (2.146)

Figure 2.5 illustrates this for an example on a circle M = S1.

Similar to the Euclidean case, we use a reconstruction loss to ensure that f and g are
approximately inverses of each other:

LR = Ex[∥g(f(x))− x∥2] (2.147)

We calculate the distance in the embedding space; an alternative approach would be to use
a distance metric specific to the manifold (e.g., the great circle distance for the sphere),
but we find that the ambient Euclidean distance is effective in practice, as it closely
approximates the manifold distance for small distances.

Our loss function is very similar to that of the Euclidean free-form flow:

LM-FFF = Ex,v
[
− log pZ(f(x))− vTf ′(x)SG[g′(f(x))v]

]
+ βLR (2.148)

We will show how to adapt FFF to Riemannian manifolds in the following sections.

2.3.2 Manifold change of variables
In this section, we will focus on intuitive definitions of concepts from topology and
differential geometry. For a more rigorous treatment, see Jost (2008).

An n-dimensional manifold M is a space where every point x has a neighborhood that
is homeomorphic to an open subset of Rn. Intuitively, this means that there is a small
region of M containing x that can be bent and stretched in a continuous way to map
onto a small region in Rn. This is what is meant when we say that the manifold locally
resembles Rn. If all these maps from M to Rn are also differentiable, then the manifold
itself is differentiable, as long as there is a way to connect the local neighborhoods in a
differentiable and consistent way.

The tangent space of the manifold at x, denoted TxM, is an n-dimensional Euclidean
space, which is a linearization of the manifold at x: if we zoom in to a very small

36

Embedding space

Figure 2.6: Computation of the volume change in the tangent space of the manifold: The manifold
change of variables formula in Equation (2.156) requires computing the change of a volume element
in the tangent spaces under f , which in this example is given by the ratio of lengths of dt and
dt′. Since f is a map in the embedding space, f ′(x) defines a linear map between vectors from
the embedding space. To correctly compute the change in volume, we use Q and R to change
coordinates to the intrinsic tangent spaces, resulting in the linear map RT f ′(x)Q : TxM →
Tf(x)M, which maps dt to dt′.

region around x, the manifold looks flat, and this flat Euclidean space is aligned with the
tangent space. Because the tangent space is a linearization of the manifold, this is where
derivatives on the manifold live; e.g., if f : MX → MZ is a map between two manifolds,
then the Jacobian f ′(x) is a linear map from TxMX to Tf(x)MZ .

A Riemannian manifold (M, G) is a differentiable manifold that is equipped with a
Riemannian metric G : TxM × TxM → R, which defines an inner product on the
tangent space, allowing us to calculate lengths and angles in this space. The length of a
smooth curve γ : [0, 1] → M is given by the integral of the length of its velocity vector
γ′(t) ∈ Tγ(t)M. This ultimately allows us to define a notion of distance on the manifold,
as the curve of minimal length connecting two points.

In the following, we always consider Riemannian manifolds.

Embedded manifolds

We define an embedded manifold and its properties as follows:

Definition 2.3.1 (Embedded Manifold). An n-dimensional manifold M embedded
in Rm is defined via a projection function

π : P → Rm (2.149)

where P ⊆ Rm is the projectable set. The projection π must satisfy:
1. π ◦ π = π.
2. π is smooth on P.
3. rank(π′(π(x))) = n for all x ∈ P.

The manifold M is then defined as the set that projects onto itself:

M = {x ∈ Rm : π(x) = x} (2.150)

The tangent space of M at a point x is defined as the column space of the Jacobian

37

matrix of π:
TxM = col(π′(x)) (2.151)

An example of an embedded manifold is the unit sphere Sm−1 in Rm. The projection
function for the sphere is given by:

π(x) =
x

∥x∥ (2.152)

where ∥x∥ is the Euclidean norm of x. The Jacobian of the projection for the unit sphere
can be derived as follows:

π′(x) =
1

∥x∥I−
1

∥x∥3xx
T (2.153)

where I is the m×m identity matrix.

This projection satisfies the properties of an embedded manifold:

1. π ◦ π = π: Projecting a point that is already on the sphere does not change its
position.

2. π is smooth on P = Rm \ {0}: The projection is differentiable everywhere except
at the origin.

3. π′(x) is a full-rank matrix minus a rank-one matrix. A matrix with this structure
could have either rank m or m− 1. Since π′(x)x = 0, it cannot be full rank, so the
rank of π′(x) is m− 1 for all x ∈ Sm−1.

Since π′(x)x = 0, the tangent space is the hyperplane orthogonal to x:

TxSm−1 = {v ∈ Rm : vTx = 0} (2.154)

Integration on embedded manifolds

In order to perform integration on the manifold, we cannot work directly in the m-
dimensional coordinates of the embedding space; instead, we have to introduce some
local n-dimensional coordinates. This means that the domain of integration has to be
diffeomorphic to an open set in Rn. Since this might not be the case for the whole region
of integration, we might need to partition it into such regions and perform integration on
each individually (each such region, together with its map to Rn, is known as a chart, and
a collection of charts is an atlas). For example, if we want to integrate a function on the
sphere, we could split the sphere into two hemispheres and integrate each separately. A
hemisphere can be continuously stretched and flattened into a two-dimensional region,
whereas the whole sphere cannot without creating discontinuities.

Given an open set U in Rn, and a diffeomorphic local embedding function ϕ : U → M,
the integral of a scalar function p : M → R on ϕ(U) ⊆ M is∫

ϕ(U)

p dV =

∫
U

(p ◦ ϕ)
√

|ϕ′(u)TG(ϕ(u))ϕ′(u)| du1 · · · dun (2.155)

The integral on the right is an ordinary integral in Rn. The quantity inside the determinant
is known as the pullback metric.

Using this formalism, we can prove the following theorem, which generalizes the change
of variables formula to Riemannian manifolds.

38

Theorem 2.3.1 (Manifold change of variables). Let (MX , GX) and (MZ , GZ) be
n-dimensional Riemannian manifolds embedded in Rm, i.e., MX ,MZ ⊆ Rm, and
assume they have the same global topological structure. Let pX be a probability
distribution on MX and let f : MX → MZ be a diffeomorphism. Let pZ be the
pushforward of pX under f .
Letx ∈ MX . DefineQ ∈ Rm×n as an orthonormal basis forTxMX andR ∈ Rm×n

as an orthonormal basis for Tf(x)MZ .
Then, the probability densities pX and pZ are related under the change of variables
x 7→ f(x) by the following equation:

pX(x) = pZ(f(x)) · |RTf ′(x)Q| ·
√

|RTGZ(f(x))R|
|QTGX(x)Q|

(2.156)

where Q and R depend on x and f(x), respectively, although this dependency is
omitted for brevity.

Proof. Let ϕ : Rn → MX be defined by ϕ(u) = πX(x + Qu). Let U be an open
subset of Rn containing the origin that is small enough so that ϕ is bĳective. Let
ψ : Rn → MZ be defined by ψ(w) = πZ(f(x) + Rw). Define φ = ψ−1 ◦ f ◦ ϕ
and let W = φ(U).
Note that ϕ′(u) = π′

X(x + Qu) · Q and hence ϕ′(0) = π′
X(x)Q = Q (since each

column of Q is in TxMX = col(π′
X(x))).

Similarly, ψ′(0) = R. Since ψ is a map from n to m dimensions, there is not a
unique function from Rm to Rn that is ψ−1 on the manifold, and there are remaining
degrees of freedom in the off-manifold behavior that can result in different Jacobians.
For our purposes, we define the inverse ψ−1 such that ψ ◦ ψ−1 is an orthogonal
projection onto MZ . This means ψ′(ψ−1(f(x)))(ψ−1)′(f(x)) = RRT and hence
(ψ−1)′(f(x)) = RT .
Since pZ is the pushforward of pX under f , the amount of probability mass contained
in ϕ(U) is the same as that contained in f(ϕ(U)) = ψ(W):∫

ϕ(U)

pX(x) dVX =

∫
ψ(W)

pZ(z) dVZ (2.157)

and therefore:∫
U

pX(ϕ(u))
√
|ϕ′(u)TGX(ϕ(u))ϕ′(u)| du1 · · · dun

=

∫
W

pZ(ψ(w))
√

|ψ′(w)TGZ(ψ(w))ψ′(w)| dw1 · · · dwn (2.158)

Changing variables of the RHS with w = φ(u) gives us∫
U

pX(ϕ(u))
√

|ϕ′(u)TGX(ϕ(u))ϕ′(u)| du1 · · · dun

=

∫
U

pZ(f(ϕ(u)))
√

|ψ′(φ(u))TGZ(f(ϕ(u)))ψ′(φ(u))| ·
∣∣∣∣∂w∂u

∣∣∣∣ du1 · · · dun
(2.159)

39

Since U was arbitrary, we can make it arbitrarily small, demonstrating that the
integrands must be equal for u = 0:

pX(x)
√

|QTGX(x)Q| = pZ(f(x))
√

|RTGZ(f(x))R| ·
∣∣∣∣∂w∂u

∣∣∣∣ (2.160)

Since w = ψ−1(f(ϕ(u))), the Jacobian has the following form when evaluated at
the origin (note ϕ(0) = x):

∂w

∂u

∣∣∣∣
u=0

= (ψ−1)′(f(x)) · f ′(x) · ϕ′(0) (2.161)

= RTf ′(x)Q (2.162)

Substituting this into the equality and rearranging gives the result:

pX(x) = pZ(f(x)) · |RTf ′(x)Q| ·
√

|RTGZ(f(x))R|
|QTGX(x)Q|

(2.163)

2.3.3 Loss function
This theorem extends the Euclidean free-form flow approximation of the log-Jacobian
to Riemannian manifolds. The result closely mirrors the Euclidean case, with one key
difference: the random vector v must have a different covariance matrix, which in practice
means it should be sampled from the tangent space at f(x).

Theorem 2.3.2. Under the assumptions of Theorem 2.3.1, let v ∈ Rm be a random
variable with zero mean and covariance RRT . Denote g = f−1. Then, the
derivative of the change of variables term has the following trace expression:

∇ log |RTf ′(x)Q| = tr(RT (∇f ′(x))g′(f(x))R) (2.164)
= Ev

[
vT (∇f ′(x))g′(f(x))v

]
. (2.165)

Proof. First, a reminder thatφ′(0) = RTf ′(x)Qwithφ = ψ−1◦f ◦ϕ. Letχ = φ−1,
i.e., χ = ϕ−1 ◦ g ◦ ψ. Jacobi’s formula tells us that

d

dt
log |A(t)| = tr

(
dA(t)

dt
A(t)−1

)
(2.166)

Note also that since χ(φ(u)) = u, therefore χ′(φ(u))φ′(u) = I and χ′(φ(u)) =
φ′(u)−1. Applying Jacobi’s formula to φ′(0):

∇ log |φ′(0)| = tr((∇φ′(0))φ′(0)−1) (2.167)
= tr((∇φ′(0))χ′(φ(0))) (2.168)

and substituting in f and g:
∇ log |RTf ′(x)Q| = tr(∇(RTf ′(x)Q)QTg′(f(x))R) (2.169)

40

Q does not depend on the derivative, but R depends on f(x) and hence must be
considered in the derivative. However,

∇ tr(RRT) = tr((∇R)RT +R∇RT) = 2 tr(R∇RT) (2.170)

and since tr(RRT) = tr(I) is a constant, we have tr(R∇RT) = 0. Expanding
Equation (2.169):

∇ log |RTf ′(x)Q| = tr(∇(RT)f ′(x)QQTg′(f(x))R)

+ tr(RT∇(f ′(x))QQTg′(f(x))R) (2.171)

Since Q is an orthonormal basis for TxMX , QQT is a projection matrix onto
TxMX . This is because (QQT)2 = QQTQQT = QQT . As a result, QQTπ′(x) =
π′(x). Since g can also be written inside a projection: g(z) = πZ(g(z)), therefore
g′(z) = π′

Z(g̃(z))g̃
′(z), so QQTg′(z) = g′(z). Note also that f ′(x)g′(f(x)) = I

since f ◦ g = id. This simplifies the equation:

∇ log |RTf ′(x)Q| = tr(∇(RT)R) + tr(RT∇(f ′(x))g′(f(x))R) (2.172)

and finally
∇ log |RTf ′(x)Q| = tr(RT∇(f ′(x))g′(f(x))R) (2.173)

Finally, for a square matrix A we have

Ev[vTAv] = tr(AEv[vvT]) = tr(ARRT) = tr(RTAR) (2.174)

meaning

tr(RT (∇f ′(x))g′(f(x))R) = Ev
[
vT (∇f ′(x))g′(f(x))v

]
(2.175)

In the above proof, we used the fact thatQQTg′(z) = g′(z). Can we useRRTf ′(x) = f ′(x)
to simplify the equation further? No, we cannot, since the expression involving f ′ is
actually its derivative with respect to parameters, which may not have the same matrix
structure as f ′. Is it instead possible to use g′(z)RRT = g′(z) for simplification? If g is
implemented as πZ(g̃(z)), this is not necessarily true, as g′(z) might not be a map from the
tangent space at z to the tangent space at g(z). For example, if we add a small deviation v
to z, where v is orthogonal to the tangent space at z, then g(z + v) might not equal g(z).
However, this would mean that derivatives in the off-manifold direction can be non-zero,
meaning that g′(z)v ̸= g′(z)RRTv = 0 (since RRT will project v to 0). We can change
this by prepending g with a projection:

g = πX ◦ g̃ ◦ πZ . (2.176)

If πZ is an orthogonal projection, meaning that π′
Z is symmetric, the column space and

row space of πZ will both be the same as those of RRT , meaning π′
Z(z)RR

T = π′
Z and

hence g′(z)RRT = g′(z). This leads to the following corollary:

41

Corollary 2.3.2.1. Suppose the assumptions of Theorem 2.3.1 hold with the follow-
ing implementation for g = f−1

g = πX ◦ g̃ ◦ πZ (2.177)

where πZ is an orthogonal projection. Then the derivative of the change of variables
term has the following trace expression:

∇ log |RTf ′(x)Q| = tr((∇f ′(x))g′(f(x))). (2.178)

Proof. Take the result of Theorem 2.3.2 and use the cyclic property of the trace and
the properties of g′ discussed above:

tr(RT∇(f ′(x))g′(f(x))R) = tr(∇(f ′(x))g′(f(x))RRT) (2.179)
= tr(∇(f ′(x))g′(f(x))). (2.180)

We have two variants of the trace estimate derived above, one evaluated in Rn (Theo-
rem 2.3.2), the other in Rm (Corollary 2.3.2.1). The first can be estimated using the
following equality:

tr(RT∇(f ′(x))g′(f(x))R) = Eu[uTRT∇(f ′(x))g′(f(x))Ru] (2.181)
= Ev[vT∇(f ′(x))g′(f(x))v] (2.182)
= ∇Ev[vTf ′(x)SG[g′(f(x))]v] (2.183)

where Eu[uuT] = In for u ∈ Rn and p(v) is the distribution of Ru, which lies in the
tangent space at x with E[vvT] = RRT . An example of such a distribution is the standard
normal projected to the tangent space, which we can achieve by v = π′(x)ṽ where ṽ is
standard normal.

In the second case, we can just sample from a distribution where Ev[vvT] = Im in the
embedding space Rm:

tr(∇(f ′(x))g′(f(x))) = ∇Ev[vT∇(f ′(x))SG[g′(f(x))]v]. (2.184)

Variance reduction

When using a Hutchinson trace estimator with standard normal v ∈ Rn, we can reduce the
variance of the estimate by scaling v to have length

√
n (see Girard (1989)). The scaled

variable will still have zero mean and unit covariance, ensuring the estimate remains
unbiased. However, the variance is reduced, with the effect especially pronounced in low
dimensions.

While we can take advantage of this effect in both our options for trace estimator, the effect
is more pronounced in lower dimensions, so we reduce the variance more by estimating
the trace in an n-dimensional space rather than an m-dimensional space. Hence the
first version of the trace estimator, where v is sampled from a distribution in TxMX , is
preferable in this regard.

42

Let’s provide some intuition with an example. Suppose n = 1, m = 2 and R = (1, 0)T .
We want to estimate the trace of A = diag(1, 0). Using the first estimator, we first sample
v = RRT ṽ with ṽ standard normal which results in v = (u, 0)T where u ∈ R is standard
normal. Then we scale v so it has length

√
n = 1. This results in v = (r, 0)T where

r is a Rademacher variable (taking the values −1 and 1 with equal probability). The
trace estimate is therefore r2 = 1, meaning we always get the correct answer, so the
variance is zero. The second estimator samples v directly from a 2D standard normal,
then scales it to have length

√
m =

√
2. Hence v is sampled uniformly from the circle

with radius
√
2. We can write v =

√
2(cos θ, sin θ)T with θ sampled uniformly in [0, 2π].

The estimate vTAv = 2 cos2 θ. This is a random variable whose mean is indeed 1 as
required but has a nonzero variance, showing that the variance is higher when estimating
in the m-dimensional space.

For this reason, we choose the first estimator, sampling v in the tangent space at x. This also
simplifies the definition of g, meaning that we don’t have to prepend it with a projection.

43

2.4 Experiments
All figures and tables in this section are taken from the relevant papers:

1. Free-form flows (full-dimensional) (Draxler et al., 2024)

2. Free-form injective flows (Sorrenson et al., 2024b)

3. Manifold free-form flows (Sorrenson et al., 2024a)

2.4.1 Free-form flows (full-dimensional)
Effect of reconstruction loss weight on invertibility

Figure 2.7: Learned solutions to LNF + βLR for various β. The data is the two-component
Gaussian mixture shown in the lower panels. Solid blue lines show f and dashed orange lines
show g. Note that f is not globally invertible when β is small.

Figure 2.7 demonstrates the behavior of learning LNF + βLR without restricting f to
diffeomorphisms. The behavior is as predicted in Theorem 2.1.8. For low values of β, we
observe that the learned solution is not invertible between the data modes. In the extreme
case (leftmost panel), the function learns to map each mixture component independently
to the latent standard normal distribution. This approach yields a high likelihood but poor
reconstruction quality.

As we increase β, and consequently the reconstruction loss, we observe a progression
towards more globally consistent solutions. The function gradually learns to maintain
invertibility across the entire domain, not just within each mode. This progression cul-
minates in a globally invertible solution for sufficiently large β (rightmost panel), which
closely resembles the behavior of traditional normalizing flows.

This experiment highlights the trade-off between likelihood and reconstruction quality,
and demonstrates the importance of choosing a sufficiently high β value when optimizing
free-form networks with the normalizing flow loss.

Simulation-based inference

Simulation-based inference (SBI) involves estimating the parameters of a model or simu-
lation from observations. As multiple parameter sets can lead to similar observations, a
generative model is necessary, allowing us to sample from a distribution over parameters.
We train on simulations to learn a conditional generative model that predicts parameters
(inputs) from outputs.

44

103 104 105
0.5

0.6

0.7

0.8

0.9

1.0

C
2

S
T

bernoulli_glm

103 104 105

bernoulli_glm_raw

103 104 105

gaussian_linear

103 104 105

gaussian_linear_uniform

103 104 105

gaussian_mixture

FFF (ours)

FM

NSF

103 104 105
0.5

0.6

0.7

0.8

0.9

1.0

C
2

S
T

lotka_volterra

103 104 105

sir

103 104 105

slcp

103 104 105

slcp_distractors

103 104 105

two_moons

Number of Simulations

Figure 2.8: C2ST scores (lower is better) on the SBI benchmark datasets. We compare our method
(FFF) against flow matching (FM) (Wildberger et al., 2023) and the neural spline flow (NSF)
baseline in the benchmark dataset (Lueckmann et al., 2021). The scores are averaged over ten
different observations, with error bars indicating the standard deviation. Our performance is
comparable to the competitors across all datasets, with no model being universally better or worse.

We use the benchmark from Lueckmann et al. (2021), which comprises 10 inverse prob-
lems of varying difficulty, each with three simulation budgets (number of training exam-
ples). Performance is evaluated using the classifier 2-sample test (C2ST) (Lopez-Paz and
Oquab, 2017; Friedman, 2003), where the score is determined by a classifier trained to
distinguish between generated and true posterior samples. Scores range between 0.5 (best)
and 1 (worst).

Figure 2.8 compares the C2ST scores of our model against SBI baselines: neural spline
flows (Durkan et al., 2019) and flow matching (Wildberger et al., 2023). Our method
demonstrates competitive performance, particularly at low budgets, and is straightforward
to tune. We employ nearly identical architecture across all tasks, only widening networks
for larger datasets. For complete experimental details, refer to Appendix C.1 of Draxler
et al. (2024).

Molecule generation

We evaluate our method on two molecule generation benchmarks: as a Boltzmann gener-
ator on three synthetic molecule-like energy distributions, and as a generator of molecules
from the QM9 dataset.

In both cases, we use a network equivariant to rotations and translations (E(3) equivariant),
utilizing the E(n)-GNN proposed by Satorras et al. (2021b). This approach respects the
symmetry of molecules and leads to faster learning. Our latent distribution is invariant
to E(3) transformations, ensuring that the overall learned density is also invariant. See
Appendix C.2 in Draxler et al. (2024) for full experimental details.

Boltzmann generators A Boltzmann generator (Noé et al., 2019) is a generative model
for a distribution defined by a known energy function u(x):

p(x) ∝ e−u(x) (2.185)

Since we know u(x), we can reweight samples from our learned distribution q(x) to obtain
unbiased estimates of expectations of observables:

Ep(x)[O(x)] = Eq(x)
[
O(x)

p(x)

q(x)

]
=

Eq(x)[O(x)e−u(x)−log q(x)]

Eq(x)[e−u(x)−log q(x)]
(2.186)

45

NLL (↓) Sampling
time (↓)

DW4
E(n)-NF (Satorras et al., 2021a) 1.72 ± 0.01 0.024 ms
OT-FM (Klein et al., 2023) 1.70 ± 0.02 0.034 ms
E-OT-FM (Klein et al., 2023) 1.68 ± 0.01 0.033 ms
E(n)-FFF (ours) 1.68 ± 0.01 0.026 ms

LJ13
E(n)-NF -16.28 ± 0.04 0.27 ms
OT-FM -16.54 ± 0.03 0.77 ms
E-OT-FM -16.70 ± 0.12 0.72 ms
E(n)-FFF (ours) -17.09 ± 0.16 0.11 ms

LJ55
OT-FM -88.45 ± 0.04 40 ms
E-OT-FM -89.27 ± 0.04 40 ms
E(n)-FFF (ours) -88.72 ± 0.16 2.1 ms

Table 2.3: Equivariant free-form flows (E(n)-FFF) sample significantly faster than previous
models and achieve comparable or better negative log-likelihood (NLL, lower is better). Best
results in bold.

NLL (↓) Stable (↑) Sampling time (↓)
Raw Stable

E(3)-NF -59.7 4.9 % 13.9 ms 309.5 ms
E(3)-DM -110.7 82.0 % 1580.8 ms 1970.6 ms
E(3)-FFF -76.2 8.7 % 0.6 ms 8.1 ms
Data - 95.2 % - -

Table 2.4: E(3)-FFF (ours) trained on QM9 generates stable molecules faster than previous
models because a sample is obtained via a single function evaluation. E(3)-DM is the E(3)-
diffusion model (Hoogeboom et al., 2022), and E(3)-NF is the E(3)-normalizing flow (Satorras
et al., 2021a). The latter is also trained explicitly using maximum likelihood, yet is outperformed by
E(3)-FFF in terms of negative log-likelihood (NLL, lower is better) and the fraction of generated
molecules that are stable. Best results in bold.

We evaluate on three benchmark tasks: DW4, LJ13, and LJ55 (Köhler et al., 2020; Klein
et al., 2023). Each task involves summing up pairwise potentials between particles:

• DW4: Uses a double well potential with 4 particles in 2D.

• LJ13: Uses the Lennard-Jones potential with 13 particles in 3D.

• LJ55: Uses the Lennard-Jones potential with 55 particles in 3D.

Samples for these tasks come from MCMC and are provided by Klein et al. (2023).

In Table 2.3, we compare our method against a continuous E(3) equivariant normalizing
flow (neural ODE) (Satorras et al., 2021a) and two equivariant ODEs trained with optimal
transport (OT) flow matching (Klein et al., 2023). Our method achieves comparable
or better negative log-likelihood (NLL) and is significantly faster, especially as the data
complexity increases (e.g., LJ55).

46

QM9 molecules The QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014)
contains molecules with varying atom counts, up to 29 atoms per molecule. Each atom is
represented by its 3D coordinates and additional properties such as atom type and charge.

As a single-step model, FFF is significantly faster than continuous models like diffusion
or flow matching. As shown in Table 2.4, our method can generate stable molecules two
orders of magnitude faster than the E(3) diffusion model (Hoogeboom et al., 2022) and
one order of magnitude faster than the E(3) normalizing flow (Satorras et al., 2021a).

Compared to the E(3) normalizing flow, FFF achieves better negative log-likelihood and
generates a higher percentage of stable molecules. However, it’s worth noting that theE(3)
diffusion model still outperforms FFF in terms of both the number of stable molecules
generated and negative log-likelihood. This trade-off between speed and performance
highlights the potential of FFF as a fast, high-quality alternative in scenarios where rapid
generation is crucial.

2.4.2 Free-form injective flows
Trade-off between likelihood and reconstruction

Figure 2.9: Learning a noisy 2D sinusoid with a 1D latent space for different reconstruction
weights β. Color codes in the left and right plots denote the value of the latent variable at each
location. Box plots indicate variability across runs.

Figure 2.9 demonstrates the behavior of the free-form injective flow objective as the
reconstruction weight β varies. For low β values, the model tends to learn low-entropy
directions, modeling only the noise perpendicular to the data manifold. This occurs
because it results in a lower negative log-likelihood loss, while the higher reconstruction
loss is insufficient to discourage this behavior. At even lower β values, the model becomes
unstable.

As β increases, the model transitions to learning the data manifold effectively, successfully
modeling the distribution on it. Between these two regimes, we observe a phase transition.

Tabular data

We evaluate our method on the four tabular distributions from Papamakarios et al. (2017),
using the same data preprocessing and training splits. In Table 2.5, we compare our
results to the published results for rectangular flows (RF) from Caterini et al. (2021).
We adopt the “FID-like metric” used in their work, which computes the Wasserstein-2
distance between Gaussian distributions with equal mean and covariance as the test data
and the model-generated data. This metric effectively measures the difference in means
and covariance matrices between the generated and test datasets. Full experimental details
and additional results can be found in Appendix E.2 of Sorrenson et al. (2024b).

47

Method POWER GAS HEPMASS MINIBOONE

RF (Caterini et al., 2021) 0.083 ± 0.015 0.110 ± 0.021 0.779 ± 0.191 1.001 ± 0.051
FIF (ours) 0.041 ± 0.007 0.281 ± 0.031 0.541 ± 0.034 0.598 ± 0.024
Training Time Speedup 3.9 × 2.2 × 6.1 × 1.5 ×

Table 2.5: Free-form injective flows (FIF) are significantly faster than rectangular flows (RF)
with superior performance in FID-like metric (lower is better) on 3 out of 4 tabular datasets
(Papamakarios et al., 2017). Both methods use K = 1. The results for RF are taken directly from
(Caterini et al., 2021). Best results in bold.

Our free-form injective flows (FIF) outperform RF on three out of four datasets (POWER,
HEPMASS, and MINIBOONE), with the exception being the GAS dataset. Notably, FIF
consistently demonstrates faster training times, with speedups ranging from 1.5× to 6.1×
across all datasets. This combination of improved performance and significantly reduced
training time highlights the efficiency and effectiveness of our approach in modeling
complex tabular distributions.

Comparison to injective flows

Model # parameters N sampler GMM sampler
FID ↓ IS ↑ FID ↓ IS ↑

DNF (Horvat and Pfister, 2021) 39.4M 55.6 ± 0.59 1.9 52.7 ± 0.33 2.0
Trumpet (Kothari et al., 2021) 19.1M 56.2 ± 1.39 1.8 47.7 ± 2.24 1.9
FIF (ours) 34.3M 47.3 ± 1.39 1.7 37.4 ± 1.35 2.0

Table 2.6: Comparison of injective flows on CelebA under equal computational budget. Free-form
injective flows (FIF) outperform previous work significantly in terms of FID (lower is better, best
results in bold).

We compare FIF to other injective flows on CelebA images (Liu et al., 2015) in Table 2.6.
Our models achieve significantly better Fréchet Inception Distance (FID) (Heusel et al.,
2017) and comparable Inception Score (IS) (Salimans et al., 2016). FID measures how
well the distribution of generated samples matches the distribution of reference samples
in the feature space of an image recognition model, while IS assesses the diversity of
generated samples by calculating the entropy of outputs from a pretrained classification
model.

All models are trained on the same hardware for equal wall clock time, ensuring a fair
comparison. Further experimental details can be found in Appendix E.3 of Sorrenson
et al. (2024b).

Comparison to generative autoencoders

The free-form injective flow (FIF) belongs to the broader category of generative autoen-
coders, which encompasses models such as variational autoencoders (VAEs) and their
variants, as well as adversarial autoencoders (AAEs). To evaluate our model’s perfor-
mance relative to these approaches, we utilize the Pythae benchmark (Chadebec et al.,
2022) for image generation tasks.

48

Model Conv + N Res + N Conv + GMM Res + GMM
FID ↓ FID FID FID

VAE 54.8 66.6 52.4 63.0
IWAE 55.7 67.6 52.7 64.1
VAE-lin NF 56.5 67.1 53.3 62.8
VAE-IAF 55.4 66.2 53.6 62.7
β-(TC) VAE 55.7 65.9 51.7 59.3
FactorVAE 53.8 66.4 52.4 63.3
InfoVAE - (RBF/IMQ) 55.5 66.4 52.7 62.3
AAE 59.9 64.8 53.9 58.7
MSSSIM-VAE 124.3 119.0 124.3 119.2
Vanilla AE 327.7 275.0 55.4 57.4
WAE - (RBF/IMQ) 64.6 67.1 51.7 57.7
VQVAE 306.9 140.3 51.6 57.9
RAE - (L2/GP) 86.1 168.7 52.5 58.3
FIF (ours) 56.9 62.3 47.3 55.0

Table 2.7: Pythae benchmark results on CelebA, following Chadebec et al. (2022). We train
their architectures (ConvNet and ResNet) with our new training objective, achieving SOTA FID
on ResNet. We draw latent samples from standard normal “N” or a GMM fit using training data
“GMM”. Models with multiple variants (indicated in brackets) have been merged to indicate only
the best result across variants. We mark the best FID (lower is better) in each column in bold and
underline the second best.

The Pythae benchmark provides a standardized evaluation framework, assessing models
across two different architectures on three datasets:

1. MNIST (LeCun et al., 2010): data dimension D = 784, latent dimension d = 16

2. CIFAR10 (Krizhevsky, 2009): D = 3072, d = 256

3. CelebA (Liu et al., 2015): D = 12288, d = 64

All models in the benchmark are allocated the same computational budget. It’s important
to note that due to these resource constraints, the benchmark’s primary goal is not to
produce state-of-the-art images, but rather to facilitate a fair comparison between methods
under equal conditions.

Table 2.7 presents the results for the CelebA dataset, where our FIF model demonstrates
superior performance, achieving the best overall results. The benchmark evaluates each
architecture (“ConvNet” or “ResNet”) using two sampling methods: drawing from a
standard normal distribution (“N ”) or from a Gaussian Mixture Model (“GMM”) fitted
post-training.

Our model also exhibits strong performance on the MNIST and CIFAR10 datasets. For
a comprehensive view of the benchmark results across all datasets, along with training
details and sample outputs from the models, we refer readers to Appendix E.4 in Sorrenson
et al. (2024b).

49

Manifold Dimension n Embedding Projection

Generic rank(π′(π(x))) {x ∈ Rm : π(x) = x} x 7→ π(x)

Rotations SO(d) (d− 1)d/2 {Q ∈ Rd×d : QQT = I, detQ = 1} R 7→ argminQ∈SO(d) ∥Q−R∥F
Sphere Sn n {x ∈ Rn+1 : ∥x∥ = 1} x 7→ x/∥x∥
Torus Tn = (S1)n n {X ∈ Rn×2 : ∥Xi∥ = 1 for i = 1, . . . , n} Xi 7→ Xi/∥Xi∥ for i = 1, . . . , n
Hyperbolic Hn n {x ∈ Rn : ∥x∥ < 1} x 7→ x ·min{1, (1− ϵ)/∥x∥}

Table 2.8: Manifolds, embeddings, and corresponding projections.

2.4.3 Manifold free-form flows

Table 2.8 summarizes the manifolds used in our experiments, detailing their dimensions,
embeddings, and projection functions. These diverse manifolds showcase the versatility
of our manifold free-form flows (M-FFF) approach.

100 101 102

Time to sample ()

1

2

3

4

5

NL
L

(
)

M-FFF
R-FM

Figure 2.10: At the same negative log-likelihood (NLL), M-FFF is 50 times faster than Riemannian
Flow Matching (R-FM) (Chen and Lipman, 2024). At comparable inference speed, R-FM is
significantly worse than M-FFF.

Figure 2.10 illustrates the trade-off between speed and sample quality for M-FFF compared
to other methods. While multistep methods such as Riemannian flow matching (R-FM)
can achieve higher generative quality, especially for densities with sharp boundaries, they
come at a significant computational cost—often 2 to 3 orders of magnitude more expensive.
R-FM can trade off sampling time and quality by using an ODE solver with differing error
tolerances, allowing for some flexibility in its performance, but performance degrades
sharply at low sampling times. In contrast, M-FFF offers a consistently fast alternative
without sacrificing too much quality.

The experiment shown in the figure uses the “general” protein backbone angle dataset
(discussed in more detail in the section on torsion angles of molecules below). In this
particular case, M-FFF demonstrates impressive efficiency, achieving comparable quality
to R-FM while being approximately 50 times faster. This speed advantage allows for more
extensive experimentation and potentially broader applications of M-FFF in scenarios
where computational resources are limited or quick iterations are necessary.

50

Figure 2.11: Manifold free-form flows on a synthetic SO(3) mixture distribution with M = 64
mixture components proposed by De Bortoli et al. (2022). (Left) 10,000 samples each from the
ground truth distribution and (right) our model. This visualization computes three Euler angles,
which fully describe a rotation matrix, and then plots the first two angles on the projection of a
sphere and the last by color (Murphy et al., 2021). We find that our model nicely samples from the
distribution with few outliers between the modes.

M = 16 M = 32 M = 64 Fast inference?

Moser flow (Rozen et al., 2021) -0.85 ± 0.03 -0.17 ± 0.03 0.49 ± 0.02 ✗: 1000 steps
Exp-wrapped SGM (De Bortoli et al., 2022) -0.87 ± 0.04 -0.16 ± 0.03 0.58 ± 0.04 ✗: 500 steps
Riemannian SGM (De Bortoli et al., 2022) -0.89 ± 0.03 -0.20 ± 0.03 0.49 ± 0.02 ✗: 100 steps

SO(3)-NF (Liu et al., 2023) -0.81 ± 0.01 -0.12 ± 0.004 0.61 ± 0.01 ✓

M-FFF (ours) -0.87 ± 0.02 -0.21 ± 0.02 0.45 ± 0.02 ✓

Table 2.9: Test negative log-likelihood (NLL, lower is better) on SO(3) for multi-step and single-
step methods. M-FFF consistently outperforms the specialized normalizing flow by Liu et al. (2023)
on synthetic distributions of SO(3) matrices and outperforms multi-step methods in the cases with
more mixture components. Multi-step baseline values are due to De Bortoli et al. (2022). Best
results in bold.

Rotation matrices

SO(3) is the group of 3D rotation matrices, defined as the set of matrices Q ∈ R3×3

satisfying QQT = I and det(Q) = 1. To project onto this manifold, we solve the
constrained Procrustes problem by finding the orthogonal matrix closest to a given matrix
in terms of Frobenius norm. This can be efficiently computed using the singular value
decomposition (SVD) (Lawrence et al., 2019).

To evaluate our method on SO(3), we use synthetic mixture distributions proposed by
De Bortoli et al. (2022). These distributions consist of M mixture components, where we
test with M = 16, 32, and 64. Our experiments demonstrate that our manifold free-form
flows (M-FFF) can effectively model and sample from these complex distributions on
SO(3), as illustrated in Figure 2.11. As shown in Table 2.9, M-FFF achieves superior
performance compared to both the specialized normalizing flow for SO(3) developed by
Liu et al. (2023) as well as the diffusion-based approaches with M = 32 and M = 64
components. Further details can be found in Appendix B.2 of Sorrenson et al. (2024a).

Earth data on the sphere

We train M-FFF to generate data on S2 using four earth science datasets compiled by
Mathieu and Nickel (2020): volcanic eruptions (NGDC/WDS, 2022b), earthquakes (NGD-
C/WDS, 2022a), floods (Brakenridge, 2017), and wildfires (EOSDIS, 2020). As shown in
Table 2.10, M-FFF significantly outperforms the specialized single-step model (Mixture

51

Figure 2.12: Density estimates (green) of our model on the earth datasets. Blue points show the
training dataset, red points the test dataset. Only one half of the sphere is shown.

Volcano Earthquake Flood Fire Fast inference?

Riemannian CNF (Mathieu and Nickel, 2020) -6.05 ± 0.61 0.14 ± 0.23 1.11 ± 0.19 -0.80 ± 0.54 ✗: ∼100 steps
Moser flow (Rozen et al., 2021) -4.21 ± 0.17 -0.16 ± 0.06 0.57 ± 0.10 -1.28 ± 0.05 ✗: ∼100 steps
Stereographic score-based (De Bortoli et al., 2022) -3.80 ± 0.27 -0.19 ± 0.05 0.59 ± 0.07 -1.28 ± 0.12 ✗: ∼100 steps
Riemannian score-based (De Bortoli et al., 2022) -4.92 ± 0.25 -0.19 ± 0.07 0.45 ± 0.17 -1.33 ± 0.06 ✗: ∼100 steps
Riemannian diffusion (Huang et al., 2022) -6.61 ± 0.97 -0.40 ± 0.05 0.43 ± 0.07 -1.38 ± 0.05 ✗: >100 steps
Riemannian flow matching (Chen and Lipman, 2024) -7.93 ±1.67 -0.28 ± 0.08 0.42 ± 0.05 -1.86 ± 0.11 ✗: 1000 steps

Mixture of Kent (Peel et al., 2001) -0.80 ± 0.47 0.33 ± 0.05 0.73 ± 0.07 -1.18 ± 0.06 ✓

M-FFF (ours) -2.25 ± 0.02 -0.23 ± 0.01 0.51 ± 0.01 -1.19 ± 0.03 ✓

Dataset size 827 6120 4875 12809

Table 2.10: M-FFF significantly outperforms the previous single-step density estimator (Peel
et al., 2001) on the sphere on real-world earth datasets in terms of negative log-likelihood (lower
is better). Baseline values are collected from De Bortoli et al. (2022); Huang et al. (2022); Chen
and Lipman (2024). Best results in bold.

of Kent). While M-FFF does not consistently outperform multi-step models in terms
of log-likelihood, it offers a substantial speed advantage, being 2-3 orders of magnitude
faster. Visual representations of the learned distributions are presented in Figure 2.12.
Further details can be found in Appendix B.3 of Sorrenson et al. (2024a).

Torsion angles of molecules

Figure 2.13: Log density of M-FFF models in the (Φ,Ψ)-plane of protein backbone dihedral
angles (known as the Ramachandran plot (Ramachandran et al., 1963)). The learned density
matches the true density indicated by the test dataset (black dots) very well. Note also that the
learned distribution obeys the periodic boundary conditions.

We use tori to model the distribution of torsion angles in molecules. Since a torus in n
dimensions is the product of n circles (Tn = (S1)n), a tuple of angles (ϕ1, . . . , ϕn) ∈
[0, 2π]n can be represented by mapping each angle to a position on a circle: Xi =
(cosϕi, sinϕi) ∈ S1. These positions are then stacked into a matrix X ∈ Rn×2.

We evaluate our method on two datasets from structural biology (Huang et al., 2022):

52

General Glycine Proline Pre-Pro RNA Fast inference?

Riemannian diffusion (Huang et al., 2022) 1.04 ± 0.012 1.97 ± 0.012 0.12 ± 0.011 1.24 ± 0.004 -3.70 ± 0.592 ✗: ∼1000 steps
Riemannian flow matching (Chen and Lipman, 2024) 1.01 ± 0.025 1.90 ± 0.055 0.15 ± 0.027 1.18 ± 0.055 -5.20 ± 0.067 ✗: 1000 steps

Mixture of power spherical (Huang et al., 2022) 1.15 ± 0.002 2.08 ± 0.009 0.27 ± 0.008 1.34 ± 0.019 4.08 ± 0.368 ✓

Circular Spline Coupling Flows (Rezende et al., 2020) 1.03 ± 0.01 1.91 ± 0.04 0.21 ± 0.08 1.24 ± 0.04 -4.01 ± 0.24 ✓

M-FFF (ours) 1.03 ± 0.02 1.89 ± 0.05 0.17 ± 0.08 1.23 ± 0.04 -4.27 ± 0.09 ✓

Table 2.11: M-FFF consistently outperforms (in terms of negative log-likelihood, lower is better)
normalizing flows specialized to tori (Rezende et al., 2020) on torus datasets, without requiring the
development of a specialized architecture. In addition, our method comes close to the performance
of the multi-step methods and even outperforms them on the Glycine dataset. Best results in bold.

1. Ramachandran angles of protein backbones, located onT2 (Lovell et al., 2003). This
dataset is split into four subcategories: General, Glycine, Proline, and Pre-Proline.

2. RNA structures characterized by 7 dihedral angles, located on T7 (Murray et al.,
2003).

As shown in Table 2.11, M-FFF outperforms circular spline coupling flows, a specialized
normalizing flow for tori (Rezende et al., 2020). Moreover, our results are comparable to
those of multi-step methods, while being approximately three orders of magnitude faster.

For further details on the experimental setup and results, we refer the reader to Appendix
B.4 of Sorrenson et al. (2024a).

Toy distributions in hyperbolic space

Figure 2.14: Density estimation on the Poincaré ball model. As latent distribution, we use a
wrapped normal distribution with standard deviation 0.5 (left). As target distributions (top row),
we define several toy distributions in the tangent space at the origin and push them forward to the
manifold via the exponential map. We will reference each distribution from left to right as “one
Gaussian,” “five Gaussians,” “swish,” and “checkerboard.” We train M-FFF on these target
distributions and plot the densities of the models (bottom row).

We use the Poincaré ball model to represent H2, the 2-dimensional hyperbolic space of
constant negative curvature. This model embeds points in H2 as points inside the unit disc
in R2, utilizing a projection from R2 into the unit disc (see Table 2.8 for details).

As there is no established benchmark for this task, we evaluate the performance of M-FFF
by visualizing the learned densities (Figure 2.14). This approach allows us to confirm that
the M-FFF framework successfully extends to non-isometrically embedded manifolds.
Our results show that the learned densities closely match the target distributions for the

53

one Gaussian, five Gaussians, and swish datasets. However, for the checkerboard dataset,
M-FFF struggles to fully reproduce the sharp edges and precise density patterns of the
target distribution.

For a comprehensive description of the experimental setup and results, we refer readers to
Appendix B.5 in Sorrenson et al. (2024a).

Manifold defined by mesh

k = 10 k = 50 k = 100 Fast inference?

Riemannian Flow Matching (w/ diffusion) (Chen and Lipman, 2024) 1.16 ± 0.02 1.48 ± 0.01 1.53 ± 0.01 ✗: 1000 steps
Riemannian Flow Matching (w/ biharmonic) (Chen and Lipman, 2024) 1.06 ± 0.05 1.55 ± 0.01 1.49 ± 0.01 ✗: 1000 steps

M-FFF (ours) 1.21 ± 0.01 1.34 ± 0.01 1.28 ± 0.01 ✓

Table 2.12: Test negative log-likelihood (lower is better) on Stanford bunny data proposed by
Chen and Lipman (2024), living on a manifold with nontrivial curvature (see Figure 2.5). M-FFF
outperforms the multi-step model for datasets with more modes. Best results in bold.

Our framework’s flexibility extends to manifolds defined by meshes rather than explicit
functional forms. We demonstrate this capability using the Stanford bunny dataset (Turk
and Levoy, 1994), with training data generated from eigenvalues of the Laplace-Beltrami
operator, following Chen and Lipman (2024). An example distribution is shown in
Figure 2.5.

To ensure differentiability of the projection function, which is crucial for both the theoret-
ical foundation and practical stability of our method, we train a neural network to project
points from R3 onto the mesh.

As shown in Table 2.12, our method performs well on this task. We outperform Rie-
mannian flow matching in two out of three cases, while being approximately three orders
of magnitude faster in terms of inference speed. These results highlight the efficiency
and effectiveness of our approach in modeling distributions on complex, mesh-defined
manifolds. For more details, please refer to Appendix B.6 of Sorrenson et al. (2024a).

2.4.4 Summary of experimental results
Several key themes emerge from our experimental results:

• Speed advantage: The method consistently delivers inference speeds orders of
magnitude faster than multi-step approaches.

• Competitive performance: Results generally match or exceed those of specialized
architectures across different domains.

• Flexibility: The approach demonstrates remarkable adaptability across diverse
manifolds and problem domains.

• Trade-offs: In some cases, the method trades modest performance decreases for
substantial speed improvements.

• Simplicity: The implementation and tuning process is generally more straightfor-
ward than specialized architectures.

54

Chapter 3

Machine Learning in LHC Physics

During my PhD, I collaborated on several projects within Tilman Plehn’s research group,
focusing on applications of cutting-edge machine learning techniques to LHC data. My
role was to suggest appropriate machine learning techniques for a given application, and
to provide guidance that led to a successful implementation. While I did contribute some
low-level implementation, particularly in the early stages of each project while prototyping
models, most of the training and evaluation of the models was done by other students.
Due to the nature of my contributions, this chapter will not include all training details
necessary to reproduce the results. I will instead focus on higher-level concepts and guide
those interested to the necessary sections of the corresponding research papers.

3.1 Particle physics at the Large Hadron Collider
Particle physics studies the fundamental particles of the universe and their interactions.
The Large Hadron Collider (LHC) at CERN is a pivotal tool in this research, enabling
scientists to probe the smallest scales of matter. This section will focus on the basic
principles of particle physics explored at the LHC, with a particular emphasis on jet
physics.

3.1.1 Fundamental particles and forces
The Standard Model of particle physics is the theoretical framework that describes the
fundamental particles and their interactions. The primary particles include:

• Quarks: The building blocks of protons and neutrons, coming in six flavors: up,
down, charm, strange, top, and bottom.

• Leptons: A family of particles that includes electrons, muons, tau particles, and
their corresponding neutrinos.

• Gauge bosons: Force carriers that mediate the fundamental forces: photons (elec-
tromagnetic force), W and Z bosons (weak force), gluons (strong force), and the
Higgs boson (mass generation).

Composite particles are also important, such as hadrons, made of quarks held together by
the strong force, mediated by gluons. There are two main types of hadrons:

55

• Baryons: Made up of three quarks. Examples include protons and neutrons.

• Mesons: Made up of one quark and one antiquark. Examples include pions and
kaons.

The LHC is called the Large Hadron Collider because it is designed to collide hadrons
(specifically protons) and heavy ions (specifically lead ions) at extremely high energies, in
a very large ring with a circumference of about 27 kilometers. The LHC accelerates these
particles to nearly the speed of light and then collides them. These high-energy collisions
can produce new particles and phenomena, providing insights into the fundamental laws
of physics.

3.1.2 Particle collisions and jets
When particles are accelerated to high energies and collided at the LHC, they produce a
variety of secondary particles. One of the key phenomena observed in these collisions is the
formation of jets. Jets are collimated sprays of particles resulting from the hadronization
of quarks and gluons. The study of jets is crucial for understanding the behavior of quarks
and gluons under the strong force.

Jets are formed when high-energy quarks or gluons are produced in a collision and
subsequently undergo hadronization, where quarks and gluons transform into hadrons due
to the strong force. This process results in a narrow cone of particles moving in roughly
the same direction, which is detected as a jet.

Jets are characterized by several properties that provide insights into the underlying physics
of the collision. The jet energy represents the total energy of the particles within a jet. The
jet mass, which is the invariant mass of the particles within a jet, can provide information
about the original quark or gluon. Additionally, the jet shape, defined by the spatial
distribution of particles within a jet, can indicate the type of parton (quark or gluon) that
initiated the jet.

3.1.3 Applications of jet physics
Probing quantum chromodynamics (QCD)

Jets provide a direct way to study Quantum Chromodynamics (QCD), the theory of the
strong interaction. By analyzing jet production rates, shapes, and energy distributions,
physicists can test the predictions of QCD and improve our understanding of the strong
force. Jets can also be used to study top quarks and the Higgs boson, as the jets produced
in their decays provide crucial information about their properties and interactions.

Searches for new physics

Jets are also essential in searches for new physics beyond the Standard Model. Many
theoretical models predict the production of new particles that decay into jets. By studying
the properties of jets, physicists can search for deviations from the Standard Model that
might indicate the presence of new particles or interactions.

56

3.2 Improved jet autoencoders
This section is based on work previously published as “Better latent spaces for better
autoencoders” in SciPost Physics (Dillon et al., 2021). All figures are reproduced from
that publication.

New physics searches at the LHC typically follow a signal-driven approach, where a
specific signal is hypothesized and explicitly searched for within the data. However, if
new physics does exist at the energy scales accessible by the LHC, it might be missed
simply because we are searching for the wrong signals. A potential solution to this issue
lies in unsupervised machine learning, which can uncover patterns from unlabeled data
for further analysis. Of particular interest here is anomaly detection, also known as outlier
detection.

A basic strategy for detecting outliers in jets involves using autoencoders, where the
reconstruction error serves as the signal. By training a model to reconstruct data from a
simulation of well-understood Standard Model processes, it is expected that this model
will poorly reconstruct inputs that deviate from the Standard Model, flagging them as
anomalies. While this method works well when trained on simpler QCD jets and tested
on anomalous jets (e.g., top jets), it fails when tested in the reverse scenario (Heimel et al.,
2019; Farina et al., 2020; Roy and Vĳay, 2019; Blance et al., 2019). This suggests that
the autoencoder’s reconstruction loss primarily reflects the complexity of the jet structure
rather than its novelty relative to the training data.

To address this issue, we explore autoencoders with more structured latent spaces, focusing
specifically on the variational autoencoder (VAE) (Kingma and Welling, 2014). We
consider three VAE models: one with a standard normal prior, another with a learnable
two-component Gaussian mixture prior, and a third with a Dirichlet prior. Our findings
indicate that the first two models struggle to effectively differentiate between QCD and top
jets in an unsupervised manner. However, the VAE with a Dirichlet prior demonstrates
a significant improvement. It successfully distinguishes these jet types even when the
training set is dominated by either a small fraction of top jets or a small fraction of QCD
jets, showing its robustness in scenarios with imbalanced datasets.

We use the QCD and top jet samples generated for the community top-tagging challenge
outlined in Kasieczka et al. (2019), employing the same jet image representation as
in Heimel et al. (2019). The average jet images for 100k QCD and top jets in this
representation are displayed in Figure 3.1.

0 5 10 15 20 25 30 35

η

0

5

10

15

20

25

30

35

φ

Calo. QCD

0 5 10 15 20 25 30 35

η

0

5

10

15

20

25

30

35

φ

Calo. tops

Figure 3.1: Average of 100k QCD and top jet images after pre-processing.

57

3.2.1 Autoencoder and variational autoencoder

𝑥 𝑥′zE D

(a) AE setup

𝑥 𝑥′
𝜇

𝜎
z = 𝜇+ 𝜎⊙ 𝜀

𝜀 ~ N(0, I)

E D

(b) VAE setup

1@40x40 10@40x40 10@20x20 5@20x20 5@20x20 5@40x40 10@40x40 1@40x40100 1001

(c) Encoder and decoder

Figure 3.2: Architectures used for the AE and VAE networks in this study. All convolutions use
a 5x5 kernel size and all layers use PReLU activations. Downsampling from 40x40 to 20x20 is
achieved by average pooling, while upsampling is nearest neighbor interpolation.

The autoencoder (AE) architecture consists of two networks: an encoder and a decoder,
as visualized in Figure 3.2. We use the standard mean squared error as the loss function:

L = Epdata(x)

[
1

2
∥x− x′∥2

]
(3.1)

where x′ represents the reconstructed jet images from the input x.

Variational autoencoder

The variational autoencoder (VAE) has the same design as the AE, with the difference that
the encoder has two outputs per dimension, corresponding to the mean and log-variance
of a Gaussian distribution.

The VAE loss function follows the standard form (Kingma and Welling, 2014):

L = Epdata(x)

[
Eqϕ(z|x) [− log pθ(x|z)] + βKLDKL(qϕ(z|x) ∥ p(z))

]
(3.2)

where qϕ(z|x) is the learnable variational encoder and pθ(x|z) is the decoder, with ϕ
and θ representing their respective parameters. The βKL term allows us to adjust the
balance between the reconstruction loss (first term) and the latent loss (second term)
during training. We use the mean squared error from Equation (3.1) as the reconstruction
loss, consistent with a choice of Gaussian pθ(x|z). For a standard normal prior p(z), the
KL divergence term has the following analytical form:

DKL(qϕ(z|x) ∥ p(z)) =
1

2

n∑
i=1

(
σ2
i + µ2

i − 1− log σ2
i

)
(3.3)

where σi and µi are the outputs of the encoder for a given x. The network design is
visualized in Figure 3.2.

58

𝑥 𝑥′
𝜇

𝜎
z = 𝜇+ 𝜎⊙ 𝜀

𝜀 ~ N(0, I)

E D

Figure 3.3: Architecture used for the GMVAE. The encoder and decoder are the same as for the
(V)AE shown in Figure 3.2c. In contrast to the standard VAE, the prior distribution is learnable
and can be bimodal.

3.2.2 Gaussian mixture VAE
In order to have a more expressive latent space where QCD and top jets have the possibility
to be located in separate regions of the space, we introduce a Gaussian mixture prior with
two mixture components. We approximate the KL divergence between the Gaussian
mixture prior and the latent representation of the events using a Monte Carlo estimate.
While several papers propose using a Gaussian mixture as the VAE prior (Dilokthanakul
et al., 2016; Shao and Li, 2020; Yang et al., 2019; Guo et al., 2018), most implementations
are more complex, often requiring additional inference networks to analytically compute
the Kullback-Leibler (KL) divergence. The model most similar to ours (Shu et al., 2016)
uses an approximation of the KL term (Hershey and Olsen, 2007) instead of a Monte Carlo
estimate.

Likelihood function

We impose a Gaussian mixture prior on the n-dimensional latent space, where each
Gaussian component in the mixture has a diagonal covariance. The conditional likelihood
for this model is given by:

p(z|r) =
n∏
i=1

1√
2πσr,i

exp

(
−(zi − µr,i)

2

2σ2
r,i

)
(3.4)

where µr,i is the mean of the r-th mixture component (with r = 1, . . . , R) in di-
mension i, and σ2

r,i is the corresponding variance. The prior is then calculated as
p(z) =

∑
r p(z|r)p(r), with p(r) being the mixture weight of component r.

All means, variances, and mixture weights are learned parameters. The means are repre-
sented as aR×nmatrixM , the log variances as aR×nmatrix V , and the unnormalized
log mixture weights as a vector a of length R. To ensure that the mixture weights are
positive and sum to one, we apply the softmax operation:

p(r) = softmax(ar) =
ear∑
r′ e

ar′
(3.5)

Using this notation, the conditional likelihood can be rewritten as:

p(z|r) =
n∏
i=1

1√
2πeVri

exp

(
−(zi −Mri)

2

2eVri

)
(3.6)

59

In log form, this becomes:

log (p(z|r)p(r)) =
n∑
i=1

(
−(zi −Mri)

2

2eVri
− 1

2
Vri

)
− n

2
log(2π) + log softmax(ar) (3.7)

from which we can apply the log-sum-exp operation to obtain the prior log-likelihood,
log p(z) = log

∑
r exp log(p(z|r)p(r)). In our experiments, we always chose R = 2.

Loss function

As in a standard VAE, the GMVAE illustrated in Figure 3.3 minimizes the negative ELBO
loss,

L = Epdata(x)

[
−Eqϕ(z|x) [log pθ(x|z)] + βKLDKL (qϕ(z|x) ∥ p(z))

]
(3.8)

with a learnable variational encoder qϕ(z|x) and decoder pθ(x|z), where ϕ and θ represent
the encoder and decoder parameters, respectively. The term βKL allows control over the
relative influence of the reconstruction and latent loss terms during gradient updates. Fol-
lowing the approach for the VAE and AE, we use mean squared error for the reconstruction
loss and set βKL = 10−4.

The first term in Equation (3.8) represents the reconstruction loss, which is estimated
by drawing a single sample from qϕ(z|x). The second term involves estimating the KL
divergence, which becomes non-analytical for a Gaussian mixture prior. We estimate this
divergence using Monte Carlo samples (Tomczak and Welling, 2018), starting by rewriting
it as

DKL (qϕ(z|x) ∥ p(z)) = Eqϕ(z|x) [log qϕ(z|x)]− Eqϕ(z|x) [log p(z)] (3.9)

The first term represents the negative entropy of a Gaussian, which can be computed
analytically as

Eqϕ(z|x) [log qϕ(z|x)] = −n
2
(1 + log(2π))− 1

2

n∑
i=1

log σ2
i (3.10)

The second term inDKL is estimated by drawing a single Monte Carlo sample from qϕ(z|x)
and using the log-likelihood of the prior derived in Equation (3.7).

Mode separation loss

In testing the two-component mixture prior, we observed that the mixture components
tend to collapse onto a single mode. To prevent this collapse, we introduce a repulsive
force between the modes, calculated based on the Ashman distance (Ashman et al., 1994).
The squared Ashman-D for two Gaussian distributions in one dimension is given by:

D2 =
2(µ1 − µ2)

2

σ2
1 + σ2

2

(3.11)

60

A value of D > 2 indicates clear mode separation. This distance can be extended to two
n-dimensional Gaussians with diagonal covariance matrices as:

D2 =
n∑
i=1

2(µ1i − µ2i)
2

σ2
1i + σ2

2i

(3.12)

where, similarly, D > 2 indicates clear separation. To encourage bi-modality in the latent
space, we add a loss term:

LA = −λA tanh
(
D

2

)
(3.13)

The tanh function eventually saturates, thereby stopping the modes from being pushed
apart indefinitely.

3.2.3 Dirichlet VAE

𝑥 𝑥′
𝜇

𝜎
z = 𝜇+ 𝜎⊙ 𝜀

𝜀 ~ N(0, I)

E Dr = softmax(z)

Figure 3.4: Architecture for the Dirichlet VAE. The approximate Dirichlet prior is indicated by
the softmax step and the bi-modal distribution shown above it.

Finally, we explore an alternative approach to provide the VAE with a latent space structure
that facilitates mode separation by using the Dirichlet distribution as the prior. The
Dirichlet distribution is a family of continuous multivariate probability distributions with
the following probability density function:

Dα(r) =
Γ (
∑

i αi)∏
i Γ(αi)

∏
i

rαi−1
i , with i = 1, . . . , R (3.14)

ThisR-dimensional Dirichlet distribution is parameterized byR hyper-parameters αi > 0
and is defined on anR-dimensional simplex. The Dirichlet distribution is conjugate to the
multinomial distribution and is commonly used in Bayesian statistics as a prior in multi-
nomial mixture models. The expectation values for the sampled vector components are
E[ri] = αi/

∑
j αj , thereby introducing a hierarchy among different mixture components

when used as a prior. In our application, it imposes a compact latent space where the
latent dimensions can be interpreted as mixture weights in a multinomial mixture model
(Srivastava and Sutton, 2017; Joo et al., 2020).

Approximate Dirichlet distribution

For a Dirichlet structure in the latent space, the reparameterization trick requires careful
consideration. We use a softmax Gaussian approximation to the Dirichlet distribution
(Srivastava and Sutton, 2017), as Gaussian reparameterization is straightforward and
stable:

r ∼ softmaxN (z; µ̃, σ̃) ≈ Dα(r) (3.15)

61

with

µ̃i = logαi −
1

R

∑
i

logαi (3.16)

σ̃i =
1

αi

(
1− 2

R

)
+

1

R2

∑
i

1

αi
(3.17)

With this approximation, the encoder network qϕ(r|x) functions similarly to how it does in
the VAE and GMVAE, with the encoder outputs corresponding to the means and variances
of the Gaussians in the softmax approximation.

Loss function

The loss function of the Dirichlet-VAE (DVAE) includes the standard reconstruction loss
and latent loss. For the reconstruction loss, we use the cross-entropy between the inputs
and the outputs (Srivastava and Sutton, 2017). The latent loss is defined as the KL
divergence between the per-jet latent space representation and the Dirichlet prior, scaled
by a factor βKL. This divergence is straightforward to compute for the Gaussians in the
softmax approximation of the Dirichlet distribution and the Gaussians defined by the
encoder output (Srivastava and Sutton, 2017):

L = Epdata(x)

[
−Eqϕ(r|x) [log pθ(x|r)] + βKLDKL (qϕ(r|x) ∥ Dα(r))

]
(3.18)

DKL (qϕ(r|x) ∥ Dα(r)) =
1

2

R∑
i=1

(
σ̃2
i

σ2
i

+
(µ̃i − µi)

2

σ2
i

−R− log
σ2
i

σ̃2
i

)
(3.19)

Unlike the GMVAE, the parameters of the prior in the DVAE are not learnable. We employ
a straightforward DVAE architecture, as shown in Figure 3.4. The encoder consists of
a fully connected network with a single hidden layer (no convolutional structure). The
decoder is implemented as a simple linear function followed by a softmax activation.

3.2.4 Results
Latent-space tagging

0.0 0.2 0.4 0.6 0.8 1.0

εs

100

101

102

103

ε−
1

b

Signal: tops

DVAE, t/Q=1.0

ep. 50, AUC: 0.88

ep. 100, AUC: 0.89

ep. 150, AUC: 0.89

ep. 200, AUC: 0.89

0.0 0.2 0.4 0.6 0.8 1.0

εs

100

101

102

103

104

ε−
1

b

Signal: QCD

DVAE, t/Q=1.0

ep. 50, AUC: 0.88

ep. 100, AUC: 0.89

ep. 150, AUC: 0.89

ep. 200, AUC: 0.89

0 1

ep. 50

QCD

top

0 1

ep. 100

0 1

r1

ep. 150

0 1

r1

ep. 200

Figure 3.5: Results for the DVAE. In the large panels we show the ROC curves for tagging top and
QCD as signal. In the small panels we show the distributions of the top and QCD jets in the latent
space developed over the training.

We find that the VAE model with a standard normal latent distribution provides a more
stable latent space than a simple autoencoder, though the performance improvement is

62

0 5 10 15 20 25 30 35

φ

0

5

10

15

20

25

30

35

η

0 5 10 15 20 25 30 35

φ

0

5

10

15

20

25

30

35

η

Figure 3.6: Visualization of the decoder weights, interpreted as the mixture distributions for
pθ(x|r1=0) (left) and pθ(x|r1=1) (right) learned by the DVAE decoder.

marginal (see Section 2 and Figure 3 in Dillon et al. (2021)). The Gaussian mixture VAE
(GMVAE) does achieve mode separation, but the clusters do not cleanly correspond to
QCD and top jets—both types of jets are found within each cluster (see Section 3 and
Figure 5 in Dillon et al. (2021)).

In contrast, the Dirichlet VAE (DVAE) performs significantly better on the same task. We
use a 2D Dirichlet latent space with α = (1, 1), where due to the simplex nature of the
Dirichlet distribution, only one latent space variable is independent. We set βKL = 0.1 to
ensure the prior strongly influences training. We compare QCD and top tagging results
and show the latent space distributions in Figure 3.5.

The advantages of the DVAE are immediately evident. First, the performance improves
from an AUC of 0.83 for the VAE to 0.89 for the DVAE. Second, the DVAE’s latent space
provides a better and more stable representation of the multi-class jet sample, quickly
converging to a clear bi-modal pattern with both modes equally represented. The QCD
mode peaks at r1 = 0, indicating that the pθ(x|r1 = 0) mixture describes QCD jets, while
the top mode peaks at r1 = 1, indicating that the pθ(x|r1 = 1) mixture describes top
jets. This is confirmed by visualizing the decoder weights in Figure 3.6. Comparing these
to the truth-level jet images in Figure 3.1, we observe a clear correspondence between
the learned mixture distributions and the actual images, showing that the DVAE has
successfully separated the top-specific and QCD-specific features into distinct mixtures.

Anomaly detection

To move towards a more realistic scenario of unsupervised classification, we study cases
with class imbalance, where one class is treated as anomalous. We slightly adjust our
hyperparameters to reflect more hierarchical sub-class proportions (Dillon et al., 2020),
setting α = (1.0, 0.25) when there is class imbalance in the data. The performance of
the network is not overly sensitive to the exact values of these parameters. The advantage
is that the DVAE tends to assign the dominant class of jets to r1 = 0, thereby pushing
anomalous jets towards r1 = 1.

We evaluate four different signal-to-background ratios: 1.00, 0.25, 0.05, and 0.01, with
the latter two representing anomalous cases. The top row of Figure 3.7 shows results for
the scenario where the signal is top jets, while the bottom row shows results for QCD jets.
We plot the ROC curves based on the latent space and reconstruction error, followed by
the latent space distributions for the different signal-to-background ratios.

63

0.0 0.2 0.4 0.6 0.8 1.0

εs

100

101

102

103

ε−
1

b

Signal: tops

DVAE (r1)

t/Q: 1.0, AUC: 0.89

t/Q: 0.25, AUC: 0.88

t/Q: 0.05, AUC: 0.86

t/Q: 0.01, AUC: 0.84

0.0 0.2 0.4 0.6 0.8 1.0

εs

100

101

102

103

ε−
1

b

Signal: tops

DVAE (reco. loss)

t/Q: 1.0, AUC: 0.86

t/Q: 0.25, AUC: 0.88

t/Q: 0.05, AUC: 0.89

t/Q: 0.01, AUC: 0.87

0 1

t/Q=1.00

0 1

t/Q=0.25

QCD

top

0 1

r1

t/Q=0.05

0 1

r1

t/Q=0.01

0.0 0.2 0.4 0.6 0.8 1.0

εs

100

101

102

103

104

ε−
1

b

Signal: QCD

DVAE (r1)

Q/t: 1.0, AUC: 0.89

Q/t: 0.25, AUC: 0.88

Q/t: 0.05, AUC: 0.81

Q/t: 0.01, AUC: 0.75

0.0 0.2 0.4 0.6 0.8 1.0

εs

100

101

102

103

ε−
1

b
Signal: QCD

DVAE (reco. loss)

Q/t: 1.0, AUC: 0.14

Q/t: 0.25, AUC: 0.21

Q/t: 0.05, AUC: 0.36

Q/t: 0.01, AUC: 0.55

0 1

Q/t=1.00

0 1

Q/t=0.25

QCD

top

0 1

r1

Q/t=0.05

0 1

r1

Q/t=0.01

Figure 3.7: DVAE results for various amounts of anomalous top (upper) and QCD (lower) jets
in the sample, where the mixture weights (left) and the reconstruction loss (middle) are used for
classification. In the small panels we show the distributions of the top and QCD jets in the latent
space.

When top jets are treated as the signal, classification based on mixture weights performs
best at a signal-to-background ratio of t/Q = 1.0 and degrades as the ratio decreases.
This is expected because the latent space needs sufficient information from a class to
accurately construct a good latent representation. In contrast, the performance of the
reconstruction loss improves as t/Q decreases, since the network typically reconstructs an
underrepresented class poorly. This is why we observe reasonably good performance for
anomalous top-tagging at t/Q = 0.01, consistent with findings in Heimel et al. (2019);
Farina et al. (2020); Oleksiyuk (2020); Finke (2020).

The situation changes when QCD jets are treated as the signal. While latent space tagging
remains stable with appropriate latent spaces, reconstruction error fails as a classifier. This
reflects the motivation of our study and highlights the strength of our new approach.

The latent space distributions in Figure 3.7 confirm that when one class is anomalous, the
Dirichlet prior effectively assigns the dominant class to the mixture component r1 = 0. An
exception is observed for Q/t = 0.25, where QCD jets are mistakenly assigned to r1 = 0.
This occurs because top jets can also have a strong central prong, mimicking typical QCD
jet features. Since the unsupervised DVAE does not have access to truth labels and only
clusters features, it assigns the dominant feature, which turns out to be QCD-like, even
when Q/t = 0.25.

To better capture the differences between the two classes, particularly when treating QCD
jets as anomalous, we expand the latent space to R = 3 with a hierarchical prior αi =
(1.0, 0.25, 0.1). This adjustment significantly enhances the performance of anomalous
QCD tagging, increasing the AUC from 0.75 to 0.91. For a detailed analysis refer to
Section 4 and Figures 11-13 in Dillon et al. (2021).

64

3.2.5 Summary
In this paper, we explored how different latent spaces in VAEs can enhance unsupervised
jet classification and provide direct interpretability of what is learned by the neural net-
works. We began with a brief review of AEs and VAEs, discussing the limitations of
both reconstruction error classification and latent space classification. Specifically, we
highlighted the challenge of classifying anomalous jets with less structure than the domi-
nant class in the sample, such as tagging anomalous QCD jets in a predominantly top-jet
sample.

Our approach is motivated by the idea that autoencoders should leverage latent space
structure to form modes representing distinct feature classes within the dataset, enabling
background and signal separation. We first studied the Gaussian-Mixture-VAE, which
indeed produced a multi-modal latent space, but the modes failed to capture all relevant
feature classes. We then investigated the Dirichlet-VAE, which effectively identified hier-
archical feature classes and organized jets in a way that separates signal from background.
With a simple decoder architecture, we could interpret the decoder weights as mixture
distributions corresponding to the latent space directions, allowing direct visualization
and interpretation of what the network learns.

While theR = 2 Dirichlet latent space performed well for top-tagging, it did not symmet-
rically tag anomalous QCD jets in a predominantly top-jet sample. By extending the latent
space toR = 3, the network successfully isolated QCD-like features, resulting in a signif-
icant improvement in classification. The larger latent space combined with a hierarchical
prior enabled the extraction of features with varying prevalences in the dataset. With
these structures, we demonstrated that the challenge of finding anomalous jets with less
structure than the dominant class can be addressed by selecting more suitable latent space
architectures. This opens the door to more effective jet anomaly detection techniques for
collider analyses.

65

3.3 Representation learning for jets
This section is based on work previously published as “Symmetries, safety, and self-
supervision” in SciPost Physics (Dillon et al., 2022). All figures are reproduced from that
publication.

In collider physics, analyzing high-dimensional data is challenging because it is difficult
to create representations that both respect fundamental physical symmetries and highlight
important features. This work proposes JetCLR, a new approach using self-supervised
contrastive learning to create data representations optimized for these goals. The technique
involves a transformer-encoder network that can capture essential properties of jets while
preserving key symmetries. When tested against other methods, JetCLR performs well in
distinguishing different physics processes.

Symmetries play a central role in particle physics, guiding both theoretical models and
experimental analyses. Traditional machine learning methods can produce powerful ob-
servables for specific tasks through supervised learning, but they often lack generality and
cannot be easily applied to unsupervised tasks like anomaly detection. JetCLR takes a
different approach by embedding symmetry principles directly into a high-dimensional
representation. It uses contrastive learning, which clusters the data based on similarity
without needing labels. The result is a flexible tool that can identify patterns in collider
data while staying true to the underlying physics.

3.3.1 Existing jet representations
Existing jet representations in collider physics typically aim to respect the symmetries of
the data while providing useful features for analysis. These include:

• Jet images are a common representation defined in terms of rapidity and azimuthal
angle, often incorporating preprocessing to handle rotational symmetry (Cogan
et al., 2015; de Oliveira et al., 2016; Kasieczka et al., 2017; Lin et al., 2018;
Komiske et al., 2017; Macaluso and Shih, 2018).

• Permutation-invariant graphs represent jets as graphs, with nodes and edges
capturing relationships between jet constituents (Henrion et al., 2017; Qasim et al.,
2019; Chakraborty et al., 2019; Shlomi et al., 2020).

• Tree-based structures use tree-like architectures to represent jet evolution, captur-
ing important jet features through hierarchical relationships (Louppe et al., 2019;
Andreassen et al., 2019; Dillon et al., 2019, 2020).

• Lund plane represents jets in a plane that organizes splittings in terms of kinematic
variables, providing a useful visualization for jet substructure (Dreyer et al., 2018;
Carrazza and Dreyer, 2019).

• Lorentz-inspired networks are designed with Lorentz symmetry in mind, allowing
for physics-inspired handling of relativistic jet features (Butter et al., 2018; Erdmann
et al., 2019; Bogatskiy et al., 2020; Ju and Nachman, 2020; Shimmin, 2021).

• Energy flow polynomials (EFPs) provide a calculable basis for jet analysis, de-
signed with infrared and collinear safety, making them theoretically grounded while
retaining flexibility (Komiske et al., 2018).

66

3.3.2 Contrastive learning
In order to learn suitable representations for jets, we follow the SimCLR contrastive
learning regime (Chen et al., 2020), originally proposed for representation learning on
images.

The network outputs vectors zi and z′i, representing jets in Rdim(z), which are normalized
to lie on a unit hypersphere R = Sdim(z)−1, defining the representation as f(xi) = zi/|zi|
and f(x′i) = z′i/|z′i|. The similarity between jets is measured using cosine similarity,
s(zi, zj) = cos θij , where θij is the angle between jets in R. Since the representations
lie on the unit hypersphere, the cosine similarity is simply the dot product. The so-called
InfoNCE loss for a positive pair of jets is given by (van den Oord et al., 2018)

Li = − log
es(zi,z

′
i)/τ∑

j ̸=i

[
es(zi,zj)/τ + es(zi,z

′
j)/τ
] (3.20)

with the total loss L =
∑

i Li minimizing the distance between positive pairs while
maximizing it between negative pairs. The hyperparameter τ controls the balance between
positive and negative pairs.

Figure 3.8: Illustration of the uniformity and alignment concepts behind the contrastive learning.

The contrastive loss can be interpreted as a balance between uniformity and alignment on
the unit hypersphere R, as shown in Figure 3.8. The numerator in Equation (3.20), related
to positive pairs, is minimized when jets and their augmented versions are mapped to the
same point, s(zi, z′i) = 1. Since they are constrained to the hypersphere, negative pairs
cannot be pushed infinitely far apart, so the loss is minimized when jets are uniformly
distributed across the hypersphere. Alignment and uniformity are measured by Lalign and
Luniform respectively, with the former encouraging all jets and their augmented pairs to
align, and the latter promoting uniform distribution:

Lalign =
1

Nbatch

∑
i∈batch

s(zi, z
′
i) (3.21)

Luniform =
1

Nbatch

∑
i∈batch

log
∑
j ̸=i

[
e−s(zi,zj) + e−s(zi,z

′
j)
]

(3.22)

While alignment alone would lead to a trivial solution where all points are identical,
uniformity requires learning distinct features. The combination of both objectives creates

67

a representation space that is neither perfectly aligned nor perfectly uniform, balancing
invariance and discriminative power.

3.3.3 Symmetries and augmentations
The mapping to the representation space R is designed to be approximately invariant
to predefined symmetry transformations and data augmentations. Before applying these
transformations in the contrastive learning process, jets are preprocessed such that their
pT -weighted centroid is positioned at the origin in the η − ϕ plane.

One key symmetry applied is rotational invariance around the jet axis. This is commonly
handled in jet image representations through preprocessing, where the jet is rotated so its
principal axis aligns vertically. Energy flow polynomials naturally account for rotational
invariance by relying on angular distances between jet constituents. In our approach,
jets are randomly rotated by angles sampled between 0 and 2π, a transformation that
approximately preserves jet mass for narrow jets with R ≲ 1.

In addition to rotations, translations in the η − ϕ plane are applied as a symmetry trans-
formation. Each jet constituent is shifted by a random distance, with the shift constrained
between −1 and 1 in both directions.

Beyond symmetry transformations, we incorporate theory-inspired augmentations based
on the principles of quantum field theory. Soft gluon radiation, which factorizes from the
hard physics in jet splittings, is modeled by smearing the positions of soft jet constituents.
The η and ϕ coordinates are re-sampled from a Gaussian distribution centered on the
original positions, with a variance of Λsoft/pT where Λsoft = 100 MeV.

Similarly, collinear splittings are accounted for through augmentations that reflect the
detector’s finite resolution, which prevents distinguishing closely spaced constituents.
We simulate this effect by splitting some jet constituents while keeping the total pT in
an infinitesimal region constant. The resulting augmented jets retain the same η and ϕ
coordinates but distribute the pT randomly among the split constituents. Together, these
soft and collinear augmentations introduce an approximate infrared and collinear (IRC)
safety in the jet representation, allowing the contrastive learning process to optimize the
mapping to R without explicitly enforcing fixed angular correlations or pT scalings.

In summary, the transformations applied to the jets are:

• Rotations: Jets are rotated randomly by angles sampled from 0 to 2π in the η − ϕ
plane, enforcing rotational symmetry and approximately preserving jet mass for
narrow jets.

• Translations: Jet constituents are shifted by random distances within the range
[−1, 1] in both η and ϕ directions, introducing translational invariance.

• Soft gluon smearing: The positions of soft jet constituents are smeared by re-
sampling their η and ϕ coordinates from a Gaussian distribution with a variance
scaled by Λsoft = 100 MeV and suppressed by pT .

• Collinear splitting: Constituents are split while maintaining the total pT in a small
region, modeling the finite angular resolution of the detector and encoding collinear
safety.

68

3.3.4 Network design
One of the key symmetries in jet representations is invariance to the ordering of con-
stituents, i.e., permutation invariance. We directly encode this invariance into the network
by using a transformer architecture (which is equivariant to permutations) followed by a
summation over the constituent dimension.

We use a transformer architecture (Vaswani et al., 2017), with a decoder-only setup.
The jet constituents xi are first embedded into a higher-dimensional space through a
linear projection, typically expanding to a dimension of 1000. Each transformer-encoder
block then applies multi-headed self-attention, followed by a residual connection, layer
normalization (Ba et al., 2016), and a feed-forward network that processes each constituent
individually. This block is repeatedN times, with a final layer normalization. The encoder
outputs are summed over constituents to produce a fixed-size vector h, which is passed
through a feed-forward head to generate the final output z. The architecture is shown in
Figure 3.9. In practice, the linear classifier test shows h is a better representation than z,
aligning with findings in the self-supervised literature (Chen et al., 2020).

Figure 3.9: Illustration of the transformer network architecture. MHSA stands for multi-headed
self-attention, and FF denotes a feed-forward block.

Jet constituents have a variable number per jet, so we apply zero-padding to jets with
fewer constituents, allowing the batch to be converted into a single tensor for efficient
computation. To prevent zero-padding from influencing the network output, masking is
implemented in the transformer by setting attention weights for zero-valued constituents
to negative infinity before softmax normalization. Additionally, zero constituents are
excluded from the sum over constituents.

This masking approach can be generalized to be continuous in pT . Instead of adding
negative infinity, we add β log pT to pre-softmax attention weights, and instead of setting
some transformer outputs to zero, we multiply all outputs by the input pT . This creates an
IR-safe attention mechanism, ensuring that the transformer network is IR-safe by design.

Full architecture and training details can be found in our research paper (Dillon et al.,
2022).

3.3.5 Results
To benchmark JetCLR, we investigate the contributions of symmetries and augmentations
to performance, specifically focusing on top tagging, a well-studied area in the literature
(Kasieczka et al., 2019). We employ the linear classifier test (LCT), a standard evaluation
method in the machine learning community, to quantify performance. In this test, a

69

simple linear network is trained to classify between QCD and top jets, assessing the ability
to separate the jets using a linear decision boundary in the representation space. We
construct a ROC curve and utilize the inverse mistag rate at a given sensitivity (typically
ϵ−1
b (ϵs = 0.5)) and the area under the curve (AUC) as metrics. It is important to note

that while ground truth labels are not used during the training of JetCLR via contrastive
learning, they are employed during the evaluation of the LCT.

As dataset, we use QCD and top jet samples from the community top-tagging challenge
(Kasieczka et al., 2019).

The representation is invariant to symmetries

0π

−1.0
−0.5

0.0
0.5

1.0

s(
z,
z
′)

R

0π

−1.0
−0.5

0.0
0.5

1.0

s(
z,
z
′)

R 0π

−1.0
−0.5

0.0
0.5

1.0

s(
z,
z
′)

R

Figure 3.10: Visualization of the rotational invariance in representation space, keeping in mind
that s(z, z′) = 1 indicates identical representations. Top: JetCLR representation trained without
(left) and with (right) rotational transformations. Note the different scales of the radial axes
showing the cosine similarity. Bottom: JetCLR representation for 2-prong (left) and 3-prong
(right) toy jets, trained without (red) and with (green) rotational transformations.

Of the two primary JetCLR tasks, invariance and discriminative power, we first confirm
that the network correctly encodes symmetries. To demonstrate rotational symmetry, we
assess how the representation remains invariant under actual jet rotations. Starting with a
batch of 100 jets, we create rotated copies with angles evenly spaced between 0 and 2π.
We then pass each jet and its rotated versions through the network, computing the cosine
similarity between the original jet and its rotated copies. The top panels of Figure 3.10
show the mean and standard deviation of this similarity as a function of the rotation angle.

70

The scale of the radial axis s(z, z′) indicates that JetCLR trained with rotations produces
representations more consistent with the original jets. In the left panel, similarity varies
between 0.5 and 1.0, while in the right panel, the JetCLR representation is almost perfectly
rotationally invariant.

Next, we test the rotational invariance of JetCLR representations using toy jets with pT,j =
600GeV: one with two constituents and another with three equally spaced constituents, each
sharing jet momentum equally. The lower panels of Figure 3.10 compare the rotational
invariance of these toy jets. The red lines show the similarity functions for JetCLR
representations of two-prong (left) and three-prong (right) jets without rotational training,
where the maximum s(z, z′) values reflect geometric symmetry degeneracies. The green
line shows the similarity functions for JetCLR representations trained with rotational
transformations, confirming improved rotational invariance.

All augmentations in combination give the best results

Augmentation ϵ−1
b (ϵs=0.5) AUC

none 15 0.905
translations 19 0.916
rotations 21 0.930
soft+collinear 89 0.970
all combined 181 0.979

S/B ϵ−1
b (ϵs=0.5) AUC

1.00 181 0.980
0.50 160 0.979
0.25 150 0.978
0.10 161 0.978
0.05 146 0.978
0.01 158 0.978

Table 3.1: Left: Classification results for JetCLR trained with different symmetries and augmen-
tations and S/B=1. The combined setup includes translation and rotation symmetries, combined
with soft and collinear augmentations, and IR-safe masking. Right: Classification results for the
combined symmetries and augmentations, trained with different signal-to-background ratio S/B.

It is not straightforward to determine which symmetries and augmentations are most effec-
tive for learning JetCLR representations. The left panel of Table 3.1 summarizes the results
after applying rotational, translational symmetry transformations, and soft+collinear aug-
mentations. Among these, the soft+collinear augmentation performs best individually.
While rotations and translations are less effective alone, combining all three leads to the
best representations by a significant margin. These results were obtained using regular
masking in the transformer. However, when combining all symmetries and augmenta-
tions, IR-safe masking slightly improves performance, so is included in the combined
configuration.

Discriminative performance persists even when trained mostly on QCD jets

Although our initial results use a dataset with equal amounts of QCD and top jets, anomaly
detection requires JetCLR to perform well even with fewer signal jets. The right panel
of Table 3.1 shows how performance changes with a decreasing fraction of signal events
in the training sample. Despite some expected noise, the results show that JetCLR’s
performance in the LCT is largely insensitive to the number of signal jets, indicating
that JetCLR can capture essential structures based mainly on QCD jets and the applied
symmetries and augmentations. This finding is promising for future anomaly searches
using JetCLR representations.

71

JetCLR outperforms competitors

0.0 0.2 0.4 0.6 0.8 1.0

εs

100

101

102

ε−
1

b

JetCLR
AUC: 0.980

EFPs (d≤7)
AUC: 0.972

Jet images

Constits

Top-tagging
Linear classifier test

Figure 3.11: Comparison of JetCLR with other classification metrics.

After confirming that JetCLR encodes symmetries, we focus on the second task: evaluating
discriminative power. To contextualize the results in Table 3.1, Figure 3.11 presents
ROC curves comparing JetCLR to other representations. As expected, representations
incorporating more physical symmetries perform better. Both the top-performing EFP and
JetCLR representations use the same latent dimension, with the self-supervised JetCLR
slightly outperforming the EFP representation in the linear classifier test (LCT) using
binary cross-entropy loss. However, the performance difference is less clear when using
other LCT variants. See the discussion in Dillon et al. (2022) for further details.

3.3.6 Summary
We used Contrastive Learning of Representations (CLR) to learn observables that respect
symmetries and data augmentations while retaining discriminative power. Applied to jet
physics, the JetCLR tool1 uses a transformer-encoder network to encode rotation, transla-
tion, and permutation symmetries, and invariance under soft and collinear augmentations.
Performance was assessed using a linear classifier test, showing that JetCLR outperforms
simple jet images and competes with energy flow polynomials. The broader significance
lies in demonstrating how symmetry principles and physics knowledge can be integrated
into self-supervised ML tools. This opens promising directions for future applications,
particularly in enhancing anomaly searches in LHC data.

1The JetCLR code is available at https://github.com/bmdillon/JetCLR

72

https://github.com/bmdillon/JetCLR

3.4 Generative models for jets I: Normalized autoencoder
This section is based on work previously published as “A normalized autoencoder for
LHC triggers” in SciPost Physics Core (Dillon et al., 2023). All figures are reproduced
from that publication.

The primary objective of the Large Hadron Collider (LHC) is to discover new physics
beyond the Standard Model (BSM) and uncover new properties of the fundamental building
blocks of matter. Traditionally, BSM searches have relied on predefined theoretical
hypotheses, but in future LHC runs, we should complement these targeted searches with
two new strategies: (i) analyses focusing on phase space regions connected to effective
theory extensions of the Standard Model, and (ii) searches for anomalous effects that cannot
be explained by the Standard Model. Both approaches aim to fully understand LHC data
through fundamental physics, perhaps ultimately challenging the Standard Model.

A key concept in anomaly detection within LHC data is to make as few assumptions
as possible about potential signals, in order to minimize bias and increase the chances
of discovering genuinely new physics. Modern machine learning techniques, especially
autoencoders (AEs), are promising in this regard, as they can, for example, identify
anomalous jets in quantum chromodynamics (QCD) jet samples (Heimel et al., 2019;
Farina et al., 2020).

However, AEs have their limitations. Since the latent space in AEs lacks a clear structure,
the anomaly score is linked to the reconstruction quality. This can be problematic,
especially when tagging anomalous top jets versus anomalous QCD jets, where one type
of jet is considered signal and the other background. For instance, top jets stand out in
a sample dominated by QCD jets, but a QCD jet does not appear particularly anomalous
in a sample of top jets (Finke et al., 2021) because its simpler features can be easily
interpolated by the neural network, despite not forming part of the training set.

To address these issues, we can use probabilistic models like variational autoencoders
(VAEs) (Kingma and Welling, 2014), which can distinguish between high and low prob-
ability regions, or use other approaches that define anomalies based on low-probability
regions in the background phase space distributions (Nachman and Shih, 2020; Batson
et al., 2021; Dorigo et al., 2021; Caron et al., 2021; Fraser et al., 2021).

In this paper, we propose the normalized autoencoder (NAE) (Yoon et al., 2021) as a
solution that combines the strengths of AEs and probabilistic models. The NAE uses an
energy-based model (Xie et al., 2016; Du and Mordatch, 2019) defined by the reconstruc-
tion loss to identify outliers.

The NAE achieves reliable anomaly detection without increasing network complexity
during inference; only the training process is more complex.

3.4.1 Energy-based networks
Energy-based models are a highly flexible class of models where the probability density
is defined through a learnable energy function Eθ(x) as

pθ(x) ∝ e−Eθ(x) (3.23)

Note that the normalization constant is unknown and, in general, too computationally
expensive to compute efficiently.

73

To train these models via maximum likelihood, we use the identity (see, e.g., Section 3 of
Song and Kingma (2021))

Ex∼pdata [∇θL(x)] = Ex∼pdata [∇θEθ(x)]− Ex∼pθ [∇θEθ(x)] (3.24)

where L(x) = − log pθ(x). This means that in addition to sampling from pdata(x) (which
is straightforward), we must also sample from pθ(x) (which is more challenging).

One practical approach to sample from pθ(x) is to use Markov-Chain Monte Carlo
(MCMC) methods. Specifically, we employ Langevin Markov Chains (Roberts and
Tweedie, 1996), where the steps are defined by drifting a random walk towards high-
probability regions according to

xt+1 = xt + λx∇x log pθ(x) + σxϵt with ϵt ∼ N (0, 1) (3.25)

Here, λx is the step size and σx is the noise standard deviation. When 2λx = σ2
x, this

equation resembles Brownian motion and yields exact samples from pθ(x) in the limits
t→ +∞ and σx → 0.

In machine learning applications involving images, the high dimensionality of the data
makes it challenging to fully explore the data space x with Markov chains of reasonable
length. Consequently, it is common to use shorter chains and adjust λ and σ to emphasize
the gradient term over the noise term. If 2λ ̸= σ2, this approach corresponds to sampling
from the distribution at a different temperature, defined as

T =
σ2

2λ
(3.26)

Here, λ and σ are defined as in Equation (3.25). By increasing λ or decreasing σ, we
effectively sample from the distribution at a lower temperature, which allows for faster
convergence towards the distribution’s modes.

Despite the well-defined algorithm, training EBMs is notoriously difficult due to several
factors: (i) the min-max optimization, which shares instability challenges similar to
balancing a generator and discriminator in a GAN; (ii) potentially biased sampling from
the MCMC due to a low effective temperature; and (iii) instabilities within the Langevin
Markov Chains (LMCs). Altogether, stabilizing the training across its phases demands
significant effort.

3.4.2 Normalized autoencoder
Autoencoders are not inherently probabilistic models. However, we can construct a
probabilistic model by interpreting the reconstruction error as the energy, leading to what
is known as the normalized autoencoder (NAE) (Yoon et al., 2021). In this framework,
samples that are well-reconstructed have high likelihood, while those that are poorly
reconstructed have low likelihood. By training the model using energy-based techniques,
we ensure that inputs that would typically be well-reconstructed but do not appear in the
training data (e.g., low-complexity inputs) are actually assigned high energy and, therefore,
low probability.

The NAE is trained in two stages:

74

1. Pretrain the base AE with MSE: The model is first pretrained using the mean
squared error (MSE) as the loss function. This stage is computationally cheap
and helps the model assign low energy to the training data and high energy to
high-complexity inputs not present in the training set.

2. Switch to energy-based training with MSE as energy: In this stage, the MSE is
interpreted as the energy function, and the model undergoes energy-based training.
This phase is more computationally expensive and refines the model, ensuring that
low-complexity inputs only receive low energy if they are genuinely present in the
data. During this stage, the model explores inputs close to, but not included in,
the training dataset since it trains on samples from pθ(x) as well as samples from
pdata(x). This contrasts with a standard AE, which would never encounter such
samples during training and could exhibit unpredictable behavior outside of the
training set.

Energy-based training

To train our model via energy, we take advantage of its autoencoder structure. First, we
run Markov chains in the latent space, leveraging the fact that high-energy samples should
be close to the decoder manifold—the set of points that can be generated by an input to
the decoder. Since the latent space is lower-dimensional, this process is more efficient.
Additionally, we ensure the latent space is compact by normalizing inputs to lie on the
hypersphere, resulting in a sensible proposal distribution (uniform on the hypersphere)
and a simplified search space. This strategy is known as on-manifold initialization (OMI)
(Yoon et al., 2021).

The latent distribution is defined as

qθ(z) ∝ e−Eθ(fD(z)) (3.27)

where fD is the decoding function.

After the latent space sampling, we proceed to run Markov chains in the full data space.
In both the latent and data spaces, the chains are run at a high effective temperature,
achieved by appropriately adjusting the parameters λ and σ. This strategy allows for
efficient exploration of the relevant regions while minimizing the risk of spurious density
peaks.

Further training details can be found in Section 2.2 of Dillon et al. (2023).

3.4.3 Results
Symmetric anomaly detection: QCD vs top jets

We evaluate our method on the well-established task of identifying top jets in a QCD
background, as well as the symmetric task of identifying QCD jets in a top background.
This scenario is particularly challenging for standard autoencoders, which struggle to
identify QCD jets as anomalous when trained on a top jet background.

The dataset consists of jet images obtained from the top tagging challenge in the LHC
Olympics (Kasieczka et al., 2021). These images were preprocessed following the method-
ology described in Heimel et al. (2019). Each jet image represents the energy deposits

75

10−5

Eθ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

×105

topQCD

top tagging

10−5

Eθ

0.0

0.5

1.0

1.5

2.0

×105

top QCD

QCD tagging

Figure 3.12: Distribution of the energy (MSE) after training on QCD jets (left) and on top jets
(right). We show the energy for QCD jets (blue) and top jets (orange) in both cases.

in the calorimeter, providing a visual representation of the jet’s structure and properties.
A Gaussian filter is applied to the images to reduce their sparsity, making training more
stable.

0.0 0.2 0.4 0.6 0.8 1.0
εS

100

101

102

103

ε−
1

B

QCD vs top tagging

top NAE

top AE

QCD NAE

QCD AE Signal NAE
AUC ϵ−1

B (ϵS = 0.2)

top (AE) 0.875 68
top (NAE) 0.910 80
QCD (AE) 0.579 12
QCD (NAE) 0.890 350

Figure 3.13: ROC curve for top (orange) and QCD (blue) tagging after AE pre-training (dashed),
and after NAE training (solid). A random classifier corresponds to the solid black line. The table
shows metrics extracted from the curves.

Figure 3.12 displays the energy distributions for two models: one trained on QCD jets
and another on top jets. The plots demonstrate that both models effectively differentiate
between the two jet types, consistently assigning higher energy values to the background
jets. In Figure 3.13, we present ROC curves that compare the performance of our NAE to a
standard autoencoder (which is equivalent to the NAE after pre-training). The results show
improved performance in both scenarios, with a particularly dramatic enhancement in the
case where top jets form the background, where the AUC increases from 0.579 for the

76

standard autoencoder to 0.89 for the NAE. This substantial enhancement demonstrates the
NAE’s ability to overcome the limitations of standard autoencoders in anomaly detection
tasks with complex, multi-modal data distributions.

Identifying dark jets in QCD backgrounds

10−6 10−5

Eθ

102

104

106

QCD

HD

AC

n = 0.5

10−6 10−5

Eθ

102

104

106

QCD

HD

AC

n = 0.3

10−6 10−5

Eθ

102

104

106

QCD

HD

AC

n = 0.2

10−6 10−5

Eθ

102

104

106

QCD

HD

AC

n = 0.1

10−6 10−5

Eθ

102

104

106

QCD

HD

AC

n = 0.01

QCD HD AC
n µ σ µ σ µ σ

0.5 2.0 0.9 3.3 1.4 2.7 1.1
0.3 2.0 0.8 3.1 1.3 3.0 1.3
0.2 2.0 0.8 3.1 1.3 3.0 1.5
0.1 2.0 0.9 3.2 1.7 3.4 2.2
0.01 2.2 0.8 3.3 1.4 3.4 1.8

Figure 3.14: Distribution of the energy for QCD, Aachen, and Heidelberg datasets. Each panel
corresponds to a different reweighting of the same datasets. The table shows the mean and the
standard deviation for each distribution (×10−6).

Our second reference dataset comprises two signal samples inspired by dark matter models
(Buss et al., 2022). These samples are based on hidden valley scenarios, featuring a light,
strongly interacting dark sector (Strassler and Zurek, 2007; Morrissey et al., 2012; Knapen
et al., 2021). In these models, particles produced in the dark sector can decay within
it, forming a dark shower. This dark shower eventually transitions to Standard Model
fragmentation, resulting in either a semi-visible jet (Cohen et al., 2015, 2017; Pierce et al.,
2018; Beauchesne et al., 2018; Bernreuther et al., 2020, 2021) or a modified QCD jet
(Heimel et al., 2019).

We refer to the semi-visible jets as the Aachen dataset and the modified QCD jets as the
Heidelberg dataset. The Aachen dataset is characterized by its relatively sparse structure
compared to the QCD background, while the Heidelberg dataset exhibits an additional
decay structure. The QCD background for this analysis is generated using the same method
as in the previous section, but with transverse momentum (pT) ranging from 150 to 300
GeV and |η| < 2.

As with the top jets, we apply a Gaussian filter to the dark jet images, using σG = 1 to
improve network training stability. Additionally, we implement a pixel-wise reweighting
scheme to enhance the detection efficiency for both dark jet signals. This reweighting is

77

0.0 0.2 0.4 0.6 0.8 1.0
εS

100

101

102

103

ε−
1

B

Aachen

AUC = 0.76 n = 0.01

AUC = 0.77 n = 0.1

AUC = 0.76 n = 0.2

AUC = 0.75 n = 0.3

AUC = 0.68 n = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
εS

100

101

102

103

ε−
1

B

Heidelberg

AUC = 0.80 n = 0.5

AUC = 0.79 n = 0.3

AUC = 0.80 n = 0.2

AUC = 0.78 n = 0.1

AUC = 0.79 n = 0.01

Figure 3.15: ROC curve for dark jets tagging with different reweightings n, shown for the Aachen
signal (left) and the Heidelberg signal (right). A random classifier corresponds to the solid black
line.

applied uniformly across both dark jet types and is defined as:

pT → pnT (3.28)

where n takes values of 0.01, 0.1, 0.2, 0.3, and 0.5. This approach aims to reduce the
dependence of the autoencoder’s performance on specific signal characteristics, allowing
for more robust anomaly detection across different types of dark jets.

The effect of the reweighting is to alter the network’s learning focus. At higher values of n,
secondary clusters tend to be discarded, with the emphasis primarily on the main feature
of QCD jets—the single prong structure. This makes it easier to identify the two-prong
structure of Heidelberg jets. Conversely, when n is low, secondary clusters are enhanced
and not easily discarded. The main prong is not learned as well, and the sparse structure
of the Aachen jets is emphasized. For a more detailed discussion of this trade-off, refer to
Section 4 of Dillon et al. (2023).

Figure 3.14 presents the energy distributions of the QCD, Aachen, and Heidelberg datasets
as histograms for different reweighting values of n. We observe that both dark jet datasets
consistently exhibit higher energy than the QCD jets. The performance remains relatively
stable across different n values, with a significant difference only appearing at n = 0.5.
In this case, the Heidelberg dataset becomes more distinguishable from the background.
However, as shown in Figure 3.15, the performance for the Aachen dataset decreases at
this n value. The optimal overall performance is achieved with n = 0.2, balancing the
trade-offs between different jet structures.

3.4.4 Summary
In summary, our experiments with the Normalized Autoencoder (NAE) demonstrate its
effectiveness in symmetric anomaly detection for jet physics. In the QCD vs. top jet

78

experiment, the NAE showed remarkable performance in both directions of tagging.
When trained on QCD jets to detect anomalous top jets, it achieved an AUC of 0.91,
surpassing previous autoencoder benchmarks. More importantly, when trained on top jets
to detect anomalous QCD jets—a task that traditional autoencoders struggle with—the
NAE achieved a competitive AUC of 0.89. This symmetric performance highlights the
NAE’s ability to overcome the limitations of standard autoencoders in handling datasets
of varying complexity.

For the dark jet experiments, the NAE demonstrated its versatility in detecting two
distinct types of dark jets—the Aachen (semi-visible) and Heidelberg (modified QCD)
datasets—against a QCD background. By implementing a pixel-wise reweighting scheme,
we were able to fine-tune the NAE’s sensitivity to different jet structures. The reweighting
parameter n allowed us to balance the detection efficiency between the sparse Aachen jets
and the more structured Heidelberg jets. Optimal performance was achieved at n = 0.2,
where the NAE showed good discrimination for both dark jet types. This adaptability un-
derscores the NAE’s potential as a robust tool for anomaly detection in various jet physics
scenarios, capable of handling different signal characteristics within a single framework.

79

3.5 Generative models for jets II: Diffusion models and
JetGPT

This section is based on work previously published as “Jet Diffusion versus JetGPT —
Modern Networks for the LHC” on arXiv (Butter et al., 2023). All figures are reproduced
from that publication.

3.5.1 Generative models at the LHC
Simulation-based analysis plays a crucial role in research conducted at the Large Hadron
Collider (LHC). The simulation chain encompasses a range of processes, from hard
scattering to detector simulations. To be effective, this chain must maintain both precision
and computational efficiency.

In recent years, generative neural networks have emerged as the leading machine learning
tools for LHC simulations (Butter and Plehn, 2020; Butter et al., 2022). While variational
autoencoders (VAEs) and generative adversarial networks (GANs) have shown promise,
they often lack the necessary precision for high-energy physics applications. Normalizing
flows, particularly those utilizing invertible coupling blocks, have demonstrated success
in lower-dimensional problems such as hard scattering simulations.

This study aims to expand upon the current state of the art by comparing normalizing flows
to three advanced generative models: two based on diffusion processes (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Albergo and Vanden-Eĳnden, 2023; Lipman et al., 2023;
Liu et al., 2022) and one leveraging an autoregressive transformer architecture (Radford
et al., 2018). By evaluating these cutting-edge approaches, we seek to identify potential
improvements in both the accuracy and efficiency of LHC simulation techniques.

3.5.2 Denoising diffusion probabilistic model
The denoising diffusion probabilistic model (DDPM) is a generative model that learns to
gradually denoise data from a simple noise distribution to the target data distribution. The
process consists of two main steps: a forward diffusion process and a reverse denoising
process.

Forward diffusion process

In the forward diffusion process, we start with a data point x0 and gradually add Gaussian
noise over T timesteps:

x1 ∼ N (
√

1− β1x0, β1I)

x2 ∼ N (
√

1− β2x1, β2I)

...

xT ∼ N (
√

1− βTxT−1, βT I) (3.29)

where βt is a noise schedule that typically increases with t. This process can be expressed
in closed form for any arbitrary timestep t:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (3.30)

80

where ᾱt =
∏t

i=1(1− βi) and ϵ ∼ N (0, I).

Reverse denoising process

The reverse process aims to learn how to denoise the data, starting from pure noise xT
and gradually recovering the original data x0. This is modeled as a series of Gaussian
transitions:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (3.31)

where θ are the parameters of a neural network that predicts the mean and variance of this
Gaussian distribution. In practice, it is sufficient to set Σθ(xt, t) = βtI.

Training the model

The model is trained to minimize the negative log-likelihood of the reverse process. Up to
some constants which don’t depend on the model parameters, and discarding prefactors,
this is equivalent to minimizing the following loss:

L = Ex0,ϵ,t[∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2] (3.32)

where ϵθ is a noise prediction network. For further details see Ho et al. (2020).

Retaining prefactors yields a more precise loss function:

L = Ex0,ϵ,t
[

1

2σ2
t

β2
t

(1− βt)β̄t
∥ϵ− ϵθ(

√
1− β̄tx0 +

√
β̄tϵ, t)∥2

]
(3.33)

where σ2
t = βt and β̄t = 1− ᾱt = 1−∏t

i=1(1− βi).

We use this variant because it:

1. Is an exact likelihood loss, adaptable to Bayesian settings

2. Maintains or improves model performance

3. Provides more accurate loss weighting across timesteps

Inference

During inference, we can sample from the model by starting with pure noise xT ∼ N (0, I)
and iteratively applying the learned denoising process until we obtain x0.

Bayesian version of DDPM

To create a Bayesian version of the DDPM, we replace the deterministic noise prediction
network with a Bayesian neural network (BNN). This BNN is trained by minimizing the
Kullback-Leibler (KL) divergence between a variational approximation q(θ) and the pos-
terior distribution p(θ|data), where θ represents the network parameters. The variational
approximation q(θ) serves as a tractable proxy for the true posterior, while p(θ) represents
a prior distribution over the network weights.

This Bayesian approach offers several advantages:

1. Uncertainty quantification: It provides a measure of uncertainty in the model’s
predictions, which is crucial for scientific applications.

81

2. Regularization: The prior p(θ) acts as a form of regularization, potentially improv-
ing generalization.

3. Model averaging: At inference time, we can sample multiple sets of weights from
q(θ), effectively performing model averaging.

The loss function for this Bayesian DDPM becomes:

L = E[log p(x|θ)]− KL(q(θ) ∥ p(θ)) (3.34)

where the first term is the expected log-likelihood of the data given the model parameters,
and the second term is the KL divergence between the variational posterior and the prior.
This formulation allows us to balance between fitting the data and maintaining a simple
model, as determined by the prior.

Full training and architecture details can be found in Section 2.1 of Butter et al. (2023).

3.5.3 Conditional flow matching
Conditional Flow Matching (CFM) is another approach that transforms data to noise in
a forward process and then generates from noise in a backward process. Unlike DDPM,
the CFM model is continuous, and the backward pass is solved as an ordinary differential
equation (ODE), similarly to a continuous normalizing flow (Chen et al., 2018). In this
method, we learn a velocity field that can be understood as a weighted integral over many
conditional velocity fields, hence the name “conditional flow matching.”

Loss function derivation

We begin with an important identity:

Ep(y|x)[∥f(x)− y∥2] = ∥f(x)− Ep(y|x)[y]∥2 + const. (3.35)

where the constant is independent of f .

The core of the CFM approach is based on the continuity equation:

∂p(x, t)

∂t
= −∇x · [p(x, t)v(x, t)] (3.36)

where p(x, t) is the probability density at point x and time t, and v(x, t) is the velocity
field.

We define a conditional probability p(x, t|x0) which we generate from by:

x = (1− t)x0 + tϵ (3.37)

The associated conditional velocity is:

v(x, t|x0) = ϵ− x0 (3.38)

82

Then we use that p(x, t|x0) and v(x, t|x0) satisfy the continuity equation to derive the total
velocity field which satisfies the continuity equation for the total probability p(x, t):

∂p(x, t)

∂t
=

∫
∂p(x, t|x0)

∂t
p(x0) dx0 (3.39)

= −
∫

∇x · [p(x, t|x0)v(x, t|x0)]p(x0) dx0 (3.40)

= −∇x ·
[
p(x, t)

∫
v(x, t|x0)p(x0|x, t) dx0

]
(3.41)

= −∇x · [p(x, t)v(x, t)] (3.42)

where

v(x, t) =

∫
v(x, t|x0)p(x0|x, t) dx0 = Ep(x0|x,t)[v(x, t|x0)] (3.43)

The loss function for training the CFM model can be derived as follows:

Ep(x,t)[∥vθ(x, t)− v(x, t)∥2] = Ep(x,t)[∥vθ(x, t)− Ep(x0|x,t)[v(x, t|x0)]∥2] (3.44)
= Ep(x,t)[Ep(x0|x,t)[∥vθ(x, t)− v(x, t|x0)∥2] + const.]

(3.45)
= Ep(x0,x,t)[∥vθ(x, t)− v(x, t|x0)∥2] + const. (3.46)

This formulation allows us to train the model by minimizing the expected squared differ-
ence between the predicted velocity field vθ(x, t) and the true conditional velocity field
v(x, t|x0).

This gives the loss function:

LCFM = Ep(x0,ϵ,t)[∥vθ((1− t)x0 + tϵ, t)− (ϵ− x0)∥2] (3.47)

where vθ is our learned velocity field, x0 is the initial data point, ϵ is sampled from the
noise distribution, and t is uniformly sampled from [0, 1].

Advantages of CFM

The CFM approach offers several advantages:

1. It provides a continuous-time formulation, allowing for flexible sampling schemes.

2. The backward process is deterministic, solved via an ODE, which can be more
efficient than the stochastic process in DDPM.

3. The loss function is simpler and more intuitive compared to DDPM, potentially
leading to easier optimization.

Full training and architecture details for our implementation of CFM can be found in
Section 2.2 of Butter et al. (2023). That section also includes information on how to create
a Bayesian version of CFM.

83

3.5.4 Autoregressive transformer
Autoregressive models learn to generate data one dimension at a time. They factorize the
joint probability distribution as a product of conditional probabilities:

p(x) =
n∏
i=1

p(xi|x1, . . . , xi−1) (3.48)

This approach breaks down the problem of learning an n-dimensional joint distribution
into learning n one-dimensional conditional distributions. Each of these conditional
distributions is modeled as a function of the previous dimensions.

Parameter prediction

We can implement this by predicting the parameters of a simple one-dimensional model
for each dimension, conditioned on the previous dimensions. For example, we might
predict:

• Probabilities of discrete bins

• Means and variances of a Gaussian mixture model (GMM)

Formally, we can express this as:

ωi = f iθ(x1, . . . , xi−1) (3.49)

where ωi represents the parameters for the i-th dimension, and f iθ is a neural network with
parameters θ. The conditional probability for the i-th dimension is then given by:

p(xi|x1, . . . , xi−1) = p(xi|ωi) (3.50)

Loss function

The loss function for training such a model is typically the negative log-likelihood:

L = −Ex∼pdata [log p(x)] = −Ex∼pdata

[
n∑
i=1

log p(xi|x1, . . . , xi−1)

]
(3.51)

This loss function encourages the model to assign high probability to the observed data
points, thereby learning the underlying data distribution.

Sampling

Sampling from the model proceeds sequentially, dimension by dimension. For each
dimension i, we:

1. Compute the parameters ωi = f iθ(x1, . . . , xi−1)

2. Sample xi ∼ p(xi|ωi)
This process continues until all dimensions have been sampled, resulting in a complete
sample x = (x1, . . . , xn).

84

Transformer implementation

To implement the functions f iθ, we use a transformer encoder architecture with causal
masking. This approach is similar to the GPT (Generative Pre-trained Transformer) models
used in natural language processing (Radford et al., 2018, 2019). The causal masking
ensures that each prediction only depends on the previous dimensions, maintaining the
autoregressive property.

The transformer architecture allows for efficient parallel computation during training, as
all f iθ can be computed simultaneously. During sampling, however, we must proceed
sequentially as each dimension depends on the previously sampled dimensions.

Our specific implementation details, including the transformer architecture, attention
mechanisms, and hyperparameters, can be found in Section 2.3 of Butter et al. (2023).

3.5.5 Results
Toy densities

We test the Bayesian versions of the models on two different two-dimensional toy datasets:

1. A ramp, linear in one dimension and flat in the other

2. A ring, where the radial distribution is Gaussian

We find that the two diffusion models have similar performance to each other and to a
normalizing flow, providing smooth fits to the densities. The behavior, especially in terms
of uncertainty, is consistent with what one would expect from fitting a simple parametric
model to the density.

The autoregressive transformer yields more accurate results when predicting bin proba-
bilities rather than Gaussian mixture parameters. Its results differ significantly from the
other models, with uncertainty patterns that deviate from those typically obtained from a
simple fit.

See Section 3 in Butter et al. (2023) for plots and more in-depth analysis.

LHC events

z9 1.NN

njets

pµ1, pµ2, pj1

2.NNz4

njets

pj2

3.NNz4 pj3

Figure 3.16: Conditional sampling architecture.

85

We benchmark our networks on a challenging set of LHC events, following the approach
of Butter et al. (2021). The dataset consists of leptonically decaying Z bosons with a
variable number of associated QCD jets: pp → Zµµ + {1, 2, 3} jets. Details of data
generation and preprocessing are described in Section 4 of Butter et al. (2023).

The phase space dimensionality is 3 per muon (due to energy-momentum conservation)
and 4 per jet. By exploiting azimuthal symmetry, we can remove one dimension, resulting
in 9, 13, or 17 dimensions for 1, 2, or 3 jets, respectively. Jets are ordered by pT .

Generating a variable number of jets poses a challenge for the DDPM and CFM models.
Our solution, illustrated in Figure 3.16, involves a two-step process: first, we generate the
4-momenta of the two muons and the first jet (9 dimensions total), then we conditionally
generate subsequent jet variables based on these initial values.

We compare our models to the normalizing flow presented in Figure 11 of Butter et al.
(2021). In the subsequent figures, we display distributions of kinematic variables for
different jet multiplicities. The most challenging correlations are shown in the right
column:

• The Z peak, which requires learning a specific phase space direction with high
precision.

• Jet-jet correlations, particularly the collinear enhancement at the hard jet-separation
cut of ∆Rjj > 0.4. This region of phase space is difficult to model due to its sharp
boundary.

To assist the DDPM and CFM models, we employ a transformation described in Butter
et al. (2021). This transformation makes the ∆Rjj features monotonically increasing,
allowing us to learn the data in this transformed space before mapping the generated data
back to the original space. Notably, the transformer model does not require this technique.

All models demonstrate proficiency in learning the pT distributions.

Denoising diffusion The DDPM exhibits performance comparable to the normalizing
flow in Butter et al. (2021), achieving precision predominantly at the 1% level, though
occasionally reaching up to 10% (see Figure 3.17). However, the model’s generation
process is notably slow, requiring 1000 network calls per sample, with multiple sampling
steps necessary for higher jet multiplicities.

Conditional flow matching The CFM model performs similarly to the DDPM but
demonstrates superior modeling of the Z peak. The precision of the ∆Rjj distributions is
comparable to that of the DDPM (see Figure 3.18). Notably, the CFM is approximately an
order of magnitude faster due to its fairly linear trajectory, which is solved by an efficient
ODE solver.

Autoregressive transformer The AT model distinguishes itself by generating events of
all multiplicities within a single network. This is achieved by providing the multiplicity as
an input and sampling the requisite number of variables for the given number of jets. The
ordering of variables is crucial, as the model tends to learn early variables and correlations
more effectively. Consequently, we prioritize the angles of the jets to ensure their accurate
learning. While the Z peak is learned less accurately compared to the other models, the

86

∆Rjj distributions are learned with approximately 1% precision without requiring the
special transformation used for the other models (see Figure 3.19).

3.5.6 Summary
In this paper, we explore three Bayesian generative models for particle physics applications:
denoising diffusion probabilistic models (DDPM), continuous flow matching (CFM),
and autoregressive transformers (AT). These models are applied to two-dimensional toy
datasets and a challenging set of LHC events involving leptonically decaying Z bosons
with associated QCD jets (pp→ Zµµ+{1, 2, 3} jets). The models are designed to generate
high-dimensional phase space distributions, with the number of dimensions ranging from
9 to 17 depending on the number of jets.

Our results demonstrate that all three models perform well in learning complex phase
space distributions, with each model showing distinct strengths. The DDPM and CFM
models achieve precision predominantly at the 1% level, occasionally reaching up to 10%,
and perform similarly to existing normalizing flow models. The CFM model, in particular,
shows superior modeling of the Z peak and is approximately an order of magnitude faster
than the DDPM. The AT model distinguishes itself by generating events of all multiplicities
within a single network and learns the∆Rjj distributions with approximately 1% precision
without requiring special transformations. While each model has its strengths, they all
demonstrate proficiency in learning pT distributions and capturing complex phase space
features, making them promising tools for particle physics simulations.

87

10�4

10�3

10�2

N
or

m
al

iz
ed

Z+1 jet exclusive

True

DDPM

Train

0.8
1.0
1.2

D
D

PM
Tr

ue

25 50 75 100 125 150
pT, j1 [GeV]

0.1

1.0

10.0

�
[%
]

0.00

0.05

0.10

0.15

0.20

0.25

N
or

m
al

iz
ed

Z+1 jet exclusive

True

DDPM

Train

0.8
1.0
1.2

D
D

PM
Tr

ue

80 85 90 95 100
Mµµ [GeV]

0.1

1.0

10.0

�
[%
]

10�3

10�2

10�1

N
or

m
al

iz
ed

Z+2 jet exclusive

True

DDPM

Train

0.8
1.0
1.2

D
D

PM
Tr

ue

20 40 60 80
pT, j2 [GeV]

0.1

1.0

10.0

�
[%
]

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

Z+2 jet exclusive

True

DDPM

Train

0.8
1.0
1.2

D
D

PM
Tr

ue

2 4 6
�Rj1 j2

0.1

1.0

10.0

�
[%
]

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+jets inclusive

True

DDPM

Train

0.8
1.0
1.2

D
D

PM
Tr

ue

50 100 150 200∑
i pT, ji [GeV]

0.1

1.0

10.0

δ
[%
]

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

Z+3 jet exclusive

True

DDPM

Train

0.8
1.0
1.2

D
D

PM
Tr

ue

2 4 6
�Rj1 j3

0.1

1.0

10.0

�
[%
]

Figure 3.17: Bayesian DDPM densities and uncertainties for Z+1 jet (upper), Z+2 jets (center),
and Z + 3 jets (lower) from combined Z+ jets generation. The uncertainty on the training data is
given by bin-wise Poisson statistics. For a comparison with the INN we refer to Fig. 11 of Butter
et al. (2021).

88

10�4

10�3

10�2

N
or

m
al

iz
ed

Z+1 jet exclusive

True

CFM

Train

0.8
1.0
1.2

C
FM Tr
ue

25 50 75 100 125 150
pT, j1 [GeV]

0.1

1.0

10.0

�
[%
]

0.00

0.05

0.10

0.15

0.20

0.25

N
or

m
al

iz
ed

Z+1 jet exclusive

True

CFM

Train

0.8
1.0
1.2

C
FM Tr
ue

80 85 90 95 100
Mµµ [GeV]

0.1

1.0

10.0

�
[%
]

10�3

10�2

10�1

N
or

m
al

iz
ed

Z+2 jet exclusive

True

CFM

Train

0.8
1.0
1.2

C
FM Tr
ue

20 40 60 80
pT, j2 [GeV]

0.1

1.0

10.0

�
[%
]

0.0

0.1

0.2

0.3

0.4

0.5
N

or
m

al
iz

ed
Z+2 jet exclusive

True

CFM

Train

0.8
1.0
1.2

C
FM Tr
ue

2 4 6
�Rj1 j2

0.1

1.0

10.0

�
[%
]

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+jets inclusive

True

CFM

Train

0.8
1.0
1.2

C
FM Tr
ue

50 100 150 200∑
i pT, ji [GeV]

0.1

1.0

10.0

δ
[%
]

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

Z+3 jet exclusive

True

CFM

Train

0.8
1.0
1.2

C
FM Tr
ue

2 4 6
�Rj1 j3

0.1

1.0

10.0

�
[%
]

Figure 3.18: Bayesian CFM densities and uncertainties for Z +1 jet (upper), Z +2 jets (center),
and Z + 3 jets (lower) from combined Z+ jets generation. The uncertainty on the training data is
given by bin-wise Poisson statistics. For a comparison with the INN we refer to Fig. 11 of Butter
et al. (2021).

89

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+1 jet exclusive

Truth
AT
Train

0.8
1.0
1.2

AT
Tr

ut
h

25 50 75 100 125 150
pT, j1[GeV]

0.1
1.0

10.0

δ
[%
]

0.0

0.1

0.2

N
or

m
al

iz
ed

Z+1 jet exclusive

Truth
AT
Train

0.8
1.0
1.2

AT
Tr

ut
h

80 85 90 95 100
Mµµ[GeV]

0.1
1.0

10.0

δ
[%
]

10−3

10−2

10−1

N
or

m
al

iz
ed

Z+2 jet exclusive

Truth

AT
Train

0.8
1.0
1.2

AT
Tr

ut
h

20 40 60 80
pT, j2[GeV]

0.1
1.0

10.0

δ
[%
]

0.0

0.2

0.4

N
or

m
al

iz
ed

Z+2 jet exclusive

Truth
AT
Train

0.8
1.0
1.2

AT
Tr

ut
h

2 4 6
∆R j1, j2

0.1
1.0

10.0

δ
[%
]

10−4

10−3

10−2

N
or

m
al

iz
ed

Z+jets inclusive

Truth

AT
Train

0.8
1.0
1.2

AT
Tr

ut
h

50 100 150 200∑
i pT, ji

0.1
1.0

10.0

δ
[%
]

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

Z+3 jet exclusive

Truth
AT
Train

0.8
1.0
1.2

AT
Tr

ut
h

2 4 6
∆R j1, j3

0.1
1.0

10.0

δ
[%
]

Figure 3.19: Bayesian autoregressive transformer densities and uncertainties forZ+1 jet (upper),
Z +2 jets (center), and Z +3 jets (lower) from combined Z+ jets generation. The uncertainty on
the training data is given by bin-wise Poisson statistics. For a comparison with the INN we refer
to Fig. 11 of Butter et al. (2021).

90

Chapter 4

Conclusion

This thesis has explored two main areas of research: free-form flows and machine learning
applications in particle physics. Both of these areas contribute to the advancement of
generative modeling techniques, with a particular focus on scientific applications.

4.1 Free-form flows
Free-form flows fill an important niche in the field of generative modeling. They com-
bine the strengths of normalizing flows—namely, exact maximum likelihood training and
fast generation—with the flexibility of unrestricted neural network architectures. This
approach addresses a key limitation of traditional normalizing flows: their restricted
expressiveness due to architectural constraints.

Key contributions in this area include:

• The introduction of a novel maximum likelihood gradient estimator based on Jacobi’s
formula, which, combined with a reconstruction loss, allows for more flexible model
architectures.

• The development of a theoretical framework for free-form flows, including proofs
of their properties and their relationship to normalizing flows.

• The establishment of error bounds for the free-form flow estimator, providing theo-
retical guarantees for the approach.

• The demonstration of links between free-form flows and variational autoencoders,
bridging two areas of generative modeling.

• The extension of free-form flows to bottleneck autoencoding models, making it
possible to simultaneously learn a manifold and a probability distribution on it with
a single optimization objective.

• The extension of free-form flows to Riemannian manifolds, allowing for generative
modeling on non-Euclidean spaces such as spheres and tori.

These advancements open up new possibilities for designing generative models that can
better capture the intricacies of complex scientific phenomena. The increased flexibility
of free-form flows allows for the incorporation of domain-specific knowledge and the use

91

of tailored architectures, potentially leading to more accurate and interpretable models
across various scientific disciplines.

4.1.1 Unifying view of free-form flows
The three free-form flow settings examined in this thesis—full-dimensional, bottleneck,
and Riemannian manifolds—exhibit a shared maximum likelihood estimator with remark-
ably similar implementations. The maximum-likelihood component of the loss function
can be consistently expressed as:

LML = Ex,v[− log pZ(f(x))− vTSG[g′(f(x))]f ′(x)v] (4.1)

This formulation has the potential to extend to other contexts, such as generating models
of functions. In this case, f and g would act as functional operators, taking functions as
inputs and producing functions as outputs, while x and v would represent appropriately
sampled functions. This generalization could open new paths for modeling complex
functional spaces across scientific domains. Applications could include modeling quantum
wavefunctions in physics, gene expression patterns in biology, or time-varying climate
models in environmental science, thus expanding the use of free-form flows to a broad
range of scientific problems.

4.2 Machine learning in particle physics
The second major focus of this thesis has been the application of advanced machine
learning techniques to problems in particle physics, particularly in the context of the Large
Hadron Collider (LHC). These applications aim to accelerate the processing of vast data
streams from the LHC and potentially uncover new physics beyond the Standard Model.

Key contributions in this area include:

• The introduction of a Dirichlet variational autoencoder (DVAE) for improved per-
formance in distinguishing QCD background jets from top quark jets.

• The creation of JetCLR, a contrastive learning approach for jet representation that
incorporates physical symmetries and augmentations, demonstrating superior per-
formance in downstream top tagging tasks.

• The development of a normalized autoencoder (NAE) for LHC triggers, which
upgrades a standard autoencoder to a probabilistic model, enabling symmetric iden-
tification of anomalous jets in both higher and lower complexity directions, at a low
cost of inference.

• The exploration of generative models for LHC event simulation, including denoising
diffusion probabilistic models (DDPM), continuous flow matching (CFM), and
autoregressive transformers (AT).

These applications showcase the potential of advanced machine learning techniques to
enhance our understanding of fundamental particle physics. By leveraging models with
rich representational spaces, we can improve the efficiency and accuracy of data analysis
at the LHC, potentially leading to new discoveries in the field.

92

4.3 Common threads
A common thread throughout this thesis is the development and application of generative
models with increased flexibility and expressiveness. Whether in the context of free-form
flows or particle physics applications, the focus has been on creating models that can better
capture complex data distributions while incorporating domain-specific knowledge.

The methods presented share key characteristics:

• They rely on generative models based on maximum likelihood principles, whether
exact maximum likelihood (as in autoregressive or energy-based models), approxi-
mately exact (as in free-form flows), or bounded (as in the variational autoencoders
and diffusion models used in particle physics applications).

• They demonstrate the importance of incorporating domain-specific knowledge,
whether through flexible architectures in free-form flows or through physics-inspired
augmentations in JetCLR.

4.4 Future directions
The work presented in this thesis opens up several promising avenues for future research:

• Further exploration of the theoretical properties of free-form flows, including inves-
tigations into their stability and convergence characteristics.

• Application of free-form flows to a wider range of scientific problems, particularly
in domains with complex, high-dimensional data.

• Extension of the free-form flow framework to more abstract generative problems,
such as learning distributions over function spaces and probability distributions,
enabling new applications in functional modeling and uncertainty quantification.

• Development of more sophisticated physics-inspired machine learning models for
the LHC, potentially incorporating ideas from free-form flows.

In conclusion, this thesis has contributed to the advancement of generative modeling
techniques with a focus on scientific applications. By developing more flexible and
expressive models, we have opened up new possibilities for capturing complex phenomena
in various scientific domains. The methods presented here, from free-form flows to
advanced machine learning techniques in particle physics, represent steps towards more
powerful and interpretable models for scientific data analysis and simulation. As these
techniques continue to evolve, they hold the promise of accelerating scientific discovery
and deepening our understanding of complex systems across a wide range of disciplines.

93

Bibliography

Michael S Albergo and Eric Vanden-Eĳnden. Building normalizing flows with stochastic
interpolants. International Conference on Learning Representations. 2023.

Anders Andreassen, Ilya Feige, Christopher Frye, and Matthew D. Schwartz. JUNIPR:
A framework for unsupervised machine learning in particle physics. The European
Physical Journal. 2019.

Keith A. Ashman, Christina M. Bird, and Stephen E. Zepf. Detecting bimodality in
astronomical datasets. The Astronomical Journal. 1994.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. 2016.

Joshua Batson, C. Grace Haaf, Yonatan Kahn, and Daniel A. Roberts. Topological
obstructions to autoencoding. Journal of High Energy Physics. 2021.

Hugues Beauchesne, Enrico Bertuzzo, Giovanni Grilli Di Cortona, and Zahra Tabrizi.
Collider phenomenology of Hidden Valley mediators of spin 0 or 1/2 with semivisible
jets. Journal of High Energy Physics. 2018.

Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Maximillian Nickel, Aditya
Grover, Ricky TQ Chen, and Yaron Lipman. Matching normalizing flows and probability
paths on manifolds. International Conference on Machine Learning. 2022.

Elias Bernreuther, Felix Kahlhoefer, Michael Krämer, and Patrick Tunney. Strongly
interacting dark sectors in the early universe and at the LHC through a simplified portal.
Journal of High Energy Physics. 2020.

Elias Bernreuther, Thorben Finke, Felix Kahlhoefer, Michael Krämer, and Alexander
Mück. Casting a graph net to catch dark showers. SciPost Physics. 2021.

Andrew Blance, Michael Spannowsky, and Philip Waite. Adversarially-trained autoen-
coders for robust unsupervised new physics searches. Journal of High Energy Physics.
2019.

Alexander Bogatskiy, Brandon Anderson, Jan T. Offermann, Marwah Roussi, David W.
Miller, and Risi Kondor. Lorentz group equivariant neural network for particle physics.
2020.

Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, and Will Hamilton. Latent
variable modelling with hyperbolic normalizing flows. International Conference on
Machine Learning. 2020.

94

Denis Boyda, Gurtej Kanwar, Sébastien Racanière, Danilo Jimenez Rezende, Michael S.
Albergo, Kyle Cranmer, Daniel C. Hackett, and Phiala E. Shanahan. Sampling using
SU(N) gauge equivariant flows. Physical Review D: Particles and Fields. 2021.

G Brakenridge. Global active archive of large flood events. 2017.

Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density
estimation. Advances in Neural Information Processing Systems. 2020.

James A Brofos, Marcus A Brubaker, and Roy R Lederman. Manifold density estimation
via generalized dequantization. 2021.

Thorsten Buss, Barry M. Dillon, Thorben Finke, Michael Krämer, Alessandro Morandini,
Alexander Mück, Ivan Oleksiyuk, and Tilman Plehn. What’s anomalous in LHC jets?
2022.

Anja Butter and Tilman Plehn. Generative networks for LHC events. 2020.

Anja Butter, Gregor Kasieczka, Tilman Plehn, and Michael Russell. Deep-learned top
tagging with a Lorentz layer. SciPost Physics. 2018.

Anja Butter, Theo Heimel, Sander Hummerich, Tobias Krebs, Tilman Plehn, Armand
Rousselot, and Sophia Vent. Generative networks for precision enthusiasts. 2021.

Anja Butter, Tilman Plehn, Steffen Schumann, et al. Machine learning and LHC event
generation. 2022.

Anja Butter, Nathan Huetsch, Sofia Palacios Schweitzer, Tilman Plehn, Peter Sorrenson,
and Jonas Spinner. Jet Diffusion versus JetGPT – Modern Networks for the LHC. 2023.

Sascha Caron, Luc Hendriks, and Rob Verheyen. Rare and different: Anomaly scores
from a combination of likelihood and out-of-distribution models to detect new physics
at the LHC. 2021.

Stefano Carrazza and Frédéric A. Dreyer. Lund jet images from generative and cycle-
consistent adversarial networks. The European Physical Journal C: Particles and Fields.
2019.

Anthony L Caterini, Gabriel Loaiza-Ganem, Geoff Pleiss, and John P Cunningham.
Rectangular flows for manifold learning. Advances in Neural Information Processing
Systems. 2021.

Clément Chadebec, Louis J. Vincent, and Stéphanie Allassonnière. Pythae: Unifying
generative autoencoders in Python – a benchmarking use case. Advances in Neural
Information Processing Systems. 2022.

Amit Chakraborty, Sung Hak Lim, and Mihoko M. Nojiri. Interpretable deep learning for
two-prong jet classification with jet spectra. Journal of High Energy Physics. 2019.

Ricky TQ Chen and Yaron Lipman. Flow matching on general geometries. International
Conference on Learning Representations. 2024.

95

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. Advances in Neural Information Processing Systems.
2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Everest Hinton. A
simple framework for contrastive learning of visual representations. 2020.

Josh Cogan, Michael Kagan, Emanuel Strauss, and Ariel Schwarztman. Jet-images:
Computer vision inspired techniques for jet tagging. Journal of High Energy Physics.
2015.

Timothy Cohen, Mariangela Lisanti, and Hou Keong Lou. Semivisible jets: Dark matter
undercover at the LHC. Physical Review Letters. 2015.

Timothy Cohen, Mariangela Lisanti, Hou Keong Lou, and Siddharth Mishra-Sharma.
LHC searches for dark sector showers. Journal of High Energy Physics. 2017.

Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye
Teh, and Arnaud Doucet. Riemannian score-based generative modelling. Advances in
Neural Information Processing Systems. 2022.

Luke de Oliveira, Michael Kagan, Lester Mackey, Benjamin Nachman, and Ariel
Schwartzman. Jet-images — deep learning edition. Journal of High Energy Physics.
2016.

B. M. Dillon, D. A. Faroughy, J. F. Kamenik, and M. Szewc. Learning the latent structure
of collider events. Journal of High Energy Physics. 2020.

Barry M. Dillon, Darius A. Faroughy, and Jernej F. Kamenik. Uncovering latent jet
substructure. Physical Review D: Particles and Fields. 2019.

Barry M. Dillon, Tilman Plehn, Christof Sauer, and Peter Sorrenson. Better latent spaces
for better autoencoders. SciPost Physics. 2021.

Barry M. Dillon, Gregor Kasieczka, Hans Olischlager, Tilman Plehn, Peter Sorrenson,
and Lorenz Vogel. Symmetries, safety, and self-supervision. SciPost Physics. 2022.

Barry M. Dillon, Luigi Favaro, Michael Krämer, Tilman Plehn, and Peter Sorrenson. A
normalized autoencoder for LHC triggers. SciPost Physics Core. 2023.

Nat Dilokthanakul, Pedro AM Mediano, Marta Garnelo, Matthew CH Lee, Hugh Sal-
imbeni, Kai Arulkumaran, and Murray Shanahan. Deep unsupervised clustering with
Gaussian mixture variational autoencoders. 2016.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear Independent Com-
ponents Estimation. International Conference on Learning Representations, Workshop
Track. 2015.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real
NVP. International Conference on Learning Representations. 2017.

Tommaso Dorigo, Martina Fumanelli, Chiara Maccani, Marĳa Mojsovska, Giles C.
Strong, and Bruno Scarpa. RanBox: Anomaly detection in the copula space. 2021.

96

Felix Draxler, Peter Sorrenson, Lea Zimmermann, Armand Rousselot, and Ullrich Köthe.
Free-form flows: Make any architecture a normalizing flow. International Conference
on Artificial Intelligence and Statistics. 2024.

Frédéric A. Dreyer, Gavin P. Salam, and Grégory Soyez. The Lund jet plane. Journal of
High Energy Physics. 2018.

Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based
models. 2019.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline
flows. Advances in Neural Information Processing Systems. 2019.

EOSDIS. Land, atmosphere near real-time capability for EOS (LANCE) system operated
by NASA’s earth science data and information system (ESDIS). 2020.

M. Erdmann, E. Geiser, Y. Rath, and M. Rieger. Lorentz boost networks: Autonomous
physics-inspired feature engineering. Journal of Instrumentation. 2019.

Luca Falorsi. Continuous normalizing flows on manifolds. 2021.

Luca Falorsi and Patrick Forré. Neural ordinary differential equations on manifolds. 2020.

Luca Falorsi, Pim de Haan, Tim R Davidson, and Patrick Forré. Reparameterizing
distributions on Lie groups. International Conference on Artificial Intelligence and
Statistics. 2019.

Marco Farina, Yuichiro Nakai, and David Shih. Searching for new physics with deep
autoencoders. Physical Review D: Particles and Fields. 2020.

Thorben Finke. Deep learning for new physics searches at the LHC. 2020.

Thorben Finke, Michael Krämer, Alessandro Morandini, Alexander Mück, and Ivan Olek-
siyuk. Autoencoders for unsupervised anomaly detection in high energy physics. Jour-
nal of High Energy Physics. 2021.

Katherine Fraser, Samuel Homiller, Rashmish K. Mishra, Bryan Ostdiek, and Matthew D.
Schwartz. Challenges for unsupervised anomaly detection in particle physics. 2021.

Jerome H Friedman. On multivariate goodness–of–fit and two–sample testing. Statistical
Problems in Particle Physics, Astrophysics, and Cosmology. 2003.

Mevlana C Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing flows on Rie-
mannian manifolds. 2016.

A Girard. A fast ‘Monte-Carlo cross-validation’ procedure for large least squares problems
with noisy data. Numerische Mathematik. 1989.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud.
FFJORD: Free-form continuous dynamics for scalable reversible generative models.
International Conference on Learning Representations. 2019.

Luigi Gresele, Giancarlo Fissore, Adrián Javaloy, Bernhard Schölkopf, and Aapo Hyvari-
nen. Relative gradient optimization of the Jacobian term in unsupervised deep learning.
Advances in Neural Information Processing Systems. 2020.

97

Yifan Guo, Weixian Liao, Qianlong Wang, Lixing Yu, Tianxi Ji, and Pan Li. Multidi-
mensional time series anomaly detection: A GRU-based Gaussian mixture variational
autoencoder approach. Asian Conference on Machine Learning. 2018.

Theo Heimel, Gregor Kasieczka, Tilman Plehn, and Jennifer M. Thompson. QCD or
what? SciPost Physics. 2019.

Isaac Henrion, Kyle Cranmer, Joan Bruna, Kyunghyun Cho, Johann Brehmer, Gilles
Louppe, and Gaspar Rochette. Neural message passing for jet physics. Proceedings of
the Deep Learning for Physical Sciences Workshop at NIPS. 2017.

John R Hershey and Peder A Olsen. Approximating the Kullback Leibler divergence
between Gaussian mixture models. IEEE International Conference on Acoustics, Speech
and Signal Processing. 2007.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. GANs trained by a two time-scale update rule converge to a local Nash
equilibrium. Advances in Neural Information Processing Systems. 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems. 2020.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equiv-
ariant diffusion for molecule generation in 3D. International Conference on Machine
Learning. 2022.

Christian Horvat and Jean-Pascal Pfister. Denoising normalizing flow. Advances in Neural
Information Processing Systems. 2021.

Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, and Aaron C
Courville. Riemannian diffusion models. Advances in Neural Information Process-
ing Systems. 2022.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for
Laplacian smoothing splines. Communications in Statistics-Simulation and Computa-
tion. 1989.

Weonyoung Joo, Wonsung Lee, Sungrae Park, and Il-Chul Moon. Dirichlet variational
autoencoder. Pattern Recognition. 2020.

Jürgen Jost. Riemannian Geometry and Geometric Analysis. 2008.

Xiangyang Ju and Benjamin Nachman. Supervised jet clustering with graph neural net-
works for Lorentz boosted bosons. 2020.

Dimitris Kalatzis, Johan Ziruo Ye, Alison Pouplin, Jesper Wohlert, and Søren Hauberg.
Density estimation on smooth manifolds with normalizing flows. 2021.

Gurtej Kanwar, Michael S. Albergo, Denis Boyda, Kyle Cranmer, Daniel C. Hackett,
Sébastien Racanière, Danilo Jimenez Rezende, and Phiala E. Shanahan. Equivariant
flow-based sampling for lattice gauge theory. Physical Review Letters. 2020.

98

G. Kasieczka, T. Plehn, A. Butter, K. Cranmer, D. Debnath, B. M. Dillon, M. Fairbairn,
D. A. Faroughy, W. Fedorko, C. Gay, L. Gouskos, J. F. Kamenik, P. T. Komiske,
S. Leiss, A. Lister, S. Macaluso, E. M. Metodiev, L. Moore, B. Nachman, K. Nordstrom,
J. Pearkes, H. Qu, Y. Rath, M. Rieger, D. Shih, J. M. Thompson, and S. Varma. The
machine learning landscape of top taggers. SciPost Physics. 2019.

Gregor Kasieczka, Tilman Plehn, Michael Russell, and Torben Schell. Deep-learning top
taggers or the end of QCD? Journal of High Energy Physics. 2017.

Gregor Kasieczka et al. The LHC Olympics 2020: A community challenge for anomaly
detection in high energy physics. Reports on Progress in Physics. 2021.

Thomas A Keller, Jorn WT Peters, Priyank Jaini, Emiel Hoogeboom, Patrick Forré, and
Max Welling. Self normalizing flows. International Conference on Machine Learning.
2021.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. International
Conference on Learning Representations. 2014.

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. Advances in
Neural Information Processing Systems. 2023.

Simon Knapen, Jessie Shelton, and Dong Xu. Perturbative benchmark models for a dark
shower search program. Physical Review D: Particles and Fields. 2021.

Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing flows: An
introduction and review of current methods. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 2021.

Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: Exact likelihood generative
learning for symmetric densities. International Conference on Machine Learning. 2020.

Patrick T. Komiske, Eric M. Metodiev, and Matthew D. Schwartz. Deep learning in color:
Towards automated quark/gluon jet discrimination. Journal of High Energy Physics.
2017.

Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. Energy flow polynomials: A
complete linear basis for jet substructure. Journal of High Energy Physics. 2018.

Konik Kothari, AmirEhsan Khorashadizadeh, Maarten V. de Hoop, and Ivan Dokmanic.
Trumpets: Injective flows for inference and inverse problems. Conference on Uncer-
tainty in Artificial Intelligence. 2021.

Steven G Krantz and Harold R Parks. Geometric Integration Theory. 2008.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Jim Lawrence, Javier Bernal, and Christoph Witzgall. A purely algebraic justification
of the Kabsch-Umeyama algorithm. Journal of research of the National Institute of
Standards and Technology. 2019.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. 2010.

99

Joshua Lin, Marat Freytsis, Ian Moult, and Benjamin Nachman. Boosting H → bb̄ with
machine learning. Journal of High Energy Physics. 2018.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. International Conference on Learning Representa-
tions. 2023.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to
generate and transfer data with rectified flow. 2022.

Yulin Liu, Haoran Liu, Yingda Yin, Yang Wang, Baoquan Chen, and He Wang. Delving
into discrete normalizing flows on SO(3) manifold for probabilistic rotation modeling.
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
2023.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes
in the wild. Proceedings of International Conference on Computer Vision (ICCV).
December 2015.

David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests. International
Conference on Learning Representations. 2017.

Aaron Lou, Derek Lim, Isay Katsman, Leo Huang, Qingxuan Jiang, Ser Nam Lim, and
Christopher M De Sa. Neural manifold ordinary differential equations. Advances in
Neural Information Processing Systems. 2020.

Gilles Louppe, Kyunghyun Cho, Cyril Becot, and Kyle Cranmer. QCD-aware recursive
neural networks for jet physics. Journal of High Energy Physics. 2019.

Simon C. Lovell, Ian W. Davis, W. Bryan Arendall III, Paul I. W. de Bakker, J. Michael
Word, Michael G. Prisant, Jane S. Richardson, and David C. Richardson. Structure
validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and
Bioinformatics. 2003.

Jan-Matthis Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob
Macke. Benchmarking simulation-based inference. International Conference on Arti-
ficial Intelligence and Statistics. 2021.

Sebastian Macaluso and David Shih. Pulling out all the tops with computer vision and
deep learning. Journal of High Energy Physics. 2018.

Jan R. Magnus and Heinz Neudecker. Matrix Differential Calculus with Applications in
Statistics and Econometrics. 2019.

Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. Ad-
vances in Neural Information Processing Systems. 2020.

David E. Morrissey, Tilman Plehn, and Tim M. P. Tait. Physics searches at the LHC.
Physics Reports. 2012.

Kieran A Murphy, Carlos Esteves, Varun Jampani, Srikumar Ramalingam, and Ameesh
Makadia. Implicit-PDF: Non-parametric representation of probability distributions on
the rotation manifold. International Conference on Machine Learning. 2021.

100

Laura Murray, W Arendall, David Richardson, and Jane Richardson. RNA backbone is
rotameric. Proceedings of the National Academy of Sciences of the United States of
America. 2003.

Benjamin Nachman and David Shih. Anomaly detection with density estimation. Physical
Review D: Particles and Fields. 2020.

National Geophysical Data Center / World Data Service NGDC/WDS. NCEI/WDS global
significant earthquake database. 2022a.

National Geophysical Data Center / World Data Service NGDC/WDS. NCEI/WDS global
significant volcanic eruptions database. 2022b.

Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling
equilibrium states of many-body systems with deep learning. Science. 2019.

Ivan Oleksiyuk. Unsupervised learning for tagging anomalous jets at the LHC. 2020.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for
density estimation. Advances in Neural Information Processing Systems. 2017.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and
Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference.
Journal of Machine Learning Research. 2021.

Athanasios Papoulis and S. Unnikrishna Pillai. Probability, Random Variables and
Stochastic Processes. 2002.

David Peel, William J Whiten, and Geoffrey J McLachlan. Fitting mixtures of Kent
distributions to aid in joint set identification. Journal of the American Statistical
Association. 2001.

Aaron Pierce, Bibhushan Shakya, Yuhsin Tsai, and Yue Zhao. Searching for confining
hidden valleys at LHCb, ATLAS, and CMS. Physical Review D: Particles and Fields.
2018.

Shah Rukh Qasim, Jan Kieseler, Yutaro Iiyama, and Maurizio Pierini. Learning represen-
tations of irregular particle-detector geometry with distance-weighted graph networks.
The European Physical Journal C: Particles and Fields. 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog. 2019.

G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan. Stereochemistry of polypep-
tide chain configurations. Journal of Molecular Biology. 1963.

R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld. Quantum chemistry
structures and properties of 134 kilo molecules. Scientific Data. 2014.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows.
International Conference on Machine Learning. 2015.

101

Danilo Jimenez Rezende, George Papamakarios, Sébastien Racaniere, Michael Albergo,
Gurtej Kanwar, Phiala Shanahan, and Kyle Cranmer. Normalizing flows on tori and
spheres. International Conference on Machine Learning. 2020.

Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of Langevin distri-
butions and their discrete approximations. Bernoulli. 1996.

Tuhin S. Roy and Aravind H. Vĳay. A robust anomaly finder based on autoencoders. 2019.

Noam Rozen, Aditya Grover, Maximilian Nickel, and Yaron Lipman. Moser flow:
Divergence-based generative modeling on manifolds. Advances in Neural Informa-
tion Processing Systems. 2021.

L. Ruddigkeit, R. van Deursen, L. C. Blum, and J.-L. Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database GDB-17. Journal of
Chemical Information and Modeling. 2012.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training GANs. Advances in Neural Information
Processing Systems. 2016.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max
Welling. E(n) equivariant normalizing flows. Advances in Neural Information Pro-
cessing Systems. 2021.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph
neural networks. International Conference on Machine Learning. 2021b.

Jie Shao and Xiaorui Li. Generalized zero-shot learning with multi-channel Gaussian
mixture VAE. IEEE Signal Processing Letters. 2020.

Chase Shimmin. Particle convolution for high energy physics. 2021.

Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in
particle physics. 2020.

Rui Shu, James Brofos, Frank Zhang, Hung Hai Bui, Mohammad Ghavamzadeh, and
Mykel Kochenderfer. Stochastic video prediction with conditional density estimation.
ECCV Workshop on Action and Anticipation for Visual Learning. 2016.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep un-
supervised learning using nonequilibrium thermodynamics. International Conference
on Machine Learning. 2015.

Yang Song and Diederik P. Kingma. How to train your energy-based models. 2021.

Peter Sorrenson, Felix Draxler, Armand Rousselot, Sander Hummerich, and Ullrich Köthe.
Learning distributions on manifolds with free-form flows. Advances in Neural Infor-
mation Processing Systems. 2024a.

Peter Sorrenson, Felix Draxler, Armand Rousselot, Sander Hummerich, Lea Zimmer-
mann, and Ullrich Köthe. Lifting architectural constraints of injective flows. Interna-
tional Conference on Learning Representations. 2024b.

102

Akash Srivastava and Charles Sutton. Autoencoding variational inference for topic models.
ICLR. 2017.

Matthew J. Strassler and Kathryn M. Zurek. Echoes of a hidden valley at hadron colliders.
Physics Letters B. 2007.

Yunfei Teng and Anna Choromanska. Invertible autoencoder for domain adaptation.
Computation. 2019.

Jakub Tomczak and Max Welling. VAE with a VampPrior. International Conference on
Artificial Intelligence and Statistics. 2018.

Greg Turk and Marc Levoy. Zippered polygon meshes from range images. Proceedings of
the 21st Annual Conference on Computer Graphics and Interactive Techniques. 1994.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with Con-
trastive Predictive Coding. July 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
Neural Information Processing Systems. 2017.

Jonas Wildberger, Maximilian Dax, Simon Buchholz, Stephen R Green, Jakob H Macke,
and Bernhard Schölkopf. Flow matching for scalable simulation-based inference. Ad-
vances in Neural Information Processing Systems. 2023.

Jianwen Xie, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. A theory of generative
ConvNet. 2016.

Linxiao Yang, Ngai-Man Cheung, Jiaying Li, and Jun Fang. Deep clustering by Gaussian
mixture variational autoencoders with graph embedding. Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2019.

Sangwoong Yoon, Yung-Kyun Noh, and Frank Chongwoo Park. Autoencoding under
normalization constraints. International Conference on Machine Learning. 2021.

Mingtian Zhang, Peter Hayes, Thomas Bird, Raza Habib, and David Barber. Spread
divergence. International Conference on Machine Learning. 2020.

103

	Introduction
	List of publications
	Machine learning papers
	Particle physics papers

	Free-Form Flows
	Full-dimensional free-form flows
	Normalizing flows
	Free-form flows compared to normalizing flows
	Preliminary definitions
	Free-form flow estimator
	Relaxing the invertibility requirement
	Error bound
	Equivalence of free-form flow to normalizing flow
	Links between FFF and VAE

	Free-form injective flows
	Background
	Joint maximum likelihood and manifold learning
	Maximum likelihood in bottleneck models
	Towards a well-behaved loss
	Relationship to rectangular flows
	Implementation details

	Manifold free-form flows
	Free-form manifold-to-manifold neural networks
	Manifold change of variables
	Loss function

	Experiments
	Free-form flows (full-dimensional)
	Free-form injective flows
	Manifold free-form flows
	Summary of experimental results

	Machine Learning in LHC Physics
	Particle physics at the Large Hadron Collider
	Fundamental particles and forces
	Particle collisions and jets
	Applications of jet physics

	Improved jet autoencoders
	Autoencoder and variational autoencoder
	Gaussian mixture VAE
	Dirichlet VAE
	Results
	Summary

	Representation learning for jets
	Existing jet representations
	Contrastive learning
	Symmetries and augmentations
	Network design
	Results
	Summary

	Generative models for jets I: Normalized autoencoder
	Energy-based networks
	Normalized autoencoder
	Results
	Summary

	Generative models for jets II: Diffusion models and JetGPT
	Generative models at the LHC
	Denoising diffusion probabilistic model
	Conditional flow matching
	Autoregressive transformer
	Results
	Summary

	Conclusion
	Free-form flows
	Unifying view of free-form flows

	Machine learning in particle physics
	Common threads
	Future directions

	Bibliography

