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Konsistente Modelle Pseudoskalarer Mediatoren für Dunkle Materie am LHC

In dieser Arbeit präsentieren wir ein Simplified Model für pseudoskalare Mediatoren,
mit eichinvarianten Kopplungen an die Quarks des Standardmodells. Fermionische
dunkle Materie wird mit Hilfe von effektiven Operatoren mit Massendimension fünf
beschrieben, dies ermöglicht einen weiten Bereich möglicher Theorien für hohe En-
ergien abzudecken.
Wir leiten gemeinsame Eigenschaften solcher Modelle her und die Parameter des er-
weiterten skalaren Sektors werden u. a. durch Ergebnisse aus der Higgs- und Flavor-
physik, sowie direkter Suchen am LHC eingeschränkt. Der dunkle Materie Kandidat
soll signifikant zur gesamten Menge dunkler Materie ausmachen und Ausschlussgren-
zen von direkten und indirekten Suchen werden berücksichtigt. Ein besonderes Au-
genmerk liegt zudem auf der Suche nach mono-X Signalen am LHC.
Die experimentellen Ergebnisse aus verschiedenen Bereichen beschränken unseren
Parameterraum stark. Ein realistischer Bereich bleibt auch in dem von uns gewählten
minimalen Ansatz erhalten. Wir möchten betonen, dass resonante Zerfälle das mono-
Z Signal in diesem Modell signifikant verstärken, was es notwendig macht, die Me-
diatoren für Suchen nach dunkle Materie am LHC explizit zu berücksichtigen. So
führen die mono-Z Signale zu den stärksten Ausschlussgrenzen der mono-X Suchen
und sind in der Lage beinahe den gesamten präferierten Parameterraum zu testen.

Consistent Models of Pseudoscalar Mediators for Dark Matter at the LHC

In this work we present a simplified model for a pseudoscalar dark matter mediator,
embedded in a SU(2)L Higgs doublet, with gauge invariant couplings to Standard
Model quarks. Effective couplings of dimension five to a fermionic dark matter can-
didate allow to cover a wide range of UV complete models.
Common properties of such models are derived and the parameter space is constrained
from Higgs, flavor and collider physics. The dark matter candidate should contribute
significantly to the relic abundance and is faced with results from direct as well as
indirect detection experiments and searches for mono-X signals at the LHC.
The constraints cut into our parameter space from different directions, but still allow
for a reasonable region in parameter space in our minimal approach without the need
of additional states, which are likely to weaken the constraints. We emphasize that the
resonantly enhanced production of mono-Z signals is able to test nearly the complete
preferred parameter space, underlining the need of simplified models for dark matter
searches at the LHC.
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0 Introduction and Motivation

The story of dark matter started in the early 1930s with independent observations by the
astronomers F. Zwicky and J. H. Oort. In 1932 Oort analyzed the vertical movement of
stars in the Milky Way and found that there is not enough visible matter to bind the stars
gravitationally. He proposed some additional amount of matter in the galactic center [1,
2]. One year later Zwicky was the first who called the amount of mass needed to explain
the fact that the Coma cluster is gravitationally bound, “Dunkle Materie”. He probably
thought of normal matter which was simply too cold and dark to be observed with the
telescopes of these days [3]. From a present-day perspective this was the first evidence
for dark matter.
Between 1939, again done by Oort, and the 1970’s by V. Rubin measurements of ro-
tation velocities of galaxies over several length scales suggested a missing mass com-
ponent. For a long time these observations have not been connected and remained an
astronomical problem [4]. The rotation curves are still one of the most famous evidence
for dark matter, although more convincing ones have been found in the last decades,
e.g. in high precision measurements of the Cosmic Microwave Background (CMB), in
simulations of cosmic structure formation, and in the observations of colliding galaxy
clusters and gravitational lensing surveys [5, 6, 7, 8].
A consistent description of all these findings is obtained by dark matter, consisting of
new particles, which are not described with the Standard Model of Particle Physics
(SM). Therefore, dark matter is not just a problem of astrophysics or cosmology, but
also of particle physics. It opens the door to new physics as it is one of the most strin-
gent evidence for physics beyond the Standard Model. The search for the nature of dark
matter is one of the major tasks of modern physics.

The range of explanations is extremely wide, e.g. the proposed masses of dark matter
candidates reach from 10−22 eV1, the bottom bound for bosonic dark matter, so called
fuzzy dark matter [9], up to a few solar masses, assuming dark matter consists of pri-
mordial black holes [10]. In this work we concentrate on Weakly Interacting Massive
Particles (WIMPs) with typical masses of a few GeV up to a few TeV. They represent
one of the best motivated and probed dark matter candidates, because thermal produc-
tion in the early Universe leads to the correct relic abundance as shown in Section 1.3.
Even in this comparatively small mass range many different models and approaches to
describe dark matter exist. The properties of the mediator of the interaction between
the dark sector and Standard Model particles allow to distinguish between the different

1Throughout this work we will use natural units with c = ~ = kB = 1.
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0 Introduction and Motivation

models. Possible mediators are scalar-, pseudoscalar-, vector-, and pseudovector-like
bosons.
Experiments which search for dark matter can roughly be divided into three main strate-
gies: direct detection, indirect detection and collider searches, which will be explained
in more detail in the following chapter. Up to now no experiment found a convincing
dark matter signal, but several constraints have been set on the properties of dark matter
and the mediator. One should mention that there is no need for dark matter to inter-
act with the Standard Model beyond gravitational interaction. In this case, it would be
impossible to detect dark matter at a collider.
While models with scalar or vector mediators are strong constrained from direct detec-
tion experiments, collider experiments are particularly powerful in searching for pseu-
doscalar mediators.
Therefore, we want to investigate pseudoscalar mediators and derive universal signals
for collider searches. We use a simplified model with explicit mediators embedded in an
additional SU(2)L Higgs doublet and gauge invariant couplings to the Standard Model
quarks. The couplings to dark matter are effective dimension five operators to cover
a wide range of UV completions for the dark sector. Constraints from all three types
search strategies for dark matter are taken into account here with a focus on mono-X
signal searches at the Large Hadron Collider (LHC). In addition we want the dark mat-
ter candidate to contribute significantly to the relic abundance.

In the first chapter we give a short overview about the evidence, search strategies and
candidates for dark matter and a first motivation for a consistent model for pseudoscalar
mediators. The second chapter introduces general properties of so-called Two-Higgs-
Doublet Models used in our approach. The specific model for pseudoscalar mediated
dark matter is introduced and discussed in chapter three. In the fourth chapter con-
straints for the scalar and the dark sector from various experiments are discussed, espe-
cially mono-X searches at the LHC and relic density calculations. The last chapter will
summarize the results and give a short conclusion and outlook.

10



1 General Aspects of Dark Matter

In this chapter we will shortly review some evidence for the existence and the particle
nature of dark matter. After deriving the so-called WIMP miracle we will introduce
the main search strategies for dark matter, briefly name some theoretical models, and
motivate the model analyzed in this work.

1.1 Evidence for Dark Matter

In the last decades many evidence from astronomy, astrophysics, and cosmology for
the existence of dark matter and its particle nature have been collected, some of them
are discussed in the following. The structure of this chapter closely follows [2, 11].

1.1.1 Dynamics

The dynamics of astronomical objects at lenght scales varying from single galaxies to
galaxy clusters give hints for the need of additional mass, which is provided by so far
unknown and unseen “dark” matter. The general approach is to compare the amount
of visible mass, estimated from stars, gas and dust clouds with the gravitational mass,
which is derived from the observation that the systems are gravitationally bound.
In galaxies stars move on Kepler orbits around the center and their rotation velocity v
at a distance r from the center follows from Newton’s law

FZ = Fg ⇒ v2

r
=

GM(r)

r2
⇒ v =

√
GM(r)

r
. (1.1)

Here M(r) = 4π
∫ r

0
dr′r′2ρ(r′) is the mass distribution of the galaxy, where ρ de-

notes the mass density by assuming a spherically symmetric system. The amount of
visible matter is observed to be roughly constant over large radii in the outer regions.
Therefore, decreasing rotation velocities are expected, but measurements show constant
rotation velocities, even for distances of more than 10 kpc away from the galactic core.
Figure 1.1 shows the measured rotation velocities in the galaxy NGC 6503 and curves
calculated with the density profiles of the different galaxy constituents. It is obvious
that the visible matter alone is not able to cause the measured velocities. A much better
fit is obtained by adding a halo of dark matter around the galaxy.
Similar results at much bigger scales are obtained by observing orbital velocities in
galaxy clusters, which are gravitationally bound systems of N orbiting objects. The
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1 General Aspects of Dark Matter

Figure 1.1: The left panel shows the rotation velocities of stars in the galaxy NGC 6503
depending on the distance from the center. Black dots denot the measured
values. The lines for gas and luminous matter are calculated with the observed
density profiles. The dark matter line is obtained by fitting the correct rotation
velocities. Figure from [12].
On the right the amount of the three constituents and the total mass of the
Coma cluster are shown within a relative radius r/rvirial. Over huge length
scales dark matter clearly dominates. Figure from [13].

binding energy can be estimated as U = −N(N−1)
2

Gm2

r
, where m and r are the average

mass, and distance to the center of the cluster. Via the virial theorem the binding energy
is related to the kinetic energy T = Nmv2

2
and one gets

M = N m =
2 r v2

G
. (1.2)

In 1933 Zwicky was the first who used the virial theorem to estimate the mass of a
galaxy cluster from the orbital velocities. He found that the amount of visible mass is
too low by a factor of ten to hold the galaxy cluster together. Actual measurements
claim that the Coma cluster consists of roughly 85% dark matter, 14% hot intracluster
medium (mainly hydrogen) and just 1% stars, their radial distributions are shown in the
right panel of Figure 1.1 [13]. This indicates that dark matter is important for structures
on cosmological length scales, too.

1.1.2 The Bullet Cluster

The observation of two colliding galaxy clusters is the most direct evidence of the
particle nature of dark matter we have so far. The result excludes theories that try to
explain the observed rotation curves with modifications of Newton’s gravitational law

12



1.1 Evidence for Dark Matter

Figure 1.2: Collision of two galaxy clusters. The hot gas, observed via X-ray telescopes,
carries most of the baryonic mass and is marked in red. The mass distribution
measured via weak lensing is marked in blue and shows a significant separa-
tion from the baryonic mass. This strongly supports the existence of weakly
interacting particle dark matter. Figure from [7].

or General Relativity, with a significance of 8σ, because dark and visible matter are
clearly separated [7].
While one cluster - the right structure in Figure 1.2 - moved through the other one,
the gas, which fills the space between the galaxies and carries most of the baryonic
mass, collides, heats up and emits X-rays. Its shape takes the shape of the air around a
bullet. On the other hand stars, galaxies and dark matter passed through each other with
negligible interaction. X-ray measurements of the hot colliding gas indicate the position
of the main amount of baryonic mass and weak gravitational lensing surveys the total
mass distribution. The combination of both shows a significant separation of the visible
mass and the strongest gravitational potential, see Figure 1.2 [7]. The strongest potential
is found near the stars and galaxies and is caused by weakly interacting dark matter. As
in this case, weak gravitational lensing surveys are a good method to map the matter
distribution in various systems, especially for dark matter as it can not be observed with
telescopes.

1.1.3 Cosmology

In 1964 A. Penzias and R. W. Wilson detected the CMB by chance. It was soon inter-
preted as the first direct evidence for the Big Bang theory.

13



1 General Aspects of Dark Matter

Figure 1.3: Power spectrum of the CMB temperature fluctuations measured by the Planck
spacecraft in 2015. The dots denotes the measured values. Position and height
of the peaks are determined by the amount of visible and dark matter. The line
is a fit based on the ΛCDM-Model, which gives the values in Table 1.1. Figure
from [14].

In the period of recombination1, when the temperature of the universe dropped under
roughly 3000 K or 0.3 eV, it was cold enough for nuclei to catch free electrons and form
neutral atoms. Photons scattered no longer on free electrons and the universe became
transparent. From this moment on the photons stream freely towards us and therefore
are the oldest source of light, which is detectable today. Because of the expansion of
the universe the relic photons are cooled down to roughly 2.7 K, which corresponds
to a peak wavelength of approximately 160 GHz and gave rise to the name Cosmic
Microwave Background.
A very precise mapping of the small temperature fluctuations (δT/T < 10−5) in the
CMB, was done by the Planck spacecraft. They are in good agreement with the Stan-
dard Model of cosmology, the ΛCDM-Model. This model assumes General Relativity
and that our universe consists of Cold Dark Matter, a smaller fraction of baryonic matter
and a cosmological constant Λ, also called dark energy. The temperature fluctuations
are caused by anisotropies in the density of the primordial photon-baryon plasma. The
fluctuations can be decomposed as a power spectrum of spherical harmonics, which
define a basis for functions on the sphere. This power spectrum is shown in Figure
1.3 [14]. The measurements (dots) are in excellent agreement with the fit based on the
ΛCDM-Model (line). Among other things the peaks positions and heights are used to
determine the amount of visible and dark matter and the value of Λ, a more precise dis-
cussion for example can be found in [15]. The actual values are given in Table 1.1 and
are the best measurements of the matter content in our universe we have so far. Every
serious particle model for dark matter should reproduce this value.

1In the year 379, 000 after Big Bang. Also called time of last scattering or period of decoupling.
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1.2 Candidates and other Explanations

Type Properties Ω = ρ/ρcrit

Radiation pressure 10−4

Baryonic Matter gravity and pressure 0.049± 0.0002
Dark Matter only gravity 0.259± 0.002
Dark Energy accelerates expansion 0.684± 0.009

Table 1.1: Relative contribution of the four constituents of the universe to the critical mass-
energy density ρcrit indicating a flat universe. Data from [15, 5].

Another argument for dark matter are actual computer simulations of large scale struc-
ture formation in the universe, like the Illustris-Project2, which also largely confirm
the ΛCDM-Model [6]. Those simulations deploy various astronomical observables and
statistical quantities from the primordial density fluctuations derived from the CMB.
Their results are in good agreement with observations. For example the simulations of
the Illustris-Project are able to reproduce all observed types of galaxies and the matter
distribution on cosmological scales. Previous simulations, like the Aquarius Project,
used only cold dark matter and got reasonable results for the cosmic structure. They
show that the observed large scale structures in the universe need a high amount of cold
dark matter, meaning non-relativistic, and exclud the existence of significant amounts
of hot dark matter.

1.2 Candidates and other Explanations

In this work we consider particle dark matter, for completeness one should mention
that there are other explanations on the market. Up to now, all evidence of dark matter
comes from its gravitational effects, therefore a natural explanation would be to change
our laws of gravity. An example are so-called MOND theories, which modify Newton’s
law and obtain very good results for fitting rotation curves of galaxies, but fail to explain
other observations, like the Bullet Cluster [16]. In addition they are incompatible with
General Relativity.
Generally speaking there are two ways to motivate new particles as dark matter candi-
dates.
So far, all evidence for dark matter come from cosmology and astronomy, so it is rea-
sonable to take the right cosmic abundance and a simple production mechanism, e.g.
thermal production in the early universe to estimate the properties of such a particle
without a full particle theory model. This is shown in the derivation of the so-called
WIMP miracle below, which is the main motivation for this popular type of dark matter
candidate. Here one has to derive a consistent model based on the properties of this
particle.

2See http://www.illustris-project.org for images and further information.
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1 General Aspects of Dark Matter

A second approach is to consider proposed solutions to problems of the Standard Model,
such as the strong CP or the hierachy problem, which could be solved by supersymmet-
ric theories, or Axions, respectively. Many such theories imply new stable and neutral
particles, which could be dark matter. On the other hand, any complete theory like
the Minimal Supersymmetric Standard Model (MSSM) needs a reasonable dark matter
candidate to be valid on its own. Among other things such a candidate has to be stable
and neutral, because a charged and stable particle would have been observed [17]. The
lightest supersymmetric particle (LSP) is stable because of an assumed R-parity con-
servation, which is also needed to forbid proton decays, and neutral, therefore it is dark
matter candidate [18].

1.3 The WIMP Miracle - Relic Abundance with the
Boltzmann Equation

Weakly Interacting Massive Particles (WIMPs) are one of the most preferred and nat-
ural candidates for Dark Matter. Since just a few and well motivated assumptions lead
to the right cosmic abundance, it is called the WIMP miracle3.
We assume that in the early universe one dark matter particle χ was in thermal equilib-
rium with the Standard Model particles f . The thermal equilibrium is maintained via
some annihilation ff̄ ↔ χχ̄ with an interaction rate Γχ = n2

χ 〈vσ〉, where nχ is the
dark matter number density and 〈vσ〉 is the thermally averaged annihilation or interac-
tion cross section. Thermal equilibrium requires that these interactions happen rapidly
enough such that temperature fluctuations can be adjusted faster than the universe ex-
panded, described by the time-depending Hubble function H(t) = ȧ(t)

a(t)
, where a(t) is

the scale factor. The decoupling from the thermal bath (or freeze-out) happens when
the interaction rate drops below the expansion rate of the universe Γχ < H(t).
A derivation of the WIMP miracle using this decoupling condition and some strong
approximations can be found in [15, 4].
A more sophisticated derivation requires a solution of the Boltzmann equation in an
expanding space. In general a Boltzmann equation quantifies the temporal change of a
number density of a particle not in a thermal equilibrium. For nχ(t) in the early universe
it is given by

ṅχ(t) = −3H(t)nχ(t) − 〈σv〉 (n2
χ,EQ(t)− n2

χ(t)) , (1.3)

where nχ,EQ(t) is the corresponding equilibrium density, where the density drops only
because of the expansion of the universe. Solving this equation is highly non-trivial and
in general requires numerical methods. We use micrOmegas 4.3.1 to calculated the relic
density in Chapter 4.7 [20, 21]. Nevertheless, with some approximations a quantitative
result can be obtained analytically which is sketched in the following, more details can

3It should be mentioned, that the “WIMP miracle” is more of a possibility than a strong statement [19].
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1.3 Relic Abundance with the Boltzmann Equation

be found in e.g. [15, 22, 23, 4], and results from General Relativity and cosmology in
e.g. [24].
First, Eq. (1.3) can be rewritten in terms of the temperature T using the thermodynamic
relation a(T )T ∝ 1/geff (T ) ≈ const. [24]. This assumes that the number of effective
degrees of freedom in the thermal bath geff stays constant. Therefore during the process
of dark matter freeze-out the temperature change needs to be small, such that no other
particle falls out of the thermal bath. geff is related to the number of Standard model
particles with masses smaller than the temperature of the thermal bath. For T > 175
GeV all Standard Model particles are available and geff = 106.75, for T = 5 − 80
GeV the top quark and the weak gauge bosons are no longer active degrees of freedom,
leading to geff = 86.25. The fractional numbers are caused by a different weight of
bosonic and fermionic particles [15].
With this relation, and H(t) = ȧ(t)

a(t)
, and defining a new quantity Y (t) ≡ n(t)

T 3 , Eq. (1.3)
reads

dY (t)

dt
= − 〈σv〉 T 3(t)

(
Y 2(t)− Y 2

eq(t)
)
. (1.4)

In a relativistic or radiation dominated universe the Hubble function fulfills the relations
[15]

H(t) =
1

2t
=

√
geff
90

π T 2(t)

MPl

=
H(x = 1)

x2
, (1.5)

where MPl = 1/
√

8πG ≈ 2.4 × 1018 GeV is the reduced Planck mass. Using this
expression the “rescaled inverse temperature” x = mχ/T , which is introduced as a new
variable, can be written as

x =
√

2tH(x = 1) → dx

dt
=

H(x = 1)

x
. (1.6)

Inserting this into Eq. (1.4) leads to [15]

dY (x)

dx
= − λ(x)

x2

(
Y 2(x)− Y 2

eq(x)
)
, (1.7)

with

λ(x) =

√
90

geff

MPlmχ

π
〈σv〉 (x) . (1.8)

Two further assumptions are made to allow for an analytic solution. First, Yeq(x) is set
to zero, because the equilibrium density of non-relativistic particles falls exponentially.
Second, the thermally averaged annihilation cross section in Eq. (1.8) is expanded in
terms of v and only the constant zeroth-order term is kept, therefore λ(x) is roughly
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1 General Aspects of Dark Matter

constant. With the ansatz Ȳ (x) = 1/Y (x) the approximated Boltzmann equation can
be solved to

1

Y (x)
= − λ

x
+

1

Y (x→∞)
. (1.9)

Using the asymptotic behavior, one can replace Y (x → ∞) ≡ x∞
λ(x∞)

, where x∞ is
large enough to fulfill the boundary condition and greater than xdec, the point of de-
coupling. As one now can calculate Y (x → ∞) (details in [15]), the density today
ρχ(T0) = mχnχ(T0) is obtained by rescaling the result at x → ∞ using that any
particle density drops with a−3 after decoupling because all distances in the Universe
expand with a. Using again a(T )T ∝ 1/geff (T ), the approximation T∞ ≈ Tdec, and
geff (Tdec)/geff (T0) = 28 the density is given by

ρχ(T0) = mχ

(
a(T∞)T∞
a(T0)T0

)3
T 3

0

T 3
∞
n(T∞) = mχ

T 3
0

28

x∞
λ(x∞)

. (1.10)

To get a numerical value we again assume λ(x) to be roughly constant and at the point
of decoupling xdec it is given by

λ(xdec) ≈
√

180

xdec geff (xdec)

α2MPlm
3
χ

swM4
W

. (1.11)

In the previous step we assume an interaction mediated by the W± boson with mass
MW ≈ 80 GeV, which gives a typical weak-scale cross section

σχ =
π α2m2

χ

s4
wM

4
W

, (1.12)

and non-relativistic velocities, therefore, mχv
2

2
= T ↔ v =

√
2T
mχ

.

Typically the so-called relative energy-density Ωχh
2 = ρχ

ρcrit
is used to state the dark

matter relic density, where ρcrit = 3H(t)2M2
Pl is the critical density leading to a flat

Universe and h = 0.7 is a ratio of the Hubble function used because of historical
reasons. Now we can plug in all the numbers and compare the result to the Planck
measurements in Table 1.1. We get

Ωχh
2 ≈ 0.12

xdec
28

√
geff

10

(
50 GeV
mχ

)2

. (1.13)

and with the first definition of λ(x), we can express it in terms of the thermally averaged
cross section

Ωχh
2 =

√
geff
90

xdec
28

h2π T 3
0

3M3
PlH

3
0 〈σv〉

≈ 0.12
xdec
28

√
geff

10

10 fb
〈σv〉 /c . (1.14)
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1.4 Search Strategies

Figure 1.4: Sketch of the approaches to the Standard Model-dark matter interaction of the
three main search strategies. Figure from [25].

Since xdec ≈ 30 and geff = O(100), as shown above, the derived equations are ful-
filled by a particle with mass of O(100 GeV) and a thermally averaged cross section of
O(10 fb). Again these are typical scales for a weakly interacting particle. If it was in
thermal equilibrium after Big Bang, it was cold at the point of decoupling and leads to
the right cosmic abundance (Ωχh

2)Planck ' 0.12.

1.4 Search Strategies

There are three main ways to search for particle dark matter: indirect detection, direct
detection and missing energy searches at particle colliders. They approach different
aspects of the Standard Model-dark matter interaction, as sketched in Figure 1.4 [25].
Up to now none of it has detected a convincing dark matter signal. In the following, we
will discuss these strategies and their sensitivity for testing different models for particle
dark matter.

Indirect detection
Indirect detection experiments search for Standard Model remnants of dark matter anni-
hilation processes or measure the effect of dark matter annihilation on other observables
like the CMB or the lifetime of stars [17].
If somewhere in the universe two dark matter particles collide, they can annihilate to
Standard Model particles, which then might be detected on earth. Examples are the
IceCube experiment searching for neutrinos, the Alpha-Magnet-Spectrometer (AMS)
located at the International Space Station (ISS) measuring charged cosmic rays like
electrons and positrons, the Fermi Large Area Telescope and Imaging Air Cherenkov
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1 General Aspects of Dark Matter

Telescopes (IACT) such as H.E.S.S., VERITAS, MAGIC, and the new Cherenkov Tele-
scope Array (CTA) searching for high energetic γ-rays from dark matter annihilation
via Cherenkov radiation in the Earth’s atmosphere [26].
Because the expected annihilation cross sections are small, the most promising regions
are those with a high dark matter density, like the center of our galaxy. In these regions
the background from astronomical processes is huge.
For these experiments the astrophysical backgrounds are complicated, so one looks for
signals with low backgrounds, like antimatter or photon lines, and at places which might
have a high dark matter density, such as the galactic center, (dark) dwarf galaxies or the
sun. A main uncertainty come from the unknown dark matter distribution. Therefore
the results are typically not as robust as the ones from direct detection and collider
searches.
In contrast to this, the CMB is measured with very high precision and well understood.
Dark matter annihilating to high energetic Standard Model states during the period of
last scattering (redshift z ≈ 1000) could modify the temperature and polarization of the
CMB [27, 28].
We consider constraints on the total dark matter annihilation cross section, which are
derived from CMB measurements and projectors of the CTA.

Direct detection
Direct detection experiments are low background experiments searching for only a few
events per year. To obtain such low backgrounds the detectors are shielded against all
kinds of radiation as good as possible and the remaining background is well understood,
mostly originating from radioactive nuclei. For a further separation of signal and back-
ground events the annual modulation of the dark matter flux due to the motion of the
Earth around the sun can be taken into account. These experiments, like XENON1T,
which uses 3.2 t of liquid xenon as detector material, look for WIMPs with masses of a
few GeV up to some TeV [29]. If a dark matter particle hits a xenon atom, it is ionized.
The free electron as well as the light from recombination is detected. Lighter particles
do not carry enough energy to create a measurable recoil, as dark matter has to be cold
and therefore the kinetic energy is negligible.
Direct detection experiments nearly excluded WIMPs mediated by the electroweak
bosons and those with scalar couplings to the nuclei, if they contribute significantly
to the dark matter relic density. The bounds on the spin-independent WIMP-nucleon
cross section from XENON1T are shown in Figure 1.5 [30].
For calculating the cross sections one can use effective field theories with four particle
interactions because the momentum transfer is very small (in the keV range) compared
to the typical mediator masses, e.g. 125 GeV for the Standard Model Higgs. Therefore,
the mediator is never produced on-shell and the central condition for a valid EFT de-
scription p � MMed is fulfilled, where p is the transfered momentum and MMed the
mass of the mediator which is integrated out.
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1.5 Possible Mediators

Figure 1.5: Exclusion limit for the spin-independent WIMP-nucleon interaction cross sec-
tion for different WIMP masses from various experiments, especially from the
new XENON1T experiment used in this work. Figure from [30].

Collider searches
Dark matter produced in high energy particle collisions leaves the detector without
producing any signal and is searched by so-called mono-X events, where X can be a
hadronic jet, a photon, a Z, W± or Higgs boson. The four momentum of all detected
particles is summed up and large amounts of missing transverse momentum could in-
dicate the production of dark matter, carrying the missing transverse energy. This is
necessary as the total energy of collision at a proton collider is not known. A typical
mono-X event would be a single high energetic jet, recoiled by invisible particle(s) like
dark matter or neutrinos.
There are two ways to produce a mono-X signal: initial state radiation and resonant
decays. The initial state radiation is dominated by jets and, therefore, mono-jet searches
give the best results for a s-channel production of dark matter, as shown in Figure 1.6.
In resonant decays the mediator is produced on-shell, which increases the cross section,
and then decays to dark matter and Standard Model particles.
At the LHC the condition for a valid EFT approach is in general not fulfilled, as the
momentum transfer is in the TeV range and mediators with masses around the weak
scale can be produced on-shell, which leads to significantly enhanced event rates. In-
stead one has to use simplified models, which keep the mediator as a degree of freedom
to cover this phenomenology, as shown in Figure 1.7 [32].

1.5 Possible Mediators and Implementations

We assume, that the dark sector contains at least one neutral particle with a mass com-
patible with the weak scale, and interacts with the Standard Model via some mediator.
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1 General Aspects of Dark Matter

The presence of extra states imply different 
experimental search strategies 

Initial state radiation hierarchy :  
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Figure 2. 95% CL exclusion regions in Mmed � mDM plane for di↵erent /ET based DM searches

from CMS in the lepto-phobic AV and V models. It should be noted that the exclusion regions and

relic density contours in this plot are not applicable to other choices of coupling values or models.
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Figure 1.7: Examples for the mismatch of EFTs and simplified models for dark matter
production cross section at the LHC. Figure from [32].
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1.5 Possible Mediators

In the following possible mediators and their consequences for the different searches
are discussed.
Dark matter mediated by the weak bosons or the Higgs are nearly excluded by direct de-
tection searches. Therefore, one needs a mediator not included in the Standard Model.
Possibilities are new spin 0 (scalars or pseudoscalars) or spin 1 particles, like a Z ′.
Effective Lagrangians for all mediators can e.g. be found in [33].
Spin 1 particles have to couple to the Standard Model quarks with a single gauge
coupling to avoid Flavor Changing Neutral Currents (FCNC), which are strongly con-
strained from flavor observables. If the coupling is strong enough to produce a Z ′ at the
LHC, it can decay back into quarks. Therefore, it is more promising to search for these
mediators in die-jet or di-lepton final states.
Scalar mediators face strong constraints from direct detection experiments, which are
stronger than bounds from collider searches. This is true as long as the dark matter
particle is heavy enough to cause a measurable recoil, so for light WIMPs with masses
below roughly 10 GeV, mono-X searches put stronger bounds on the cross section.
If instead the coupling is mediated by a pseudoscalar, the matrix element for scattering
of Standard Model and dark matter particles scales like vχ/c� 1 [34], where vχ ≈ 200
km/h is the mean dark matter velocity today. Therefore, there are no strong limits from
direct detection and mono-X searches at colliders are the best possibility to test these
mediators.
The Standard Model does not contain a pseudoscalar particle, but there are well moti-
vated classes of theories, such as supersymmetric models, which are proposed to solve
different problems within the Standard Model and enlarge the scalar sector such that it
contains at least one pseudoscalar. To handle the high number of parameters of these
full models, a good approach is to describe the phenomenology in simplified models,
whereas additional states that are not relevant for the collider searches for dark matter
are ignored. The simplest extension is one Standard Model singlet, with an effective
coupling to quarks and a possible coupling to dark matter as both are singlets. An-
other way is to enlarge the Higgs sector by adding a second SU(2)L Higgs doublet,
which contains a pseudoscalar and allows for gauge-invariant couplings to the Standard
Model. Both approaches are shown in more detail in Chapter 3, where we concentrate
on the second kind of model.
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2 Two-Higgs-Doublet-Models

The consistent model presented and tested in the next chapters contains a second Higgs
doublet and therefore it will be helpful to introduce the main implications of such an
extended scalar part. A quite common modification of the Standard Model are the so-
called two-Higgs-doublet models (2HDM), which introduce a second complex SU(2)L
Higgs doublet. First, I give a short motivation for 2HDMs, second, the main properties
of the extended scalar potential are shown, and third, couplings of the scalars needed in
the following sections are derived.

2.1 Motivation
The ρ parameter, which is important to constrain theories beyond the Standard Model,
for n scalar multiplets Hi with vacuum expectation value (vev) vi, weak isospin Ii, and
weak hypercharge Yi is at tree level given by

ρ =

∑n
i=1

[
Ii(Ii + 1)− 1

4
Y 2
i

]
vi∑n

i=1
1
2
Y 2
i vi

exper.
= 1.00037± 0.00023 , (2.1)

where the experimental value shows only 1.6σ deviation from the Standard Model
expectation of 1 [35]. As a result SU(2)L singlets with Y = 0 and SU(2)L doublets
with Y = ±1 and I(I + 1) = 3

4
Y 2 are preferred as they keep ρ = 1.

The Higgs mechanism for electroweak symmetry breaking realized in the Standard
Model is the “most economic version”, but there is no reason that there are no ad-
ditional scalars. As a simple analogy to the three generations of fermions one could
assume that there is more than one scalar in nature. In addition 2HDMs could pro-
vide additional phase transitions in the early Universe, which are needed to explain the
baryon asymmetry. In supersymmetric theories like the MSSM a second Higgs doublet
is required, to generate masses via the Higgs mechanism.

2.2 Particle Content
The two doublets can be written in different bases, for example in the interaction-base
as

Hi =

(
φ+
i

(vi + ρi + iηi)/
√

2

)
with i = 1, 2 . (2.2)

25



2 Two-Higgs-Doublet-Models

Both doublets can acquire vevs vi, which had to fulfill the relation
√
v2

1 + v2
2 = v = 246

GeV and we define tan(β) = tβ = v2
v1

.
The two doublets contain eight scalar fields. Three of them correspond to the massless
Standard Model Goldstone bosons G0 and G±, which are eaten by the SU(2)L gauge
bosons W± and Z and give them their masses. The remaining five are physical scalars
or Higgs fields. There are two charged scalars H±, two neutral scalars h and H , where
h usually denotes the lighter one, and a pseudoscalar A.
The rotation to diagonalize the mass-matrices and get the mass eigenstates for the neu-
tral scalars is given by(

h
H

)
=

(
sα −cα
−cα −sα

)(
ρ1

ρ2

)
, (2.3)

with sα ≡ sin(α), cα ≡ cos(α) and for the charged scalars by(
G±

H±

)
=

(
cβ sβ
−sβ cβ

)(
φ±1
φ±2

)
, (2.4)

and the pseudoscalars(
G0

A

)
=

(
cβ sβ
sβ −cβ

)(
η1

η1

)
. (2.5)

In this discussion we use this rotations to express the doublets Hi in the mass eigen-
states, where [36]

H1 =
1√
2

( √
2 (cβG

+ − sβH+)
v1 + cαH − sαh+ i(cβG0 − sβA)

)
, (2.6)

H2 =
1√
2

( √
2 (sβG

+ + cβH
+)

v2 + sαH + cαh+ i(sβG0 + cβA)

)
. (2.7)

The scalar corresponding to the Standard Model Higgs boson can be expressed in terms
of the 2HD interaction or mass eigenstates by

hSM = ρ1 cβ + ρ2 sβ = sβ−α h − cβ−αH . (2.8)

Since the ATLAS and CMS experiments at the LHC discovered a Standard Model
Higgs like scalar with a mass of 125 GeV, we want the light scalar h to have the
measured properties and behave like the Standard Model Higgs boson1. This can be
achieved in the so called alignment limit, where cβ−α = 0, or the decoupling limit,
where the other spin 0 particles are heavy, this forces cβ−α → 0 again [38].

1It is possible to choose H as the measured scalar but the constraints are much harder and complicated
[37]
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2.3 The Scalar Potential

2.3 The Scalar Potential
The product of a SU(2)L doublet and its hermitian conjugate forms a Standard Model
singlet, which means that it is invariant under all Standard Model gauge groups. There-
fore they, can be combined in many ways to form the general potential

V gen
2HD = µ1H

†
1H1 + µ2H

†
2H2 +

[
µ3H

†
1H2 + h.c.

]
+ λ1

(
H†1H1

)2

+ λ2

(
H†2H2

)2

+ λ3

(
H†1H1

)(
H†2H2

)
+ λ4

(
H†1H2

)(
H†2H1

)
+
[
λ5

(
H†1H2

)2

+ λ6

(
H†1H1

)(
H†1H2

)
+ λ7

(
H†2H2

)(
H†1H2

)
+ h.c.

]
, (2.9)

where the parameters µ3 and λ5,6,7 are complex. These 14 degrees of freedom are
reduced to 11 physical parameters because of the freedom to redefine the basis.
Applying symmetries reduces the number of degrees of freedom. In this work CP
conservation and a new global symmetry under which H†1H2 is charged are assumed.
Applying this symmetries to the most general 2HD potential from Eq. (2.9) leads to

V2HD = µ1H
†
1H1 + µ2H

†
2H2 +

(
µ3H

†
1H2 + h.c.

)
+ λ1

(
H†1H1

)2

(2.10)

+ λ2

(
H†2H2

)2

+ λ3

(
H†1H1

)(
H†2H2

)
+ λ4

(
H†1H2

)(
H†2H1

)
,

where all coefficients are real, especially µ3 is chosen to be real to avoid CP violating
mixing of the scalars and the pseudoscalar. We allow for a soft breaking of the new
symmetry by operators with mass dimension smaller than four, such that µ3H

†
1H2+h.c.

is allowed and generates a mass term for the pseudoscalar A. This is necessary because
massless pseudoscalars are excluded by experiments.
The number of parameters is reduced to seven, with three of them µ1, µ2, µ3 having
mass dimension two and four of them λ1, λ2, λ3, λ4 having mass dimension zero.
A basic requirement for any meaningful physical theory is the existence of a stable
minimum, here it means that the scalar potential is bounded from below. Therefore, no
direction in field space exists where V2HD → −∞. This can be achieved by the “strong
stability” requirement, where V2HD > 0 for all Hi →∞.
Necessary conditions are obtained by investigating the behavior in different directions
of field space, e.g. from |H1| → ∞ and |H2| = 0 follows λ1 ≥ 0. Testing different
cases imposes the conditions [39]

λ1 > 0 , λ2 > 0 , λ3 > −
√
λ1λ2 , λ4 + λ3 +

√
λ1λ2 > 0 , (2.11)

which are proven to be sufficient, if λ5 = λ6 = λ7 = 0, as in our case [40, 41].
The requirement of perturbativity of the dimensionless couplings requires

λi < 4π with i = 1, 2, 3, 4 . (2.12)
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2 Two-Higgs-Doublet-Models

The potential coefficients can be traded for the physical input parameters we use in our
analyses: the vacuum expectation values of the two Higgs doublets v1 and v2 or v = 246
GeV and tβ = v1/v2, the masses of the physical scalars mh = 125 GeV, MH ,MH± ,
and of the pseudoscalar MA, and the scalar mixing angle cβ−α (or sβ−α). The potential
coefficients are given by [36]

µ1 = s2
βM

2
A −

cβ−α cαM
2
H − sβ−α sαM2

h

2 cβ
, (2.13)

µ2 = c2
βM

2
A −

cβ−α sαM
2
H + cα sβ−αM

2
h

2 sβ
, (2.14)

µ3 = sβ cβM
2
A , (2.15)

λ1 =
c2
αM

2
H + s2

αM
2
h − s2

βM
2
A

2 v2 c2
β

, (2.16)

λ2 =
s2
αM

2
H + c2

αM
2
h − c2

βM
2
A

2 v2 s2
β

, (2.17)

λ3 =
sα cα (M2

H −M2
h) + sβ cβ

(
2M2

H± −M2
A

)
v2 cβ sβ

, (2.18)

λ4 =
2
(
M2

A −M2
H±

)
v2

. (2.19)

For completeness we also show the relations between the Higgs masses and the potential-
coefficients

m2
h =

c2
β−α µ3

cβ sβ
+ 2 v2

(
λ1c

2
βs

2
α + λ2s

2
βc

2
α − (λ3 + λ4)cβcαsβsα

)
, (2.20)

M2
H =

s2
β−α µ3

cβ sβ
+ 2 v2

(
λ1c

2
βc

2
α + λ2s

2
βs

2
α + (λ3 + λ4)cβcαsβsα

)
, (2.21)

M2
A =

µ3

cβ sβ
, (2.22)

M2
H± =

µ3

cβ sβ
− λ4 v

2

2
. (2.23)

2.4 Yukawa Couplings

Now we want to look at the Yukawa part of 2HDMs. In general both doublets could
couple to fermions. But both coupling matrices are not necessarily diagonalized by the
mass eigenstates. This leads to strong flavor changing neutral currents which are nearly
excluded by flavor experiments. To avoid this one usually assumes an additional Z2

symmetry with charges such that one doublet couples to one type of fermions. With
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2.4 Yukawa Couplings

2HDM Hu Hd Hl

Type I H1 H̃1 H̃1

Type II H1 H2 H2

Type X H1 H̃1 H̃2

Type Y H1 H̃2 H̃1

Table 2.1: Assignment of the two Higgs doublets to the states in Eq. (2.24) for different
types of 2HDMs. Naming of the types follow [42].

such a symmetry the Yukawa Lagrangian reads as

LY uk =
3∑

i,j=1

yuijQ̄i H̃u uj +
3∑

i,j=1

ydijQ̄iHd dj +
3∑

i,j=1

y`ijL̄iHl `j + h.c. , (2.24)

where Hu, Hd and Hl are either H1 or H2, depending on the chosen type of 2HDM,
see Table 2.1. This work is restricted to models with natural flavor conservation and
2HDMs of type I and II.
After electroweak symmetry breaking, and choosing the mass eigenstate basis, the
Yukawa Lagrangian can be written as

LY uk =
∑
f=u,d,l

(
ghf f̄fh+ gHf f̄fH − igAf f̄γ5fA

)
−
√

2

v
H+× (2.25)(

3∑
i,j=1

(
ūiVij

(
κH+dmdjPR − κH+umuiPL

)
dj + κH+`ν̄m`PR`

)
+ h.c.

)
.

Couplings between Standard Model fermions f and the neutral scalars ϕ = h,H,A can
be written as gϕf = κϕf g

SM
hf , in which gSM

hf = mf/v are the respective Standard Model
Higgs couplings. The values for κϕf depend on the chosen type of 2HDM and are given
in Table 2.2. The couplings of the charged Higgs to the Standard Model fermions are
given in the second line of Eq. (3.15) with κH+f = κAf for all fermions f , and Vij as
the elements of the CKM matrix, and PL/R as projection operators for left-/right-handed
fermions.
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2 Two-Higgs-Doublet-Models

Type I Type II

κhu = κhd = κh` = sβ−α +
cβ−α
tβ

κhu = sβ−α +
cβ−α
tβ

, κhd = κh` = −sβ−α −
cβ−α tβ

κHu = κHd = κH` = cβ−α − sβ−α
tβ

κHu = cβ−α − sβ−α
tβ

, κHd = κH` = cβ−α +
sβ−α tβ

κAu = κAd = κA` = − 1
tβ

κAu = − 1
tβ
, κAd = κA` = tβ

Table 2.2: Modifications of the Standard Model Yukawa couplings by κφf for the scalars
and the pseudoscalar in 2HDMs of type I and II [42].
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3 The Simplified Model

In this chapter we introduce the Lagrangian of the consistent simplified model discussed
in this work as well as possible UV-completions. Then we derive important properties
of this model and discuss the branching ratios of the scalars.

3.1 The Lagrangian

As motivated in the introduction, we want to investigate common structures of models
with a pseudoscalar mediator for dark matter, which are valid for wide range of possible
UV completions.
Because there is no pseudoscalar particle in the Standard Model, one has to add such a
particle in a consistent way and there are at least two ways to do this. In addition, we
take a Standard Model singlet Dirac fermion χ as the dark matter candidate.
The simplest extension is a pseudoscalar singlet a, which has effective couplings of
dimension five to the Standard Model quarks and a renormalizable dark matter coupling
as both are singlets,

L =
3∑

i,j=1

yqij
a

Λ
Q̄i γ5 qj H +

3∑
i,j=1

y`ij
a

Λ
L̄i γ5 `j H + cs a χ̄γ5χ + h.c. , (3.1)

where Λ is the scale of new heavy physics and typically in the TeV range. Models of
this type face several problems in collider searches. First, the production of a via gluon
fusion is suppressed with respect to the Standard Model Higgs production by a factor
v/Λ. Second, in such a model only initial state radiation is possible, which does not
lead to model specific phenomenology.
The second class of models is obtained by embedding the pseudoscalar in a second
SU(2)L Higgs doublet. This allows for a gauge invariant coupling of dimension four
of the pseudoscalar to the Standard Model fermions, therefore, the production cross
section is not suppressed. We use effective couplings to dark matter to be as general as
possible, which are suppressed with factor v/Λ compared with the couplings to Stan-
dard Model fermions, but dark matter still dominates the branching ratio of the pseu-
doscalar as the competing coupling to b-quarks is rather small. The additional scalar
degrees of freedom are kept to cover aspects of the phenomenology of UV completions
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3 The Simplified Model

and to ensure the validity of the EFT approach, see Figure 1.7, leading to

L =
3∑

i,j=1

yuij Q̄iH1 uj +
3∑

i,j=1

ydij Q̄iH2 dj +
3∑

i,j=1

y`ij L̄iH2 `j

+ cχ
H†1H2

Λ
χ̄χ + c5

H†1H2

Λ
χ̄γ5χ + mχ χ̄χ + h.c. , (3.2)

where we also consider an explicit mass term for the dark matter candidate. Here, the
Yukawa couplings of a 2HDM of type II are chosen, but we also consider a 2HDM of
type I, obtained by the replacements in Table 2.1.
To reduce the number of terms the, symmetry, assumed in the previous chapter to sim-
plify the scalar potential in Eq. (2.10), is extended such that the Standard Model sin-
glets H†1H2, χ̄χ and χ̄γ5χ carry a charge. Again the symmetry is softly broken by the
explicit dark matter mass term. This kind of symmetry can also be motivated from fla-
vor physics as it could serve as an explanation for the huge hierarchy in the Yukawa
couplings [43]. The discussion of the flavor implications of this symmetry is very in-
teresting as the additional dark matter couplings, presented here, might relax the strong
flavor constraints, and planned to be discussed in a following work.
Theoretical aspects and the phenomenology of this model are discussed in the follow-
ing. The effective dark matter couplings in Eq. (3.2) can be obtained from several
well-motivated UV completions, by considering additional states heavy with respect
to the Standard Model particles, the scalar and pseudoscalar components of the Higgs
doublets and the dark matter candidate. The first example for a UV completion is
a Standard Model singlet pseudoscalar a that mixes with the combination H†1H2 and
serves as the mediator to dark matter,

L =
3∑

i,j=1

yuijQ̄iH1 uj +
3∑

i,j=1

ydijQ̄iH2 dj +
3∑

i,j=1

y`ijL̄iH2 `j

+ κ aH†1H2 + ca a χ̄γ5χ + h.c. . (3.3)

The implications of this model have been discussed in detail in [44].
The second example arises from more complicated dark sectors, where the dark matter
fermion is part of an additional electroweak doublet ψ = (χ+, χ0),

L =
3∑

i,j=1

yuijQ̄iH1 uj +
3∑

i,j=1

ydijQ̄iH2 dj +
3∑

i,j=1

y`ijL̄iH2 `j

+ c1 ψ̄H1χ + c2 ψ̄H̃2χ + h.c. , (3.4)

as in doublet-singlet dark matter models. While these UV completions predict very
different, model-specific signatures that allow to differentiate between them, the focus
of this work is on universal signals that arise in all pseudoscalar mediator models which
lead to the EFT in Eq. (3.2).
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3.2 Mass generation and Chiral Rotation

3.2 Mass generation and Chiral Rotation
The dark matter candidate χ can obtain a mass term via the Higgs mechanism from
operators like H†1H2χ̄χ, if both Higgs doublets take on their vev. Using this, the effec-
tive mass of the dark matter, whose structure is related to the couplings of h to χ1, is
obtained from the Lagrangian in Eq. (3.2) as

Lmeff = 2
v1v2

Λ

(
xχχ̄χ+ iy5χ̄γ

5χ
)
− mχχ̄χ , (3.5)

where the shortcuts cχ = xχ + iyχ and c5 = x5 + iy5 are used in the case of complex
coefficients. From Eq. (3.5) it can easily be seen, that for y5 6= 0 the total mass is
complex. In analogy to [45], we apply a chiral transformation and a field redefinition,

χ → exp(iγ5θ/2)χ and χ̄ → χ̄ exp(iγ5θ/2) , (3.6)

with exp(iγ5θ/2) = cos(θ/2) + iγ5 sin(θ/2) as (γ5)2 = Id, to deal with the complex
mass term. Using this, the operators leading to the mass term in Eq. (3.5) transform as

χ̄χ → χ̄ exp(iγ5θ)χ̄ = χ̄(cos θ + iγ5 sin θ)χ , (3.7)
χ̄γ5χ → χ̄(γ5 cos θ − i sin θ)χ . (3.8)

Inserting this in Eq. (3.5) leads to requirement for a real mass term

tan(θ) =
v1v2 y5

mχΛ− v1v2xχ
. (3.9)

With this specific rotation angle and using v1 = cβv and v2 = sβv, the mass term in
Eq. (3.5) and the coefficients in Eq. (3.2) transform as

meff → mχ,rot = mχcθ −
v1v2

Λ
(xχcθ − y5sθ)

=

√
m2
χ −

mχ

Λ
xχcβsβv2 +

v4

Λ2
c2
βs

2
β

(
x2
χ + y2

5

)
, (3.10)

xχ → xχ,rot = xχcθ − y5sθ =
mχxχ − cβsβ v

2

Λ

(
x2
χ + y2

5

)
mχ,rot

, (3.11)

yχ → yχ,rot = x5sθ + yχcθ , (3.12)
x5 → x5,rot = x5cθ − yχsθ , (3.13)

y5 → y5,rot = xχsθ + y5cθ =
mχ

mχ,rot

y5 . (3.14)

The additional tβ-dependence makes the analyses more complicated. But it is possible
to choose cχ and c5 such that the values used in the later analyses are recovered and
approximately constant for tβ < 3.

1As v1 and v2 have no α dependent prefactors all results are independent of cβ−α.
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3 The Simplified Model

A model in which χ gets all mass from this Higgs mechanism is excluded by a com-
bination of relic density and direct detection constraints as discussed in more detail in
the next section. There it is shown that Re[Cχ] = xχv/Λ has to be small. In addi-
tion Im[C5] has to be zero to conserve CP symmetry, which we assume throughout this
work. Because of that we introduced the explicit mass term proportional to mχ softly
breaking the symmetry.
Therefore, for the rest of the work we choose Re[Cχ]� 1 and Im[C5] = 0 and the dark
matter mass generated by the Higgs mechanism is small or even zero.

3.3 Higgs Couplings and Decay Widths

After electroweak symmetry breaking, and choosing the mass eigenstate basis, the dark
matter couplings in Lagrangian in Eq. (3.2) can be written as

LY uk = ghχ h χ̄χ + gh5 h χ̄γ5χ + gHχH χ̄χ + gH5H χ̄γ5χ+ (3.15)
gAχA χ̄χ + gA5A χ̄γ5χ ,

where the couplings of the neutral scalars to χ are given by

ghχ =

(
2 (cβ−α + tβsβ−α)

1 + t2β
− cβ−α

)
Re[Cχ] , (3.16)

gh5 =

(
2 (cβ−α + tβsβ−α)

1 + t2β
− cβ−α

)
Im[C5] , (3.17)

gHχ =

(
2 (cβ−αtβ − sβ−α)

1 + t2β
+ sβ−α

)
Re[Cχ] , (3.18)

gH5 =

(
2 (cβ−αtβ − sβ−α)

1 + t2β
+ sβ−α

)
Im[C5] , (3.19)

gAχ = Im[Cχ] , (3.20)
gA5 = Re[C5] . (3.21)

and we define Cχ = cχv/Λ and C5 = c5v/Λ. The charged Higgs does not couple to
dark matter at tree-level. The couplings proportional to the imaginary parts of cχ (c5)
induce CP violating couplings of the scalars (pseudoscalar) to the dark sector. This do
not have to be a problem since the properties of the dark sector are unknown, but for
simplicity we take cχ and c5 to be real for the rest of this work2.

2CP violating couplings might lead to interesting phenomenology if it could be connected to CP viola-
tion in the visible sector, which is needed to explain the baryon-asymmetry.
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3.3 Higgs Couplings and Decay Widths

In the alignment limit cβ−α = 0 these couplings simplify to

ghχ =
2 tβ

1 + t2β
Re[Cχ] , (3.22)

gh5 =
2 tβ

1 + t2β
Im[C5] , (3.23)

gHχ =

(
1− 2

1 + t2β

)
Re[Cχ] = c2β Re[Cχ] , (3.24)

gH5 =

(
1− 2

1 + t2β

)
Im[C5] = c2β Im[C5] , (3.25)

gAχ = Im[Cχ] , (3.26)
gA5 = Re[C5] . (3.27)

After introducing the dark matter couplings, we are able to calculate all relevant partial
decay widths for the heavy scalar H , the charged scalar H± and the pseudoscalar A
in the alignment limit cβ−α = 0. Here we just take the CP conserving couplings into
account. For the light scalar h, which is associated with the Standard Model Higgs in
this limit, only the partial decay width to dark matter is shown because the other widths
do not change compared to the Standard Model. Of course the branching ratios change
as the total width increases.
Offshell decays and those that only become relevant for cβ−α > 0 are not shown.In all
plots branching ratios smaller than 1% are not shown.
For the heavy scalar H , the dominating partial decay widths are

Γ(H → tt̄) =
3

8π

m2
t

v2
κ2
HuMH

(
1− 4m2

t

M2
H

)3/2

, (3.28)

Γ(H → χχ̄) =
1

8π
g2
HχMH

(
1− 4m2

χ

M2
H

)3/2

, (3.29)

Γ(H → ZA) =
g2
W

64π

(M4
A + (M2

H −M2
Z)2 − 2M2

A(M2
H +M2

Z)2)
3/2

M3
HM

2
W

, (3.30)

Γ(H → AA) =
1

32π

(M2
A −M2

H)2

v2MH

(t2β − 1)2

tβ

(
1− 4M2

A

M2
H

)1/2

, (3.31)

where the couplings κHu and gHχ are defined in Table 2.2 and Eq. (3.24).
The branching ratios for MH = MH± = 500 GeV , c5 = 0, cχ = 1, and mχ = 1 GeV
are shown in Figure 3.1. The left panel shows the dependence in MA for tβ = 1 and
the right panel shows the tβ-dependence for MA = 200 GeV. Because the dominant
branching fractions of H do not depend on the Yukawa sector of the 2HDMs under
consideration, both panels of Figure 3.1 hold for 2HDMs of type I and type II. For
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Figure 3.1: The dominant branching ratios (> 1%) of the heavy scalar H are shown for
MH = MH± = 500 GeV, cβ−α = 0, C5 = 0, Cχ = 1, and mχ = 1 GeV.
Left: In dependence of the pseudoscalar mass MA and tβ = 1.
Right: In dependence of tβ for fixed pseudoscalar mass MA = 200 GeV, the
relevant branching ratios are independent of the type of a 2HDM.

masses MH > MA + MZ and 2 & tβ & 0.7, the dominant branching fraction is H →
ZA, giving rise to a mono-Z final state for the dominant decay channel ofA→ χχ̄. For
larger values of tβ the decay to AA dominates, as shown in Eq. (3.31) this branching
ratio is zero for tβ = 1. For larger pseudoscalar masses and tβ = 1, the di-top final state
is dominant and more promising for direct searches. It is intriguing that the parameter
space giving rise to a mono-Z signal agrees with the bounds discussed in the following
chapter.
For the pseudoscalar A, the following partial decay widths are relevant

Γ(A→ tt̄) =
3

8π

m2
t

v2
κ2
AuMA

(
1− 4m2

t

M2
A

)1/2

, (3.32)

Γ(A→ bb̄) =
3

8π

m2
b

v2
κ2
AdMA

(
1− 4m2

b

M2
A

)1/2

, (3.33)

Γ(A→ τ+τ−) =
1

8π

m2
τ

v2
κ2
A`MA

(
1− 4m2

τ

M2
A

)1/2

, (3.34)

Γ(A→ χχ̄) =
1

8π
g2
A5MA

(
1− 4m2

χ

M2
A

)1/2

, (3.35)

and Γ(A → cc̄) follows from Γ(A → tt̄) with the replacement mt → mc. The main
branching ratios in dependence of MA are plotted in the left panel of Figure 3.2 for
tβ = 1, MH = M±

H = 500 GeV, C5 = 1, Cχ = 0, and mχ = 1 GeV. As long as
C5 is roughly of order one the decay to χ clearly dominates between MA > 2mχ and
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Figure 3.2: The dominant branching ratios (> 1%) of the pseudoscalar A are shown for
MH = MH± = 500 GeV, cβ−α = 0, C5 = 1, Cχ = 0, and mχ = 1 GeV.
Left: In dependence of the pseudoscalar mass MA and tβ = 1.
Center (right): In dependence of tβ for fixed pseudoscalar mass MA = 200
GeV with Yukawa couplings as in a 2HDM of type I (II).

the top threshold at MA = 2mt. For lower pseudoscalar masses BR(A → bb̄) and
for higher masses BR(A → tt̄) dominates. Changing C5 does not change the findings
qualitatively and increasing mχ only shifts the region described above.
The center (right) panel of Figure 3.2 shows the dominant branching ratios in depen-
dence of tβ in 2HDMs of type I (II) for MA = 200 GeV, and again C5 = 1, Cχ = 0,
mχ = 1 GeV and MH = MH± = 500 GeV. In type I the coupling to bb̄ is proportional
to 1/tβ and therefore dominates for tβ � 1. In type II the decay to cc̄ dominates for
small tβ , as long as MA < 2mt, and for higher values of tβ decays to bb̄ and τ+τ− are
getting important. For tβ = O(1), the most important region for us, the decay to dark
matter clearly dominates.
For the heavy charged scalar H± we find

Γ(H+ → tb̄) =
3

8π

|Vtb|2
MH±v2

λ(m2
t , m

2
b , M

2
H±)1/2 (3.36)((

M2
H± −m2

t −m2
b

) (
m2
bκ

2
Ad +m2

tκ
2
Au

)
− 4m2

tm
2
b

)
,

Γ(H+ → τ+ν) =
1

8π

1

MH±v2
m2
τ κ

2
A`

(
1− m2

τ

M2
H±

)3

, (3.37)

Γ(H+ → AW+) =
1

16πc2
W

M4
W

MH± v2
λ(M2

A, M
2
W , M

2
H±)1/2 λ(M2

A,M
2
H± ,M

2
W ) ,

(3.38)

where λ(x, y, z) = ((x + y − z)2 − 4xy)/z2. The dependence of the branching ratios
on MA is shown on the left panel of Figure 3.3 for MH = MH± = 500 GeV, tβ = 1,
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Figure 3.3: The dominant branching ratios (> 1%) of the charged scalar H± are shown
for MH = MH± = 500 GeV, cβ−α = 0, and arbitrary dark matter couplings
as they do not matter.
Left: In dependence of the pseudoscalar mass MA and tβ = 1.
Center (right): In dependence of tβ for fixed pseudoscalar mass MA = 200
GeV with Yukawa couplings as in a 2HDM of type I (II).

and arbitrary dark matter couplings as they do not matter. On the center (right) panel
of Figure 3.3 the tβ-dependence of the branching ratios of the charged scalar are shown
for fixed MA = 200 GeV and the Yukawa couplings as in a 2HDM of Type I (II). For
tβ & 1 the BR(H± → W±A) dominates as long as the decay is kinematically allowed.
This could give rise to a mono-W± signal as A mainly decays into dark matter.
In the alignment limit the decay widths of h are unchanged, because κhf = 1 for all
Standard Model fermions f and the couplings to gauge bosons are also unchanged.
There is just an additional decay channel to dark matter with

Γ(h→ χχ̄) =
1

8π
g2
hχmh

(
1− 4m2

χ

m2
h

)3/2

. (3.39)

This channel dominates as long as χ is heavier than 3mb and lighter than mh/2.

3.4 Further Operators

In this section we shortly describe possible modifications of the Lagrangian in Eq. (3.2),
either by adding further operators breaking the assumed symmetries or by assigning a
different charge to χχ̄.
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3.4 Further Operators

Breaking of the Symmetry
Assuming neither CP conservation nor the additional global symmetry in the dark sec-
tors, operators proportional to H†iHi, i = 1, 2, can be added to Eq. (3.2)

∆L =

(
cχ,1

H†1H1

Λ
+ cχ,2

H†2H2

Λ

)
χ̄χ +

(
c5,1

H†1H1

Λ
+ c5,2

H†2H2

Λ

)
χ̄γ5χ + h.c. ,

(3.40)

where the coefficients cχ,i and c5,2, i = 1, 2, are real because of unitarity.
They give rise to new scalar couplings of χ to the scalars h and H , but not to new cou-
plings to the pseudoscalar A as those terms cancel against their hermitian conjugates.
The resulting couplings have a different tβ-dependence than ghχ in Eq. (3.18). In the
alignment limit cχ,1 goes with an additional factor 1/tβ and cχ,2 with tβ .

Higher Order Insertions
There is no need for the H†1H2 to carry the same charge as χχ̄. In general the case the
effective Lagrangian reads as

L = cχ

(
H†1H2

)n
Λ2n−1

χ̄χ + c5

(
H†1H2

)n
Λ2n−1

χ̄γ5χ − mχχ̄χ + h.c. , (3.41)

where χχ̄ carries a charge of n relative to H†1H2. In the later analyses the case n = 2
is briefly discussed, but higher cases are also possible in principle. All scenarios with
n > 1 have much more complicated couplings and multi-particle vertices of the scalars
and the pseudoscalar to dark matter than the n = 1 case, which are beyond the scope of
this work.
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4 Experimental Constraints from different
Sources

In this chapter we discuss different experimental and theoretical constraints relevant for
the model presented in the previous chapter. For the scalar sector we consider bounds
from Higgs and flavor physics, electroweak precision observables, collider searches for
heavy resonances and stability requirements. The dark sector is constrained by results
from the relic density, direct and indirect detection experiments and mono-X searches
at the LHC.
We are able to find reasonable intervals for the open parameters, where all experimental
constraints are taken into account and predictions are possible.

4.1 Higgs Couplings

Adding a second Higgs doublet and the new decay channel to χ changes the couplings,
the branching ratios as well as the total width of the light scalar h identified with the
Standard Model Higgs. Therefore, measuring the Higgs coupling strength in several
channels puts strong constraints on any possible mixing of the Higgs with new scalar
degrees of freedom1 and couplings to new invisible states.
Since it is not possible to measure the production cross section or the branching ratio for
a specific channel directly, the experimentally measured value for a production channel
i and a decay channel f is expressed by the signal strength

µfi =
σi
σSM
i

Bf

(Bf )SM =
σi

σSM
i

Γ(h→ f)

Γ(h→ f)SM

ΓSM
h

Γh
, (4.1)

where σi denotes the production cross section, Bf the branching ratio of h to the final
state f and Γh the total width of h [47]. The superscript SM denotes the Standard Model
predictions. We consider i = V, t and f = ZZ, WW , γγ, bb, ττ , µµ, where V stands
for the combination of vector boson fusion (VBF) and vector boson associated (VH)
production and t for gluon fusion and tt̄ production because the amplitude modulations
are the same in our model, so we put them together to get better results.

1For simplified models in which the Higgs mixes with a scalar mediator that couples to dark matter,
measurements of Higgs couplings provide a stronger bound on the mixing angle than any mono-X
search [46].
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The deviations of the Higgs couplings in a 2HDM from the Standard Model couplings
are parametrized by the coupling modifiers κhj , given in Table 2.2, fulfilling the rela-
tions

κhj =
gjjh
gSM
jjh

or κ2
hj =

σj
σSM
j

or κ2
hj =

Γ(h→ j)

Γ(h→ j)SM , (4.2)

In addition, the modifications of the couplings to the vector bosons V = W±, Z are
given by

κhV = sβ−α . (4.3)

If mχ is smaller than mh/2, χ offers an additional decay channel for h with partial
width Γ(h→ χχ̄) given in Eq. (3.39). In this case the total width is given by

Γtot = Γ(h→ χχ̄) + κ2
tot ΓSM

h , (4.4)

where we defined

κ2
tot =

∑
j

(
Bj
)SM

κ2
hj =

∑
j

Γ(h→ j)

ΓSM
h

. (4.5)

With these definitions the signal strength can be written as

µfi = ΓSM
h

κ2
i κ

2
tot

Γ(h→ χχ̄) + κ2
totΓ

SM
h

= κ2
hi κ

2
tot

ΓSM
h

Γtot . (4.6)

In Figure 4.1, we present a global fit to the Higgs signal strength measurements based
on the combination of CMS and ATLAS signal strength measurements presented in
[47] at

√
s = 7 TeV with 5 fb−1 amount of data and 20 fb−1 at 8 TeV. An additional

constraint arises from the bound on invisible Higgs decays Br(h → invisible) < 0.23
[48, 49].
We consider the generic scenario of 2HDMs of type I (left panel) and type II (right
panel) for which no couplings to dark matter are present, that is Cχ = 0. The allowed
parameter space for this case is shaded gray. We further show the global fit for three
additional values of Cχ = 2 × 10−4, 10−3, 6 × 10−3 where we fix Λ = 1 TeV with the
respective parameter space allowed by all constraints shaded yellow, orange and red.
The dark matter mass has been fixed to mχ = 0. The parameter Im[C5] also allows for
Higgs couplings to dark matter, but leads to the same results, up to a weaker sensitivity
on the dark matter mass in the case of the pseudoscalar coupling. The parameter space
that survives for large values of Re[Cχ] or Im[C5] corresponds to the region in which
ghχ = gh5 = 0. This parameter space is not stable under additional contributions from
loop-induced Higgs couplings or additional operators, such asHiH

†
i χ̄χ, i = 1, 2. There

is also a small band of allowed values for type II, where κhd = −1 and up to now no
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Figure 4.1: Allowed parameter space for 2HDM of Type I (left) and II (right) after fitting
the couplings to the Higgs signal strength measurement from [47]. Colored
regions are allowed for an increasing dark matter coupling. This yields us to
the alignment limit, cβ−α = 0, and mχ > Mh/2. Figure from [46].

measurement can distinguish between plus and minus one. And coincidentally ghχ in
Eq. (3.16) is roughly zero for the same values of cβ−α and tβ , therefore, it is allowed
even for higher values of Cχ. But this region is unstable, in the sense that one has to fix
the parameters very precisely. Because of that, we concentrate on the alignment limit
cβ−α ' 0.
It follows therefore, that either the Wilson coefficients Re[Cχ] and Im[C5] are severely
suppressed, or the Higgs decay to dark matter needs to be kinematically disallowed.
Other scenarios are excluded by Higgs coupling strength measurements even in the
alignment limit.

4.2 Flavor Physics
Natural flavor conservation ensures the absence of tree-level flavor changing neutral
currents (FCNCs) mediated by h, H and A. The new charged scalar allows for new
flavor changing currents at one-loop level. The most stringent bounds for this kind of
models come from measurements of the decay b→ sγ based on the Belle dataset. This
requires MH± > 569 − 795 GeV for 2HDMs of type II and MH± > 268 − 504 GeV
for 2HDMs of type I and tβ = 1 at 95% C.L., where the range depends on the method
applied to derive that bound [50].
While this constraint is rather independent from tβ for 2HDMs of type II, it scales like
1/t2β in the case of 2HDMs of type I. As a consequence, for tβ > 2, flavor constraints
become less important than collider searches for the latter case. Anticipating the unitar-
ity and perturbativity bounds derived below, large values of tβ are strongly disfavored
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Figure 4.2: Feynman diagrams of example loop contributions of different combinations
of the scalars of the 2HDM adding to the Standard Model W± and Z mass.
Drawn with [51].

even for 2HDMs of type I and we adopt the constraint MH± > 500 GeV in the follow-
ing.
It should be stressed that indirect bounds are subject to change if more complete models
are considered and contributions from additional particles, like a new heavy charged
fermion running in the loop, to the relevant observables are taken into account.

4.3 Electroweak Precision Observables

The charged and heavy scalars and the pseudoscalar give rise to different contributions
at one-loop level to theW± andZ bosons mass, such that the tree-level relation between
the Z and W± boson masses set by electroweak symmetry breaking is broken [52]..
While for the Z a pair of charged scalars or the pseudoscalar plus an uncharged scalar
is in the loop, for the W± it is always a H± plus a neutral (pseudo-) scalar, example
diagrams are shown in Figure 4.2.
The ρ-parameter is proportional to the ratio of the two masses and measured very close
to 1, within the Standard Model prediction. Therefore at least two of the masses has to
be equal, as shown in Figure 4.3. In the left panel the allowed mass combinations are
marked in orange andMH± = 500 GeV. The right panel, whereMH = 500 GeV, shows
that we are forced to be close to the alignment limit cβ−α → 0 as we want to have MA

as a free parameter.
These effects are independent of tβ , because the couplings of the scalars and the pseu-
doscalar to gauge bosons only depend on cβ−α. The corresponding constraints are there-
fore valid for 2HDMs of type I and type II and constrain the mass splittings between
the heavy spin 0 mass eigenstates MH , MA and MH+ and the mixing angle cβ−α. Tak-
ing into account the preference for the alignment limit of the global fit to Higgs signal
strength measurements, and flavor constraints, we show the allowed parameter space
by a 95% C.L. fit to the oblique parameters S, T and U in the MA−MH plane for fixed
MH± = 500 GeV and cβ−α = 0 on the left panel of Figure 4.3. A clear preference for
almost degenerated masses MH ≈ MH± or MH ≈ MA is evident. This can be under-
stood by the restoration of the global custodial symmetry present in the Standard Model
Higgs potential in the full 2HDM scalar potential in these limits. Since we are interested
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Figure 4.3: Left: Parameter space allowed by a combined fit to the oblique parameters at
the 95% C.L. in the MH −MA plane for MH+ = 500 GeV and cβ−α = 0.
Right: Parameter space allowed by a combined fit to the oblique parameters at
the 95% C.L. in the cβ−α−MA plane for fixed masses of MH = MH+ = 500
GeV. Figure from [46].

in scanning the range of pseudoscalar mediators, we choose MH = MH± = 500 GeV
and present the allowed parameter space in the cβ−α −MA plane. Apart from a fully
degenerate spectrum MA ≈ MH ≈ MH± , electroweak precision constraints prefer the
alignment limit and in the case of 2HDMs of type I result in a stronger constraint on
cβ−α than the global fit to Higgs coupling strength measurements for tβ & 1. As in the
case of flavor observables, it should be stressed that the constraints from electroweak
precision observables are indirect and sensitive to the presence of additional particles
charged under SU(2)L × U(1)Y , which can lead to cancellations in complete models.
The bounds presented here should therefore only serve as a guideline.

4.4 Stability, Perturbativity and Unitarity

We consider the stability and perturbativity bounds on the scalar potential coefficients
given in Eq. (2.11) and (2.12). In addition, the requirement of unitarity of the scatter-
ing amplitudes between scalars introduces strong bounds on the potential coefficients.
Partial wave unitarity translates into the condition that the eigenvalues of the relevant
submatrices of the scattering matrix have eigenvalues si with |si| < 8π for all i [53,
46].
As the coefficients are connected to tβ and cβ−α via the relations in Eq. (2.13) to (2.19)
and the masses are already fixed toMH = MH± = 500 GeV, those requirements lead to
strong constraints on tβ and cβ−α. In particular, a large mass splitting MA < MH ,MH±
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Figure 4.4: Left: Parameter space allowed by stability, unitarity and perturbativity con-
straints in the cβ−α− tβ plane forMH = MH± = 500 GeV and three different
values of pseudoscalar masses MA = 100 GeV (blue), 200 GeV (purple) and
300 GeV (gray). Right: The effect of a non-vanishing quartic coupling λ6 on
the parameter space in the alignment limit cβ−α = 0. Figure from [46].

requires sizable quartic couplings and is therefore constrained by perturbativity and
unitarity.

In the left panel of Figure 4.4, we show the parameter space allowed by stability, uni-
tarity and perturbativity constraints in the cβ−α− tβ plane for MH = MH± = 500 GeV
and three values for the pseudoscalar mass MA = 100 GeV (blue), 200 GeV (purple)
and 300 GeV (gray). Taking into account the constraint from electroweak precision
observables, which force |cβ−α| . 0.2 for these masses, it results in the constraint
0.4 . tβ . 3.

We note, that this constraint can be considerably relaxed in more general models which
allow for additional quartic couplings. As an example, we show the effect of adding
the quartic coupling ∆VH = λ6H

†
1H1H1H

†
2 + h.c. to the potential in Eq. (2.10) and

varying it for real values λ6 = 0 − 3 in the right panel of Figure 4.4. In this scenario,
larger values of tβ are possible for specific values of λ6, but are still disfavored with
respect to smaller values of tβ = O(1).

Additional perturbativity constraints can be derived for the Yukawa couplings in Eq. (3.15).
In particular the top Yukawa coupling becomes non-perturbative for tβ . 0.3 for
2HDMs of type I and type II. This constraint is automatically fulfilled once the stability,
perturbativity and unitarity constraints on the scalar potential are taken into account.

46



4.5 Collider Searches

4.5 Collider Searches
Collider searches for the heavy resonancesA,H± andH directly constrain their masses
and couplings to Standard Model particles. We consider only the alignment limit
cβ−α = 0, preferred by Higgs and electroweak precision bounds. In this case, for the
pseudoscalar A, only couplings to fermions are relevant. The branching ratios, shown
in Figure 3.2, are dominated by the decay to dark matter, therefore the exclusion limits
are very weak. Direct searches for the new heavy resonances can only exclude val-
ues of tβ . 0.3, which is significantly below the exclusion limits of mono-X searches
presented in the following section [46].
The masses ofH± andH are pushed to high values by flavor and electroweak precision
observables such that in our setup collider searches are not able to put stronger bounds
on them [46].

4.6 Direct Detection
After constraining the scalar part, we use results from direct and indirect detection
experiments and the requirement of getting the correct relic density to constrain the
parameters of the dark sector. All numerical calculations in this and the following two
sections are carried out with MicrOmegas version 4.3.1 [20, 21] based on a CH output
written with FeynRules version 2.3.24 [54, 55]. The corresponding FeynRules2 file will
be uploaded to the FeynRules database soon. The coefficients of the Yukawa part are
checked and agree with [42]. Likewise, the trilinear and quartic Higgs self-couplings
are in full agreement with the results in [56, 57, 52].
Modern direct detection experiments, like XENON1T or LUX, give the strongest con-
straints to the WIMP-nucleus cross sections. For example, they exclude scalar portals
for a wide range of parameter space. But scattering amplitudes from interaction struc-
tures proportional to f̄γ5f are velocity suppressed and, therefore, vanish for cold dark
matter [34, 33]. If this structure appears at least in one vertex of the scattering diagram,
the corresponding couplings are effectively not constrained by direct detection experi-
ments. In our model only Re(Cχ), or Re(Cnew

χ ) after chiral rotation, are constrained, as
they lead to scalar couplings of the Standard Model fermions to χχ̄ via h and H .
For an upper bound on Re(Cχ) the spin-independent χ-nucleus cross section is com-
pared to the newest exclusion limit at 90% confidence level from the XENON1T ex-
periment [30]. The spin-dependent cross section is found to be zero in our model. For
simplicity we only considered the best value of σXENON1T

χ−nucleon ≈ 10−47 cm2 for mχ ≈ 30
GeV and neglect the mass dependence of the measurement, cf. Figure 1.5. Therefore
for higher dark matter masses we slightly overestimate the exclusion limits. In the
alignment limit ghχ has its maximum at tβ = 1 while the couplings to Standard Model

2It is based on the FeynRules model file ”The general Two-Higgs Doublet Model” from http://
feynrules.phys.ucl.ac.be/view/Main/2HDM.
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4 Experimental Constraints

fermions are constant. Therefore, the strongest bound for Re(Cχ) is obtained for tβ = 1
and mχ = 30 GeV. In this case, we found Re(Cχ) . 1.1 × 10−2. For other mχ or tβ ,
slightly higher values of Re(Cχ) are allowed, but not considered here. It should be
mentioned that for mχ < mh/2 measurements of the Higgs couplings, presented in
Section 4.1, lead to stronger constraints on Re(Cχ). For the pseudoscalar mediator,
with couplings proportional to Re(C5) the dark matter-nucleus cross section is zero, as
expected.

4.7 Relic Density

As mentioned before, direct detection experiments are not able to constrain pseudoscalar
mediators with couplings proportional to C5f̄γ5f . The requirement of getting the cor-
rect relic abundance Ωχh

2 is a better way to constrain the dark matter parameters mχ

and C5.
In order to estimate the order of magnitude of C5 for reasonable values of the relic
density, we scan over C5 and mχ for tβ = 1 and several pseudoscalar masses MA

between 80 and 350 GeV. In Figure 4.6 we show plots for MA = 160 and MA = 250
GeV. In a second step a scan over mχ and tβ with fixed values for Cχ, C5 and various
values for MA is performed. Again plots for MA = 160 and 250 GeV are shown in
Figure 4.7 and 4.8. Here the tβ dependence and differences between 2HDMs of type
I and II are evident. All constraints on the scalars and mixing angles derived in the
previous sections are considered.
We consider a value for the dark matter relic density to be reasonable, if it lies between
0.3 and 1.1 times the actual value (Ωχh

2)Planck = 0.1198 ± 0.0015, measured by the
Planck satellite with very high precision [5]. This is justified because we do not demand
that χ is the only, but just a significant component of the dark matter abundance.
First, we sketch the derivation of the annihilation cross section for our main dark matter
annihilation channel for a better understanding of the numerical results presented in the
following. The annihilation cross section is directly connected to the relic density as
shown in Section 1.3.

4.7.1 Calculation of the Annihilation Cross Section

The main annihilation channel for the dark matter is χχ̄→ A→ bb̄, the corresponding
Feynman diagram is shown in Figure 4.5 [51]. In the following we derive the cross
section of this process at first order to get a better understanding of the relic density
distributions shown below.
The tree-level matrix element for this process reads [15, 58]

M = v̄s(p
′) gA5 γ5 us′(p)

i

q2
A −M2

A − iMAΓA
ūr(k)

κAdmb

v
γ5 vr′(k

′) , (4.7)
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p′
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Figure 4.5: Feynman diagram for the process χχ̄→ A→ bb̄, which is the most important
annihilation channel for the relic density. Drawn with [51].

where ΓA is the total decay width of A calculated from the partial widths in Eq. (3.32)
to (3.35). For further calculations, the following trace identity for averaging over the
spins will be helpful∑

s,s′

v̄s′(p
′)γ5us(p) ūs(p)γ5vs′(p

′) = Tr [(�p
′ −mχ)γ5(�p+mχ)γ5]

= −4
(
pp′ +m2

χ

)
= −2 (p+ p′)

2
. (4.8)

The spin-averaged squared matrix element, using the result in Eq. (4.8), is given by∑
s,s′,r,r′

|M|2 = g2
A5

(κAdmb

v

)2 1

|q2
A −M2

A − iMAΓA|2∑
s,s′,r,r′

(v̄s′(p
′)γ5us(p) ūr(k)γ5vr′(k

′)) (ūs(p)γ5vs′(p
′) v̄r′(k

′)γ5ur(k))

= 4 g2
A5

(κAdmb

v

)2 (p+ p′)2 (k + k′)2

(q2
A −M2

A)
2

+M2
A Γ2

A

. (4.9)

For the overall cross section one has to sum over the color charges, which leads to an
additional color factor Nc = 3 only for the quarks in the final state, as χ does not carry
a color charge. The annihilation cross section reads

σann =
1

16πs

√
1− 4m2

b/s

1− 4m2
χ/s

∑
spins,color

|M|2

=
Nc

4π

√
s− 4m2

b

s− 4m2
χ

(gA5 κAdmb

v

)2 s

(s−M2
A)

2
+M2

A Γ2
A

, (4.10)

where we have introduced the Mandelstam variable s = (p+ p′)2 = (k + k′)2.
For the relic density the thermally averaged annihilation cross section 〈σannv〉 is needed.
In the non-relativistic limit, where s = 4m2

χ and v =
√

s
m2
χ
− 4, it is in good approxi-
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mation given by

〈σannv〉 ≈ σann v =
Nc

4π

√
s− 4m2

b

mχ

(gA5 κAdmb

v

)2 4m2
χ(

4m2
χ −M2

A

)2
+M2

A Γ2
A

.

(4.11)

It is easy to see that 〈σannv〉 has a maximum for mχ = MA/2 and therefore, the relic
density is minimal around this point, called (pseudoscalar-) pole. A similar result can
be obtained by taking h as the mediator, leading to a minimum of Ωχh

2 around mχ '
mh/2.

4.7.2 Results and discussion
In this section the numerical results calculated with micrOmegas version 4.3.1 [20, 21],
based on a CH output written with FeynRules version 2.3.24 [54, 55], are presented for
MH = MH± = 500 GeV and cβ−α = 0 as derived above.
Figure 4.6 shows contours of constant relic densities in the mχ-C5 plane with MA =
160 GeV (left) and MA = 250 GeV (right), and tβ = 1, and the results are valid for
2HDMs of type I and II. The dominant structure is the pseudoscalar pole at mχ .
MA/2, where the annihilation is very efficient as shown above, and therefore, the cou-
pling has to be very small to get reasonable values of Ωχh

2, which are drawn in green.
For the mono-X searches at the LHC, discussed in the next section, A should be able
to decay on-shell into χ̄χ, therefore values of mχ ≤ MA/2 are preferred. In this mass
region no fine tuning is needed, as C5 can be chosen between roughly 0.25 and 2.5.
After the order of magnitude ofC5 is fixed, we look at the tβ dependence and differences
between the two types of 2HDMs. Figure 4.7 shows the relic density in the mχ − tβ
plane for MA = 160 GeV (left) and MA = 250 GeV (right) with Re(C5) = 0.37, or
Re(c5)

Λ
= 1.5 × 10−3 GeV−1, respectively, and all other couplings equal to zero in a

2HDM of type I. The corresponding plot for a 2HDM of type II is shown in Figure 4.8.
The regions of reasonable values of Ωχh

2 are marked in green and form two bands, one
for mχ < MA/2 and another one for mχ > MA/2. As said above, the first region is
preferred. The red shaded area marks mχ < Mh/2, which is disfavored from Higgs
measurements. For both types the relic density is small near the pseudoscalar pole
mχ = MA/2, because the annihilation is very efficient as calculated above.
In both types the main decay of A is to bb̄ below the top threshold, and therefore the
tβ-dependence is inverted between 2HDM of type I and II. In models of type I values
of tβ < 1 are favored, which are excluded by other experiments. The plot shows a very
narrow band of reasonable values around the pseudoscalar pole for tβ > 1. A 2HDM
of type II is preferred as is leads to wide regions with reasonable values of Ωχh

2 for
tβ & 1. The relic density also favors tβ < 10 like other constraints and shows no
(visible) dependents on cβ−α, because the pseudoscalar couplings only dependent on
tβ .
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Figure 4.6: Relic density for MA = 160 GeV (left) and MA = 250 GeV (right), tβ = 1,
in dependence of Re(C5) and mχ. All other couplings are zero and MH =
MH± = 500 GeV and cβ−α = 0. The green band marks values of Ωχh

2

between 0.04 and 0.13. At the pole very small couplings are needed because
of the efficient annihilation there.
The light purple region is excluded from the CMB bounds and the dark purple
region from the proposed CTA results.
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Figure 4.7: Relic density for MA = 160 GeV (left) and MA = 250 GeV (right) with
Re(C5) = 0.37 and all other couplings equal to zero, MH = MH± = 500
GeV and cβ−α = 0 in a 2HDM of type I. The green band marks values of
Ωχh

2 between 0.04 and 0.13.
The red shaded area for mχ < Mh is disfavored from Higgs physics, see 4.1.
The light purple region is excluded from the CMB bounds and the dark purple
region from the proposed CTA results.
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Figure 4.8: Relic density for MA = 160 GeV (left) and MA = 250 GeV (right) with
Re(C5) = 0.37 and all other couplings equal to zero, MH = MH± = 500
GeV and cβ−α = 0 in a 2HDM of type II. The green band marks values of
Ωχh

2 between 0.04 and 0.13.
The red shaded area for mχ < Mh is disfavored from Higgs physics, see 4.1.
The light purple region is excluded from the CMB bounds and the dark purple
region from the proposed CTA results.

Even though we concentrate on mχ < MA/2 for the collider searches, we shortly
explain the behavior of Ωχh

2 for higher dark matter masses. At mχ ≈ mA+mh
2

the
decay channel χχ̄→ hA opens and the total annihilation cross section increases again
and therefore the relic density goes down. Above mχ ≈ mt, the momentum transfer
is high enough to enable the pseudoscalar A to decay to an on-shell top quark pair.
Opening this decay channel increases the cross section significantly and causes a sharp
descend in the relic density. It depends on the mediator mass which channel opens first,
for MA . 215 GeV it is χχ̄ → hA and for higher masses it is χχ̄ → tt̄, which can
be seen in the plots for MA = 160 GeV and MA = 250 GeV in Figure 4.7 and 4.8.
They can be distinguished as the coupling to hA has no tβ-dependence. This is valid
for 2HDMS of type I and type II. Both effects explain that the relic density reaches
reasonable and even smaller values for high mχ.
In all cases we find sets of parameters which result in reasonable value for the relic
density without the need of fine tuning. Or the other way around, if MA, Cχ and C5 are
fixed, wide regions of mχ and tβ are disfavored.
We shortly discuss the effect of varying the different parameters in a 2HDM of type II.
Always one parameter is changed at a time and the described effects add up.
Changing the value of MA shifts the region of reasonable values of Ωχh

2 to values
around mχ = MA/2, as shown in Figures 4.7 and 4.8. Increasing Re(C5) moves the
left (right) band slightly to the left (right) and broadens it. Decreasing it leads to the
opposite effect. Setting Im(Cχ) ≈ Re(C5) and therefore allowing for a CP violating
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coupling of A to χ has no visible effect on the relic density. Choosing it significantly
higher, broadens and flattens the band of reasonable values but does not change the
structure.
Adding a coupling to h by setting Re(Cχ) ≈ 1.1 × 10−2 (the highest value allowed
by direct detection experiments) leads to an additional Higgs pole, a small vertical
band with a reasonable density at mχ ≈ mh/2, and a smooth transition to the former
distribution. For much higher values of Re(Cχ), ignoring the direct detection bounds
for a moment, mχ would get a significant contribution from the Higgs mechanism, see
Eq. (3.5). This leads to a tβ dependence of mχ and distorts the distribution.
The last coupling parameter Im(C5) again breaks CP and is more complicated, because
it generates a complex mass term. To prevent this, it is necessary to perform a chiral
rotation and field redefinition as described in Section 3.2 and to use mχ,rot, given in
Eq. (3.10), instead of mχ. The chiral rotation also induces a value for Re(Crot

χ ). The
direct detection exclusion limits lead to Im(C5) < 3.7 × 10−2 for Re(Cχ) = 0, or
Im(c5)

Λ
< 1.5

104GeV . The Higgs pole is wider than in the case above, it covers mχ ≈
58 − 62 GeV, while the rest is nearly unchanged. For higher values, again ignoring
direct detection bounds, the whole plot is distorted.

4.7.3 Further Operators

Our calculations for direct detection experiments allow for a maximum value for all
three couplings of ≈ 1.5× 10−5 1

GeV , which corresponds to Re(Cχ) . 3.7× 10−4.
The influence on the relic density distribution is similar to choosing higher values of
Re(cχ), so the extra operators do not give rise to new phenomena. Just the Higgs-
pole has a slightly different shape. Therefore it is reasonable to skip a more detailed
discussion.

4.7.4 Higher Order Insertions

As shown in Figure 4.9 for a pure pseudoscalar mediator with MA = 160 GeV, where
only Re(c5) is unequal to zero, the band of reasonable values for the relic density is
nearly vertical for tβ > 3 in the n = 2 case, in contrast to the band for a single insertion
of H†1H2.

4.8 Indirect Detection
As mentioned in the introduction, indirect detection experiments search for effects of
dark matter annihilation processes on different observables. For example this could be
done by searching for annihilation remnants or the effects on the CMB.
We consider constraints on the total dark matter annihilation cross section, which are
derived from CMB measurements and the new Cherenkov Telescope Array (CTA). To
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Figure 4.9: Bands for Ωh2 between 0.1 and 0.12 for the n = 1 and n = 2 cases, where
only Re(c5) is unequal to zero, but the actual values are not compatible because
of the different scaling, and MA = 160 GeV. Darker regions have lower values
of Ωχh

2.

avoid a significant reheating of the CMB, the effective annihilation cross section of dark
matter to photons at the time of decoupling has to be small. The resulting bound is [5,
28]

feff
(σv)ann
mχ

. 3 × 10−28 cm3

s GeV
, (4.12)

where feff = 0.35 for b-quarks being the main annihilation product [27] and (σv)ann is
the annihilation cross section at decoupling. As the velocity averaged annihilation cross
section is (nearly) independent of the mean velocity v in our model and the velocity is
the main quantity that changes during the expansion, we approximate (σv)ann with the
annihilation cross section today calculated by micrOmegas.
Second, we consider the expected bounds of CTA shown in Figure 4.10 [26]. Again
we use the annihilation cross section calculated by micrOmegas. After matching our
parameters to the coefficients of the simplified model with a pseudoscalar mediator
and Dirac dark matter used in [26], we were able to reproduce the curves for the cross
section, shown in the upper right corner of Figure 4.10, for mχ . MA/2. For higher
dark matter masses Γ(χχ̄→ hA) gets important, which is not accessible in their model
and increases our annihilation cross section. In addition we have a dependence on tβ
with a minimum around one, therefore very small or large values of tβ can be excluded.
Both constraints are plotted in Figures 4.7 and 4.8 together with the relic density. The
region excluded by CTA (CMB) is drawn in dark (light) purple. The CMB measure-
ments lead to constraints roughly one order of magnitude stronger than the proposed
CTA results. The CMB bound excludes parameter points where the annihilation cross
section is large and the relic density is much smaller than the actual value. Therefore,
regions disfavored by the relic density calculations can be excluded.
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Figure 4.10: Excluded annihilation cross sections for different simplified models projected
by the CTA experiment. Limits are shown for two considered dark matter
density profiles (blue and orange lines) and for different mediator masses
Mmed = MA = 0.1, 0.3, 1, and 3.2 TeV. The theoretical cross sections,
shown in black and upscaled by a factor of 106 and 10 for the scalar and axial-
vector dark matter, respectively, have been reproduced for the pseudoscalar
case. The gray shaded region for mχ > 10 TeV, indicates that their NLO
approximation breaks down. Figure from [26].
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ATLAS Mono-Jet CMS mono-Z CMS tt̄-associated
Emiss
T > 250 GeV peT > 25/20 GeV Emiss

T > 200 GeV
pjT > 250 GeV mZ − 15 < mee < mz + 10 GeV lepton veto plT > 10 GeV
|ηj| < 2.4 |ηe| < 2.4 Jets ≥ 4 with pjT > 20 GeV

lepton veto peT > 20 GeV 3rd-lepton veto pe,µT > 10 GeV number b tags ≥ 2
lepton veto pµT > 10 GeV 3rd-lepton veto pτT > 18 GeV ∆φ

(
jet, Emiss

T

)
> 1.0 radians

Jets ≤ 4 with pjT > 30 GeV peeT > 60 GeV
∆φ
(
jet, pmiss

T

)
> 0.4 radians Jets ≤ 1 with pjT > 30 GeV

Top quark veto pbT > 20 GeV
Emiss
T > 100 GeV∣∣Emiss

T − peeT
∣∣ /peeT < 0.4

∆φ
(
ee, ~pmiss

T

)
> 2.8 radians

∆φ
(
jet, Emiss

T

)
> 0.5 radians

Table 4.1: Cuts implemented for the three simulated mono-X searches. Table from [46]

4.9 Mono-X searches

To derive constraints on our model parameters from mono-X searches at the LHC we
perform Monte Carlo simulations based on an Universal FeynRules Output (UFO) im-
plementation of the presented simplified model where we use FeynRules 2.3.24 [54,
55] and the NLOCT package [59] embedded in FeynArts 3.9 [60].

4.9.1 Analysis Framework and Cuts

The hard matrix elements are calculated with Madgraph5 aMC@NLO 2.5.5 [61] and
the hadron showering is performed with the Pythia 8.226 [62] interface for Madgraph
and the fast detector simulation with Delphes 3.4.0 [63]. For details about the imple-
mentation, signal generation, and jet merging see [46].
The analyses are executed in the MADANALYSIS5 framework [64] and based on
mono-jet searches from ATLAS [65] and mono-Z and tt̄A searches from CMS [66,
67]. We implemented the cuts used in these searches as far it was possible. The cuts are
listed in Table 4.1. To test the implementation Standard Model background events are
generated, like Z → νν+ jets for the mono-jet cuts, and they show reasonable agree-
ment with the measurements [46]. The cuts are explained in more detail in [46, 65, 66,
67].

4.9.2 Discussion of Mono-jet

One attempt to detect dark matter is the search for missing transverse energy (MET)
accompanied by mono-jets which refers to jets radiated of the initial state. An example
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Figure 4.11: Example of a Feynman-diagram for mono-jets production. Drawn with [51].

for such processes is given in Figure 4.11.
For the signal generation we use Madgraph5 aMC@NLO where we require one jet
radiated of the initial state next to the production of a gluon loop induced pseudoscalar
decaying into a pair of dark matter fermions. This jet is allowed to emerge either from
the hard matrix element directly or from the showering process performed with Pythia.
The dark matter particles provide the missing transverse energy we require to consider
the event as a signal.
With the current data set of 36.1 fb−1 values of tβ below 0.5 can be excluded up to
a pseudoscalar mediator mass of 340 GeV, cf. Figure 4.14. The sharp cut-off can be
explained by the opening of the top-decay channel where the pseudoscalar dominantly
decays into a pair of top quarks, see the left plot of figure 3.2.
In Figure 4.15 the exclusion limits for the mono-X searches are presented in the cβ−α-
tβ plane for pseudoscalar masses of 160 GeV (left) and 250 GeV (right). In the right
panel the decay A→ hZ becomes present for cβ−α 6= 0, so the bounds become slightly
weaker towards the edges due to this decay. In the setting of the left panel the pseu-
doscalar is lighter than mh + MZ and this decay is kinematically forbidden. As the
uncertainty of the Standard Model prediction for the total number of events in the in-
clusive signal region is mainly restricted by systematic uncertainties, the reach of this
study for higher luminosity is limited by those. So higher statistics only slightly im-
proves the exclusion bounds of this search channel [46].

4.9.3 Discussion of Mono-Z
As mentioned in the introduction initial state radiation of Z bosons is almost negligible
compared to the production of mono-jets as it is suppressed by the weak coupling as
well as its mass, cf. Figure 1.6. However, in our model a resonant enhanced process
exists, as the heavy scalar H can decay into A and Z, see Figure 4.12.
In our analysis H is generated via a top-loop, since for small values for tβ the con-
tribution of the lighter quarks give only A small correction to the total production
cross section, but enhance the calculation time. We require the Z boson to decay into
a pair of electrons whereas A should decay into dark matter. It should be stressed
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Figure 4.12: Feynman-diagram for the resonant mono-Z production via the heavy scalar
H . Drawn with [51].

that the BR(H → AZ) dominates over BR(H → AA) in the considered region of
tβ ≈ O(1). This is remarkably, as for pseudoscalar masses below 250 GeV the latter
branching ratio dominates away from tβ = 1, cf. Figure 3.1. One could expect that for
MA > 250 GeV a bump in the mono-Z spectrum in Figure 4.14 occur as the branching
ratio BR(H → AZ) suddenly increases. With the current study we can exclude values
up to tβ ≈ 1.2at this transition point as can be seen in Figure 4.14. However, close to
tβ = 1 the decay H → AA contributes only about 2% to the total width and therefore
no distinct increase can be seen.
For pseudoscalars with MA . 250 GeV values for tβ up to 1.5 can be excluded. For
increasing MA sensitivity is dropping as an H with a mass of 500 GeV tends to decay
more likely into a pair of top quarks. Sensitivity is finally completely lost at MA ≈ 340
GeV where the decay of A into a top quark pair becomes available. In Figure 4.15 the
dependence of the signal strength on tβ and cβ−α is shown. In the left panel MA is set
to 160 GeV. The strongest bounds of the mono-Z are obtained in the alignment limit
as BR(H → AZ) is maximal whereas it vanishes for cβ−α = ±1. In the right panel
of Figure 4.15 the behavior changes slightly as for MA = 250 GeV the pseudoscalar
is heavy enough to open the channel A→ hZ, which reduces the signal strength away
from the alignment limit.
Statistical uncertainties of the signal generation and the analysis are ≈ 1 − 2% and
therefore rather small compared to the ones of the mono-jet study. The scale variation
for the leading order is approximately 20% and expected to be significantly smaller at
NLO. PDF uncertainties are about 4.9% [46].
We expect that this search at 12.9 fb−1 is not yet at its full potential and slightly stronger
limits from the high luminosity run at the LHC can be expected.

4.9.4 Discussion of tt̄A Production

Heavy quark associated production of dark matter also has the potential to provide dark
matter signatures at colliders. As we implement our model as a 2HDM of type II only
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Figure 4.13: Feynman-diagram tt̄ - associated production. Drawn with [51].

the top quark production provides relevant contributions for small tβ . An advantage
of the associated production compared to the two searches discussed above is that the
production of dark matter is an interaction at tree-level, whereas the processes discussed
above are loop suppressed. On the other side getting two top quarks out of a hadron is
costly and works mainly via gluon-splitting, cf. Figure 4.13 [46].
The events are generated at leading order and along with the analysis have a statisti-
cal uncertainty of about 10%. The PDFs have a uncertainty of 8.1% and the scaling
at leading order contributes about 25%, but is expected to decrease considering NLO
corrections.
The search is most sensitive for low MA as the pseudoscalar needs to be produced and
does not emerge from a resonant decay. As soon as the top-threshold for the pseu-
doscalar is reached sensitivity is lost. This channel is comparable to the mono-jets
signal and excludes tβ < 0.5 for most of the mediator masses. As shown in Figure
4.15, for a light mediator of 160 GeV this process is independent of cβ−α whereas for
250 GeV the bounds get slightly weaker for increasing cβ−α as the channel A → hZ
becomes available 4.15. This search at 2.2 fb−1 is limited at the current state mostly by
statistics and expected to reveal its full potential at the HL-LHC.

4.9.5 Final Plots

The gray region in both panels of Figure 4.15 is obtained by the combination of con-
straints on the scalar sector derived in the previous sections. Here we assume our model
to be complete in the sense that all new physics we integrated out is to heavy or weakly
coupled to effect the derived conditions on the parameters related to the spin 0 parti-
cles. This has not to be the case as new charged particles could for example relax the
flavor bounds significantly. A further breaking of the assumed symmetry (or completely
ignoring it) would allow for additional quartic couplings in the scalar potential. This
would weaken the stability requirements, especially on tβ as shown in the right panel of
Figure 4.4. Therefore, the gray region is not necessarily forbidden, but it is interesting
to see that even the minimal approach is not completely excluded.
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Figure 4.14: Regions in the MA − tβ plane excluded by mono-Z (blue) and mono-jet
searches (green), and tt̄A production (red) for cβ−α = 0 and MH = 500
GeV. Figure from [46].
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Figure 4.15: Regions in the cβ−α−tβ plane forMA = 160 GeV (left) and 250 GeV (right)
excluded by mono-Z (blue), mono-jet searches (green), and tt̄A production
(red). The gray region is excluded from a combination of flavor and stability
requirements. Figure from [46].
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Figure 4.16: Left: Expected (dotted black line) and observed (solid black line) 95% C.L.
upper limits on the signal strength µ as a function of the pseudoscalar media-
tor mass from the monojet signal process. Figure from [69].
Right: Excluded regions in our parameter space. The white region is ob-
tained by considering the expected curve of the left figure and the black line
by considering the observation at 95% C.L.

4.9.6 Mono-Jet Bound from Theory

To validate the mono-jet simulations, we calculated the exclusion bounds in our param-
eter space directly from the data in the left panel of Figure 4.16 [68, 69].
This is possible since in the case of mono-jet searches the simplified model with a
pseudoscalar mediator, used in this paper, leads to the same phenomenology up to a
universal rescaling of the coupling strength of the pseudoscalar A to top quarks, which
changes from gq = 1 to gAtt mtvtβ

. An easy rescaling allows for interpreting the results
as exclusion limits for tβ . The branching ratios of A, dominantly decaying into dark
matter, are also more complicated in our model, since A can decay to all quarks and
leptons with a tβ-depending coupling instead of decaying only to tops with a constant
coupling3. Note that the influence is not strong because the dominant decays are the
same in both cases, nevertheless we corrected the cross section with the ratio of the two
branching ratios of the dark matter decay.
The resulting exclusion line is comparatively strong. It reaches tβ = 1, see right panel
of Figure 4.16, and into the region of the mono-Z bounds and clearly above the ATLAS
results and the ones obtained from our Monte Carlo simulations. For massesMA > 2mt

effectively no values of tβ can be excluded because A mainly decays into a top quark
pair. For MA < 2mχ there are of course no exclusion limits, as A cannot to decay into

3We do not take off-shell effects into account.
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dark matter.
The better results compared to ATLAS could be due to the fact that the analysis is opti-
mized for a pseudoscalar decaying exclusively to dark matter (under the top threshold)
in the considered mass regime and a bit more aggressive cuts.
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5 Conclusion

We study the universal properties of pseudoscalar mediators for dark matter based on a
consistent gauge-invariant simplified model with a second SU(2)L doublet and effec-
tive dimension five couplings to the dark sector. This approach has an assessable pa-
rameter space and covers a wide class of models with pseudoscalars mediators, which
are a promising candidate for searches at the LHC.
We showed that a general feature of such models is a resonantly enhanced mono-Z
signal, which leads to the dominant exclusion bounds from collider searches in a wide
range of the preferred parameter space.
We like to emphasize that there are good reasons to look for resonantly enhanced mono-
Z signals. This could clearly improve the exclusion bounds compared to the analysis of
Z-radiation from initial state. It has been shown that for initial state radiation mono-jet
signals give much stronger bounds but the resonantly enhanced production of mono-Z
signals in our model can break this hierarchy.
The scalar sector is constraint by measurements of the Higgs couplings, flavor changing
currents, electroweak precision observables, and by collider searches for heavy spin 0
particles. The assumed symmetry forbids many terms of the general 2HDM potential
and therefore, stability and unitarity requirements put strong constraints on the remain-
ing parameters, mainly the mixing angles.
For the dark matter part, the relic density is calculated and it is shown that no fine-tuning
of the couplings and masses is needed to get values slightly below the measured value.
We also take the actual exclusion limits from direct and indirect detection experiments
into account and are able to avoid them as pseudoscalar mediators lead to velocity
suppressed cross sections in direct detection experiments. All these constraints leave
out a compatible small region in the open parameter space and most of this region can
be tested in future LHC runs.
If the additional states, which has been integrated out to obtain the effective dark matter
operators, are not much heavier than the considered spin 0 particles they could influ-
ence and most likely weaken several bounds, especially those from flavor physics and
stability requirements. But even if all further particles are much heavier or very weakly
coupled to the Standard Model the presented model is valid and could serve as a proper
theory for physics around the weak scale. This is not obvious since the bounds taken
into account over constrain our model.

Outlook
A natural extension of this model is to use H†1H2 as the flavon and expand the proposed
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symmetry to the Standard Model quarks, as done in [43]. The additional dark matter
couplings and decays could relax the bounds found there and lead to interesting new
signatures.
In this thesis only CP conserving couplings are taken into account, it could be interest-
ing to investigate CP violating couplings in the dark sector and see if they might effect
the visible sector.
We mentioned two possible UV completions for an extended dark sector. It would be
interesting to see how exactly they match to our effective description and if one can find
other theories.

Acknowledgments
I want to thank my colleges of the working group for fruitful discussions and a lot of
fun in the coffee room, especially Elias for spontaneous proof reading and Martin for
nice teamwork during the whole work.
A special thank goes to Martin Bauer for excellent supervision during the last year
and to Tilman Plehn for the opportunity to get this insight into the fascinating topic of
particle dark matter and helpful advices.

64



Erklärung:

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen als
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