Department of Physics and Astronomy
Heidelberg University

Bachelor Thesis in Physics
submitted by

Sophia Vent
born in Backnang (Germany) 1999

September 2021

Expressive Uncertainties for (Generated LHC
Events

Introducing Bayesian invertible neural networks to generate a
spectrum of LHC event samples with expressive uncertainties

This Bachelor Thesis has been carried out by Sophia Vent at the
Institute for Theoretical Physics in Heidelberg

under the supervision of
Prof. Tilman Plehn

Abstract

Using machine learning to generate LHC events showed huge success for data anal-
yses. This thesis introduces Bayesian invertible neural networks (BINN) allowing
us to compute uncertainties on the generated event samples. Keeping the focus on
creating a pipeline for the BINN and observing the properties of the Uncertain-
ties for realistic LHC events to manipulate them through introducing systematic
uncertainties.

Zusammenfassung

Machine Learning Techniken zeigten grofie Erfolge fiir LHC Event Generatoren.
In dieser Thesis werden Bayesian invertierbare Neuronale Netze (BINN) eingefiihrt
um Unsicherheiten fiir die Event samples zu berechnen. Der Fokus liegt dabei
darauf eine funktionierende Pipeline fiir das BINN zu erstellen, das Verhalten der
Fehler fiir realistische LHC Prozesse zu untersuchen und die Fehler im Sinne von
systematischen Unsicherheiten zu manipulieren.

Contents

1. Introduction 1
2. Physics 2
2.1. Standard Model 2
2.2, Jets ..o 2
2.3. Z Production 3

3. Machine Learning 7
3.1. Imtroducing Neural Networks 7
3.2. Training the Neural Network 7
3.3. Invertible Neural Networks 8
3.4. Uncertainties via Bayesian INNs 10
3.4.1. Bayes Neural Network 11

3.4.2. Bayesian INN oo 12

4. Testing the BINN on LHC Events 14
4.1. Baseline 14

5. Quantifying Uncertainties 19
5.1. Error Decomposition L. 19
5.1.1. Theoretical Proof 19

5.1.2. Observed Decomposition 20

5.2. Effect of the Number of Training Epochs 20
5.3. Effect of the Training data length 21
5.4. Effect of the generated statistic 23

6. Systematic Uncertainties 25
6.1. Improvements through Manipulated Weights 25
6.2. Introducing Systematic Uncertainties through a Conditional BINN 27

7. Conclusion 31
8. References 32
9. Acknowledgments 35

A. How to BINN 36

1. Introduction

Driven by the curiosity to understand the fundamental laws of physics, high energy
particle collisions provide information about the underlying theories and proper-
ties of the fundamental particles and interactions. Scattering processes, the decay
of different particles and discovering new particles reveal the connection between
different forces and particle features. However, to test theories with experimental
data collected at particle colliders like the Large Hadron Collider (LHC) in CERN,
Switzerland we need a simulation to generate events based on a theory that should
be verified. Monte Carlo techniques have been around for decades and tools like
Madgraph [1] or SHERPA [2] are incredibly powerful tools to generate events and
compare the Standard Model to experimental data collected at the LHC. Taking
into account that the current collision energy is around /s =13 TeV, Monte Carlo
generated events can model a wide variety of different processes. But as there are
already new plans for new colliders such as the FCC (Future Circular Collider) to
reach collision energies of 100 TeV, and the upcoming Run 3 at the LHC increasing
the luminosity by far, Monte Carlo generations become computationally expensive
and time consuming. To match the number of events produced at the upcoming
Run 3 at the LHC, the need to find different methods for event generation has
increased significantly. Different types of neural networks are showing promising
results that machine learning approaches will keep up with the ever growing event
rate at the LHC and are convenient for a variety of purposes besides event gen-
eration such as jet-tagging and anomaly detection [3, 4]. Generative adversarial
networks (GAN) [5-7], variational auto encoders (VAE) [8, 9], and Invertible Neu-
ral Networks (INN) [10-15] are already applicable. Using a neural network allows
to learn a given phase space density, generated by Monte Carlo techniques [16, 17],
and generate a multitude of events once the network is fully trained.

Uncertainties are a major factor in data analysis, whether that being on the ex-
perimental side, looking at uncertainties given by detectors or the analysis itself or
on the theory side. Usual neural networks can only account for a statistical error, for
example given by the Poisson statistic. Introducing Bayesian neural networks allows
to produce uncertainties on the generated events. Computing uncertainties that go
beyond Poisson statistics, showcasing the uncertainties produced through theory or
the training itself, as the neural network is not trained to perfection. The aim of
this thesis is to introduce these Bayesian invertible neural networks (BINN)[18, 19]
for LHC events and especially the uncertainties given by the BINN and to observe
how training statistics, training limitations and systematic errors contribute to the
generated uncertainties. It is an attempt to demystifying the "black box” through
understanding the uncertainties.

The last part of the thesis is about going beyond the Standard Model, and trying
to manipulate the uncertainties by introducing new (semi-realistic) theory uncer-
tainties motivated by the Standard Model effective field theory predictions leading
to a contribution to the uncertainties.

2. Physics

2.1. Standard Model

The Standard Model is one of the best tested theories known to date. The Stan-
dard Model can be described as a gauge quantum field theory containing all the
fundamental particles- the leptons, quarks, gluons and the bosons.

Standard Model of Elementary Particles
three generations of matter interactions / force carriers
(fermions) (bosons)
| Il n

mass | =2.2 Mevic? =1.28 Gevic? =173.1 GeVic? 0 =124.97 GeVic?
charge | % % % 0 0

spin | ¥% U % C ¥ t 1 Q 0 H
up charm top gluon higgs
S

=4.7 MeVic? =96 MeV/c? =4.18 GeVic? 0
Ya -Ys = 0
« (d » (8 » 0 : @

down strange bottom photon

=0.511 MeV/c? =105.66 MeV/c? =1.7768 GeVic? =91.19 GeVic?
-1 -1 -1

@ I'® '@ || @

electron muon tau Z boson
<1.0 eVic? <0.17 MeVic? <18.2 MeV/c? =80.39 GeV/c?
@ | (-® @

electron muon tau W boson

neutrino neutrino neutrino

Fig. 1: Fundamental Particles of the Standard Model taken from [20]

Being mathematically self-consistent, the Standard Model explains three of the four
fundamental forces and incorporates special relativity. Using the Lagrangian of the
Standard Model allows to make predictions for particle collisions in search for new
particles.

2.2. Jets

Analysing jets at the LHC provides information about the hard scattering process.
A large number of particles can be created by the collision of protons, such as
quarks or gluons. Each quark or gluon carries a color charge. However, because of
the confinement, they can not exists individually as the potential energy increases
rapidly between two quarks with the distance. Therefore, they only exist in a bound
state with a neutral color charge. Which means they appear in sets of three, with
each quark carrying a different color or in pairs of two, with one quark carrying the
color charge and the other the corresponding "anti color”. To form this colorless
state, quark-antiquark pairs undergo the process of hadronization. A quark or
antiquark produced through the collision carries a fragment of the color charge. To
obey the confinement they produce other colored objects around them from the
vacuum, which happens several times. This ensemble of hadrons tend to travel in
the same direction and can be clustered into one cone, which is the jet. There are
many jet-tagging algorithms like the kr or anti — kr [21] algorithm. Analysing
the jets provides information about the particles produced at the hard scattering

Fig. 2: Feynman Diagramm for a 3 jet final state

and is therefore used to find new fundamental particles. The gluon for example
was discovered by jet tagging. As quarks are only produced in pairs there was no
explanation for a 3 jet final state. This lead to the discovery of the gluon. The
main data set consists of a three jet final state. The collsion beeing

pp — Jjj (2.1)

where j can be quarks or gluons. Figure 2 shows a quark-antiquark pair annihilating
into a intermediate particle which is decaying into a quark-antiquark pair again,
with one of them radiating a Gluon.

2.3. Z Production

The Z boson is the neutral intermediate vector boson mediating the weak force.
During the proton-proton collision it is created due to a quark-anti quark annihila-
tion. It can decay into different particle-antiparticle pairs. In this data the decay
into a muon-antimuon pair was chosen. The simple Feynman diagram is given by
Figure 3:

S
=

4q wo
Fig. 3: Feynman Diagram for the Z Production
During this process jets are also produced. The number of jets can vary. In this

particular case we allowed for final states with a variable jet number between 1 and
3. The process then becomes:

PP = [G, pD = [G5, pp — e jig (2.2)

Again, j can be quarks or gluons.
There are many possibilites of decays and annihilation processes in order to produce

Fig. 4: Feynman Diagramm for the Production of the Z Boson decaying in a muon-antimuon
pair. 2 addtional jets in the final state..

final states with a different number of jets in the final state. The different processes
rely on the initial state particles, as they can be quarks or gluons. One possible
Feynman Diagram could look like Figure 4. The final state being Z + 2 jets. The
two jets come from the radiated gluons.

Data Set

Both data sets were generated using SHERPA, at a collision energy of Ecpg =
13TeV. After generating the process the anti-kr[21, 22] algorithm was used to cluster
the jets. The end result being

3 Jets : 5.4 million events

Z + Multijet: 5.4 million Events

o Number of 1 jet-events 4 million events
o Number of 2 jet-events 1.1 million events
o Number of 3 jet-events 0.3 million events

The data set is split into 2 parts. One being the data which is used for the training
process (Train) , and the other part being used for testing (True) . For the Z +
multijet data set, the ratio between test and train was chosen to be 0.5. For the
3 jet data set it was 0.82. In general, large training sets increase the duration of
training but difficult phasespace densities profit from larger training sets.

Change of Variables

The data set provided by SHERPA consists of four-vectors. However, a change
of variables is useful to keep the symmetries of the Data collected at the LHC.
First we change from cartesian coordinates to spherical coordinates. As the experi-
ments at the LHC measure the transversal momentum we train our model on the pr

pr = \/P:+Dp? (2.3)

Furthermore, we do not train our model on the Azimutal angle

¢:Mmm(@) (2.4)

x

but rather on the difference of the Azimutal angle between particles. As for the 3
jet events :

Agij; = ¢i — ¢, (2.5)

Since it is enough to know 2 distributions of A¢;; the last can be calculated as
A¢; = A¢; j + Agjr. Taking out a degree of freedom, which translates into less
trainable parameters, speeding up the training process and the performance. The
last parameter, that is also used in LHC analysis, is the pseudo rapidity n, which is
calculated by using the polar angle

n::—lnhan(g)] (2.6)

The four vector is then given by:

E
sin(¢)pr
cos(6)pr 27)
sinh(n)pr

Last but not least, we train our model on the invariant mass m rather than on the
Energy.

The Standard Model as an EFT

Despite the huge success of the Standard Model, there are some phenomena un-
explainable by it, for example incorporating general relativity or dark matter. In
particular the failing at energies or distances where the gravitation is expected to
emerge proves that there is a theory beyond the Standard Model. Nowadays, the
Standard Model can be treated as an Effective Field Theory [23] .

The Standard Model can be described with a Lagrangian.

L= Loy (2.8)

Constructing the Standard Model Effective Field Theory (SMEFT) out of higher
dimensional operators gives a consistent EFT generalisation of the Standard Model.
The Lagrangian is then given by:

L=Loy+ LD +LO 404 (2.9)

For most analyses at the LHC, the additional terms in the Lagrangian can be
neglected, as the deviation from the Standard Model can not be observed within
the precision that is possible. Future runs at the LHC might make it possible to
observe the properties of the additional Lagrangian terms. Consider the process:

P =V = gy (2.10)

At higher energies, some S matrix elements receive contributions from boson fields.
These off-shell vertices have a non-trivial relation to LHC observables. One of the
expansions in the dimension 6 operators being proportional to p?, with p? being
the general kinematic invariant. Observing the deviation from the Standard Model
prediction given by Lgy; in future LHC runs can verify or disprove the current
theories of the SMEFT.

3. Machine Learning

Using neural networks allows to learn a given phase space density generated using
Monte Carlo techniques. Once the model is trained it is possible to generate a
multitude of events at a very high rate. For example it took several days to produce
5.4 million events for the data set consisting of Z + multijets. Our baseline model
is able to generate 5 million events in less than an hour. This chapter gives a
short introduction to neural networks and is then progressing to the pipeline for
the Bayesian neural network, allowing to computing expressive uncertainties for the
generated events.

3.1. Introducing Neural Networks

First a basic neural network (NN) is set up. The idea is, that we feed the neural
network an input and the neural network finds the transformation that maps the
input layer X to an output vector y. In the simplest form of linear layer:

G=f(Z 0" 0)=0"-F + b (3.1)

Each input x; is parametrisized by a weight #; then added a bias vector b. During
training, the neural net finds the optimal values for #; and the bias term b. A neural
net consists of multiple transformations, which are summed up into a layer. In this
case, the weights 6 are given by a matrix. Figure 5 shows the basic set up for a
neural net. The layers can be divided into three parts. The input layer, the output
layer, and the so called hidden layers in between. Deep neural nets use multiple
hidden layers to model complex distributions.

3.2. Training the Neural Network

The network has to find the best values for the parameter weights # in order to create
the most suitable output. In the best case, the output generated by the neural net
is equal to the test data set. The optimal weights are found by minimizing the so
called loss. The loss function is a tool to estimate an error between the desired
output and the output given by the NN. There are many ways to construct a loss
function according to each specific problem. Let y be desired output and § the
output given by the NN. The loss is for example given by the mean squared error:

N
Lyse = Z(y - 9)° (3.2)
n=1
The network learns by changing the weights 6 according to the loss function. Most
optimizers are derived from the gradient decent algorithm, which evaluates the
gradient of the loss at the current state and then changes the weights in the direction
of the steepest descent. Sophisticated optimizer like ADAM [24, 25] perfect the
change of the weight according to the learning rate, which determines how much
the weights change in one epoch.

neural network with multiple hidden layers

input layer Multiple hidden layer output layer

R
ORFOR
v‘l{;)“'@f’!//\ >$
"W’W‘o%f?’\

i

VAN Y
i@@'ﬁ%@‘&’ 97

A / V‘
\ o DN 4/;
9

Fig. 5: Basic Deep Neural Net

A
\

3.3. Invertible Neural Networks

Introducing invertible neural networks[13] allows to model complex distributions as
given by the LHC phase space densities. Mapping the complex LHC phase space
densities via invertible transformations to a simpler distribution in the so called
latent space allows for a simpler training process. Training the neural net in the
forward direction and then for the event generation sampling from the latent space
in the inverse direction. Let X be the LHC input data in the phase space and
Z the latent space. During training X is mapped to Z. The idea behind it is to
take a random variable z ~ pz(z) from the latent space and perform invertible
transformations on it. Let x be a random variable of our target density px in the
phase space and a f; bijective transformation.

r=fiofyo..fn(2) (3.3)

Let f be f(2) = fio fao...fx(z). fis bijective as a composition of bijective trans-
formations. Therefore we can map f: Z — X |,z — x with the density

9f(z) of ()

z Zz

-1

— b2/) det

(3.4)

px (@) = pz(2) det’

In order to have an effective generation, pz should be simple. A standard approach

is to choose a multivariate gaussian with mean value zero and a covariance as the
identity matrix. Now f has to be flexible to perform nontrivial transformations but
with a rather quick computable jacobian. This is fulfilled as we can decompose f
in a set of simple bijective maps f; (Eq 3.3). The jacobian is then given as :

n

= H det
i=1

As f; are simple mappings, each determinant is easily to compute. After training in
the forward direction, the events are generated by sampling from the latent space
and passing it through the inverse direction, allowing for a limitless generation of the
events, as long as the local GPU allows it. As of today, computational boundaries
are still a hurdle limiting the abilities of a neural net.

Afi(z)

of(z) ™"
det 0z 0z

(3.5)

Coupling Layers

An INN composes multiple transformation maps into coupling layers [26]. The
structure of a coupling layer is given in the following:

1. Split the input into two parts x = [x1, 23], 21 = (21, ..., %q), T2 = (Tgs1, -, TD)
2. compute the weights # through the NN using z;
3. compute yo; = gy, (72;) and set y; = x;. f being an arbitrary invertible function

4. return the output y as y= [y, y2]

% X

X X1 \\H\(xl) X1 y
Xy \\ 9o (x2)
\\\
Y
go(x2)
go(x3)
X2

Fig. 6: Structure of Coupling layers

This process is illustrated in Figure 6 .Note that d is in most cases chosen to be %,
but that does not have to be the case necessarily. Since y; = x; and y; is given by
transforming z; element wise the determinant Jacobian of the coupling transform
® becomes:

00\ = 9ge,
det(%) - H Ao, (3.6)

a lower triangular matrix. Fulfilling the requirements stated before, being fast
to compute and being invertible in a single pass. To ensure that every point of
the input data is being used, rotation matrices from the SO(d) are introduced in
between the coupling blocks. These are randomly generated.

Cubic Spline Blocks

Choosing the form of g for the coupling blocks is an important part of the training.
The affine coupling blocks use additive or affine transformations.

goi(Ti) = ;- i + B (3.7)

Where 6; = {a;, 5;}. They are easy to invert however lack in flexibility. Moving to a
more sophisticated block the cubic spline block[26]. In this case gg; are composed of
monotonic increasing cubic polynomials. They are still easily invertible but enhance
the flexibility in our model. gy; map [0,1] +[0,1] [26] ensuring the first proposition of
being invertible. During training the parameters 6; are optimized by maximizing the
Log Likelihood .Which is equivalent to minimzing the Kullbeck Leibler Divergence.
Given a dataset of N samples, the loss function is given by:

Ly =—Y_log(px/(x:;0)) (3.8)

=1

Let f denote the overall mapping. We derive

N
_ f H(xi0)
_ 1 . [2)
Lyr =— ;bg(pz(F~Hxi:0)) + log |det B e— (3.9)
5tt
3.4. Uncertainties via Bayesian INNs
Basic NN Bayesian NN

Input layer hidden layer output layer Input layer hidden layer output layer

Fig. 7: Comparison between a Neural Net and a Bayesian Neural Net

10

INNs showed promising results on various different data sets. However, once the
network is fully trained we only get access to a statistical uncertainty given by
the square root of events in a given bin. The INNs give us an understanding of
the properties of the underlying data but don’t provide a tool to compute expres-
sive uncertainties caused by the network itself. Of course one could train multiple
INNs and compare the results to get an understanding of the uncertainties and
fluctuations between different trainings, however this is time consuming and com-
putationally expensive. Therefore, we propose a different approach using Bayesian
INNs. This chapter gives an intuitive approach to Bayesian Neural Networks (BNN)
and then evolves into the Bayesian Invertible Neural Network set up.

3.4.1. Bayes Neural Network

To get an intuition for what a Bayesian neural network [19, 27-29] actually is, let us
consider a very basic neural net for a linear layer as described in chapter 3.1. Now 6;
are the parameters learned during training. In our normal neural network we would
get discrete values for #;. However, going to a Bayesian setup we assume that each
parameter # is not a discrete value but rather given by a probability distribution. In
general the distribution py could have any shape. Since this setup calls for over 30
million trainable parameters it is close to impossible to learn complex distributions
for all of them. This is why we propose that each weight # is modeled by a gaussian
distribution 6; ~ N (p;, 0;). For every 6; the network learns a mean value p; and
a standard deviation ;. Going back to equation 3.1 our output y is no longer a
discrete value but also a given by a probability distribution y ~ f(&, 5, b). The un-
certainties propagate through the neural network giving us a probabilistic output.
As for simple problems like the linear regression, Bayesian neural nets provide a
direct estimation in the output.

Let D be a dataset consisting of N pairs of observations (z;, ;).
D ={(z1,y2), ..., (xn,yn)} and fy the mapping between x; and y;. Placing a gaus-
sian prior over the weights with some observation noise gives us:

0 ~ p(0) (3.10)
Yil0, i ~ p(yi|0, z;) (3.11)

In most cases the posterior p(f|D) is highly intractable. For a BNN a variational
inference [12] can approximate the posterior with a tractable family of distribu-
tions ¢,(#). The parameters 6 are optimized by minimizing the Kullback-Leibler-
Divergence:

min KL(g,(6), p(0|D)) (3.12)

Since the posterior is intractable, we use Bayes Theorem to reformulate equation
3.12

11

KL(a5(0).(01D)) = = [by (0)10g X2 D (3.13)

—/d€q¢(9 log p(D|0) — /d9q¢ log—g+logp(D)
(3.14)

Solving for log(pr), we find a lower bound:
log (D) = KL(46(6). pOID) + [dB4u(6) g p(DI6) ~ KL(0s(0),p(6)) (315

> / d64,(6) log p(D]9) — KL(q,(0), p(6)) (3.16)

Maximizing this evidence lower bound (ELBO) then is equivalent to minimizing
equation 3.12, giving us as the objective without the intractable posterior:

N
Liiso = Y _{1og p(yilf, 7:))o~g,0) — KL(g4(6), pb) (3.17)

=1

Turning the inference problem into a optimization problem, allowing us to use
gradient decent techniques.

3.4.2. Bayesian INN

Increasing the complexity to high dimensional data sets makes it impossible to trace
the uncertainties propagating through the network. Replacing every deterministic
function gy as described in subsection 3.3 to a probabilistic function and placing a
prior over the weights with some observation noise

0 ~ p(0) (3.18)
gives us the generative pipeline
Of Yz 0
o6~ p(a16) = pa (a0 aen | 2L 20 (3.19)
Combining equation 3.9 and 3.17 we can derive the optimization Problem:
N
L= (logpx(2i0))omq,0) — KL(4s(6), p(0)) (3.20)
=1
N
_ Of Yz 0
= gl o)+ tog der 250y kLG, 0)00) (320

=1

Every part of the lossfunction is by design easy to compute.

12

Translating equation 3.19 into practice means, we generate events in the inverse
direction. The events generated depend on 6. In the normal INN case, we would
generate events knowing each weight 6; as a fixed value. Now for every 6; we draw
a number from the learned normal distribution N (;,0;). Each giving a slightly
different output. First we generate a given number of events and bin the events
into a histogram. This process is done multiple times, for example 50 times. We
than build the mean value of these histograms and calculate the standard deviation.
Huge deviations in the parameter space lead to bigger uncertainties. It could be
seen as equivalent to training 50 networks at the same time and comparing the
output.

13

4. Testing the BINN on LHC Events

4.1. Baseline

This chapter is about generating events of a realistic data set as described in chapter
2. Using BINNs involves a lot of fine tuning regarding the hyperparameters. The
BINN is a lot more reactive to changes in the hyperparameters compared to the
INN. Although I will not discuss every hyperparameter, a short overview of the
hyperparameters used for the baseline is shown in table 1. These are the parameters
for the multijet data set as it was the main focus of this thesis. The hyperparameters
for the Z+ multijet data set remain the same except for the number of trainable
parameters.

Hyperparameter Value
learning rate 2e -5
optimizer ADAM [24]
bin number 240
number of blocks 20
internal size 265
layers per block 6
learning rate scheduler one cycle [30]
coupling block cubic[26]
batch size 1024
number of trainable parameters 30 Million

Tab. 1: Hyperparameters for the BINN

Like the INN the BINN has no difficulties learning the pr distributions 8 and also
the n distributions look reasonable. Because the BINN models the distribution so
effectively, the uncertainties are rather small. Looking at the 4" row each plots in
Figure 7?7 we can observe that the relative error is rather small. The relative error
is small for bins with a large number of events, like in the bulk of the pr or the peak
in the 7 distributions. The relative error increases, as one moves to areas where
the statistic becomes rather low like in the tails of the distributions. The data set
fluctuates more in these regions and therefore the generated events fluctuate more.
The BINN does exactly what it should do, increasing the uncertainties. However,

the BINN has difficulties in other distributions such as the A®; ;, 4,5 €{1,2,3} i # j
9. The network has trouble learning the smaller peaks and just flattens the curve.
This could not be improved further with hyperparameter tuning. Looking at the
relative errors, they do not seem to be affected by the failure of the network. The
error does not increase, even though the performance lacks in multiple areas. This
could also be observed in the An, ; distributions. The network has trouble learning
the dip in the middle, but is sure that the parameters are right, leading to small
relative uncertainties. Which was the expected behaviour since the model is not

14

s o
1 1

=]
1
-~

normalized

f I9C3 $e¢

BRI it SeancSude aadi

$8512890

R

PR S

. . g
0 20 10 60 80 100 120 6 4 2 0 2 4 6
pra [GeV] m

Fig. 8: BINN Baseline for 3 jet events. Top row shows the Histogramm, comparing the
BINN, the true data and the test Data. Below is the ratio between the true data and
the data generated by the BINN. The errorbars for the true data are given by the
squareroot of the Number of events per bin. The fourth row shows the relative error
and the last row a normed deviation between the true and model distribution

able to learn these observables correctly in the first place using an INN.

Looking at the correlations between two observables shows that the BINN has a lot
of room for improvement (Figure 10). Especially the topological problems like the
"hole” like distributions highlight the weaknesses of the BINN. Since the focus is
on the properties of the uncertainties, we declared the baseline as good enough to
study the uncertainty quantities further. Working with this data set allowed to get
an understanding of the hyperparameters.

Similar problems occur in the second dataset. Due to it consisting of of three
different types of events, the additional challenge to distinguish the different jets
adds to the difficulty and complexity of the model. The network architecture is
slightly different since one network is trained to generate puy, ps, ji1 and is given
the number of jets as a condition. For each additional jet, another network is
trained. It is conditioned on the training observables of the previous networks and
the number of jets. Essentially it could be seen as training 3 networks at once,
one for each possible number of final state particles. The network learns the pp
distributions shown in Figure 11 very well. Going to more difficult distributions like
the A¢; ; shown in Figure 12 shows, that the network has again difficulties getting
the Distributions right. Figure 12 shows the effect of low generated statistics well.
When the events are generated, the ratio between the different number of events
for each number of final state particle should be equivalent to the ratio given by the

15

0.125 4
0.20 1
0.100 A
= S
N = .07
= 0.15 S
g £
= 5 0.050
2 =
0.10 4 0.025
0.000 4
onflls;g~ '—::’(11093] HI__!_‘_— e = TE%EU “
< VY3 — 100y 0990000, 3%%s, 0% 0855 19000000]
= =00 B REET R W R tatsl
< g = ikdihipacee MIHHIT
5 x 1
4z 4x10°2 4z 10°4
EE;xm*’ ;5][}’]
g 107" g 100
EP 4z 101
BESURS %5}3723 W
g g : : : r :
—10 -5 0 5 10
Aoz Aniz
Fig. 9: BINN Baseline for 3 jets one dimensional observables
Train True INN
6 0.030
0.03 4
0.03 0.025
- 2 -
g 0.02 T 0.020 g
0.02 5 028 =
g g &0 0.015 £
3 8 8
= = -2 0.010 =
0.01 0.01 .
—4 0.005
0.00 0.00 -6 0.000
-5 0 5
2
INN
3
0.030
0.05 0.05 9
0.025
0.04 < 0.04 5 1 5
2 S ST 0.020 §
= 003 < 003 < o0 E
4 g <4 E 4 0.015 £
& 02 = 1 &
0.02 0.02 0.010
0.01 0.01 -2 0.005
0.00 0.00 =3 0.000
~10 0 10
Anag
Train True INN
6 6 6
. 5
4 0.025 4 0.025 . 0.025
0.020 0.020
5 0.020 _ 2 - 2 e
- s o8 oS
20 0015 2 0 0.01075 2 0 0.0107E
5 5 5
-2 Y 0.010 = -2 0.010 =) 0.010 =
4 0.005 4 0.005 4 0.005
¢ EESNS— W (00 -6 0.000 -6 0.000
-5 0 5 -5 0 5 -5 0 5
m m)

Fig. 10: BINN jets baseline correlations

dataset. Since we only generate 100000 Events this means we generate 74 thousand
for the 3 particle final state, 20 thousand for the for the 4 particle final state and
only 5.5 thousand for the 3 particle final state. The fluctuations are stronger for

16

Pra [GeV] pra |

Fig. 11: Z + jets Baseline pr Distribtutions for the 3 particle final state

-3 -2 -1 0 1 2

: 0
A¢u;]1 A Birjs

Fig. 12: Z + jets Baseline Ag; ; distributions. left: A¢ between the first jet and the first
muon for the 4 particle final state. right: A¢ between the second and third jet for
the 5 particle final state.

e | Nﬂ

Bl ”u i i) ;zﬁﬂw:zﬁﬁ;mxra 30 am M,,,
— 10.0 T T T g1(1183

= éz‘f 1;H%H%ﬂu%ﬁ%rﬂ#ﬁﬁﬁ WW ﬁﬁﬁ T = o] [T T T T o TR T T

ﬂ 12] W #fig:;é W

0 20 40 60 80 100 120 140 160
pri [GeV] prjy [GeV]

Fig. 13: Z + jets baseline pp distributions with 1000 generated events. left: the pp distribu-
tions for the first jet in the 8 particle final state. right: the pr distributions for the
first jet in the 5 particle final state.

lower statistics and therefore the uncertainties increase. To take things one step
further, Figure 11 displays the pr distributions for only 1000 generated counts.
Especially the plot on the left for the 3 particle final state shows that the tails
fluctuate more when compared to the tails. This effect is even more drastic in the
plot on the left in Figure 13. This behavoiur is exactly what we would expect.

17

In conclusion once the BINN learns the distributions, the generated uncertainties
are reasonable. However they are not a tool to assess the networks performance,
as the network can be far off , but being so confident that it learned the right
distribution, that the uncertainties get rather small. Seemingly, precision networks
have to be the foundation for expressive uncertainties. A well learned baseline is
crucial to quantify the uncertainties.

18

5. Quantifying Uncertainties

Building up from this foundation, the question arises which technicalities have an
impact on the uncertainties. The next chapter is about quantifying the uncertain-
ties. Every result in the following chapter was made using the 3 jet data set.

5.1. Error Decomposition
5.1.1. Theoretical Proof

According to the law of total variance, it is possible to decompose the uncertainty
given by the BINN into two parts. Looking at a single bin in a histogram of some
marginalized distribution from the INN output. We are interested in the number
of events n in that bin when N events are sampled using the INN. Let p, be the
probability that an event is inside the bin for given network weights w ~ g(w). Then
n has a binomial distribution,

ploke) = ())obta = (5.1)

The expectation value and variance are given by

(W) = 3 plnlw)n = Np. (52)
Var(n) = (n%) = ()% = Npu(1 = pu) (53)

The standard deviation of n can be decomposed as follows:

Thor = ((n = (n))?) (5:4)

with
02 e = / 4w q(w) (), — (n)?) (5.10)
Pha = [dwal)((nhs = () (.11

To get an estimate of oy, we draw samples (w,n) from the underlying distribu-
tions and calculate the standard deviation of the n. In practice, this can be done by

19

drawing weights w, generating N events using the INN with those weights. Then
we can make a histogram for the observable of interest and get n for the bin of
interest from it. This process is repeated and the standard deviation is calculated.
Therefore, oy can be identified with the usual BINN uncertainty estimate. How-
ever, this is only true when the latent space samples of the INN are drawn again
for each weights.

We can derive an analytical result for o2

“toch USING equation 5.3,

o = [Ao @) (7).~ (m)?) (5.12)
~ [dwaNa - p) ~ [dogwVa, (5.13)

_ / dw g(w){n), = (n) (5.14)

where we assumed p,, < 1 which is reasonable for a small enough bin. This is the
Poisson error from binning and matches our observations for the behaviour of the
BINN uncertainties.

5.1.2. Observed Decomposition

Identifying o, as the error given by the BINN, and o4, as the statistical Poisson
error, we observed the error decomposition, o, is inaccessible due to the com-
plexity of the model. Using again just subsets of the data, we observed the error
decomposition. The data was split into fractions as described earlier. We run 3
trainings per fraction, using a randomised split, so every training used a different
fraction of the given data using the same length. For each run the average error
was taken and the standard deviation calculated. o0,,.q was calculated taking the
quadratic difference:

2 _ 2 2
Opred = Otot — Ostoch (515)

Ostoch tends to be uncorrelated using different training data lengths as expected
since it only depends on the number of generated events, whereas o,,; and therefore
inevitably o,.eq seem to decrease with an increasing number of training events.
Having a look at the error bars in Figure 14 one can clearly see that the errors
fluctuate pretty heavily when a limited training data is used. The trend is visible
however there is no direct connection besides a decrease.

5.2. Effect of the Number of Training Epochs

Theoretically speaking, if we would have a perfect model, it can learn any distribu-
tion perfectly as long as it is trained long enough. The question is only how long
it may take. The time could range between hours and years. Unfortunately, our
model is not perfect and training it for hundreds of hours requires resources, such
as time and computational capacity, which are usually unavailable. Therefore, we

20

error decomposition for pr,1 in [65.4, 67.7] GeV error decomposition for Anss in [—-0.203, 0.203]

[} Opred b Opred
1] ® Otot
1000 A ® Otot |
0 Ostoch 800 Ostoch
¢
800 - |
4 ! | 600 ¢ ¢ é .
600 - L] ¢ | 5
° e
400 -
400 A
200 A
200 -
01 01,
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000

training size training size

Fig. 14: Error decomposition dependant on the number of training events for an arbitrary

bin
Bin values Est. rel. errors (all bins) True rel. errors (all bins)
10% 4 107 5
80 80 80
E 1
-1 £ 107! 4
60 210 60 = 60
c z < g <
z o I [SE o
: g3 g5 . g
=103 4 400 2 40 @ | 107% 4 40 ©
2
=S
20 20 10-3 4 20
E 1072
T T T 0 T T T 0 T T T 0
0 50 100 0 50 100 0 50 100
Pr.1 P11 Pr.1
Bin values
80 80 80
6000 .
-
60 = 60 = 60
c z c g <
£ s E g
= 408 g 400 7 40 ©
H
4 3
2000 20 20 T 20
0= T T 0 T T T 0 T T T 0
-5 0 5 -5 0 5 -5 0 5

Fig. 15: Uncertainties and learned Distribtions dependent on the training duration

tried to improve our training in a shorter period of time. For reference, in this set
up 10 epochs take approximately an hour. We aimed to study the effect of the
number of epochs and equivalently the effect of the training duration on the un-
certainties. As the BINN improves the performance with the training duration we
would expect a decrease in the uncertainties. To study this behaviour we trained
our model for 100 epochs, saving the data after every 10 epochs. As expected, the
training performance increases and the uncertainties decrease with an increase of
the number of epochs (Figure 15). Note that it is astonishing that the BINN learns
the shape of the uncertainties rather quick. (After 1 Epoch).

5.3. Effect of the Training data length

The data generated by SHERPA consists of 5.4 million events. This data is was
split into a training and a test set, using 82 % of it as training data for the BINN.

21

To observe the effect of a limited training data, the data was cut and shortened,
where we run multiple trainings using fractions of the initial training data. The first
fraction being equal to one batch size consisting of 1024 data points, then going up

by powers of two. .
N; =1024 - 2° (5.16)

N is the number of training points, i €{0,9} A decrease in the number of training
points leads to a decrease in the relative error. Additionally, more training data
leads also to a improvement of the learned distribution.

Bin values 19 Est. rel. errors (all bins) 19 True rel. errors (all bins) 19
104 4 218 218 218
217 217 s 217
216 -qu) . 216 g § 216 _g
z 2% 5 3 10714 255 8 2 5
§_ Q14 £ =)14 £ 5 Q14 £
10°4 £s < z
213 5 213 5 E 213 5
)12 212 = o12
L 211 211 21
T - : 210 " " " 210 210
0 50 100 0 50 100
Pr.1 Pr.1
Bin values 219 519 219
= 218 218 218
17 17 17
6000 A 2 2 z 2
215 () 216 [216 [
15 @ £ 1074 15 " 3 15 W
£ 4000 o3 o £ -
= 24e £ 2Me 2
23 8 g oz 22 §
2000 4 212 2 2 12
211 211 211
0= : = M w0 210 . . . 210
-5 0 5 -5 0 5
m m
Bin values 19 19 True rel. errors (all bins) 19
218 218 10° 4 ’_,_,_a-ﬂ-_._‘_‘ 218
6000 217 L : il 2V
20y 26 g 510 7 1 20 8
2 4000 4 215 ; § 215 ; 3 215 ;
£ 1S 2 wE 5 14 £
= 2Me = 2% 702] 2¥ e
wE " L oz o E
2000 o12 o12 = 212
21 21 1073 4 o1
0 T T T 210 T T T 210 T T T 210
-2 0 2 -2 0 2 -2 0 2
A¢13 Adi3 g3

Fig. 16: Uncertainties and learned Distribtions dependent on the training statistic

Figure 16 shows a decrease in the errors. It is somehow amazing that the BINN
is able to learn the distributions of the pr; and 7; so well even for very small
data sets of 0.02 % of the original dataset. However more difficult distributions
like the A®;; show how important a sufficiently large data set is. In the last
row of Figure 16, it is clearly visible that the network can not learn the density
correctly. Because of that the corresponding uncertainties are rather small. Once
the network has enough datapoints to outline the correct density, the errors increase
as they now have a meaning. Then with a increase of data points, the networks
performance improves and the uncertainties decrease further. In the limit of a
endless training duration and a massive data set the uncertainties should should
result in a minimized statistical uncertainty.

22

5.4. Effect of the generated statistic

Getting uncertainties beyond the statistical error is the reason to introduce BINN
in the first place. Plotting the mean value against the uncertainty displays the
scale of the uncertainty. If we were only dealing with statistical uncertainties from

binning
o= /() (5.17)

every data point would be found on this curve, as seen in Figure 10 representing the
black line. For a better visualization a double logarithmic scale was chosen. The
points are clearly above the black line representing equation 5.17. In an attempt to
quantify the uncertainties, a power law fit was chosen. But as the majority of the
points are not well represented by the fit, this proposition can be disregarded. The

P11
—— fit 0~p?, a=0.504 +0.009 250
— o=Vi 102 4

P11
— fito~u? a=0.525+0.016 . 250

— o=\u o 10°
. 200

50 100 4

— fito~p? a=0.611+0.026

— o=\

— fit 0~p%, a=0.4860.010 10 107

— o=

10t 4

O
o
OiNn

10?

Oinn

5 10

— fito~p?, a=0.441£0.018
-10 — o=y -10

— fito~p® a=0.393+0.026

— o=E -10

10! 10? 10? 10° 100 1o
Hinn Hinn e

AR»3 ARy3
—— fito~p? a=0.504 +0.004 102 { — fito~p?, a=0532£0.005 ¢ 108

ARz3

7 — fito~p?, a=0.597 +0.008

— o=Vu — o=Vu

— o=Vu

1024

ONn
NN

100 4

To" 100 10t 107 10° 10¢ e P
107t 10° 10! 102 i 10° 10! 102 10° 10* 10°
Hinn Hinn

Fig. 17: Effect of the number of generated uncertainties on the uncertainties. left column
10k generated events, middle column 100k, right column 1 million

mean value of events per bin also influences the uncertainties. Generating 10k, 100k
or 1 million events has a significant influence on the uncertainties. Starting at 10k
generated events, most of the uncertainties behave like the statistical Poisson error.
Moving to higher values of generated events shows that the uncertainties are not
well modeled by the Poisson error and must have an additional contribution. The
error increases with increasing generated statistic, suggesting there has to be some

23

sort of correlation between the uncertainties given by the BINN and the number of
events per bin as expected in Chapter 5.1.

24

6. Systematic Uncertainties

The main goal of simulations is to show the agreement of theory and nature. Go-
ing back to chapter 2, let us assume we want to prove or disprove the expansion
terms that we calculated for the S matrix elements. Of course, the contributions
are only relevant for high energy physics, like the creation or decay of the Higgs
boson. However, this is just a semi realistic toy model exaggerating the theory, and
choosing arbitrary parameters along the way. Only the general idea is motivated
by real assumptions and predictions given by SMEFT.

Motivated by EFT let us assume we have a new theory with some kind of ad-
ditional term in the pr distributions for high energies. pr.q is the distribution now
known. The new theory proposes pr = proa + f(pr) with f being some sort of
transformation. In the following chapter we want to treat this additional term as
a systematic uncertainty and build a tool to train a model conditionally on the
function.

Weighted Events

The first step is to go from unweighted events to weighted events [31]. Every event
has a given weight now and for the unaltered distribution set to one. This leads to
an additional term in the loss function.

B 2
Z N 2
i=1

Here z; are the latent space vectors, J; are the corresponding logarithms of the
jacobian determinant and B is the batch size. The weights w; are normed:

w; = w; - (Z w;)"t- B (6.2)

We assume that the weights w; can vary with log(pr) for example of the first jet.
The weights are then:

w=1+a-log(pr,j1) (6.3)

The variation is given by the parameter a. If a would be known exactly we could
simply reweight our distribution and there would be no contribution to the error
given by the BINN. Therefore, we assume that a is unknown to some degree. We
sample a from a normal distribution of an arbitrary standard deviation ¢ and the
mean value pu = a.

6.1. Improvements through Manipulated Weights

In the beginning of the training a, and therefore the weights, were computed and
used as train weights. To get an increase in the uncertainty, the weights were

25

computed and again drawn from of a normal distribution.
w ~ N (i, 0 (6.4)

p=1+a-log(pr) (6.5)

Note that this was not necessary at all and more of a bug but it lead to a happy

0.20 1

normalized
o
—
ot
1

B e T | e e e

Agpos AV

Fig. 18: Top: Unweighted distribution for A¢s 3 Bottom row: increasing the performance
via introducing noise on weights for the three jet dataset. Left a=0.02; right a=1

accident. Most of the noise averages because of the high statistic. Therefore, the
uncertainties in the tails of the pr distributions do not change at all. Unexpectedly,
we observed something interesting. As shown in chapter 4 the BINN has trou-
ble learning the A®, 5 distribution, as it flattens the peaks. If we introduced the
noise described in equation 6.5 the BINN performance in A®, 3 increased signifi-
cantly without destroying the other observables.The network seems to learn even
the "holes” in the correlations (Figure 19). Former research in image processing has

26

True

INN

; .05 . 0.030

; 0.025
-] =
- o 0.020 §
< < E
< 0.015 &
5 g
= El

0.010

0.005

X : 0.000

—10 0 10 -10 0 10

Apzg Aty Atpag
Train True

INN
3 3 : 0.04
. 0.05 , 0.05 ;
’ 0.03
004 004 -
E - - H
< 003 & 0.03% & =
3 ER E 002
S g g
0.02 = 0.02 = H
0.01
0.01 0.01
3 0.00 3 0.00 3 0.00
10 0 10 10 0 10 10 0 10
Ay Ay Aty

Fig. 19: top row showing the Baseline correlations and the bottom row the correlations after
introducing noise on the weights

shown that INNs profit from noise of the input data. However this improvement
could only be observed in this specific data set. Trying the same setup in the Z plus
multijet data set showed no improvement at all. Noting that this might be because
the A®, 5 are not learned well at all without the weights (Figure 12. Therefore,this
manipulation should be repeated once the data set is optimized. Another reason
why we couldn’t observe an effect in the Z + mulitjet Dataset might be because of
the network different architecture. As the Network consists of 3 smaller networks,
one for each additional jet. It would be interesting to try the same setup on a
different dataset, of similar complexity, using the same architecture as for the 3 jet
dataset. Due to time limitations this remains an open question on how noise can
improve the network perfomance. In general it showed that a specific manipulation
of the weights can lead to an increase in the performance. Instead of just a ran-
dom manipulation via introducing noise the performance can be increased through
concrete manipulation, pushing the weights in a distinct direction as proposed by
Theo Heimel [32].

6.2. Introducing Systematic Uncertainties through a
Conditional BINN

In the next part we want to construct a tool to allow for a variation in the py tails
after the training is completed. Using a conditional neural network [33] allows us
to train different distributions at once. As an input we do not only give the INN
the latent space variables, but also an external parameter . The set up is illustrated
in Figure 14. For this process we moved on to the second data set consisting of a
decaying Z boson and a variable jet number. The weights differ by

w=1+a-f(pr) (6.6)

27

Latent space invertible neural network Phase space

condition input: a

f—l
S
CEE——

f

Fig. 20: Conditional Neural Network

where f is a more or less arbitrary function motivated by EFT and a a nuisance
parameter and the condition input. During training we learn different distributions
by varying a. In the first approach we drew a from a uniform distribution. This
was unsuccessful, since the INN could not distinguish between the different curves
parameterized by a. To make a drastic change a was chosen to be either 1 or 0.
The network had to learn two distributions. The original one where the weights are
just one and the other, were the weights are given by w = 1+ f(pr). When the
events were generated we drew a from a normal distribution of mean value p either
being 0 or 1 for each histogram. This gives us slightly different outcome for each
histogram and adding a systematic error to the uncertainty. During training, some
functional of f has to be chosen. The goal is to keep the bulk of the py unvaried
and only change the weights in the pr tails. Motivated by EFT, either a term with
the logarithm of pr or with a quadratic expansion. Looking for a function that is
approximately zero for low values of pr and increases when going to higher values
of pr. Additionally, we want the function f to be continuous. Keeping in mind,
even though EFT is the motivation behind this tool, it is still a toy example with
arbitrary functions and arbitrary values. The best guess is a quadratic function.

f=0.0003 - (pr — 15) (6.7)

For comparison I also tried a function which is

| pr < 73.9
fle)= { log(pr) pr > 739 (6:)

The comparison between equation 6.8 and equation 6.7 is shown in Figure 21.
Equation 6.8 increases faster than equation 6.7. However 6.8 is not physical since
it is not differentiable at pr = 15. Of course, we could model a more complex
function where the weights in the bulk remain one and increase in the tails of the

28

20 1 —— w=1 +2a-0.00003(p; — 15)?
— w=1 +a-loglpr)
18 -
) 16 4
<
)
z
=14
12 1
10 -
20 40 &0 80 00 120 140 160
prin [GeV]

Fig. 21: Comparison of different weight distributions

pr. However we want to stay semi realistic to EFT predictions. The results for the
conditional BINN are shown in Figure 22. The BINN is trained once per function
and then evaluated 2 times, once for a = 0 and once for a = 1.

When the events were predicted, a was drawn from a normal distribution. As
for the parameter weights 6 each sampling leads to a slightly different outcome,
increasing the standard deviation. In Figure 23 shows the comparison between the
relative uncertainty comparing a training without a conditioning and 2 trainings
using different conditioning. While the events were predicted, a was chosen to
be 0. The outcome should be the normal unweighted distribution. Showing that
the conditional theory uncertainty leads to a contribution to the uncertainty given
by the BINN. This is now a successful tool to alter the uncertainties and add a
systematic uncertainty. Additionally we built a mechanism that allowed us to test
different nuisance parameters for a new theory.

29

" " ; " " " " :
0 20 40 60 80 100 120 140 160
prj [GeV]

normalized

Model

True

— 100

o[%

IINN
HINN
=
1
sl

.
0 20 0 60 80 100 120 140 160
prjy [GeV]

<
9

1073 4

normalized

Model

True

8[%)

pr,j [GeV]

153
|
©

normalized
T
L

A e = i

i el i 1)

i 187 S8t 'o-;“-.

0% i [TTILH

e trcsedhitatit AN ANRRE

W

20 40 60 80 100 120 140 160
prji [GeV]

Fig. 22: Comparison between predictions for different values of a. left: a=0; right: a=1 ;
top w =1+ a-log(pr) , bottom w =1+ a-0.0003 log(pr)

PT,j1

without conditioning
quadratic conditioning
—— logarithmic conditioning

OBINN/MBINN

20 40 60

80
prin [GeV]

120 140 160

Fig. 23: Comparison of relative uncertainties between a conditional BINN and the standard

BINN

30

7. Conclusion

This thesis introduced a setup to generate uncertainties for event generation via
invertible neural networks. An attempt at demystifying the uncertainties via quan-
tifying the errors was made. The most important points were:

o The uncertainties can be manipulated by the size of the training data set and
the length of the training.

o The uncertainties are correlated with the number of generated events.

o The uncertainties can be split into a statistical Poisson error o, and a
second part o,..q. We have yet to find a way to calculate op..q other than
via taking the quadratic difference. This would be great to verify our theory,
however it remains difficult.

o The statistical error is not correlated with the length of the training data set,
however 0,4 and o, decrease with an increasing number of training events.

o The performance of the BINN can be enhanced by training on weighted events
and a manipulation of the weights. This is more of a trial and error procedure
according to the specific Data set. Introducing noise to the weights worked
great for a three jet data set, but did nothing for the Z+ multijet data set.
Testing the same setup on a different architecture would be interesting project.

o Lastly, we build a tool to allow for a theory uncertainty. Allowing us to
test different EF'T theories, and adding a systematic error contribution to the
uncertainties.

Bayesian neural networks will become one of the most important tools in LHC
data analysis in the future. Increasing the overall performance via introducing a
discriminator[34] or an additional MMD[35] loss could build a powerful analysis
tool. Progressing into a precision network with expressive uncertainties will justify
using machine learning for data analysis and convince sceptics of the seemingly
endless possibilities.

Gaining more control over the uncertainties would be a great way to have some
sort of feedback if the network is learning the right densities. For future projects it
would be useful, if the uncertainties would increase when the model is off from the
target density, for example in the A¢; ; distributions. Having a tool to control the
uncertainties bound to the performance would be very helpful. Unfortunately, as
of today this is not yet possible.

To put everything in a nutshell, Bayesian INNs are another useful trick data analysts
can add to their toolbox to improve the final analysis and justify new theories.

31

8. References

1J. Alwall et al., “The automated computation of tree-level and next-to-leading
order differential cross sections, and their matching to parton shower simulations”,
JHEP 07, 079 (2014).

2E. Bothmann et al., “Event Generation with Sherpa 2.2”, SciPost Phys. 7, 034
(2019).

30. Knapp, G. Dissertori, O. Cerri, T. Q. Nguyen, J.-R. Vlimant, and M. Pierini,
“Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering
the top quark”, (2020).

“B. Nachman and D. Shih, “Anomaly Detection with Density Estimation”, Phys.
Rev. D 101, 075042 (2020).

°L. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets”, in Proceedings of the

27th international conference on neural information processing systems - volume
2, NIPS’14 (2014), pp. 2672-2680.

6A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A.
Bharath, “Generative adversarial networks: an overview”, IEEE Signal Processing
Magazine 35, 53-65 (2018).

"A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman, and T. Plehn, “GANpli-
fying Event Samples”, SciPost Phys. 10, 139 (2021).

8D. P. Kingma and M. Welling, “Auto-encoding variational bayes”, (2014).

9D. P. Kingma and M. Welling, “An introduction to variational autoencoders”,
Foundations and Trends® in Machine Learning 12, 307-392 (2019).

19D, J. Rezende and S. Mohamed, “Variational inference with normalizing flows”,
in Proceedings of the 32nd international conference on international conference
on machine learning - volume 37, ICML’15 (2015), pp. 1530-1538.

HT. Kobyzev, S. Prince, and M. Brubaker, “Normalizing flows: an introduction and
review of current methods”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1-1 (2020).

2D, J. Rezende and S. Mohamed, “Variational inference with normalizing flows”,
(2015).

131.. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L.
Maier-Hein, C. Rother, and U. Kéthe, “Analyzing inverse problems with invertible
neural networks”, (2018).

141,. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real nvp”,
(2016).

15D. P. Kingma and P. Dhariwal, “Glow: generative flow with invertible 1x1 convo-
lutions”, (2018).

16M. D. Klimek and M. Perelstein, “Neural Network-Based Approach to Phase
Space Integration”, (2018).

32

17J. Bendavid, “Efficient Monte Carlo Integration Using Boosted Decision Trees and
Generative Deep Neural Networks”, (2017).

18S. Bollweg, M. Hauimann, G. Kasieczka, M. Luchmann, T. Plehn, and J. Thomp-
son, “Deep-Learning Jets with Uncertainties and More”, SciPost Phys. 8, 006
(2020).

M. Bellagente, M. Haufimann, M. Luchmann, and T. Plehn, “Understanding
Event-Generation Networks via Uncertainties”, (2021).

2OWikimedia, Standard model, July 2006.

2IM. Cacciari, G. P. Salam, and G. Soyez, “The anti-k; jet clustering algorithm”,
JHEP 04, 063 (2008).

22M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k; jet clustering algorithm”,
JHEP 04, 063 (2008).

231, Brivio and M. Trott, “The Standard Model as an Effective Field Theory”, Phys.
Rept. 793, 1-98 (2019).

24D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization”, (2014).

2D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization”, (2017).

26C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, “Cubic-spline flows”,
(2019).

27D. MacKay, “Probable Networks and Plausible Predictions — A Review of Practi-
cal Bayesian Methods for Supervised Neural Networks”, Comp. in Neural Systems
6, 4679 (1995).

2P, C. Bhat and H. B. Prosper, “Bayesian neural networks”, Conf. Proc. C 050912,
151 (2005).
29Y. Gal, “Uncertainty in Deep Learning”, PhD thesis (Cambridge, 2016).

301, N. Smith and N. Topin, “Super-convergence: very fast training of neural net-
works using large learning rates”, in Artificial intelligence and machine learning
for multi-domain operations applications, Vol. 11006 (International Society for
Optics and Photonics, 2019), p. 1100612.

3IM. Backes, A. Butter, T. Plehn, and R. Winterhalder, “How to GAN Event Un-
weighting”, SciPost Phys. 10, 089 (2021).

32A. Butter, T. Heimel, S. Hummerich, T.Krebs, T. Plehn, A. Rousselot, S. Vent,
Controlled event generation with precision networks, Oct. 2021.

33L. Ardizzone, C. Liith, J. Kruse, C. Rother, and U. Kothe, “Guided image gener-
ation with conditional invertible neural networks”, (2019).

34K. Cranmer, J. Pavez, and G. Louppe, “Approximating Likelihood Ratios with
Calibrated Discriminative Classifiers”, (2015).

35A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schélkopf, and A. J. Smola, “A
kernel method for the two-sample problem”, CoRR (2008).

33

List of Figures

- =

15.

16.

17.

18.

19.
20.
21.
22.

23.

Fundamental Particles of the Standard Model taken from [20] . . . 2
Feynman Diagramm for a 3 jet final state 3
Feynman Diagram for the Z Production 3
Feynman Diagramm for the Production of the Z Boson decaying in

a muon-antimuon pair. 2 addtional jets in the final state.. 4
Basic Deep Neural Net 8
Structure of Coupling layers 9
Comparison between a Neural Net and a Bayesian Neural Net . . . 10
BINN Baseline for 3 jet events 15
BINN Baseline for 3 jets one dimensional observables 16
BINN 3 jets baseline correlations 16
7 + jets Baseline py Distribtutions 17
Z + jets Baseline A¢;, ; distributions 17
Z + jets baseline py distributions with 1000 generated events 17
Error decomposition dependant on the number of training events for

an arbitrary bin 0o 21
Uncertainties and learned Distribtions dependent on the training

duration 21
Uncertainties and learned Distribtions dependent on the training

statistico oo 22

Effect of the number of generated uncertainties on the uncertainties.
left column 10k generated events, middle column 100k, right column
I million e 23
Top: Unweighted distribution for A¢e s Bottom row: increasing
the performance via introducing noise on weights for the three jet

dataset. Left a=0.02; right a=1 26
Improved correlationso 27
Conditional Neural Network 28
Comparison of different weight distributions 29

Comparison between predictions for different values of a. left: a=0;
right: a=1; top w = 1+ a-log(pr) , bottom w = 1+ a-0.0003 log(pr) 30
Comparison of relative uncertainties between a conditional BINN
and the standard BINN 30

List of Tables

1.

Hyperparameters for the BINN 14

34

9. Acknowledgments

I would like to thank Tilman and Anja for giving me the opportunity to work on
such an interesting and future oriented topic. Thank you for your innovative ideas
and very helpful guidance during this time. Also I’d like to thank the whole group
for the interesting discussions and the nice atmosphere in the garden meetings.
Namely i am grateful for Theo, who provided the code basis and found every Bug
and Butterfly that i might had, answering every question along the way and helping
me out whenever he could. Last but not least i would like to thank Barry, Anja
and Theo for proof reading this thesis.

35

A. How to BINN

A guide to find the best Hyperparameters

The search for the optimal hyperparameters can be a frustrating and time consum-
ing process. This is a quick guidance to find optimal Hyperparameter and spare
frustration for future projects. If trained on the same dataset, the usual INN is not
as reactive to changes in the hyperparemters as the BINN. Certain hyperparameters
lead to instability and failure of the BINN.

Cubic spline blocks

As discussed in the Thesis, cubic spline blocks allow flexibility and a fast computable
Jacobian. However they increase the instability compared to the INN. Reducing
the number of blocks solves this problem. I found that 22 blocks is the maximal
Number of blocks before the network crashes. Note that the BINN was stable when
the affine blocks were used, independent of the Number of Blocks

Number of layers

I found that to reproduce a similar baseline result as for the INN i had to double
the number of layers. Using a small architecture has the advantage of a shorter
Training duration but the BINN really profits from using larger architectures. For
exapmle using the INN, i could get away with 3 layers however for the BINN i had
to use 6. Somehow 6 seemed to be the magic Number of layers, since the networks
performance got worse when more layers were added or taken away.

B.

36

Erklarung

Ich versichere, dass ich diese Arbeit selbststandig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.
Heidelberg, den 8. September 2021,

S

37

