
Department of Physics and Astronomy
Heidelberg University

Bachelor Thesis in Physics
submitted by

Lorenz Vogel

born in Bad Frankenhausen (Germany)

2021

JetCLR: A Self-Supervised Machine Learning Framework
for Contrastive Learning of Jet Representations

— Learning Better Observables for Jets —

This Bachelor Thesis has been carried out by

Lorenz Vogel
at the

Institute for Theoretical Physics
Heidelberg University

under the supervision of

Prof. Dr. Tilman Plehn

Abstract
The big challenge in phenomenological analysis is to find suitable high-level observables to
represent the low-level, high-dimensional data collected in experiments. Contrastive learning of
representations (CLR) recently showed great success in computer vision and audio processing.
We therefore applied the CLR method to jet physics. In this thesis we will present JetCLR, a
data-driven and self-supervised framework for contrastive learning of jet observables. JetCLR is
developed upon the SimCLR framework proposed by the Google Brain team. By minimizing the
contrastive loss function, JetCLR learns jet representations that are (approximately) invariant
to physically-motivated symmetries and that also retain discriminative information contained
in the dataset it is trained on. JetCLR is implemented using a simple fully-connected network
(FCN) as well as a more sophisticated transformer-encoder network. Using the top-tagging
reference dataset and a supervised linear classifier test (LCT), we will show that our JetCLR
framework achieves significant improvement over the jet-image representation. Furthermore,
the JetCLR representations even outperform the energy flow polynomials (EFPs).

Zusammenfassung
Die große Herausforderung in der phänomenologischen Analyse von experimentellen Daten
besteht darin, geeignete (physikalische) Größen und Merkmale, sogenannte Observablen, zu
finden, mit denen die meist hoch-dimensionalen Daten dargestellt werden können. Im Bereich
der maschinellen Bild- und Tonverarbeitung haben kürzlich Anwendungen, die auf der CLR-Idee
(contrastive learning of representations) beruhen, große Erfolge gezeigt – daher haben wir die
CLR-Methode auf Teilchenjets angewendet. In dieser Arbeit werden wir, basierend auf dem
von Google Brain entwickelten SimCLR-Framework, eine Methode vorstellen, die es ermöglicht,
durch selbst-überwachtes maschinelles Lernen geeignete Observablen für Teilchenjets zu kon-
struieren. Wir nennen diese Methode JetCLR (Contrastive Learning of Jet Representations).
Die mithilfe von JetCLR konstruierten Observablen sind dabei (annährend) invarant gegenüber
physikalisch-motivierten Symmetrien, die wir den neuronalen Netzwerken durch sogennante
augmentations präsentieren. Als Basis für unser JetCLR-Framework haben wir sowohl ein
einfaches fully-connected network (FCN) als auch ein anspruchsvolleres transformer-encoder
network verwendet. Mithilfe eines einfachen linear classifier Tests werden wir zeigen, dass die
von unserer JetCLR-Methode konstruierten Observablen bei der Identifizierung von Top-Quarks
(top-tagging) eine signifikante Verbesserung gegenüber der jet-image Darstellung liefern und
sogar die Ergebnisse der energy flow polynomials (EFPs) übertreffen.

Contents

List of Abbreviations ii

List of Figures iii

1 Introduction 1

2 Physics Background 3
2.1 Relativistic Kinematics and Kinematic Variables 3
2.2 The Standard Model of Particle Physics . 4

2.2.1 Top-Quark Production and Decay . 5
2.2.2 Tagging Boosted Hadronically Decaying Top Quarks 7

3 Machine Learning Background 8
3.1 Deep Learning and Neural Networks . 8

3.1.1 Fully-Connected Feed-Forward Networks 8
3.1.2 Activation Functions . 10
3.1.3 Training Deep Neural Networks . 10

3.2 Self-Attention and Transformer-Encoder Networks 11
3.3 Performance Measure for Binary Classification Problems 13

4 Jet Representations and Observables 14
4.1 Image-Based Approach: Calorimeter Images . 14
4.2 Theory-Inspired Approach: Energy Flow Polynomials 15

5 Contrastive Learning of Representations 17
5.1 Contrastive Loss Function . 18
5.2 Contrastive Representation Learning for Jet Physics 20

6 Experiments and Results 22
6.1 Data Simulation and Pre-Processing Steps . 22

6.1.1 Top-Tagging Reference Dataset . 22
6.1.2 Pre-Processing and Symmetry Augmentations 22

6.2 Network Architectures and Implementation Details 23
6.2.1 Training Details . 23
6.2.2 Supervised Linear Classifier Test . 24

6.3 Downstream Task Performance and Comparisons 24
6.3.1 Number of Constituents . 24
6.3.2 Temperature, Alignment and Uniformity 25
6.3.3 Representation Dimension . 26
6.3.4 Comparison with other Representations 26

7 Conclusion and Outlook 28

References 29

Acknowledgements 32

i

List of Abbreviations

ANN artificial neural network

AUC area under the ROC curve

BCE binary cross-entropy

BSM beyond the Standard Model

CERN European Organization for Nuclear Research

CLR contrastive learning of representations

CMS center-of-mass system

CNN convolutional neural network

DNN deep neural network

EFP energy flow polynomial

FCN fully-connected network

HEP high-energy physics

IRC-safe infrared- and collinear-safe

LCT linear classifier test

LHC Large Hadron Collider

MHSA multi-headed self-attention

ML machine learning

NN neural network

NT-Xent normalized temperature-scaled cross-entropy

QCD quantum chromodynamics

QFT quantum field theory

ReLU rectified linear unit

ResNet residual neural network

ROC receiver operating characteristic

SGD stochastic gradient descent

SM Standard Model

t-SNE t-distributed stochastic neighbor embedding

VAE variational autoencoder

ii

List of Figures

2.1 Standard Model (SM) of particle phyiscs . 4
2.2 Feynman diagrams for the production of top-antitop pairs 5
2.3 Feynman diagrams for the electroweak single top-quark production 6
2.4 Feynman diagrams for the electroweak top-quark decay 6
2.5 Visualization of a fat jet from a boosted hadronically decaying top quark 7

3.1 Basic structure and functionality of an artificial neuron 8
3.2 Schematic drawing of a fully-connected feed-forward network 9
3.3 Illustration of the scaled dot-product self-attention mechanism 12
3.4 Illustration of the transformer-encoder network architecture 13

4.1 Average of 25k QCD and top jet images after pre-processing 15

5.1 SimCLR contrastive learning framework for visual representations 17
5.2 Visualization of alignment and uniformity on the unit hypersphere 19

6.1 Downstream task performance for different numbers of constituents 25
6.2 Alignment loss and uniformity loss for different temperatures 25
6.3 Directly optimizing linear combinations of alignment and uniformity 26
6.4 Downstream task performance for different representation dimensions 26
6.5 Comparison of the JetCLR representations to other high-level observables 27

iii

1 Introduction

The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN)
in Geneve, Switzerland, is a proton-proton (pp) collider that made it possible to study new
kinematic regimes using center-of-mass energies of up to

√
s = 14 TeV. Studying high-energy

collisions at the LHC, for example, led to the discovery of the Higgs boson in 2012 [1, 2], which
completed the Standard Model (SM) of particle physics.

However, experimental observations such as neutrino oscillations, implying that neutrinos must
have non-zero mass [3], or dark matter and dark energy cannot be explained by the SM, which
means that theories beyond the Standard Model (BSM) are necessary.

Many of these BSM theories allow the production of very heavy resonances, which in turn
typically decay into top quarks. Top quarks produced in decays of new heavy resonances would
have large transverse momenta (pT). Hence, the identification of boosted, hadronically decaying
top quarks is an important part of the direct BSM seach in high-energy physics (HEP) [4, 5].

The big challenge for phenomenological analysis is to represent low-level, high-dimensional data
collected in experiments by high-level observables. In general, there are three conditions that
high-level jet data representations should fulfill [6]:

1. Jets have physically-motivated symmetries [7] (for example due to detector geometry or
because of relativistic space-time properties), such as rotations and translations in the
η-φ plane or low-pT noise, and we want our latent space to be invariant under these
transformations.

2. We want our high-level jet observables to retain discriminative information
contained within the low-level, high-dimensional dataset.

3. Since the search for new physics discoveries should be model-independent, we want
our jet observables to be defined in a data-driven and new-physics-agnostic manner.

Instead of using hand-engineered features, we define jet observables in a self-supervised way by
training a deep learning architecture on mapping the low-level raw input data to high-level latent
space representations [6], which will hopefully contain more abstract and useful information to
improve the downstream task performance [8].

Self-supervised models for the contrastive learning of representations (CLR), such as SimCLR [9],
TCLR [10], SoundCLR [11], or MolCLR [12], recently demonstrated that they have the ability to
learn powerful representations in the field of computer vision, audio processing, and chemistry.

In this thesis, we introduce and investigate a data-driven and self-supervised framework for
contrastive learning of jet observables, which we call JetCLR (JetCLR: Contrastive Learning of
Jet Representations). Our JetCLR model is developed upon the contrastive learning framework
described in Ref. [9]. The idea behind JetCLR is to use the contrastive loss function to construct
a mapping J → R of the jets at constituent level (J) to a representation space (R), which is
invariant to certain transformations, but which also retains discriminative information.

JetCLR learns informative representations by optimizing the contrastive loss function, i.e.
matching similar examples and pushing apart dissimilar examples. Each jet in latent space should
be close to its augmented version and far from everything else. As symmetry augmentations for
our jet data we try rotations and translations in the η-φ plane as well as low-pT modifications. The
mapping J → R is implemented by using a simple fully-connected network (FCN) and a more
sophisticated transformer-encoder network. The transformer network enables the representation
space R to be invariant to the jet constituents ordering (permutation invariance).

1

1 Introduction

In order to assess the quality of the representations learned by JetCLR, we implement a supervised
linear classifier test (LCT). Our studies and experiments were performed using the Top-Tagging
Reference Dataset, a well-established and common benchmark dataset for top-tagging architectures
[13, 14, 15]. We show that our proposed JetCLR method achieves significant improvement over
the jet-image representation [16, 17, 18] and that the representations learned by JetCLR even
outperform the theory-inspired energy flow polynomials (EFPs) [19] in the downstream LCT.

The presented results in this thesis were achieved in collaboration with other researchers and will
soon be published [6].1 The rest of this thesis is organized as follows: Chapter 2 goes over the
key concepts of Standard Model (SM) physics and top-quark properties, followed by the basics of
machine learning (ML) and neural networks (NNs) in Chapter 3. Important jet representations,
such as the jet-image representation and the energy flow polynomials (EFPs), are introduced
in Chapter 4. In Chapter 5, we briefly review the SimCLR framework proposed by the Google
Brain team in Ref. [9] and then discuss the contrastive loss function in more detail. Furthermore,
we introduce our JetCLR framework for contrastive learning of jet observables. Our experimental
setup, including details on the top-tagging dataset and the network architectures, as well as
the benchmark results are presented in Chapter 6. Finally, in Chapter 7, we summarize our
findings and give an outlook on further applications of the learned representations in unsupervised
anomaly detection tasks.

1Our preliminary results were already presented at the ML4Jets2021 workshop. The presentation slides are
available at https://indico.cern.ch/event/980214/contributions/4413523/. The JetCLR Python code will be
available and maintained on GitHub: https://github.com/bmdillon/JetCLR.

2

https://indico.cern.ch/event/980214/contributions/4413523/
https://github.com/bmdillon/JetCLR

2 Physics Background

In this chapter, we give a brief overview of kinematic variables used in high-energy physics (HEP).
We also cover the basics of the Standard Model (SM) of particle physics. Since we are using the
top-tagging reference dataset proposed in Refs. [13, 14, 15], we additionally give an introduction
to the most important properties of the top quark.

2.1 Relativistic Kinematics and Kinematic Variables

In this thesis, unless otherwise noted, we will use natural units with c = ~ = 1, as is customary
in particle physics. By combining the relativistic energy E = γm and the three-momentum
p = γβm of a massive particle of rest mass m (β denotes the particle’s velocity in units of c and
γ = 1/

√
1 − β2 denotes the Lorentz factor), one gets the energy-momentum four-vector (short:

four-momentum) of the particle:

pµ := (E, p) = (E, px, py, pz) with E =
√

|p|2 + m2 (2.1)

The expression E2 = |p|2 + m2 relates the total energy E to the three-momentum p and the rest
mass m and is therefore called the energy-momentum relation (or relativistic dispersion relation).
The energy-momentum relation can be obtained by calculating the Minkowski norm squared of
the four-momentum:

p2 ≡ ηµν pµpν = pµpµ = E2 − |p|2 = m2 , (2.2)

where ηµν = diag(+1, −1, −1, −1) denotes the metric tensor of special relativity, the so-called
Minkowski metric. The particle’s rest mass m is a Lorentz invariant quantity, which is why it is
also called invariant mass.

Using spherical coordinates with the polar angle θ ∈ [0, π] and the azimuthal angle φ ∈ (−π, π],
we can parameterize the three-momentum p = (px, py, pz) as follows:

p = |p|

sin θ cos φ
sin θ sin φ

cos θ

 (2.3)

The z-axis is defined as the beam direction and polar angle θ is the angle between the particle’s
trajectory, defined by the three-momentum p, and the beam direction. Since the laboratory
frame and the center-of-mass system (CMS) in high-energy collision experiments are conntected
to each other by a Lorentz boost along the beam axis, we introduce some variables which have
simple transformation properties under a Lorentz boost along this direction:

transverse momentum: pT =
√

p2
x + p2

y (2.4a)

transverse mass: mT =
√

p2
T + m2 m → 0−−−−−→ pT (2.4b)

rapidity: y = 1
2 ln

(
E + pz

E − pz

)
(2.4c)

pseudo-rapidity: η = 1
2 ln

(|p| + pz

|p| − pz

)
= − ln

(
tan θ

2

)
m → 0−−−−−→ y (2.4d)

While the transverse momentum pT and the transverse mass mT are invariant under Lorentz
boosts along the beam axis, the rapidity y, however, is not invariant but additive under such a
Lorentz transformation.

3

2 Physics Background

Since we are looking at ultra-relativistic particles (particles with velocities close to the speed
of light, i.e. |p| � m and therefore E ≈ |p|), we can neglect the particle masses, such that
the pseudo-rapidity η is equal to the rapidity y. In this case, the transverse momentum pT
(momentum component that is perpendicular to the beam axis), the pseudo-rapidity η and the
azimuthal angle φ are useful quantities to describe the four-momentum of a particle:

pµ =


mT cosh y
pT cos φ
pT sin φ

mT sinh y

 m → 0−−−−−−→ pT


cosh η
cos φ
sin φ
sinh η

 (2.5)

For a symmetric high-energy collision of two protons A and B (due to the high energies, the
proton masses can be neglected), the four-momenta in the laboratory system are given by:

pµ
A = (EB, 0, 0, EB) and pµ

B = (EB, 0, 0, −EB) (2.6)

Here, EB denotes the beam energy. The square root of the Mandelstam variable s describes the
center-of-mass energy ECM, i.e. the total energy available in the CMS:

ECM =
√

s =
√

(pµ
A + pµ

B)2 = 2EB (2.7)

As we can see, for a symmetric collision process the total energy is twice the beam energy.

2.2 The Standard Model of Particle Physics

Figure 2.1: The Standard Model (SM) of particle physics, which describes all known elementary
particles and three of the four known fundamental forces. Taken from [20].

The Standard Model (SM) of particle physics, formulated in the framework of quantum field
theory (QFT), describes all known elementary particles and three of the four known fundamental
forces (electromagnetism, the weak interaction and the strong force, but not gravity).

In the SM (see Figure 2.1), elementary particles are divided into fermions (spin-1
2 particles that

make up matter, i.e. quarks and leptons) and bosons (spin-1 force carriers that mediate the
fundamental forces, called gauge bosons). Photons mediate the electromagnetic interaction,
gluons mediate the strong interaction, and W ±- and Z-bosons mediate the weak interaction.

4

2 Physics Background

Quarks, gluons and their strong interactions are described by quantum chromodynamics (QCD).
Due to color confinement, quarks and antiquarks only occur in bound states, so-called hadrons.
This is because QCD is asymptotically free. Half-integer spin hadrons are called baryons. Baryons
are made up of three quarks, and each of these three quarks has a different color charge. Mesons
are integer spin hadrons and consist of quark-antiquark pairs.

In 1995, the DØ and the CDF collaborations published their evidences for the discovery of the
top quark [21, 22].They searched for the production of top-antitop (tt̄) pairs in proton-antiproton
(pp̄) collisions at the Tevatron (Fermilab, USA) with a center-of-mass energy of

√
s = 1.8 TeV.

In 2009, both collaborations announced the observation of single top-quark production [23, 24].

There are several reasons why the top quark is of particular interest to experimental and theoretical
physics: Due to its large mass, the top quark is the only quark which decays before hadronization
[25]. This gives physicists direct access to the properties of a bare quark. Furthermore, the
Yukawa coupling to the Higgs boson is of order unity [14, 25]. From a BSM physics point of
view, the top quark could give insights into possible extensions of the SM [4, 26]. For example,
many BSM physics theories predict particles and resonances that will decay to top quarks [4, 5].

The LHC at CERN enabled the possibility to study new energy regimes in proton-proton (pp)
collisions and to produce such BSM particles. Starting with a center-of-mass energy of about√

s = 8 TeV in Run-1 (2009–2013), the energy for LHC Run-2 (2015–2018) was already increased
to

√
s = 13 TeV. LHC Run-3 will start in the beginning of March 2022 and will feature a

center-of-mass energy of
√

s = 14 TeV.

2.2.1 Top-Quark Production and Decay

According to Ref. [25], in hadron collisions, top quarks are dominantly produced in tt̄-pairs through
quark-antiquark annihilation and gluon-gluon fusion via strong interactions. The corresponding
Feynman diagrams can be seen in Figure 2.2. For example, at the LHC (proton-proton collisions
at

√
s = 14 TeV) about 90 % of the tt̄-production cross section is from gluon-gluon fusion and

10 % is from quark-antiquark annihilation [25]. Feynman diagrams for the electroweak production
of single top quarks are shown in Figure 2.3. However, in hadron collisions, these processes have
much smaller cross sections [25].

q

q̄

t

t̄

g

(a) quark-antiquark annihilation

g

g

t

t̄

g

(b) gluon-gluon fusion
(s-channel)

g

g

t

t̄

t

(c) gluon-gluon fusion
(t-channel)

Figure 2.2: Leading order (LO) Feynman diagrams for the production of top-antitop pairs via
strong interactions. Top-quark pair production is dominant in hadron collisions.

While all other quarks hadronize before they decay (i.e. they form bound states called baryons
or mesons) [25, 27], the top quark decays before hadronization can occur [25]. This is because
the top quark is the most massive elementary particle in the SM: For a top-quark mass of
173.3 GeV the decay rate is expected to be Γt = 1.35 GeV [25], which leads to a top-quark lifetime
τt ≈ 0.5 × 10−24 s below the hadronization timescale. Hence, the top quark decays before it
hadronizes, i.e. before top-flavored hadrons or tt̄-quarkonium bound states can form [25].

5

2 Physics Background

q

q̄ ′

t

b̄

W+

(a) s-channel

q

g

q ′

b̄

t

W+

b

(b) t-channel

b

g

t

W−

b

(c) W -associated production
(tW -channel)

Figure 2.3: Leading order (LO) Feynman diagrams for the electroweak production of single top
quarks via qq̄ ′ → tb̄ and qb → q ′t (mediated by virtual s-channel and t-channel
W -bosons), and through gb → tW − in association with a W -boson [25].

b

t
W+

q, ν`

q̄ ′, `+

(a) In the hadronic channel, two light-quark
jets can be observed. In the leptonic decay,
a lepton and a neutrino are produced.

p

p

ν`

`+

b

q

q̄ ′

b̄

g

g
g

t

t̄

W+

W−

(b) Production of a top-antitop (tt̄) pair via gluon-gluon
fusion after a proton-proton (pp) collision and semi-
leptonic decay of the tt̄-pair.

Figure 2.4: Leading order (LO) Feynman diagram for the electroweak decay of a single top quark
via an on-shell W -boson (left) and example for the production and the semi-leptonic
decay of a top-antitop pair (right). The light quarks in the final state radiate gluons
and thus produce jets of hadrons [25].

Since the CKM1 matrix magnitude |Vtb|, i.e. the probability for a top quark to decay into a
bottom (b) quark, is estimated to be much larger than |Vts| and |Vtd|, the dominant decay mode of
the top quark is t → W +b. Top-quark decays into strange (s) or down (d) quarks are suppressed
by the very small CKM matrix elements Vts and Vtd [25].

Depending on how the two W -bosons decay, the possible decay processes of top-antitop pairs are
divided into three categories (with ` = e, µ, τ , see Figure 2.4) [25]:

1. All-hadronic channel: Both W -bosons decay hadronically to light quarks.

tt̄ −→ (W +b)(W −b̄) −→ (qq̄ ′b)(q ′′q̄ ′′′b) (2.8)

2. Semi-leptonic channel (lepton+jets): One of the two W -bosons decays leptonically to a
charged lepton and a neutrino and the other one decays hadronically to two light quarks.

tt̄ −→ (W +b)(W −b̄) −→ (qq̄ ′b)(`−ν̄`b̄) (2.9a)
tt̄ −→ (W +b)(W −b̄) −→ (`+ν`b)(qq̄ ′b̄) (2.9b)

1The Cabibbo-Kobayashi-Maskawa (CKM) matrix, or quark-mixing matrix, is a 3 × 3 unitary matrix describing
the flavour-mixing between the three different families of quarks in the Standard Model (SM) of particle physics.

6

2 Physics Background

3. Dilepton channel: Both W -bosons decay leptonically to a charged lepton and a neutrino.

tt̄ −→ (W +b)(W −b̄) −→ (`+ν`b)(`′−ν̄`′ b̄) (2.10)

Depending on the final states of the pair-production processes, there are different experimental
signatures by which the tt̄-decay can be identified: For example, two leptonically decaying top
quarks can be identified through their decay leptons and missing transverse energy [25, 27].
Another way to identify top quarks is by looking for jets containing a bottom quark (b-tagging).

2.2.2 Tagging Boosted Hadronically Decaying Top Quarks

CONTENTS 19

)2 (GeV/cχ Mass
1 10

210

]
2

 [
c
m

S
I­

p
σ

­43
10

­4110

­39
10

­37
10

­35
10

­33
10

 contact interaction)
V

CDF (O
 contact interaction)

t
CDF (O

 light mediator)
V

CDF (O

 light mediator)
t

CDF (O

XENON­100 (2010)

CoGenT (2011)
DAMIC (2011)

]2 [GeV/cχM

­110 1 10 210 310

]
2

­N
u

c
le

o
n

 C
ro

s
s
 S

e
c
ti
o

n
 [

c
m

χ

­4510

­4310

­4110

­3910

­3710

­3510

­3310

­3110
CMS MonoJet

CMS MonoPhoton

CDF 2012

XENON­100

CoGeNT 2011

CDMSII 2011

CDMSII 2010

CMS
 = 7 TeVs

­1
L dt = 5.0 fb∫

a) Spin Independent

Figure 8. First Tevatron mono-photon (left) and LHC mono-photon/jet (right)

dark matter constraints [124, 126] compared to results from DAMIC [129],

CoGeNT [130], XENON-100 [131], SIMPLE [132] , CDMS [133] and COUPP [132].

These searches use effective theories.

Figure 9. Schematic representation of the decay of a boosted top quark. The decay

products are detected with momentum in the same direction as the momentum of

the initial particle.

products can be boosted, collimating the daughter particles in a large radius jet with

a substructure reflecting the origin process. [134, 21] as illustrated in Fig. 9.

For low DM masses the dominant signal production mode is mono-jet whereas

Figure 2.5: Visualization of a Lorentz-boosted, hadronically decaying top quark in the laboratory
frame. For low-pT top quarks (left), the decay products can be resolved as three
distinct small-radius jets. For high-pT top quarks (right), the particles are collimated
in the top-quark flight direction and merge into one large-radius jet (fat jet) with a
three-prong substructure [27, 28]. Taken from [29].

In order to define a jet from the energy deposition in a detector calorimeter, so-called jet
clustering algorithms, like the Cambridge-Aachen (C/A) or the (anti-)kT algorithms, are required.
A detailed description of these jet algorithms can be found in Ref. [27].

At LHC energies, high-momentum particles can be produced, e.g. from the decay of heavy
TeV-scale resonances [5]. As visualized in Figure 2.5, the decay products of Lorentz-boosted
(high-pT) top quarks are collimated and look like one single jet. Such jets with a large geometrical
size are referred to as fat jets [27]. The difficulty in identifying boosted hadronically decaying
particles, e.g. tagging high-pT top quarks, is that the collimated decay products cannot be
resolved as distinct jets by the calorimeter anymore [5, 26]. In order to identify boosted particle
decays and to get information about the decay process, one has to study the internal structure
of the fat jets. For example: Due to the top-quark decay process (t → W +b → qq̄ ′b), a top jet
has three subjets, so-called prongs. This three-prong substructure can be used to distinguish top
jets from light-quark and gluon jets [26]. Background events originating from light-quark and
gluon jets are called QCD background because these jets can be fully described by the soft and
collinear structure of quantum chromodynamics (QCD) [26, 27].

7

3 Machine Learning Background

In the following sections, we will introduce the most important terms and concepts of deep
learning and neural network (NN) architectures. In particular, we use the same notation as in
Ref. [30]. For further reading and detailed information on deep learning Ref. [31] is recommended.

In general, a machine learning (ML) procedure consists of a dataset, a model with trainable
parameters, a loss function which defines the task, and an optimization algorithm that adapts
the model parameters in order to minimize the loss function [31].

Typical machine learning tasks are classification problems, i.e. assigning the input samples to
certain categories, and anomaly detection, i.e. finding unusual or atypical events in the dataset.
Classification problems are usually associated with supervised learning algorithms: Based on the
training samples and the corresponding ground truths (so-called targets or labels), the model
learns to make predictions for the unseen test data samples [31]. In unsupervised learning
algorithms, there are no labels. Instead, the model tries to learn useful properties or patterns in
data (e.g. in order to recognize anomalies) [31].

3.1 Deep Learning and Neural Networks

The idea of neural networks is to take a linear model, called artificial neuron, and to connect
many of these neurons in a directed graph (using non-linear activation functions), which we then
call artificial neural network (ANN), or usually simply neural network (NN) [30]. The neurons
are the nodes of this graph and are typically organized into layers.

Network parameters that are not adapted during the training algorithm, such as the number of
hidden layers (depth of the network), the number of neurons per layer (width of each layer), or
the choice of activation functions (connections of the layers), are called hyper-parameters and
must be set before training the network [31].

3.1.1 Fully-Connected Feed-Forward Networks

x2 β2 Σ ϕ(z̃)

activation
function

z

output

x1 β1

...
...

xn βn

weights
β = (β1, β2, . . . , βn)

>

bias b

pre-activation
z̃ = Xβ + b

feature inputs
X = (x1, x2, . . . , xn)

Figure 3.1: Basic structure of an artificial neuron. The neuron computes the weighted sum of
the input features xi and the corresponding weights βi and then adds the bias b to
this sum (pre-activation). Afterwards, the usually non-linear activation function ϕ is
applied to the pre-activation. The output z is called activation.

8

3 Machine Learning Background

input x1

input x2

input x3

input x4

output y1

output y2

output y3

. . .

hidden layer
z1

input layer
X ≡ z0

hidden layer
zL−1

output layer
zL ≡ Y

M1 = 5M0 = 4 ML−1 = 5 ML = 3

Figure 3.2: Schematic drawing of a feed-forward neural network composed of fully-connected
layers (so-called dense layers). Layer l = 0 is the input layer (data X ≡ z0), the
final layer l = L is called output layer (response Y ≡ zL) and the layers in between
(1 ≤ l ≤ L − 1) are called hidden layers.

Figure 3.1 illustrates the basic structure of an artificial neuron. Mathematically, the functionality
can be expressed as follows:

z = ϕ(z̃) with z̃ = Xβ + b =
n∑

i=1
xiβi + b (3.1)

Here, the feature inputs X = (x1, x2, . . . , xn) are understood as a row vector and the corresponding
weights β = (β1, β2, . . . , βn)> as a column vector. The affine transformation z̃ = Xβ + b of the
feature inputs X is called pre-activation. After this linear operation, the activation function ϕ is
applied to the pre-activation z̃. Activation functions will be discussed in more detail in the next
section. Usually, the bias b is absorbed into the weight vector as β0 ≡ b. x0 ≡ 1 is then called
the bias neuron.

An ANN which consists of many layers l = 0, . . . , L of neurons (typically L ≥ 3) is called deep
neural network (DNN). Neurons in a given layer work in parallel and neurons in subsequent
layers work in series. Therefore, we call such networks feed-forward architectures. Figure 3.2
shows a schematic sketch of a fully-connected network (FCN). Fully-connected means that each
neuron is connected to (i.e. receives input from) every neuron of the previous layer.

With m = 0, . . . , Ml we denote the indices of the neurons in layer l, i.e. layer l consists of Ml

neurons (m = 0 is the bias neuron). The output vector (activation) of layer l is represented by
zl ∈ R1×Ml (row vector). The action of layer l ≥ 1 in matrix notation is given by:

zl = ϕl(z̃l) with z̃l = [1, zl−1] · Bl , (3.2)

where Bl ∈ R(Ml−1+1)×Ml denotes the matrix of weights in layer l (the bias is absorbed into Bl via
the bias neuron) and ϕl the activation function in layer l. Before applying the activation function,
a weighted sum of the activations zl−1 from the previous layer is calculated (pre-activation).
Then, the activation function ϕl is applied element-wise to the pre-activations z̃l. Using this
notation, the formula for a single neuron is given by zlm = ϕl([1, zl−1] · Blm), where Blm is the
weight vector of neuron m in layer l. For a feed-forward network, the response Y is defined
recursively:

Y ≡ zL = ϕL([1, ϕL−1(. . .)] · BL) (3.3)

9

3 Machine Learning Background

3.1.2 Activation Functions

If the activation functions ϕl are a linear mapping then any network (with depth L > 1) is
equivalent to a single-layer neural network, since the composition of linear functions is a linear
function itself. Therefore, all layers of the neural network would collapse into one layer.

In deep learning, however, the purpose of activation functions is to introduce non-linearity to a
neural network. Non-linear activations give the network the ability to learn complex patterns in
the data and non-linear relations between the feature inputs and the desired output [31].

Historically important, for example, are the sigmoid and the hyperbolic tangent (tanh) functions.
But due to their vanishing gradient for x → ±∞, they are not suitable for learning: neurons can
get stuck in an always-firing or an always-zero state [31].

Nowadays, the rectified linear unit (ReLU), and the existing variants of it like leaky ReLU or
parametric ReLU, are the most common activation functions:

ReLU(x) := max{0, x} =
{

x for x > 0
0 for x ≤ 0

(3.4)

Since the gradient of the ReLU function vanishes for negative x, dead neurons, i.e. neurons in
the always-zero state, can still occur [31]. This issue can be avoided by using the leaky ReLU
activation function:

LeakyReLU(x) :=
{

x for x > 0
αx for x ≤ 0

, (3.5)

where α � 1 is a hyper-parameter (not trainable). Parametric ReLU (PReLU) is basically the
same as leaky ReLU, but here α is a learnable parameter, not a hyper-parameter [30].

The output activation function depends on the application of the neural network. The sigmoid
function, for example, is often used for binary classification tasks (i.e. classification problems
with just two classes):

sigmoid(x) ≡ σ(x) := 1
1 + exp(−x) (3.6)

For classification problems with multiple classes, the softmax activation function can be used for
the output neurons:

softmax(x)i := exp(xi)∑n
j=1 exp(xj) , (3.7)

with i = 1, . . . , n and x = (x1, . . . , xn) ∈ Rn. The softmax function normalizes the n output
values of the network in order to obtain a probability distribution over the output classes [31].

3.1.3 Training Deep Neural Networks

Due to memory constraints, large training datasets are usually divided into smaller subsets,
called batches. The batch size describes the number of instances per batch. The term epoch
refers to one loop over the entire dataset.

Loss Function. The loss function L, or cost function, defines the target of an optimization
problem and is therefore used to measure the performance of the model [31]. During training,
the trainable model parameters, i.e. the network weights β (including the biases), are adjusted in
order to minimize the loss function [31].

10

3 Machine Learning Background

For our linear classifier test (top jets vs. QCD jets, binary classification problem), for example,
we use the sigmoid activation on the output layer and the binary cross-entropy (BCE) loss as
implemented in PyTorch. The BCE loss for a batch with Nbatch instances is given by:

LBCE = 1
Nbatch

Nbatch∑
i=1

−yi log(ŷi) − (1 − yi) log(1 − ŷi) , (3.8)

where ŷi ∈ [0, 1] denotes the model prediction for the i-th sample and yi ∈ {0, 1} the corresponding
ground truth label. The contrastive loss function will be discussed in Chapter 5.

Backpropagation and Optimization. As already mentioned, the training goal is to minimize
the loss function L by adjusting the model parameters β. The gradient of the loss (with respect
to the parameters), ∇βL, can be computed efficiently using the back-propagation algorithm. An
optimization algorithm then uses the gradient ∇βL to adjust the model parameters β towards
the direction of steepest descent to minimize the loss function L [30, 31].

Most optimization algorithms are based on gradient descent:

β(t+1) = β(t) − τtl
(t) (3.9)

Here, τt is the learning rate in iteration t and l(t) denotes the corresponding loss gradient. The
learning rate controls how much the weights are adjusted in one iteration. Stochastic gradient
descent (SGD) computes the gradient l(t) from a random instance of the batch for every iteration,
which is computationally efficient. It should be noted, however, that stochastic gradient methods
require a decreasing learning rate in order to converge [30]. Examples for important optimizer that
use adaptive gradient descent algorithms are Adam (derived from adaptive moment estimation)
and AdamW (Adam algorithm with weight decay).

3.2 Self-Attention and Transformer-Encoder Networks

The transformer network is a sequence-to-sequence architecture, consisting of an encoder and
a decoder, which entirely relies on an attention mechanism [32]. Originally, the transformer
network was introduced for neural machine translation [33, 34].

Since we do not want to construct new sequences or reconstruct the inputs, we only use the
encoder part of the transformer architecture described in Ref. [32] to obtain the representations.
In addition, we do not use position encoding. The building blocks of the transformer-encoder
network illustrated in Figure 3.4 are scaled dot-product multi-headed self-attention units and
feed-forward layers [32].

11

3 Machine Learning Background

Scaled Dot-Product Self-Attention. Figure 3.3 illustrates the scaled dot-product self-attention
mechanism (single-headed) applied to a single constituent [6]. The attention weights ai in
Figure 3.3 basically describe how the first constituent x1 in the sequence (represented by the
query q1) is connected to all the other constituents in the sequence (represented by the keys ki).
Such an attention mechanism allows it to place more attention on sequence elements with high
weights [6]. In practice, the output for a set of queries is computed simultaneously [32]:

Attention(Q, K, V) = softmax
(

QK>
√

d

)
V , (3.10)

where the matrix Q contains the queries, K the keys and V the values.

Figure 3.3: Illustration of the scaled dot-product self-attention mechanism (single-headed) applied
to the single constituent embedding x1. For each constituent i = 1, . . . , C the input
embedding xi is multiplied with each of the three learnable weight matrices W Q,
W K and W V to obtain the query vector qi = xiW

Q, the key vector ki = xiW
K ,

and the value vector vi = xiW
V . The attention weights ai for constituent x1 are

calculated using the dot product between the query q1 and the keys ki divided by
√

d
(for stability reasons), where d is the dimension of q1 and ki. The softmax operation
normalizes the weights. Finally, the output z1 is computed as the sum of the value
vectors vi weighted with the corresponding attention weights ai. Taken from [6].

Multi-Headed Self-Attention (MHSA). The idea of multi-headed attention is to perform
several of the single-headed operations in parallel [6, 32]. The dv-dimensional outputs of the h
heads are then concatenated and projected to the output using a linear layer W O ∈ Rhdv×dmodel :

MultiHead(Q, K, V) = Concat(head1, . . . , headh) W O (3.11a)
with headi = Attention(QW Q

i , KW K
i , V W V

i) , (3.11b)

where W Q
i , W K

i ∈ Rdmodel×d and W V
i ∈ Rdmodel×dv are the learnable weight matrices in head i.

Transformer-Encoder Architecture. The architecture of a transformer-encoder network is
illustrated in Figure 3.4. By summing the transformer-encoder output along the constituent
dimension, the permutation equivariant model (i.e. the encoder operation commutes with
permutations) becomes invariant to permutations of the constituents [6]. The head network is
added to provide additional representational power [6].

12

3 Machine Learning Background

Figure 3.4: Illustration of the transformer-encoder network architecture. Using a learned linear
embedding network, the input constituents are first mapped into a higher-dimensional
space (to increase the representational power of the network). The transformer-
encoder part consists of N blocks of multi-headed self-attention (MHSA) mechanisms,
followed by layer normalization, and feed-forward (FF) layers. The outputs of the
transformer-encoder part are summed along the constituent dimension to produce a
fixed size output, which is finally passed through a feed-forward network (head) to
obtain the representation z [6]. Taken from [6].

3.3 Performance Measure for Binary Classification Problems

For binary classification problems, the one-dimensional model output, the so-called classification
score, is compared to a threshold value to get a class label prediction. Receiver operating
characteristic (ROC) curves are used to measure the classification performance of such a binary
classifier at different thresholds. To plot a ROC curve, one needs the following two parameters:

• True-positive rate (TPR): the proportion of signal events that were
correctly identified as signals by the classifier (signal efficiency εs).

• False-positive rate (FPR): the proportion of background events that were
incorrectly identified as signals by the classifier (background mistag rate εb).

In a standard ROC curve (εb vs. εs), the true-positive rate (signal efficiency εs) is plotted against
the false-positive rate (background mistag rate εb) for various classification thresholds. In an
inverse ROC curve (ε−1

b vs. εs), the inverse background mistag rate (ε−1
b) is plotted against

the signal efficiency (εs). The AUC value characterizes the area under the ROC curve and is
invariant to the classification threshold. An AUC value of 0.5 indicates that the model randomly
assigns class labels to the samples. Generally, the higher the AUC, the better the classification
performance.

13

4 Jet Representations and Observables

As previously mentioned, one has to examine the internal structure of a fat jet in order to study
and identify the decay processes of boosted particles [19]. The difficulty is to find observables,
also called representations, that are suitable to describe the jet substructure information. There
are many jet substructure observables that allow to study the radiation patterns and particle
distributions inside fat jets. However, not every jet representation is suitable for every tagging
problem, i.e. the choice of observables is not model-independent.

In this chapter, we give a general overview of the most important jet representations, namely jet
images [16, 17, 18] and energy flow polynomials (EFPs) [19]. Other jet representations are, for
example, N -subjettiness [35], graphs [36], trees or point clouds, but we will not go into detail on
them.

4.1 Image-Based Approach: Calorimeter Images

A calorimeter image, or jet image, is a two-dimensional representation of the energy distribution
in the calorimeter detector [16, 14]. The image pixels represent the calorimeter towers (position
in the η-φ plane) and the intensity typically describes the transverse momenta pT of the particles.

After computing the (pT, η, φ) values for each jet constituent from the corresponding four-
momenta (taking into account the periodicity in the azimuthal angle direction), the following
pre-processing steps must be performed to generate a standardized and consistent jet-image
representation [16, 37, 38]:

1. Centering: First, the jet constituents are translated such that the pT-weighted centroid of
the jet is at the origin in the η-φ plane. It should be noted that shifting the constituents in
η corresponds to a Lorentz-boost along the z-axis.

2. Rotation: The jet is rotated such that the principle axis points in the direction
of increasing pseudo-rapidity η, i.e. the principle axis is vertically aligned.

3. Flipping: Next, the jets are flipped along both axes such that
the maximum sum of pT is in the upper right quadrant.

4. Pixelization, cropping and normalization: The jets are pixelized in the η-φ plane and the
images are cropped to the desired size (usually 40 × 40 pixels). Finally, the intensity of
each pixel is divided by the total intensity.

The jet-image representation is not rotationally invariant, but centering, rotating and flipping
the jets reduces the impact of not having rotational invariance [6]. Pixelizing the jets in the
η-φ plane avoids an implicit ordering of the jet constituents. However, the exact pre-processing
steps may differ depending on the classes of jets that are studied, which makes the jet-image
representation model-dependent.

Figure 4.1 shows the averaged signal (top jets) and background (QCD jets) images from 25 000
individual images after pre-processing. Well-established machine learning tools and techniques
from the field of computer vision, such as convolutional neural networks (CNNs), can be applied
to jet images [16, 17, 18]. Just as facial recognition models try to learn the expected distribution
of pixel intensities in order to classifiy a face in an image [16], image-based taggers use jet images
to learn the expected pT-distribution in the η-φ plane. Image-based taggers, that use calorimeter
information in the form of jet images to classify jets, have already achieved good results [14].

14

4 Jet Representations and Observables

0 5 10 15 20 25 30 35

[translated] azimuthal angle φ

0

5

10

15

20

25

30

35

[t
ra

n
sl

at
ed

]
p

se
u

d
o-

ra
p

id
it

y
η

25k QCD jets,
intensity = pT

(a) Averaged QCD jet images

0 5 10 15 20 25 30 35

[translated] azimuthal angle φ

0

5

10

15

20

25

30

35

[t
ra

n
sl

at
ed

]
p

se
u

d
o-

ra
p

id
it

y
η

25k top jets,
intensity = pT

(b) Averaged top jet images

Figure 4.1: Background QCD jet and signal top jet images averaged over 25 000 individual images.
The pixel position denotes the location in the η-φ plane and the color corresponds to
the pT-magnitude. The averaged QCD jet image (left) shows a uniform distribution
of particles inside the jets. In the averaged top jet image (right), the three-prong
substructure of the fat top jet is visible (one subjet for each decay product) [37].

4.2 Theory-Inspired Approach: Energy Flow Polynomials

Based on the fact that any infrared- and collinear-safe (IRC-safe)1 observable can be written as
a linear combination of C-correlators

CfN
N =

M∑
i1=1

· · ·
M∑

iN =1
Ei1 · · · EiN fN (p̂µ

i1
, . . . , p̂µ

iN
) , (4.1)

one can expand the angular weighting function fN (which is only a function of the particle
directions and not of their energies Ei) in terms of a discrete set of polynomials in pairwise
angular distances [19]. This expansion leads to the so-called energy flow polynomials (EFPs),
a (over-)complete discrete linear basis for IRC-safe jet substructure observables [19]. The set
of EFPs is called the energy flow basis. According to Ref. [19], the corresponding EFP for a
multigraph G with N vertices and edges (k, l) ∈ G takes the form:

EFPG =
M∑

i1=1
· · ·

M∑
iN =1

zi1 · · · ziN

∏
(k,l)∈G

θikil
(4.2)

Here, M denotes the number of particles in the jet, zi = Ei/EJ (with EJ ≡
∑M

i=1 Ei) is the
energy fraction carried by particle i, and θij is the angular distance between particles i and j.
By normalizing the particle energies, the EFPs become independent on the overall jet kinematics
and can therefore be used for jet substructure studies [19].

The energy and angular measures (Ei and θij) are collider-dependent: For electron-positron
(e−e+) collisions, energy and spherical (θ, φ) coordinates are used, but for hadronic collisions we

1Collinear safety means that the observable is insensitive to the splitting of a hard particle into two collinear
particles and infrared safety means that the observable is insensitive to low-energy modifications, such as the
emission of a soft gluon.

15

4 Jet Representations and Observables

use the particle’s transverse momenta pT and rapidity-azimuth (y, φ) coordinates:

zi = pT,i

pT,J
with pT,J ≡

M∑
i=1

pT,i (4.3a)

θij =
(
∆y2

ij + ∆φ2
ij

)β/2 , (4.3b)

where ∆yij ≡ yi−yj and ∆φij ≡ φi−φj are determined by the rapidity yi and the azimuthal angle
φi of particle i [19]. The above choice of measure for hadronic collisions is rotationally-symmetric
in the y-φ plane and respects Lorentz-boosts along the beam axis [19]. The choice of the exponent
β impacts the convergence of the EFP expansion [19].

In the space of jet substructure, the EFPs form a (over-)complete discrete linear basis for all
IRC-safe observables [19], i.e. any IRC-safe observable S can be linearly approximated by EFPs:

S '
∑
G∈G

sG EFPG , (4.4)

where G is some finite set of multigraphs and sG are some real coefficients. For example, using an
appropriate choice of measure, the jet mass and the energy correlation functions can be written
as finite linear combinations of EFPs [19].

Instead of calculating the EFPs with the naive complexity of O(MN) (N nested sums over
M particles, see Equation (4.2)), one can use their graph-theoretic representation, i.e. their
correspondence to non-isomorphic multigraphs, to reduce the computational complexity [19].

The EFP framework allows to study jet substructures using linear methods: Komiske et al. show
that linear classification with EFPs on three representative jet-tagging problems (quark/gluon
discrimination, boosted W -tagging, and boosted top-tagging) performs comparably to well-
established machine learning techniques, such as jet images with CNNs [19].

16

5 Contrastive Learning of Representations

In this chapter, we first introduce the basics of contrastive representation learning by looking at
the SimCLR framework (a simple framework for contrastive learning of visual representations)
presented by the Google Brain team in Ref. [9]. Self-supervised tools for contrastive learning of
representations (CLR), such as SimCLR [9], TCLR [10], SoundCLR [11], or MolCLR [12], have
shown great success in learning representations by outperforming previous work using rather
simple network architectures [9, 39, 40].

The basic structure of the SimCLR framework is shown in Figure 5.1 and described in Algorithm 1.
For each image sample xi, two randomly augmented versions x̃i and x̃j are created (through
cropping/resizing, random colour distortions, and Gaussian blur) [9]. A pair x̃i and x̃j of similar
examples created by different transformations (augmentations) of the same data instance x is
called a positive pair. A positive pair provides two correlated views of the same example [9].
Views generated from different instances are denoted as negative pairs.

The two augmented versions x̃i and x̃j are passed through a residual neural network (ResNet)
encoder, denoted by f , to get vector representations hi and hj (which are used for classification).
hi and hj are then passed through another smaller network g (a FCN with one hidden layer and
ReLU activations), called projection head, in order to obtain zi and zj . Finally, the contrastive
loss function (see next section) is applied to zi and zj .A Simple Framework for Contrastive Learning of Visual Representations

• Composition of multiple data augmentation operations
is crucial in defining the contrastive prediction tasks that
yield effective representations. In addition, unsupervised
contrastive learning benefits from stronger data augmen-
tation than supervised learning.

• Introducing a learnable nonlinear transformation be-
tween the representation and the contrastive loss substan-
tially improves the quality of the learned representations.

• Representation learning with contrastive cross entropy
loss benefits from normalized embeddings and an appro-
priately adjusted temperature parameter.

• Contrastive learning benefits from larger batch sizes and
longer training compared to its supervised counterpart.
Like supervised learning, contrastive learning benefits
from deeper and wider networks.

We combine these findings to achieve a new state-of-the-art
in self-supervised and semi-supervised learning on Ima-
geNet ILSVRC-2012 (Russakovsky et al., 2015). Under the
linear evaluation protocol, SimCLR achieves 76.5% top-1
accuracy, which is a 7% relative improvement over previous
state-of-the-art (Hénaff et al., 2019). When fine-tuned with
only 1% of the ImageNet labels, SimCLR achieves 85.8%
top-5 accuracy, a relative improvement of 10% (Hénaff et al.,
2019). When fine-tuned on other natural image classifica-
tion datasets, SimCLR performs on par with or better than
a strong supervised baseline (Kornblith et al., 2019) on 10
out of 12 datasets.

2. Method
2.1. The Contrastive Learning Framework

Inspired by recent contrastive learning algorithms (see Sec-
tion 7 for an overview), SimCLR learns representations
by maximizing agreement between differently augmented
views of the same data example via a contrastive loss in
the latent space. As illustrated in Figure 2, this framework
comprises the following four major components.

• A stochastic data augmentation module that transforms
any given data example randomly resulting in two cor-
related views of the same example, denoted x̃i and x̃j ,
which we consider as a positive pair. In this work, we
sequentially apply three simple augmentations: random
cropping followed by resize back to the original size, ran-
dom color distortions, and random Gaussian blur. As
shown in Section 3, the combination of random crop and
color distortion is crucial to achieve a good performance.

• A neural network base encoder f(·) that extracts repre-
sentation vectors from augmented data examples. Our
framework allows various choices of the network archi-
tecture without any constraints. We opt for simplicity
and adopt the commonly used ResNet (He et al., 2016)

←−Representation−→

x

x̃i x̃j

hi hj

zi zj

t ∼ T
t
′ ∼ T

f(·) f(·)

g(·) g(·)

Maximize agreement

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (t ∼ T and
t′ ∼ T) and applied to each data example to obtain two correlated
views. A base encoder network f(·) and a projection head g(·)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(·) and
use encoder f(·) and representation h for downstream tasks.

to obtain hi = f(x̃i) = ResNet(x̃i) where hi ∈ Rd is
the output after the average pooling layer.

• A small neural network projection head g(·) that maps
representations to the space where contrastive loss is
applied. We use a MLP with one hidden layer to obtain
zi = g(hi) =W (2)σ(W (1)hi) where σ is a ReLU non-
linearity. As shown in section 4, we find it beneficial to
define the contrastive loss on zi’s rather than hi’s.

• A contrastive loss function defined for a contrastive pre-
diction task. Given a set {x̃k} including a positive pair
of examples x̃i and x̃j , the contrastive prediction task
aims to identify x̃j in {x̃k}k 6=i for a given x̃i.

We randomly sample a minibatch of N examples and define
the contrastive prediction task on pairs of augmented exam-
ples derived from the minibatch, resulting in 2N data points.
We do not sample negative examples explicitly. Instead,
given a positive pair, similar to (Chen et al., 2017), we treat
the other 2(N − 1) augmented examples within a minibatch
as negative examples. Let sim(u,v) = u>v/‖u‖‖v‖ de-
note the dot product between `2 normalized u and v (i.e.
cosine similarity). Then the loss function for a positive pair
of examples (i, j) is defined as

`i,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k 6=i] exp(sim(zi, zk)/τ)
, (1)

where 1[k 6=i] ∈ {0, 1} is an indicator function evaluating to
1 iff k 6= i and τ denotes a temperature parameter. The fi-
nal loss is computed across all positive pairs, both (i, j)
and (j, i), in a mini-batch. This loss has been used in
previous work (Sohn, 2016; Wu et al., 2018; Oord et al.,
2018); for convenience, we term it NT-Xent (the normalized
temperature-scaled cross entropy loss).

Figure 5.1: Illustration of the self-supervised SimCLR contrastive learning framework for visual
representations. SimCLR learns representations from unlabeled data by maximizing
the similarities of randomly augmented views zi and zj of the same instance x (pull
together similar inputs, positive pair) and minimizing the similarities of all different
instances (push apart dissimilar inputs, negative pairs) via a contrastive loss in the
latent space [9, 40]. Taken from [9].

The idea of contrastive loss is to construct informative representations, which are invariant to
the applied transformations, by contrasting feature vectors from positive pairs (similar samples)
against feature vectors from negative pairs (dissimilar samples). This means that for positive
pairs, the learned feature representations should be close together in latent space, while pushing
apart the representations of negative pairs [9, 39, 40].

According to Ref. [9], the use of a non-linear projection head improves downstream task perfor-
mance (due to a loss of information induced by the contrastive loss) [9]. Therefore, the contrastive
loss is defined on zi and zj , but hi and hj are used for downstream tasks.

17

5 Contrastive Learning of Representations

Algorithm 1: SimCLR’s main learning algorithm
Input: batch size N , constant τ , structure of f , g, T
for sampled mini-batch {xk}N

k=1 do
forall k ∈ {1, . . . , N} do

draw two augmentation functions t ∼ T , t′ ∼ T
the first augmentation
x̃2k−1 = t(xk)
h2k−1 = f(x̃2k−1) # representation
z2k−1 = g(h2k−1) # projection
the second augmentation
x̃2k = t′(xk)
h2k = f(x̃2k) # representation
z2k = g(h2k) # projection

end
forall i ∈ {1, . . . , 2N} and j ∈ {1, . . . , 2N} do

si,j = z>
i zj/(‖zi‖‖zj‖) # pairwise similarity

end
define `(i, j) as `(i, j) = − log exp(si,j/τ)∑2N

k=1 1[k 6=i] exp(si,j/τ)

L = 1
2N

∑N
k=1 [`(2k − 1, 2k) + `(2k, 2k − 1)]

update networks f and g to minimize L
end
return encoder network f(·), and throw away g(·)

5.1 Contrastive Loss Function

The contrastive learning task in the SimCLR framework is defined by the normalized temperature-
scaled cross-entropy (NT-Xent) loss, simply called contrastive loss, which is for a single positive
pair (i, j) given by

`(i, j) = − log
{ exp[sim(zi, zj)/τ]∑2N

k=1 1[k 6=i] exp[sim(zi, zk)/τ]

}
, (5.1)

where zi and zj denote latent vectors extracted from a positive pair, N is the batch size, and
τ > 0 is a scalar hyper-parameter, called temperature. 1[k 6=i] ∈ {0, 1} is an indicator function
that is defined as:

1[k 6=i] =
{

1 for k 6= i

0 otherwise
(5.2)

The similarity between two vectors zi and zj is measured by the cosine-similarity:

sim(zi, zj) := zi · zj

‖zi‖‖zj‖
(5.3)

The total loss L is computed across all positive pairs (i, j) and (j, i) in the batch:

L = 1
2N

N∑
k=1

[
`(2k − 1, 2k) + `(2k, 2k − 1)

]
(5.4)

Obviously, maximizing the similarity between similar samples (numerator) and minimizing the

18

5 Contrastive Learning of Representations

similarity of dissimilar samples (denominator) reduces the contrastive loss in Equation (5.1).
By forcing small distances between positive pairs, the representations become (approximately)
invariant to the applied augmentations, and by forcing large distances between negative pairs,
the model learns to extract non-trivial discriminative features.

Representation Learning on the Unit Hypersphere. Many representation learning approaches
use the unit hypersphere as the feature space by normalizing the feature vectors using the `2 norm.
Hyperspherical latent spaces are known to provide better representations than the Euclidean
space [39]. Using the unit hypersphere not only ensures better computation stability [39] but
also has manifold mapping reasons: Well-clustered classes on the hypersphere can be separated
linearly, but this does not apply to Euclidean spaces [39]. Furthermore, without normalization,
the contrastive loss can be made arbitrarily small by simply scaling the feature vectors.

Temperature, Alignment and Uniformity. In this subsection, we discuss the alignment and
uniformity properties of the contrastive loss function to get an understanding of what exactly
the contrastive learning framework does and how contrastive representation learning relates
to hypersphere geometry. As proposed in Ref. [39], we introduce theoretically-motivated and
quantifiable metrics for both properties, which can be used to measure the representation quality.
It can be shown that there is a strong connection between the alignment and uniformity metrics
and the downstream task performance [39, 40].

The representations obtained using CLR should have the following properties [39, 40]:

• Alignment means that the latent vectors of a positive pair should be close to each other
in latent space (similar samples should have similar features), making the representations
invariant to the augmentations.

• Uniformity means that feature vectors should be uniformly distributed on the unit hyper-
sphere to preserve maximal information of the data and to learn separable features.

As described in Ref. [40], the temperature τ in Equation (5.1) is a crucial hyper-parameter in
order to compromise between learning separable features (uniformly distributed features) and
invariance to the augmentations (alignment). This is called the uniformity-tolerance dilemma.

Figure 5.2: Visualization of alignment and uniformity in the latent space (unit hypersphere).
Alignment describes the closeness of features from positive pairs and uniformity
describes how uniform the distribution of the (normalized) features on the unit
hypersphere is [39, 40]. Taken from [6].

19

5 Contrastive Learning of Representations

In the following, pdata denotes the data distribution over Rn, ppos the distribution of positive
pairs over Rn × Rn, and f the network mapping. The unit hypersphere is denoted by S. The
alignment loss is then defined by the expected distance between positive pairs:

Lalign(f ; α) := E(x,y)∼ppos

[
‖f(x) − f(y)‖α

2
]

, α > 0 (5.5)

Using the Gaussian potential kernel

Gt : Sd × Sd → R+ with Gt(u, v) := e−t‖u−v‖2
2 , t > 0 (5.6)

one can define the uniformity loss as the logarithm of average pairwise feature potentials:

Luniform(f ; t) := logE
x,y

i.i.d.∼ pdata

[
Gt(x, y)

]
(5.7a)

= logE
x,y

i.i.d.∼ pdata

[
e−t‖f(x)−f(y)‖2

2
]

, t > 0 (5.7b)

It can be shown that the uniform distribution is the unique distribution that minimize the
expected pairwise Gaussian potential [39]. Obviously, pulling together similar samples reduces
the alignment loss and pushing apart dissimilar samples results in a more uniform distribution
and therefore reduces the uniformity loss.

Theoretically, the contrastive loss optimizes for alignment and uniformity asymptotically, i.e.
in the limit of infinite negative samples [39]. But in practice we can only have a finite amount
of negative samples. Therefore, direct optimization of a linear combination of the alignment
loss (Lalign) and the uniformity loss (Luniform) outperforms CLR models that optimize only the
NT-Xent loss (implying that directly optimizing Lalign and Luniform leads to comparable or even
better representations) [39].

5.2 Contrastive Representation Learning for Jet Physics

Our goal is to use a self-supervised contrastive learning of representations (CLR) framework to
define a mapping f : J → R between the low-level jet constituents space (J) and some high-level
representation space (R). Since our low-level dataset uses the transverse momentum pT, the
pseudo-rapidity η and the azimuth φ to describe the (approximately) massless constituents, J
has a dimensionality of dim(J) = 3nC where nC is the number of constituents in the jet.

The training algorithm of our JetCLR method is as follows:

1. First, we randomly sample a batch {xi} of N jets from the training dataset.

2. We then create an augmented version of each jet by applying stochastic data transformations
(augmentations) such that we have two different but correlated views of the same jet. Hence,
for each jet in the original batch {xi} we get an augmented version in the augmented
batch {x′

i}. Similar examples {(xi, x′
i)} are called positive pairs and dissimilar examples

{(xi, xj)} ∪ {(xi, x′
j)} with i 6= j are called negative pairs.

3. All 2N jets, i.e. the original batch {xi} and the augmented batch {x′
i}, are passed through

the network to extract the representations. The jets xi and their augmented versions
x′

i are mapped to latent space vectors zi and z′
i in Rdim(z). By normalizing the latent

space vectors, the representation space R is then defined as the unit hypersphere Sdim(z)−1

embedded in Rdim(z).

20

5 Contrastive Learning of Representations

The contrastive loss function is defined on positive pairs (zi, z′
i) of augmented jets in the latent

space. For a single positive pair i, the contrastive loss is defined as [9]:

`i = − log
{ exp[sim(zi, z′

i)/τ]∑
i 6=j∈batch

(
exp[sim(zi, zj)/τ] + exp[sim(zi, z′

j)/τ]
)} (5.8)

The total loss L is computed across all positive pairs in the batch. As proposed in Ref. [9], we
use the cosine-similarity to measure the similarity between the jets in the representation space R:

sim(zi, zj) := zi · zj

‖zi‖‖zj‖
= cos θij (5.9)

In order to compare different jets in the representation space R, we have to define a proper
distance metric. However, the cosine-similarity does not fulfill the metric properties. Instead, we
can define an angular distance d(zi, zj) = θij/π using the angle θij between the jets in R.

Symmetry Augmentations. There are two ways to learn (approximate) symmetries using CLR:
On the one hand through model constraints (for example by using a permutation invariant
transformer-encoder network) and on the other hand through symmetry transformations, so-
called augmentations [6]. Since the NT-Xent loss in Equation (5.8) forces the network to map
similar samples close together in latent space while pushing apart dissimilar samples [8], the
representations will be (under perfect convergence) invariant to the jet augmentations we use to
create the positive pairs [6].

21

6 Experiments and Results

In the following sections, we provide detailed information on the top-tagging dataset and on
the networks we use to parameterize the mapping between the low-level jet constituents and
the high-level observables. We describe our training and optimization details including the
applied symmetry augmentations. All models were implemented using the standard deep learning
framework PyTorch.

6.1 Data Simulation and Pre-Processing Steps

6.1.1 Top-Tagging Reference Dataset

The top-tagging reference dataset1 we use to train and test our JetCLR framework was initially
produced to evaluate and compare different top-tagging architectures [13, 14, 15]. It is therefore
a well-established dataset to benchmark classification algorithms that distinguish signal top jets
from background QCD jets.

The dataset consists of Monte-Carlo simulated hadronically decaying top quarks and QCD dijet
samples. The signal top jets and the light-quark and gluon background jets were generated
with Pythia [41] using the default center-of-mass energy of

√
s = 14 TeV. Multiple parton

interactions (MPIs) and pile-up were ignored.

Delphes [42] was used with its standard ATLAS detector card to simulate the calorimeter
detector. The particle-flow entries were clustered into fat jets using the anti-kT algorithm [43]
implemented in FastJet [44] with a radius of R = 0.8. The transverse momenta pT of the jet
constituents are restricted to pT ∈ [550, 650]. Besides, the jets are required to have |η jet| < 2.
Additionally, all top jets are matched to a parton-level top within ∆R = 0.8 and to all top decay
partons within 0.8.

The four-momenta of the leading 200 constituents of each jet are stored. The constituents are
ordered by decreasing transverse momentum pT. Jets with fewer than 200 constituents are
zero-padded. Moreover, each jet is flagged with a signal or background class label. Additional
details such as particle or tracking information are not included [14].

6.1.2 Pre-Processing and Symmetry Augmentations

We use a minimally pre-processed set of low-level jet data: For each jet constituent, we calculate
the transverse momentum pT, the pseudo-rapidity η, and the azimuthal angle φ. Each jet is then
represented as a flattened, pT-ordered list of its constituents with (pT, η, φ) information, in the
approximation of massless constituents. The only pre-processing step we make is to shift the
constituents such that the jet axis, defined by the pT-weighted centroid of the jet constituents

(η0, φ0) =
(∑

i∈ jet
ηi pT,i ,

∑
i∈ jet

φi pT,i

)
, (6.1)

is aligned at (η0, φ0) = (0, 0). The augmentations applied to the jet constituents are crucial to
which symmetries the representations will be (approximately) invariant to. In the following we
present our symmetry augmentations and network constraints.

1More information is available at https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzsp-
kDC4nDTyjMp1bWHRo/edit. The public dataset can be downloaded from https://desycloud.desy.de/in-
dex.php/s/llbX3zpLhazgPJ6.

22

https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit
https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit
https://desycloud.desy.de/index.php/s/llbX3zpLhazgPJ6
https://desycloud.desy.de/index.php/s/llbX3zpLhazgPJ6

6 Experiments and Results

Rotations in the η-φ Plane. To achieve rotational symmetry around the jet axis we create
augmented jets by rotating each jet by a different angle randomly sampled from the interval
[0, 2π]. It should be noted that rotations in the η-φ plane do not preserve the jet mass because
they are no Lorentz transformations, but for narrow jets, i.e. R . 1, the relative jet mass
corrections are very small and can therefore be neglected.

Translations in the η-φ Plane. In addition to rotations in the η-φ plane, translations in the
η-φ plane would also be an obvious choice for augmentations. We tried using linear transformations
in the η-φ plane as augmentations, but that did not produce good results due to technical reasons:
Jets have a variable number of constituents and since fully-connected networks (FCNs), for
example, cannot handle a variable number of input dimensions, we need to zero-pad the inputs.
When creating translated versions of the jets, we only shift the constituents with non-zero pT,
which means that zero-padding is an issue when trying to implement translational invariance.
Without a fixed reference point, i.e. the jet axis, the calculation of distances becomes more
complex for the network: Either the network learns that the jet axis has been shifted, or the
network has to calculate the pair-wise distances between the constituents. For rotations this is
not an issue because the zero-padded entries are located in the center of the jet and rotations
around the jet axis do not change these constituents.

Low-pT Modifications. Since the distribution of low-pT constituents in jets, that were produced
by the same process with the same kinematics, can vary, we introduce distortion of the low-pT
constituents as an augmentation. The low-pT modificated jets are produced by applying noise to
the positions of the low-pT constituents:

η′ ∼ N
(

η,
Λsoft
pT

R

)
and φ′ ∼ N

(
φ,

Λsoft
pT

R

)
(6.2)

Here, N (µ, σ) denotes a Gaussian distribution with pT-dependent standard deviation. For our
studies, we choose Λsoft = 100 MeV.

Permutation Invariance of the Constituents. Permutation invariance is implemented by using
appropriate networks, such as a transformer-encoder network. The representations obtained with
the FCN are not invariant to the constituent ordering because flattening the input implies an
implicit choice in the ordering of the jet constituents [6].

6.2 Network Architectures and Implementation Details

6.2.1 Training Details

In the case where we have a signal-to-background ratio of t/Q = 1.0 we take 100k QCD jets and
100k top jets for the analysis. When we have a class imbalance we always take 100k jets for the
dominant class and select the number of jets for the other class based on the t/Q ratio. Before
training, we shuffle the dataset and split it up into a test and a training dataset (for the test
dataset, we randomly select 10 % of the jets from the entire dataset). For performance evaluation,
the test datasat is used. For a signal-to-background ratio of t/Q = 0.05, we have 94 500 jets for
training and 10 500 jets for testing. The temperature hyper-parameter is set to τ = 0.1. Other
hyper-parameters, such as the number of epochs and the learning rate, are network dependent
and described below.

23

6 Experiments and Results

Fully-Connected Network (FCN). Unless otherwise specified, our default setup for the FCN
is as follows: The FCN, which consists of one hidden layer with 80 neurons, is trained with
a batch size of 1000 for 750 epochs. The AdamW optimizer with weight decay and a learning
rate of 0.001 is used to adjust the network parameters in order to minimize the NT-Xent loss.
We only use the nC = 50 hardest constituents such that the input size of the FCN is given by
3nC = 150; for the output dimension (dimension of the latent space) we choose a value of 200.
The signal-to-background ratio is set to t/Q = 0.05.

Transformer-Encoder Network. The transformer-encoder architecture is implemented in PyTorch
using the TransformerEncoder module. For our studies we employ h = 4 parallel attention
layers, so-called heads. The feed-forward network consists of 3 layers and the final head of 2
layers. The model dimension, the output dimension and the feed-forward dimension are set
to 1000. Setting the output dimension to a value of 1000 means that we get 1000-dimensional
representations, which is exactly the same dimension that we get with EFPs of degree d ≤ 7.
The network parameters are adjusted using the Adam optimizer with a learning rate of 5 × 10−5.

It should be noted: Most of the calculations in a transformer-based architectures can be
parallelized using tensor operations. However, transformer networks are still computationally
expensive. In our case, the computation time scales with O(n2

C).

6.2.2 Supervised Linear Classifier Test

Since the Monte-Carlo simulated top-tagging dataset is labeled, i.e. for each sample we know
whether it is a top jet or a light-quark or gluon jet, we can perform a supervised linear classifier
test (LCT) to evaluate the performance of JetCLR. The binary classifier is basically a FCN with
no hidden layers and a linear output (obtained by the sigmoid activation). The binary classifier
is trained to map the representations learned by JetCLR to a binary label. Binary cross-entropy
(BCE) loss is implemented for the classification task. The linear classifier is trained for 500
epochs using the Adam optimizer with a learning rate of 0.001 and batch size of 1000.

6.3 Downstream Task Performance and Comparisons

In this section, we present our studies of how various aspects of our JetCLR framework affect
the performance of the learned representations under a supervised LCT. Except for the results
in Figure 6.5, all results were obtained with the FCN. The results for the transformer-encoder
network will soon be published [6].

6.3.1 Number of Constituents

We first investigate how the number of constituents alter the performance. Here, we use the FCN
to construct the jet representations. Figure 6.1 visualizes the representation quality, characterized
by the AUC value and the inverse background mistag rate ε−1

b at a signal efficency of εs = 0.5,
for different number of constituents. If we only use rotations as augmentations, the performance
in the LCT decreases as the number of constituents increases, which is because the low-pT
constituents contain noise. By introducing low-pT modifications in addition to the rotations, the
FCN learns to ignore noise in the low-pT constituents, which significantly improves performance.

24

6 Experiments and Results

jet image 10 20 30 40 50

number of constituents

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95
A

U
C

rot.

rot. + pT

jet image 10 20 30 40 50

number of constituents

10

12

14

16

18

20

22

24

26

ε−
1

b
(ε
s

=
0.

5)

rot.

rot. + pT

Figure 6.1: Downstream task performance for different numbers of constituents. By introducing
low-pT distortion in addition to the rotations, the FCN learns to ignore noise in the
low-pT constituents, which significantly improves performance.

6.3.2 Temperature, Alignment and Uniformity

Again, we use the FCN to construct the jet representations. As augmentations we use rotations
and low-pT distortion. We implemented the alignment loss (Lalign) and the uniformity loss
(Luniform) as described in Ref. [39] using α = 2 and t = 2. During training, we measured the
downstream task performance as well as the Lalign and Luniform metrics. Figure 6.2 visualizes the
trends between the alignment and uniformity loss and the representation quality at the end of the
training procedure for different temperature values τ . We observe that alignment and uniformity
strongly agree with the performance in the linear classifier test: The best-performing networks
are the ones with low Lalign and Luniform. We can also see that the choice of the temperature
hyper-parameter τ impacts the downstream task performance of our contrastive learning model.
The performance drops for very low and very high temperatures.

-4.0 -3.9 -3.8 -3.7 -3.6 -3.5 -3.4 -3.3

Luniform

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

L a
lig

n

τ = 0.05

τ = 0.10

τ = 0.20

τ = 0.50

τ = 1.00

τ = 5.00

0.80

0.82

0.84

0.86

0.88

0.90

0.92

A
U

C

-4.0 -3.9 -3.8 -3.7 -3.6 -3.5 -3.4 -3.3

Luniform

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

L a
lig

n

τ = 0.05

τ = 0.10

τ = 0.20

τ = 0.50

τ = 1.00

τ = 5.00

8

10

12

14

16

18

20

22

24

ε−
1

b
(ε
s

=
0.

5)

Figure 6.2: Visualization of the alignment and uniformity metrics for different temperatures τ .
Alignment and uniformity strongly agree with the downstream task performance:
The best-performing networks are the ones with low Lalign and Luniform, i.e. the ones
in the lower left corner.

As proposed in Ref. [39], we studied the effect of directly optimizing only alignment and uniformity.
The results are shown in Figure 6.3. Due to the U-shaped distributions that peak at around
λ = 0.5 we can conclude that both alignment and uniformity are indeed desirable properties for
representations and necessary for good downstream task performance.

25

6 Experiments and Results

0.0 0.2 0.4 0.6 0.8 1.0

weight λ

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96
A

U
C

0.0 0.2 0.4 0.6 0.8 1.0

weight λ

0

5

10

15

20

25

30

ε−
1

b
(ε
s

=
0.

5)

Figure 6.3: Effect of directly optimizing different weighted combinations (1 − λ)Lalign + λLuniform
of the alignment and uniformity loss. Both alignment and uniformity are necessary
for good jet representations.

6.3.3 Representation Dimension

The representation dimension, i.e. the output dimension of the FCN and the transformer-encoder
network, determines how much information we can embed in the representation space R [6].
Intuitively, one might expect that the larger the latent space dimension, the more (separable)
information we can encode and the better the downstream task performance. Figure 6.4 shows,
however, that this is true for an increase from 50 to 100 dimensions, but that the performance is
almost the same for 100-, 150- and 200-dimensional latent spaces.

constit. jet image 50D 100D 150D 200D

latent space

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
U

C

constit. jet image 50D 100D 150D 200D

latent space

0

5

10

15

20

25

ε−
1

b
(ε
s

=
0.

5)

Figure 6.4: Downstream task performance for different representation dimensions.

6.3.4 Comparison with other Representations

Finally, we compare our JetCLR representations to some of the more widely used high-level jet
observables. To keep it simple we just use rotations and low-pT distortion as augmentations. We
now use the transformer-encoder network to learn the 1000-dimensional jet representations. The
results are shown in Figure 6.5. For the EFP top-tagging baseline, we used the raw constituent
data to compute all d ≤ 7 EFPs with an angular exponent of β = 0.5 and the default hadronic
measure (treating all particles as massless). We do not need any additional pre-processing for
the EFP calculation. Implementations of the EFPs are available in the EnergyFlow package.

26

6 Experiments and Results

We can see that our JetCLR framework achieves significant improvement over the jet-image
representation. The representations learned by JetCLR even outperform the theory-inspired
energy flow polynomials (EFPs). The raw constituents are not invariant to any of the symmetries
associated with a jet and there is no guarantee that the raw (pT, η, φ) information provides
discriminative power [6].

0.0 0.2 0.4 0.6 0.8 1.0

top jet efficiency (εs)

100

101

102

103

104

105

in
ve

rs
e

Q
C

D
je

t
m

is
ta

g
ra

te
(ε
−1 b

)

Linear Classifier Test
Top-Tagging, t/Q = 1.0

JetCLR (rot.+ pT), AUC: 0.9741± 0.0011

EFPs (d ≤ 7), AUC: 0.9701± 0.0007

JetCLR (rot.), AUC: 0.9685± 0.0014

jet images, AUC: 0.9286± 0.0012

JetCLR (no aug.), AUC: 0.9105± 0.0037

constituents, AUC: 0.7631± 0.0030

Figure 6.5: Comparison of the JetCLR representations (using the transformer-encoder network)
to other high-level observables.

27

7 Conclusion and Outlook

Using both a fully-connected network (FCN) and a transformer-encoder network, we implemented
a self-supervised learning framework that maps the raw constituent data of jets to some high-
level observables by optimizing the contrastive loss function. We call this framework JetCLR
(Contrastive Learning of Jet Representations). Through the use of suitable augmentation
strategies and because of the alignment and uniformity properties of the contrastive loss function,
the representations learned by JetCLR are (approximately) invariant to physically-motivated
symmetries and retain the discriminative information contained in the dataset.

Since top quarks are common decay products in many beyond the Standard Model (BSM)
theories [15], we trained our JetCLR method on a dataset that contains signal top jets and
background QCD dijets. The representations learned by JetCLR are then used in a supervised
linear classifier test (LCT) to identify boosted, hadronically decaying top quarks. The benchmark
experiments show that our JetCLR framework achieves state-of-the-art performance on the
top-tagging reference dataset when compared to jet images and energy flow polynomials (EFPs).
This indicates that JetCLR is capable of learning informative representations.

However, the question arises whether we can get some physical interpretation on what these
representations are. The t-SNE visualization (t-distributed stochastic neighbor embedding), for
example, could be helpful for this. It would also be interesting to visualize the attention vectors
of the transformer-encoder architecture.

There are several possible improvements and next steps that can be explored: We are currently
working on adding masking to the transformer-encoder network in order to handle variable length
inputs. It is also known that larger batch sizes and more training steps lead to better downstream
task performance in contrastive learning tasks [9, 12], indicating that contrastive learning of
representations (CLR) benefits from a larger number of negative samples. In addition, CLR
benefits from deeper and wider networks [9]. However, our batch and network sizes were limited
by hardware memory constraints.

One could also implement the JetCLR method using other permutation invariant architectures
such as graph networks. Other augmentations could also be implemented: By filling the zero-
padded elements with randomly generated, very low-pT points and splitting a single constituent
into two constituents at the same position (with the pT-sum being equal to the original pT value),
the network could learn to construct IRC-safe representations. This would be interesting since
IRC-safe observables have proven to be more robust for experimental tasks [19]. Furthermore,
JetCLR could be useful for unsupervised anomaly detection, by training, for example, a variational
autoencoder (VAE) [45, 46, 47] on the representations learned by JetCLR. For the application
of JetCLR in anomaly detection it would be interesting to investigate how a smaller signal-to-
background ratio affects the quality of the learned JetCLR representations. We are currently
working on some of the above topics and the results will soon be available in our paper [6].

28

References

[1] CMS Collaboration. “Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC”. Physics Letters B 716.1 (Sept. 17, 2012), pp. 30–61. doi: 10.
1016/j.physletb.2012.08.021.

[2] ATLAS Collaboration. “Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC”. Physics Letters B 716.1
(2012), pp. 1–29. doi: 10.1016/j.physletb.2012.08.020.

[3] Super-Kamiokande Collaboration. “Evidence for oscillation of atmospheric neutrinos”.
Phys.Rev.Lett. (July 3, 1998). doi: 10.1103/PhysRevLett.81.1562. arXiv: hep-ex/
9807003 [hep-ex].

[4] Tilman Plehn and Michael Spannowsky. “Top Tagging” (Dec. 19, 2011). doi: 10.1088/
0954-3899/39/8/083001. arXiv: 1112.4441 [hep-ph].

[5] Sebastian Schätzel and Michael Spannowsky. “Tagging highly boosted top quarks”. Phys.
Rev. D 89, 014007 (2014) (Aug. 2, 2013). doi: 10.1103/PhysRevD.89.014007. arXiv:
1308.0540 [hep-ph].

[6] Barry M. Dillon et al. “Contrastive Learning of Jet Representations”. Manuscript in
preparation (2021).

[7] Emmy Noether. “Invariante Variationsprobleme”. Nachrichten von der Gesellschaft der
Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918 (1918), pp. 235–
257. url: https://eudml.org/doc/59024.

[8] Phuc H. Le-Khac, Graham Healy, and Alan F. Smeaton. “Contrastive Representation
Learning: A Framework and Review”. IEEE Access 8 (2020), pp. 193907–193934. doi:
10.1109/access.2020.3031549.

[9] Ting Chen et al. “A Simple Framework for Contrastive Learning of Visual Representa-
tions” (Feb. 13, 2020). arXiv: 2002.05709 [cs.LG].

[10] Ishan Dave et al. “TCLR: Temporal Contrastive Learning for Video Representation”
(Jan. 20, 2021). arXiv: 2101.07974 [cs.CV].

[11] Alireza Nasiri and Jianjun Hu. “SoundCLR: Contrastive Learning of Representations
For Improved Environmental Sound Classification” (Mar. 2, 2021). arXiv: 2103.01929
[cs.SD].

[12] Yuyang Wang et al. “MolCLR: Molecular Contrastive Learning of Representations via
Graph Neural Networks” (Feb. 19, 2021). arXiv: 2102.10056 [cs.LG].

[13] Anja Butter et al. “Deep-learned Top Tagging with a Lorentz Layer”. SciPost Phys. 5,
028 (2018) (July 27, 2017). doi: 10.21468/SciPostPhys.5.3.028. arXiv: 1707.08966
[hep-ph].

[14] G. Kasieczka, T. Plehn, A. Butter, et al. “The Machine Learning Landscape of Top
Taggers”. SciPost Phys. 7, 014 (2019) (Feb. 26, 2019). doi: 10.21468/SciPostPhys.7.1.
014. arXiv: 1902.09914 [hep-ph].

[15] Lisa Benato et al. “Shared Data and Algorithms for Deep Learning in Fundamental
Physics” (July 1, 2021). arXiv: 2107.00656 [cs.LG].

[16] Josh Cogan et al. “Jet-Images: Computer Vision Inspired Techniques for Jet Tagging”
(July 21, 2014). doi: 10.1007/JHEP02(2015)118. arXiv: 1407.5675 [hep-ph].

[17] Michael Kagan et al. “Boosted Jet Tagging with Jet-Images and Deep Neural Networks”.
EPJ Web of Conferences 127 (2016). Ed. by R. Frühwirth et al., p. 00009. doi: 10.1051/
epjconf/201612700009.

29

https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1103/PhysRevLett.81.1562
https://arxiv.org/abs/hep-ex/9807003
https://arxiv.org/abs/hep-ex/9807003
https://doi.org/10.1088/0954-3899/39/8/083001
https://doi.org/10.1088/0954-3899/39/8/083001
https://arxiv.org/abs/1112.4441
https://doi.org/10.1103/PhysRevD.89.014007
https://arxiv.org/abs/1308.0540
https://eudml.org/doc/59024
https://doi.org/10.1109/access.2020.3031549
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2101.07974
https://arxiv.org/abs/2103.01929
https://arxiv.org/abs/2103.01929
https://arxiv.org/abs/2102.10056
https://doi.org/10.21468/SciPostPhys.5.3.028
https://arxiv.org/abs/1707.08966
https://arxiv.org/abs/1707.08966
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
https://arxiv.org/abs/1902.09914
https://arxiv.org/abs/2107.00656
https://doi.org/10.1007/JHEP02(2015)118
https://arxiv.org/abs/1407.5675
https://doi.org/10.1051/epjconf/201612700009
https://doi.org/10.1051/epjconf/201612700009

References

[18] Luke de Oliveira et al. “Jet-Images – Deep Learning Edition”. JHEP 07 (2016) 069
(Nov. 16, 2015). doi: 10.1007/JHEP07(2016)069. arXiv: 1511.05190 [hep-ph].

[19] Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. “Energy flow polynomials: A
complete linear basis for jet substructure”. JHEP 04 (2018) 013 (Dec. 19, 2017). doi:
10.1007/JHEP04(2018)013. arXiv: 1712.07124 [hep-ph].

[20] Wikimedia Commons. Standard Model of Elementary Particles. 2019. url: https://
commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
(visited on 07/02/2021).

[21] DØ Collaboration. “Observation of the Top Quark”. Phys.Rev.Lett. (Mar. 3, 1995). doi:
10.1103/PhysRevLett.74.2632. arXiv: hep-ex/9503003 [hep-ex].

[22] CDF Collaboration. “Observation of Top Quark Production in pp̄ Collisions”. Phys.Rev.Lett.
(Mar. 2, 1995). doi: 10.1103/PhysRevLett.74.2626. arXiv: hep-ex/9503002 [hep-ex].

[23] DØ Collaboration. “Observation of Single Top-Quark Production”. Phys.Rev.Lett. (Mar. 4,
2009). doi: 10.1103/PhysRevLett.103.092001. arXiv: 0903.0850 [hep-ex].

[24] CDF Collaboration. “First Observation of Electroweak Single Top Quark Production”.
Phys.Rev.Lett.103:092002,2009 (Mar. 5, 2009). doi: 10.1103/PhysRevLett.103.092002.
arXiv: 0903.0885 [hep-ex].

[25] Piotr A. Zyla et al., Particle Data Group. “Review of Particle Physics”. Progress of
Theoretical and Experimental Physics (Aug. 2020). doi: 10.1093/ptep/ptaa104.

[26] David E. Kaplan et al. “Top-tagging: A Method for Identifying Boosted Hadronic Tops”.
Phys.Rev.Lett.101:142001,2008 (June 5, 2008). doi: 10.1103/PhysRevLett.101.142001.
arXiv: 0806.0848 [hep-ph].

[27] Tilman Plehn. Lectures on LHC Physics. Springer International Publishing, 2015. doi:
10.1007/978-3-319-05942-6.

[28] Sebastian Schätzel. “Boosted top quarks and jet structure”. The European Physical
Journal C 75.9 (Sept. 2015). doi: 10.1140/epjc/s10052-015-3636-x.

[29] Björn Penning. “The Pursuit of Dark Matter at Colliders – An Overview” (Dec. 4, 2017).
doi: 10.1088/1361-6471/aabea7. arXiv: 1712.01391 [hep-ex].

[30] Ullrich Köthe. “Lecture Notes on Advanced Machine Learning”. Heidelberg University,
2021. url: https://hci.iwr.uni-heidelberg.de/teaching/advanced_machine_
learning_2021 (visited on 07/04/2021).

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[32] Ashish Vaswani et al. “Attention Is All You Need” (June 12, 2017). arXiv: 1706.03762
[cs.CL].

[33] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Translation
by Jointly Learning to Align and Translate” (Sept. 1, 2014). arXiv: 1409.0473 [cs.CL].

[34] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Approaches
to Attention-based Neural Machine Translation” (Aug. 17, 2015). arXiv: 1508.04025
[cs.CL].

[35] Jesse Thaler and Ken Van Tilburg. “Identifying Boosted Objects with N -subjettiness”.
JHEP 1103:015,2011 (Nov. 10, 2010). doi: 10.1007/JHEP03(2011)015. arXiv: 1011.
2268 [hep-ph].

[36] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. “Graph Neural Networks in
Particle Physics” (July 27, 2020). doi: 10.1088/2632-2153/abbf9a. arXiv: 2007.13681
[hep-ex].

30

https://doi.org/10.1007/JHEP07(2016)069
https://arxiv.org/abs/1511.05190
https://doi.org/10.1007/JHEP04(2018)013
https://arxiv.org/abs/1712.07124
https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://doi.org/10.1103/PhysRevLett.74.2632
https://arxiv.org/abs/hep-ex/9503003
https://doi.org/10.1103/PhysRevLett.74.2626
https://arxiv.org/abs/hep-ex/9503002
https://doi.org/10.1103/PhysRevLett.103.092001
https://arxiv.org/abs/0903.0850
https://doi.org/10.1103/PhysRevLett.103.092002
https://arxiv.org/abs/0903.0885
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevLett.101.142001
https://arxiv.org/abs/0806.0848
https://doi.org/10.1007/978-3-319-05942-6
https://doi.org/10.1140/epjc/s10052-015-3636-x
https://doi.org/10.1088/1361-6471/aabea7
https://arxiv.org/abs/1712.01391
https://hci.iwr.uni-heidelberg.de/teaching/advanced_machine_learning_2021
https://hci.iwr.uni-heidelberg.de/teaching/advanced_machine_learning_2021
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://doi.org/10.1007/JHEP03(2011)015
https://arxiv.org/abs/1011.2268
https://arxiv.org/abs/1011.2268
https://doi.org/10.1088/2632-2153/abbf9a
https://arxiv.org/abs/2007.13681
https://arxiv.org/abs/2007.13681

References

[37] Gregor Kasieczka et al. “Deep-learning Top Taggers or The End of QCD?” JHEP 05
(2017) 006 (Jan. 30, 2017). doi: 10.1007/JHEP05(2017)006. arXiv: 1701.08784 [hep-
ph].

[38] Ivan Oleksiyuk. “Unsupervised learning for tagging anomalous jets at the LHC”. Bachelor
thesis. RWTH Aachen University, July 2020.

[39] Tongzhou Wang and Phillip Isola. “Understanding Contrastive Representation Learning
through Alignment and Uniformity on the Hypersphere” (May 20, 2020). arXiv: 2005.
10242 [cs.LG].

[40] Feng Wang and Huaping Liu. “Understanding the Behaviour of Contrastive Loss” (Dec. 15,
2020). arXiv: 2012.09740 [cs.LG].

[41] Torbjörn Sjöstrand et al. “An Introduction to PYTHIA 8.2” (Oct. 11, 2014). doi: 10.
1016/j.cpc.2015.01.024. arXiv: 1410.3012 [hep-ph].

[42] J. de Favereau et al. “DELPHES 3, A modular framework for fast simulation of a generic
collider experiment” (July 24, 2013). doi: 10.1007/JHEP02(2014)057. arXiv: 1307.6346
[hep-ex].

[43] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The anti-kt jet clustering algo-
rithm”. JHEP 0804:063,2008 (Feb. 8, 2008). doi: 10.1088/1126-6708/2008/04/063.
arXiv: 0802.1189 [hep-ph].

[44] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “FastJet user manual” (Nov. 25,
2011). doi: 10.1140/epjc/s10052-012-1896-2. arXiv: 1111.6097 [hep-ph].

[45] Taoli Cheng et al. “Variational Autoencoders for Anomalous Jet Tagging” (July 3, 2020).
arXiv: 2007.01850 [hep-ph].

[46] Thorben Finke et al. “Autoencoders for unsupervised anomaly detection in high energy
physics” (Apr. 19, 2021). arXiv: 2104.09051 [physics.data-an].

[47] Theo Heimel et al. “QCD or What?” SciPost Phys. 6, 030 (2019) (Aug. 27, 2018). doi:
10.21468/SciPostPhys.6.3.030. arXiv: 1808.08979 [hep-ph].

31

https://doi.org/10.1007/JHEP05(2017)006
https://arxiv.org/abs/1701.08784
https://arxiv.org/abs/1701.08784
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2012.09740
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://arxiv.org/abs/1307.6346
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://arxiv.org/abs/2007.01850
https://arxiv.org/abs/2104.09051
https://doi.org/10.21468/SciPostPhys.6.3.030
https://arxiv.org/abs/1808.08979

Acknowledgements

First and foremost, I am extremely grateful to my research supervisors, Prof. Dr. Tilman Plehn
and Dr. Barry M. Dillon, for their continuous support and for all their help and advice through-
out the project and with this bachelor thesis. Thank you very much, Tilman, for giving me
the opportunity to be part of this interesting project and to gain first experiences in research.
Words cannot express how grateful I am to you, Barry. Without your guidance, comments and
feedback throughout this project, this thesis would not have been possible.

Thanks also goes to Prof. Dr. Jan Martin Pawlowski, who kindly agreed to be the second
examiner for this thesis, and to Jun.-Prof. Dr. Gregor Kasiezcka from Universität Hamburg, for
giving us access to the DESY GPU cluster. I am also grateful to Dr. Elmar Bittner for always
answering my questions and helping me with problems regarding the GPU farm of the ITP.

Furthermore, I would like to thank Hans Olischläger for the extremely helpful discussions about
physics topics and machine learning. I really appreciated our time at the institute. I am also
grateful to Peter Sorrenson and Thorsten Buss for being there to discuss machine learning and
programming problems (and for being my Advanced Machine Learning tutor and enduring my
exercises... thank you, Peter). It has been a great pleasure working with you guys. I would like
to extend my sincere thanks to all members of the LHC Physics and New Particles group here
in Heidelberg for the interesting conversations and the great time during our lunch-time walks.

I especially enjoyed the three days of the hybrid ML4Jets2021 workshop. Thank you, Tilman,
for organizing the workshop and thank you to all participants. It was a lot of fun watching
football with you guys (and of course listening to the talks...).

A special thanks goes to Robert Schmier, not only for proof-reading this thesis, but especially
for all your advice and support throughout the first two semesters of my physics studies. Thank
you, Robert. I would also like to thank my proof-readers Wiebke Nissen, Anna Katharina
Färber and Lukas Kalvoda. I am very grateful for your feedback.

Getting through physics studies required more than academic and scientific support. Therefore,
I would like to say thank you to my friends Sara Ditsch, Sebastian Willenberg, Teresa Förster,
Sarah Hoffmann and Simon Groß-Bölting. A very special thanks goes to Lukas Kalvoda for
being such a great friend and lab course partner!

Finally, I would like to thank my mother as well as my siblings and their partners for their love
and support throughout my life – they helped me to become who I am today. And I would like
to thank my father, who couldn’t experience this adventure with me, but who has been always
in my mind.

32

	List of Abbreviations
	List of Figures
	Introduction
	Physics Background
	Relativistic Kinematics and Kinematic Variables
	The Standard Model of Particle Physics
	Top-Quark Production and Decay
	Tagging Boosted Hadronically Decaying Top Quarks

	Machine Learning Background
	Deep Learning and Neural Networks
	Fully-Connected Feed-Forward Networks
	Activation Functions
	Training Deep Neural Networks

	Self-Attention and Transformer-Encoder Networks
	Performance Measure for Binary Classification Problems

	Jet Representations and Observables
	Image-Based Approach: Calorimeter Images
	Theory-Inspired Approach: Energy Flow Polynomials

	Contrastive Learning of Representations
	Contrastive Loss Function
	Contrastive Representation Learning for Jet Physics

	Experiments and Results
	Data Simulation and Pre-Processing Steps
	Top-Tagging Reference Dataset
	Pre-Processing and Symmetry Augmentations

	Network Architectures and Implementation Details
	Training Details
	Supervised Linear Classifier Test

	Downstream Task Performance and Comparisons
	Number of Constituents
	Temperature, Alignment and Uniformity
	Representation Dimension
	Comparison with other Representations

	Conclusion and Outlook
	References
	Acknowledgements

