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Abstract
Various aspects of LHC simulations can be supplemented by generative networks. For
event generation we show how a GAN can describe the full phase space structure of
top-pair production including intermediate on-shell resonances and phase space bound-
aries. In order to resolve these sharp peaking features, we introduce the maximum mean
discrepancy. Additionally, the architecture can be extended in a straightforward manner
to improve the network performance and to handle weighted events in the training data.
Furthermore, we employ GANs to generate new events which are distributed according
to the sum or difference of the input data. We first show with the help of a toy example
how such a network can beat the statistical limitations of bin-wise subtraction methods.
Afterwards we demonstrate how this network can subtract background events or describe
collinear subtraction events in next-to-leading order calculations.
Finally, we show how detector simulations can be inverted using GANs and INNs. They
allow us to reconstruct parton level information from measured events. In detail, our
results show how conditional generative networks can invert Monte Carlo simulations
statistically. INNs even allow for a statistical interpretation of single-event unfolding
and yield the possibility to unfold parton showering.

Zusammenfassung
Verschiedene Aspekte von LHC-Simulationen können durch generative Netzwerke er-
gänzt werden. Im Bereich von Eventgeneration zeigen wir, wie ein GAN die vollsändige
Phasenraumstruktur für Top-Quark-Paarproduktionen beschreiben kann. Insbesondere
zeigen wir, wie GANs auch Resonanzen und Phasenraumgrenzen beschreiben kann. Um
diese lokal begrenzten Strukturen aufzulösen, führen wir die Maximum-Mean-Discrepany
ein. Darüber hinaus kann die Netzwerkarchitektur auf einfache Art und Weise erweitert
werden, um sowohl die Simulationsgenauigkeit zu verbessern als auch mit gewichteten
Events in den Trainingsdaten umzugehen.
Des Weiteren nutzen wir GANs um neue Events zu generieren, die gemäß der Summe
beziehungsweise der Differenz der Inputdaten verteilt sind. Wir zeigen zunächst anhand
eines Beispiels wie solche Netzwerke die statistischen Limitationen von histogrammba-
sierten Subtraktionsmethoden lösen können. Anschließend demonstrieren wir wie die-
se Netzwerke sowohl Hintergrundevents subtrahieren als auch kollineare Subtraktions-
events, die für störungstheoretische Berechnungen höherer Ordnung benötigt werden,
beschreiben kann.
Zum Schluss zeigen wir wie Detektorsimulationen mit Hilfe von GANs und INNs in-
vertiert werden können. Diese machen es möglich Parton-Level-Informationen aus den
gemessenen Daten zu rekonstruieren. Im Detail zeigen unsere Ergebnisse wie kondi-
tionale generative Netzwerke Monte-Carlo-Simulationen statistisch invertieren können.
Mit INNs können wir sogar die Inversion von Einzelevents statistisch interpretieren und
Parton-Shower auf den harten Streuprozess abbilden.
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Introduction

Since time immemorial, we are interested in understanding what matter is composed
of. In ancient history, philosophers coined the term atom to describe the undividable
units making up matter. However, these ideas were rather motivated by philosophical
and theological reasoning than by physics and experiments. It was not until the 19th
century that the idea was finally refined by scientists when discoveries emerged only
explainable by the concept of atoms. Since then much has been learned by more advanced
experiments and the concept of atoms has been replaced by a more elaborate model
describing the elementary constituents of matter and their interactions. This model is
called the Standard Model of particle physics [5–11].

The Standard Model (SM) describes three of the four known fundamental forces of
nature: electromagnetism, the weak interaction and the strong force. The matter content
consists of spin-1

2 fermions and their interactions are described by the exchange of spin-1
force carriers called gauge bosons. The photon is responsible for the electromagnetic
interactions, the massive W± and Z bosons are the carriers of the weak force, and eight
gluons mediate the strong force.

The terms matter, particle and force are handy and appear to be vivid and tangible.
Nevertheless, they are merely metaphoric expressions of mathematical quantities ap-
pearing in a sophisticated model. Consequently, it is better suited to describe the SM in
the language of mathematics. In detail, the SM is formulated as a quantized field theory
being symmetric under the Poincaré group and the SU(3)C × SU(2)W × U(1)Y gauge
group. In fact, the unitary irreducible representations of the proper and orthochronous
Poincaré group are labeled by the squared massm2 and spin s which suggests the concept
of particles.

Since the 1970s, the SM received great recognition by an enormous number of experi-
ments showing remarkable agreement with the theoretical predictions. Most recently,
the discovery of the Higgs boson in 2012 by the ATLAS and CMS collaborations [12–14]
which was predicted by the SM as a consequence of the Higgs mechanism [15–17], was
a milestone in particle physics for both experiment and theory.

The discovery of the Higgs boson would not have been possible without theory and exper-
iment working hand in hand. In particular, analyzing the huge amount of recorded data
in a proper and quantitative manner requires an equally large amount of synthetic data
originating from complex simulations. Most commonly, these simulations are performed
with Monte Carlo methods. In typical LHC analyses we need to employ a complex tool
chain which combines several individual Monte Carlo simulations.

In the most simple scenario, we are only interested in the integrated cross section which
can be compared to event rates. However, the calculation of hadronic scattering cross
sections requires a numerical phase space integration [18–22] due to high-dimensional
integrands, complicated matrix elements and the convolution with PDFs. In general,
the integrated cross section is not sufficient to compare measured data with theoretical
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Introduction

models. Hence, in more elaborate analyses we usually need simulated events which were
generated under the assumption of a specific model hypothesis [23, 24]. Furthermore,
if we want to describe physical objects which can be actually detected in experimental
setups, we need to translate parton level objects into particle level objects. Therefore,
besides the simulation of hard matrix elements, we also need to add parton showering
including hadronization and fragmentation [25,26]. Finally, we need to parametrize the
detector response and hence simulate the interactions of particle level objects with the
detector [27,28].
In order to push these theory predictions to high precision sophisticated methods are
required. Therefore, most of the currently used tools either adopt self-adaptive sampling
techniques like Vegas [29, 30] and multi-channel methods [31, 32], or put a lot of effort
into hand-crafted phase space mappings [33, 34]. However, owing to the complexity of
the tool chain described above, these methods are still computationally expensive and
somewhat inefficient. For instance, to compare measured and simulated data in a simple
but reasonable manner, we need to translate the weighted Monte Carlo events into
unweighted events. However, the unweighting efficiencies for typical LHC processes are
successively decreasing [35,36] and thus limit the statistical significance of the analyses.
Some of these shortcomings might be diminished when we employ modern machine
learning techniques. Boosted decision trees and neural networks have been proposed to
improve phase space sampling [37–41] and aim to increase the unweighting efficiency. On
the other hand, generative networks such as generative adversarial networks (GANs) [42]
and invertible neural networks (INNs) [43–45] are promising attempts to describe var-
ious aspects of LHC simulations. For instance, generative networks have already been
used for detector simulations [46–51], the description of parton showers [52–56], event
generation [57–59], or searches for physics beyond the Standard Model [60].
In this thesis we propose to use GANs and INNs for three different tasks: event gen-
eration, sample-based subtraction of distributions, and detector unfolding. For event
generation we consider top-pair production

pp→ tt̄→ (bq1q̄
′
1) (b̄q̄2q

′
2),

with sharp phase space structures originating from intermediate resonances. In order
to resolve these resonances, we follow an entirely novel approach by adding a maximum
mean discrepancy (MMD) [61] term to the generator loss. This enables us to extract the
peak structure in a completely dynamical manner, not requiring further physical input
such as the mass or width of the on-shell resonance.
Furthermore, we consider the W + 2 jet production process

pp→W+jj

and investigate how more involved network architectures can increase the precision of our
GAN based event generation. For instance, we require the network to obey 4-momentum
conservation and on-shell conditions for the final-state particles by generating only the
necessary degrees of freedom. We show how simple and generalizable modifications can
lead to a significant improvement in the network performance.
Additionally, we also examine the Drell–Yan production process

pp→ µ−µ+,

which is now represented by a set of weighted events. Therefore, we derive a more
generalized GAN which can handle weighted events as training data while still producing

2



Introduction

unweighted events. This property yields a new contribution to the machine learning tool
box and extends the abilities of standard GAN frameworks used for event generation.

Since experiments at the LHC become more and more precise, theory needs to keep up
with this precision. Thus, the event samples which are used for data-to data comparisons
have to be generated beyond leading order in perturbation theory. However, modern
simulation techniques require the inclusion of subtraction terms in order to make the
entire prediction finite. Typically, these subtraction terms appear in fixed-order real
emission calculations [62–66], multi-jet merging including parton showering [67,68], on-
shell subtraction [69], or the subtraction of known backgrounds [70].

As neural networks possess excellent interpolation properties, we employ GANs to gen-
erate events representing either the subtraction or addition of two distributions. As a
physical application we consider the subtraction of the photon-continuum contribution
from the full e+e− production process in Drell–Yan scattering, and the subtraction of
collinear gluon radiation in Z+jet production to obtain finite real emission contributions.

As we have already pointed out, a standard LHC analysis requires us to perform the
entire event generation tool chain from the hard matrix element to the complex detector
simulation for every new model hypothesis. This approach is extremely inefficient. Con-
sequently, we want to invert parts of the simulation chain such that we can compare the
measured data and the theoretical hypothesis at the level of the hard scattering process.
To this account, we propose GANs and INNs to invert the detector simulation for the
process

pp→ ZW+ → (`−`+) (jj). (0.1)

In particular, we show how a fully conditional GAN [71] (FCGAN) and conditional INN
(cINN) [72,73] learn to map detector-level events onto parton-level events in a structured
and statistically meaningful manner. We even show, that for a single detector-level event
the cINN generates probability distributions in the parton-level phase space.

In detail, the thesis is organized as follows:
In Chapter 1 we give a brief overview of the fundamental ingredients of modern high-
energy physics research. In particular, we shortly introduce the Standard Model La-
grangian as the state-of-the-art mathematical description of nature. Afterwards, we give
a proper description of common Monte Carlo methods and how they can be used for
event generation. We also highlight shortcomings of standard techniques and emphasize
the need for modern machine learning approaches. Consequently, in Chapter 2 we give
a short introduction into neural networks and explain their basic building blocks as well
as typical training algorithms. In the end, we describe the basic elements of GANs and
INNs, as they are needed to understand the following chapters. Subsequently, in Chap-
ters 3–5 we present the results which have already been published in Refs. [1–4] as well
as the latest developments we are currently working on. In detail, in Chapter 3, we show
how GANs can be used to generate events for top-pair production at the LHC [1] and
afterwards we show how this method can be extended to obtain higher precision and
also cover possible weighted events in the training data. Furthermore, in Chapter 4, we
utilize the excellent interpolation properties of neural networks and employ GANs for
sample-based subtraction of distributions [3]. Then, in Chapter 5, we show how GANs
and INNs can be used to invert detector simulations for a typical LHC process [2, 4].
Finally, we conclude this thesis by giving a short outlook of possible future applications
and consequences.
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Chapter 1
The HEP Trinity

The two fundamental pillars of high energy physics research are theory and experiment.
In theory, we rely on predictions based on a fundamental Langrangian and observables
calculated within the framework of a perturbative quantum field theory (QFT). On the
experimental side we build large colliders and detectors to measure particle interactions
and collect huge amounts of data. In order to analyze experimental measurements and
link it with theoretical predictions we need to translate the mathematical description
into objects which can be compared to the recorded data in a simple but quantitative
manner. Most commonly, the translation or link between theory and experiment is
performed with Monte Carlo simulations. For instance, Monte Carlo simulations are used
for event generation [23, 24], phase space integration [18–22, 34], parton shower [25, 26]
and detector simulations [27,28].

In this chapter we first discuss the basics of the Standard Model (SM) of particle physics
and shortly introduce the SM Lagrangrian in Section 1.1. In our analyses we consider
processes and measurements at the Large Hadron Collider (LHC) and hence we need
to introduce the parton model and the idea of parton distribution function (PDF) Sec-
tion 1.2. Afterwards, in Section 1.3 we introduce the differential and total cross section
and derive a possible phase space parametrization as this is crucial to understand why
and how these quantities are computed numerically. In Section 1.4 we dive into the
basics of Monte Carlo simulations which are represent the gold standard for numerical
methods. In particular, we explain common integration and sampling procedures, which
are needed to understand why we put so much effort into improving these techniques in
the rest of our thesis.

1.1 The Standard Model of particle physics
The Standard Model (SM) describes three of the four known fundamental forces of
nature: electromagnetism, the weak interaction and the strong force. It is formulated
as a consistent quantum field theory (QFT) being symmetric under the Poincaré group
and the

SU(3)C × SU(2)W ×U(1)Y (1.1)

gauge group. In the following the full Lagrangian of the Standard Model of particle
physics will be constructed. A more extended treatment can be found in [74–76].

1.1.1 The Standard Model Lagrangian
The electroweak (EW) sector of the Standard Model is described by the Glashow-Salam-
Weinberg (GSW) model [5–7] for electroweak interactions. The underlying gauge group
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SU(2)W ×U(1)Y is spontaneously broken to the electromagnetic U(1)Q symmetry. The
strong interaction couples to the color quantum numbers and is described by quantum
chromodynamics (QCD) [8–11] with the associated gauge group SU(3)C. The SM La-
grangian can be divided into the following parts,

LSM = LGauge + LFermion + LHiggs + LYukawa, (1.2)

which we discuss in the following.

Gauge part

The SM has the underlying gauge group SU(3)C × SU(2)W ×U(1)Y, with gauge fields

SU(3)C : Gaµ, a =1, . . . , 8, (1.3a)
SU(2)W : W i

µ, i =1, 2, 3, (1.3b)
U(1)Y : Bµ. (1.3c)

In the following, we discuss the subgroups in more detail:

• SU(3)C: This group corresponds to the strong interaction, and the label C denotes
the color. The color quantum numbers are denoted as red, green, and blue. The
quark matter fields are arranged in triplets and transform under the fundamental
representation of SU(3)C. The generators are given by

T ac = λa

2 ≡ t
a, (1.4)

where the λa are the Gell-Mann matrices. The associated gauge fields are called
gluons and denoted as Gaµ.

• SU(2)W: The label W denotes the weak isospin. Since the weak interaction violates
parity, a separate treatment of left- and right-handed fermions is needed. They
can be defined as

ψL = ω−ψ, ψR = ω+ψ, ψ = ψL + ψR, (1.5)

with the projection operators

ω± = 1± γ5

2 , (ω±)2 = ω±. (1.6)

As only left-(right-)handed (anti-)fermions interact with the charged W boson,
the left-handed fermions are SU(2)W doublets, while the right-handed fermions
are singlets. Since neutrinos are massless in the SM, the right-handed neutrinos
νi,R can be left out. The generators for the lef-handed fermions are given by

T iw = σi

2 ≡ I
i
w, (1.7)

where σi are the Pauli matrices. The associated gauge bosons are denoted as W i
µ.

• U(1)Y: The hypercharge phase symmetry is needed for constructing the unbroken
electric charge operator Q, which is a linear combination of Y and the third com-
ponent of the weak isospin I3

w. Since the charge needs to be the same for left- and
right-handed fermions, they need to have different hypercharges Y . The associated
gauge field is denoted as Bµ.
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1 The HEP Trinity

In order to incorporate dynamics for the gauge fields into the theory, a gauge-invariant
kinetic term is added, given by the gauge part

LGauge = −1
4G

a
µνG

aµν − 1
4W

i
µνW

iµν − 1
4BµνB

µν , (1.8)

with field-strength tensors defined as

Gaµν = ∂µG
a
ν − ∂νGaµ − gsfabcGbµGcν ,

W i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν ,

Bµν = ∂µBν − ∂νBµ. (1.9)

Here, fabc and εijk are the structure constants of the SU(3) and SU(2) algebras, respec-
tively. The coupling constant of the U(1)Y subgroup is denoted as g′. As the U(1)Y
subgroup is Abelian, the coupling only appears in the definition of the covariant deriva-
tive.

Fermionic part

The matter content of the SM is built up from fermions, which can be further subdivided
into leptons (νi,`i), only interacting electroweakly, and quarks (ui,di), being also part
of the strong interaction. The fermions appear in three different generations, differing
only in their mass and flavor. The three generations of leptons and fermions are given in
Table 1.1 with their representation under the SM gauge group (1.1) and EW quantum
numbers.

fields
generation represen-

tation
charges

1st 2nd 3rd I3
w Y Q

leptons L′i,L

(
ν ′e
e′

)
L

(
ν ′µ
µ′

)
L

(
ν ′τ
τ ′

)
L

(1,2)−1
1
2
−1

2

−1
−1

0
−1

`i,R e′R µ′R τ ′R (1,1)−2 0 −2 −1

quarks Q′i,L

(
u′

d′

)
L

(
c′

s′

)
L

(
t′

b′

)
L

(3,2) 1
3

1
2
−1

2

1
3
1
3

2
3
−1

3

ui,R u′R c′R t′R (3,1) 4
3

0 4
3

2
3

di,R d′R s′R b′R (3,1)− 2
3

0 −2
3 −1

3

Table 1.1: The matter content of the SM for all i = 1, 2, 3 generations of the leptons
and quarks. The representation assignments of the fields with respect to the
SM gauge group is denoted by (SU(3)C,SU(2)W)U(1)Y . I

3
w and Y denote the

third component of the weak isospin and the hypercharge, respectively. The
electric charge Q is related to the above via Eq. (1.13).

Since the left- and right-handed fermions have different transformation properties under
the SU(2)W ×U(1)Y group, naive mass terms like

−mψ̄ψ = −m
(
ψ̄LψR + ψ̄RψL

)
(1.10)

7



1 The HEP Trinity

are forbidden. For including fermion masses Yukawa couplings need to be introduced
which will be discussed in a separate section below. Without the mass term, the fermionic
part of the Lagrangian is defined by

LFermion =
∑
i

(
L̄′i,L /DL

′
i,L + Q̄′i,L /DQ

′
i,L + ¯̀′

i,R /Dl
′
`,R + ū′i,R /Du

′
i,R + d̄′i,R /Dd

′
i,R

)
, (1.11)

with the covariant derivative

Dµ = ∂µ + igstaGaµ − igIiwW i
µ + ig′Y2 Bµ, (1.12)

where the representations of the SU(3)C×SU(2)W×U(1)Y gauge group need to be con-
sidered for each fermion field individually. The hypercharge Y and the third component
of the weak isospin I3

w are related to the electric charge Q via the Gell-Mann–Nishijima
relation [77,78]

Q = I3
w + Y

2 . (1.13)

It is constructed in such a way that the electric charge of the left- and right-handed
fermions are equal. We should also pay attention to the primes on the fermionic field.
The primes indicate that the fields are eigenstates of the EW interaction. In contrast,
unprimed fields denote mass eigenstates. In general those states are different, which
has also been observed in experiment. How they can be related to each other will be
discussed in the Yukawa part of the SM.

Spontaneous symmetry breaking and the Higgs mechanism

As the introduction of naive mass terms for the gauge bosons would spoil gauge invari-
ance we need to employ spontanous symmetry breaking (SSB) of a local gauge theory.
In the presence of SSB, the full Lagrangian is assumed to be invariant under a symme-
try group G, while the vacuum of the theory only respects the symmetry of a subgroup
H ⊂ G, denoted as little group or stability group. After SSB the gauge fields associated
with the unbroken little group remain massless whereas the other gauge fields become
massive. This mechanism is called Brout-Englert-Higgs mechanism [15–17]. In the SM
a scalar SU(2)W doublet is introduced which is conventionally parametrized as follows,

Φ(x) =
(
φ+(x)
φ0(x)

)
, (1.14)

with charged complex scalar fields φ+ and φ0, transforming in the (1,2)1 representation.
The most general Higgs Lagrangrian then takes the form

LHiggs = (DµΦ)†(DµΦ) + µ2(Φ†Φ)− λ

4 (Φ†Φ)2, (1.15)

where the parameters λ and µ2 are real since L = L†. Stability of the potential requires
λ > 0 and for SSB we need µ2 > 0. For the chosen potential, the vacuum expectation
value Φ0 must satisfy

|Φ0|2 = Φ†0Φ0 = 2µ2

λ
= v2

2 . (1.16)

8



1 The HEP Trinity

When switching into the unitary gauge the would-be Goldstone fields [79,80] vanish and
the Higgs doublet can be parametrized as

Φ = 1√
2

(
0

v +H(x)

)
. (1.17)

In order to work out the gauge boson masses we first define the linear combinations of
the fields

W±µ = 1√
2

(W 1
µ ∓ iW 2

µ), (1.18)

which correspond to the electric charge eigenstates

QW±µ = I3
wW

±
µ = ±W±µ , (1.19)

where the electric charge Q is the unbroken generator of the stability subgroup H given
by

Q ≡ Tunbroken = I3
w + Y

2 . (1.20)

The mass matrix that is generated from the kinetic term in Eq. (1.15) for the Bµ and
W 3
µ fields, will be diagonalized by

(
Aµ

Zµ

)
=
(

cos θw − sin θw

sin θw cos θw

)(
Bµ

W 3
µ

)
, (1.21)

with the weak mixing angle or Weinberg angle θw given by

cos θw ≡ cw = g√
g2 + (g′)2 , sin θw ≡ sw = g′√

g2 + (g′)2 . (1.22)

The electric unit charge e and hence the fine-structure constant α are fixed by the
couplings g and g′ via the relations

e = gg′√
g2 + (g′)2 , α ≡ e2

4π . (1.23)

Considering only the bilinear terms in the Higgs lagrangian we can read off the boson
masses

MW = vg

2 = ve

2sw
, MZ = MW

cw
, MH =

√
2µ. (1.24)

The first line in the Lagrangian corresponds to a neutral scalar particle H being called
Higgs boson. The other lines correspond to the charged W bosonsW±µ and the neutral Z
boson Zµ. The Aµ field associated with the unbroken generator Q represents the photon
γ and remains massless.

Fermion masses and Yukawa couplings

As the different transformation properties of the left- and right-handed fermions forbid
naive mass terms, the fermion masses are introduced by means of Yukawa couplings of

9



1 The HEP Trinity

the Higgs doublet Φ to all fermions. Therefore, we define the charge conjugate of the
Higgs doublet

Φc = iσ2Φ† = ((φ0)∗,−φ−) (1.25)

The Lagrangian takes the form

LYukawa = −
3∑

i,j=1

(
L̄′i,LG

`
ij`
′
j,RΦ + Q̄′i,LG

u
iju
′
j,RΦc + Q̄′i,LG

d
ijd
′
j,RΦ + h.c.

)
. (1.26)

In general, the Yukawa couplings Gf are complex 3 × 3 matrices, giving rise to a large
number of free parameters. However, it turns out that most of them are not physically
relevant. The vacuum expectation value (vev) part of the Higgs doublet generates mass
terms of the fermions that can be diagonalized by two unitary matrices UfL and UfR

mf,iδij = v√
2

3∑
k,l=1

UfL,ikG
f
klU

f†
R,lj , (1.27)

relating the primed EW eigenstates and the unprimed mass eigenstates

fi,L =
3∑
j=1

UfL,ij f
′
j,L, fi,R =

3∑
j=1

UfR,ij f
′
j,R. (1.28)

In the original formulation of the SM all neutrinos νi are massless1. Thus, we choose the
mass eigenstates to be the same as the EW eigenstates by choosing the ν ′i,L to transform
in the same way as the `′i,L

νi,L =
3∑
j=1

U `L,ijν
′
j,L. (1.29)

Hence all U `L,ij in the Lagrangian cancel in the transition to mass eigenstates. However,
the situation is different for the quarks. Here, there are masses for both ui and di species,
and we would like do diagonalize both. This means that the transformations UuL and
UdL are independent of each other, giving no coherent transformation of Q′i,L as a whole.
Then the charged-current (cc) interaction terms with the W±µ are not invariant and the
matrices do not cancel. The cc interaction terms are

LYukawa,cc = g√
2

3∑
i,j=1

ūi,Lγµ (UuLU
d†
L )ij︸ ︷︷ ︸

=VCKM

dj,LW
+
µ + d̄i,Lγ

µ (UdLU
u†
L )ij︸ ︷︷ ︸

=V †CKM

uj,LW
−
µ

 , (1.30)

where the quark-mixing matrix

UuLU
d†
L ≡ VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (1.31)

is called the Cabibbo-Kobayashi-Maskawa (CKM) [82, 83] matrix being responsible for
flavor transitions in the charged weak interactions. The CKMmatrix can be parametrized
in terms of 4 independent parameters: three angles and one complex phase, where the
latter is the only source of CP violation in the SM.

1Indeed, after the observation of neutrino oscillations we know that neutrinos need to be massive [81].
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1.2 The parton model
When considering scattering processes at the LHC we always consider proton-proton
collisions. However, from deep inelastic scattering (DIS) [84] of electrons off nuclei we
know that protons are not fundamental particles. In fact they have a rather complex
substructure. Hence, if we want to investigate LHC processes in our analyses we need
to take this into account and find an appropriate description. The first experiments
leading to a simplified description of the dynamics have been realized at Stanford Linear
Accelerator Center (SLAC) in the 1960s and in the 1970s. There, electrons with up to
25GeV have been scattered off nuclei in a linear collider. Further DIS measurements have
been performed with very high precision at the HERA collider at Deutsches Elektronen-
Synchrotron (DESY) in Hamburg by the H1 [85] and ZEUS [86,87] collaborations.

1.2.1 Bjorken scaling and naive parton model
When considering inelastic electron-nuclei scattering, the dynamics of the nuclei be be
described by structure functions W1 and W2. Using these structure funcitons, the dif-
ferential cross section for unpolarized electrons can be written as [88]

d2σ

dΩdE′ = Z2α2

4E2 sin4 θ
2

[
W2(Q2, ν) cos2 θ

2 + 2W1(Q2, ν) sin2 θ

2

]
, (1.32)

where W1 and W2 are functions of the two invariants

Q2 = −q2, ν = Pq

M
= E − E′, (1.33)

where q and P are the momenta of the photon and proton, M is the proton mass, and E
and E′ are the energies of the electron before and after the scattering, respectively. For
large values of Q2 and ν it has been seen in experiment that W1 and νW2 only depend
on

x = Q2

2Pq = Q2

2Mν
, (1.34)

The structure functions W1(Q2, ν) and W2(Q2, ν) are then denoted as F1(x) and F2(x),
depending only on x:

lim
Q2, ν→∞

W1(Q2, ν) = F1(x),

lim
Q2, ν→∞

νW2(Q2, ν) = F2(x). (1.35)

This effect is called Bjorken scaling [89]. The variable x is also denoted as Bjorken
variable. Richard Feynman suggested a vivid model for deep inelastic scattering: the
parton model. There the proton is considered in an infinite momentum frame, in which
the transverse momenta and rest masses of the constituents can be neglected. These
constituents are called partons. Each parton a carries the fraction xa (0 ≤ xa ≤ 1) of
the total proton momentum P ,

pa = xaP, with
∑
k

xk = 1. (1.36)

The momentum fraction xa can be identified with the Bjorken variable x, where x is the
momentum fraction the lepton is scattered off. The number density to find a parton a

11



1 The HEP Trinity

with the momentum fraction xa in a hadron A is described by the parton distribution
function fa|A. The structure function F2 is connected to the PDFs fa|A and the other
structure function F1 via the charges qa of the partons and the Callan-Gross relation2,
respectively:

F2(x) =
∑
a

q2
a fa|A(x),

F2(x) = 2xF1(x), (1.37)

where a runs over all possible partons.

Hadronice scattering process

As an example relevant for our later purposes we now consider the scattering process of
two hadrons A and B,

A+B → C +X, (1.38)

where C denotes an arbitrary final state we are interested in, and X represents the
remnants of the incoming hadrons after the hard scattering. For calculating the hadronic
cross section for this scattering process we have to take the sum over all possible partonic
scattering reactions weighted by their respective PDFs,

σAB =
∑
a,b

1∫
0

dxa
1∫

0

dxb fa|A(xa)fb|B(xb)σ̂ab(xa, xb), (1.39)

where σ̂ab(xa, xb) denotes the partonic cross section of partons a and b contributing to
the production of the final state C. A graphical representation of Eq. (1.39) is illustrated
in Fig. 1.1.

PA

PB

xaPA

xbPB

A

X

B

X





C

fa|A(xa)

fb|B(xb)

σ̂ab

Figure 1.1: Schematic representation of the hadronic scattering process A+B → C+X,
where C denotes an arbitrary final state we are interested in andX represents
any additional hadronic activity.

2The Callan-Gross relation reflects the spin- 1
2 nature of the partons. For scalar particles we would

get F1 = 0. In fact, gluons are also partons but are spin-1 particles. However, this can only be
understood within the framework of QCD and the QCD-improved parton model [90].
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As PDFs cannot be obtained perturbatively they have to be extracted from experiments.
However, they are universal in the sense that they encode the structure of the hadron,
but are not dependent on the actual scattering process. Thus, they be can extracted,
for instance from deep inelastic e−p scattering, and used to calculate cross sections for
proton-proton collisions.

1.2.2 The QCD improved parton model
In Fig. 1.2 we show, that the gluon and quark PDFs strongly depend on the Bjorken
variable x. A more detailed PDF analysis shows, that they also depend on the factor-
ization scale. In fact the statement of Bjorken scaling is only approximately true for
specific domains of Q2.

Figure 1.2: PDFs for different partons depending on the Bjorken variable x and the
factorisation scale at µF = 10GeV2 (left) and µF = 104 GeV2 (right) [91].

The naive parton model of Feynman is still the basis for investigating inelastic nuclei
scattering. A more advanced description of the proton is given by quantum chromody-
namics. QCD extends the naive parton model such that interactions between partons
are allowed. This is also called QCD-improved parton model [90], which extends the
concept of PDF to gluons and even photons [92,93].
Using the DGLAP equations (for Dokshitzer, Gribov, Lipatov, Altarelli and Parisi) [94]
the evolution of the PDFs, which were determined for a specific energy Q2, can be
calculated to arbitrary factorization scales µF. The factorization scale is an almost
arbitrary scale where hard processes (partonic cross section) and soft processes (non-
pertubative effects) can be factorized. This is the basis of the QCD-improved parton
model and generalizes Eq. (1.39) to

σAB =
∑
a,b

1∫
0

dxa
1∫

0

dxb fa|A(xa, µ2
F)fb|B(xb, µ2

F)σ̂ab(xa, xb, µ2
F). (1.40)

The factorization scale µF can also be interpreted as the scale that separates the long-
distance from the short-distance physics.
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1.3 Cross section and kinematics
A crucial aspect of LHC analyses and hence our research is the calculation of observables
which can be compared to experimental data. An observable which can be directly
linked to event rates and thus detector measurements is the differential or total cross
section. In order to understand, how these quantities can be calculated, we first consider
the kinematics of scattering processes and the relation between partonic and hadronic
processes. Afterwards, we derive the phase space for a general 2→ n scattering process.

1.3.1 Kinematics
The 4-momentum of a particle with mass m is given by

pµ = (E,p), E =
√
|p|2 +m2, (1.41)

and the 3-momentum p = (px, py, pz) can be parametrized as

p = |p| (sin θ cosφ, sin θ sinφ, cos θ), (1.42)

where θ and φ denote the polar and azimuth angles in polar coordinates. Since the
partonic cross section has to be convoluted with the PDFs, the partonic centre-of-mass
system (CMS) is not equal to the hadronic CMS, which we denote as the laboratory
(LAB) frame. However, both frames are connected to each other by a Lorentz boost
along the beam axis. The phase space is usually parametrized in the partonic CMS.
Thus, it s convenient to define variables which have simple transformation property
under a boost along the z-direction. Note, that all variables denoted with a hat are
defined in the partonic CMS (e.g. ŷ, θ̂), whereas the observables without a hat are those
within the LAB frame. We introduce the following kinematic variables:

transverse momentum: pT =
√
p2
x + p2

y, (1.43a)

transverse mass: mT =
√
p2

T +m2 −−−→
m→0

pT, (1.43b)

rapidity: y = 1
2 ln

(
E + pz
E − pz

)
, (1.43c)

pseudorapidity: η = 1
2 ln

( |p|+ pz
|p| − pz

)
= − ln

(
tan θ2

)
−−−→
m→0

y. (1.43d)

Using these variables we can also write the 4-momentum as

pµ =


mT cosh y
pT cosφ
pT sinφ
mT sinh y

 −−−→m→0
pT


cosh η
cosφ
sinφ
sinh η

 . (1.44)

Lorentz transformation

The Lorentz boost Λ along the z-axis can be parametrized as

Λµν(ξ) =


cosh ξ 0 0 sinh ξ

0 1 0 0
0 0 1 0

sinh ξ 0 0 cosh ξ

 , (1.45)
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1 The HEP Trinity

with rapidity ξ . Under this boost the kinematic variables in (1.43) have very simple
transformation properties

pT → pT, mT → mT, y → y + ξ. (1.46)

Note that the pseudorapidity η transforms less simple. In the LAB frame, the 4-momenta
of the incoming protons A and B are given by

PµA = (EB, 0, 0, EB), PµB = (EB, 0, 0,−EB) (1.47)

where EB is the beam energy and the masses of the protons have been neglected as we
consider high energy scattering. Then the centre-of-mass energy is given by

ECM =
√
s =

√
(PA + PB)2 = 2EB. (1.48)

The 4-momenta of the partons a and b coming from the protons are then obtained by

pµa = xaP
µ
A = xa(EB, 0, 0, EB), pµb = xbP

µ
B = xb(EB, 0, 0,−EB) (1.49)

with momentum fractions xa and xb. In the partonic CMS the momenta of the incoming
partons a and b have the form

p̂µa = (ÊB, 0, 0, ÊB), p̂µb = (ÊB, 0, 0,−ÊB) (1.50)

where ÊB denotes the partonic beam energy. Thus, the squared centre-of-mass (CM)
energy of the partonic subprocess is related to the hadronic system with

√
ŝ = ÊCM = 2ÊB =

√
(p̂a + p̂b)2 =

√
(pa + pb)2 = √xaxbs. (1.51)

Thus, the boost parameter ξ in (1.45) is given by

ξ = 1
2 ln xa

xb
. (1.52)

1.3.2 Phase space parametrization

Let us consider two particles a and b with 4-momenta pa and pb being scattered off each
other and producing n particles with 4-momenta {pi}ni=1:

pa + pb → p1 + p2 + · · ·+ pn. (1.53)

The differential cross section is then given by [95]:

dσ = 〈|M(p1, . . . , pn|pa, pb)|2〉
F (pa, pb)

1
S{n}

dΦn(p1, . . . , pn| pa + pb︸ ︷︷ ︸
=:Q

), (1.54)

where the different factors are:

• The squared matrix element 〈|M|2〉: The angular brackets 〈· · · 〉 denote possi-
ble averaging/summation over initial-/final-state degrees of freedom such as spin,
helicity and color.
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• The flux factor F (pa, pb):

F (pa, pb) = 4
√

(pa · pb)2 − (mamb)2. (1.55)

For massless initial states p2
a,b = 0 the flux factor simplifies to

F (pa, pb) = 4 (pa · pb) = 2s, (1.56)

where s is the squared CM energy defined by s = (pa + pb)2 = Q2.

• The symmetry factor S{n}: For each set of nj identical particles in the final state
we get a factor nj ! correcting for double counting,

S{n} =
∏
j

nj !. (1.57)

• The Lorentz invariant n-particle phase space density dΦn(p1, . . . , pn|Q):

dΦn(p1, . . . , pn|Q) =
n∏
i=1

[
d4pi
(2π)3 δ(p

2
i −m2

i )Θ(p0
i )
]

(2π)4δ(4)
(

n∑
i=1

pi −Q
)

=
n∏
i=1

[
d3pi

(2π)32Ei

]
(2π)4δ(4)

(
n∑
i=1

pi −Q
)
,

(1.58)

with Ei =
√

p2
i +m2

i . The Dirac delta- and the Heaviside step functions implement
three kinds of kinematical constraints:
1. Energy and momenta need to be conserved: pa + pb =

∑
pi.

2. Each external particle has to be on its mass shell: p2
i = m2

i .
3. The energy must always be positve: p0

i = Ei > 0.

1.4 Monte Carlo integration
In order to calculate total and differential cross sections the squared amplitude has to
be integrated over the full phase space region or, depending on the observable, over a
subspace defined by kinematic cuts.
However, owing to the high dimensionality of the integrand, complicated matrix ele-
ments, arbitrary phase space cuts, and the convolution with PDFs, the integration can
only be done numerically. These numerical integrations are commonly performed with
Monte Carlo methods. The Monte Carlo simulations naturally provide us with the
possibility to generate unweighted events which are directly comparable to LHC data.

In the following, we briefly introduce the basic concepts of numerical integration using
the RAMBO on diet [96] algorithm as an example of plain Monte Carlo. Afterwards, we
discuss the advantageous of more sophisticated versions relying on the idea of importance
sampling. To this end we present the idea of multi-channel Monte Carlo [19,31,32].

We finish this section by taking the step towards actual event generation as this will
serve as a basis for our neural network based method introduced in Chapter 3. We will
also define the unweighting efficiency as a quality measure to benchmark the perfomance
of our approach in Sec. 3.4.
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1.4.1 Basic definitions and plain Monte Carlo
Consider we have a function f defined on the d-dimensional domain Ω ⊆ Rd. We are
now interested to perform the integral

I =
∫

Ω
ddx f(x). (1.59)

but we are not able to solve this integration analytically, either because this is unpractical
or simply not feasible. Further, we are only given N points {xi}Ni=1 chosen randomly
from Ω, which are distributed according to a function ρ(x). Thus, the integral can be
approximated by

ĪN = 1
N

N∑
i=1

f(xi)
ρ(xi)

, (1.60)

where ρ(x) obeys the normalization equation∫
Ω
ddx ρ(x) = 1. (1.61)

Therefore ρ is a probability density function. In the limit of large numbers the estimation
converges to the integral I:

lim
N→∞

ĪN = I. (1.62)

For sufficiently large N the variance σ2 can be approximated by

σ2 ' S̄N − Ī2
N

N − 1 , (1.63)

with

S̄N = 1
N

N∑
i=1

(
f(xi)
ρ(xi)

)2
. (1.64)

In the most simple case ρ(x) is constant and hence the integral is evaluated with uni-
formly drawn points {xi}Ni=1 ∈ Ω. Let further V be the volume of the domain Ω. In this
case ρ(x) is given by

ρ(x) = 1
V
, V ≡

∫
Ω
ddx. (1.65)

The estimation for the integral is then simply given by

ĪN = V

N

N∑
i=1

f(xi). (1.66)

RAMBO on diet

We start by considering a generic change of integration variables x → y = y(x) and
thus we rewrite the integral as

I =
∫

Ω
ddx f(x) =

∫
Ξ

ddy
∣∣∣∣∂x∂y

∣∣∣∣ f(y), (1.67)
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with a function y : Ω→ Ξ ⊆ Rd. In general, the Jacobian determinant
∣∣∣∂x∂y ∣∣∣ or weightW

is dependent on the specific mapping y(x) and thus on the new coordinates. However,
we are now only interested in mappings in which the determinant or weight is constant.
In particular, in the RAMBO on diet [96] algorithm we try to find a mapping r : Φn →
Un = [0, 1]3n−4 such that the n-particle phase space weight WΦn is constant for a given
total momentum Q ∣∣∣∣∂p∂r

∣∣∣∣ = WΦn = const. (1.68)

and thus resulting in a flat phase space. We recast our result from (1.58) and write the
phase space density for massless final-state particles as

dΦn(p1, . . . , pn|Q) = (2π)4−3n
n∏
i=1

[
d4piδ(p2

i )θ(p0
i )
]
δ

(
n∑
i=i

pi −Q
)
, (1.69)

The RAMBO on diet algorithm generates n massless momenta according to (1.69) using
3n−4 random numbers ri ∈ [0, 1]. Note, that in the original version of RAMBO [97] the
phase space was generated from 4n random numbers. Hence, the inversion of the phase
space generation algorithm is only possible in the modified RAMBO on diet algorithm.
In the following, we only present the final results and algorithms. The derivation and
proofs are given in Ref. [96]3.

Algorithm 1: The massless RAMBO on diet algorithm.
Q1 ← Q, M1 ←

√
Q2, Mn ← 0

for i = 2, . . . , n do
if i 6= n then
solve ri−1 = (n+ 1− i)u2(n−i)

i − (n− i)u2(n+1−i)
i for ui

Mi ← u2 . . . ui
√
Q2

end if
cos θi ← 2rn−5+2i − 1, sin θi ←

√
1− cos2 θi, φi ← 2πrn−4+2i

qi ← 4Mi−1ρ(Mi−1,Mi, 0)
pi−1 ← qi(cosφi sin θ1, sinφi sin θi, cos θi)
pi−1 ← (qi,−pi−1), Qi ← (

√
q2
i +M2

i ,−pi−1)
boost pi−1 and Qi by Qi−1/Q

0
i−1

end for
pn ← Qn
return {p1, . . . , pn} with weight WΦn

As the total phase space volume is given by

VΦn =
∫

Φn
dΦn(p1, . . . , pn|Q)

=
∫
Un

d3n−4r
∣∣∣∣∂p∂r

∣∣∣∣ =
(
π

2

)n−1 (Q2)n−2

(n− 1)! (n− 2)! ,
(1.70)

the phase space weight WΦn for the flat phase space is indeed constant

WΦn ≡WΦn(Q) =
∣∣∣∣∂p∂r

∣∣∣∣ =
(
π

2

)n−1 (Q2)n−2

(n− 1)! (n− 2)! . (1.71)

3Note that there is an error in the original paper in the transformation from Eq. (8) to Eq. (9). Thus,
the algorithm has some missing squares in the algorithm when solving for the variable ui.
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The mapping between 3n−4 random numbers ri and n 4-momenta is given in algorithm 1,
and its inverse in algorithm 2.

Algorithm 2: The inverse massless RAMBO on diet algorithm.

M1 ←
√(∑n

j=1 pj
)2
, Qn ← pn

for i = n, . . . , 2 do

Mi ←
√(∑n

j=i pj
)2

if i 6= n then
ui ←Mi/Mi−1

ri−1 ← (n+ 1− i)u2(n−i)
i − (n− i)u2(n+1−i)

i

end if
Qi−1 ← Qi + pi−1
boost pi−1 by −Qi−1/Q

0
i−1

rn−5+2i ← (pzi−1/ |pi−1|+ 1)/2, φ = arctan(pyi−1/p
x
i−1), rn−4+2i = φ/2π + Θ(−φ)

end for
return {r1, . . . , r3n−4}

To solve the equation in line 4 of algorithm (1) we use Brent’s method [98]. The function
ρ(Mi−1,Mi,mi−1) in line 8 corresponds to the two-body decay factor defined as

ρ(Mi−1,Mi,mi−1) = 1
8M2

i−1

√
(M2

i−1 − (Mi +mi−1)2)(M2
i−1 − (Mi −mi−1)2),

which simplifies in the massless case to

ρ(Mi−1,Mi, 0) =
M2
i−1 −M2

i

8M2
i−1

.

1.4.2 Importance sampling and change of variables
In principle a plain Monte Carlo integration is able to approximate even high-dimensional
integrals. In practice, however, the variance σ2 often becomes large and limits the
reliability of the integral estimation. To reduce the error we have two options: We
accumulate more statistics which inevitably requires more computational power, or we
rewrite the integrand in such a way that the integral is unchanged and the variance is
reduced. In other words, with an appropriate choice of ρ(x), the variance σ2 can be
minimized. The idea is to modify the probability distribution function ρ such a way
that points where f is large have high probability.

Consider a function g which is defined on Ω and is similar to f , in the sense that
g ≈ C · f . In fact g can be defined in such a way that g is properly normalized and can
be interpreted as a probability distribution function. Then g has the same meaning as
ρ before. Hence, the integral of f over Ω can be written as,

I =
∫

Ω
ddx f(x) =

∫
Ω

ddx g(x)f(x)
g(x) =

∫
Ξ

ddy
∣∣∣∣∂x∂y

∣∣∣∣ g(x) f(x)
g(x)

∣∣∣∣
x≡x(y)

, (1.72)

with a function y : Ω→ Ξ ⊆ Rd. Requiring

g(x)
∣∣∣∣∂x∂y

∣∣∣∣ = 1 ⇔
∣∣∣∣∂y∂x

∣∣∣∣ = g(x), (1.73)
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determines the mapping y. This simplifies the integral

I =
∫

Ξ
ddy f(x)

g(x)

∣∣∣∣
x≡x(y)

(1.74)

and reduces the error, since the integrand is almost constant C ≈ f/g. If a function g(x)
is known, the mapping y can be calculated and inverted to find x = x(y), which is called
the quantile function. In general, this is highly non-trivial. This method of choosing
an adequate density is called importance sampling. There are several implementations
available, one of the most frequently used is Vegas [29, 30] which assumes that g(x)
factorizes, i.e.

g(x) =
d∏

k=1
gk(xk). (1.75)

Example: Normal distribution

Let us consider a simple example: Suppose we are interested to integrate the following
function over the domain Ω = R:

f(x) = 1√
π

exp(−x2). (1.76)

Assuming we do not know the integral, a suitable mapping is the Cauchy distribution

g(x) = 1
π

1
1 + x2 , (1.77)

as the first terms of their Taylor expansion agree up to a factor which is irrelevant for
importance sampling

f(x) = 1√
π

(
1− x2 +O(x4)

)
, (1.78a)

g(x) = 1
π

(
1− x2 +O(x4)

)
. (1.78b)

As we already know that g(x) is the Cauchy distribution we also know its quantile
function which is given by

x = tan (π(y − 1/2)) . (1.79)

Using this, a better estimation of the integral can then be obtained by

I ≈ ĪN = 1
N

N∑
i=1

1√
π

exp
(
− tan2 (π(yi − 1/2))

)
1
π

1
1+tan2(π(yi−1/2))

, (1.80)

where {yi}Ni=1 are uniformly distributed numbers.

1.4.3 Adaptive multi-channel method
For importance sampling the knowledge of a function g which is similar to f is required.
This function g also needs to be simple, so that a change of variables can be performed
analytically. In general, it is not possible to find one function g that satisfies all these
conditions. However, it is possible that a set of functions gj approximate the integrand

20



1 The HEP Trinity

well in some specific regions possessing all necessary properties. Then a combined prob-
ability distribution function can be defined as

g(x) =
M∑
j=1

αjgj(x), (1.81)

where the weights αj and the individual gj obey the additional conditions

M∑
j=1

αj = 1, (1.82a)
∫

Ω
ddx gj(x) = 1. (1.82b)

Hence, g is normalized as well. If the individual gj are sufficiently small in the regions
in which they approximate the integrand poorly, the combined function g approximates
f well. Thus, the integral I can be rewritten as

I =
M∑
j=1

αj

∫
Ω

ddx gj(x)f(x)
g(x) . (1.83)

Performing the change of variables yj : Ω→ Ξj for each gj individually yields

I =
M∑
j=1

αj

∫
Ξj

ddyj
f(x)
g(x)

∣∣∣∣
x≡xj(yj)

, (1.84)

where the coordinates xj(yj) are set by the function gj . To avoid explicit evaluation of
the sum it is convenient to replace it by a Monte Carlo sum

I =
∫

dj
∫

Ξj
ddxj

f(x)
g(x)

∣∣∣∣
x≡xj(yj)

, j ∼ {α1, α2, . . . , αM}, (1.85)

where the index j is randomly generated according to its weight αj . The index j is called
channel and the quantile functions xj are the corresponding mappings. The weights αj
have to be set before the contributions of each channel are known. Therefore, a priori,
the weights are set to αj = 1

M generating the channels uniformly. If, after a certain
number of integrand evaluations, a specific channel j1 gives large contributions to the
integral its corresponding weight αj1 will be enlarged [32], whereas the weight of channels
with smaller contributions will be decreased. This method decreases the variance of the
integral for a fixed number N of points {xi}Ni=1, which is effectively importance sampling
for the weights, called adaptive weight optimization. The multi-channel approach is also
adopted by Madgraph5 [23] and Sherpa [24] which are used in the projects presented in
Chapter 3–5.

1.5 Event generation
In the previous sections we illustrated the relevance of appropriate sampling methods
when perfoming Monte Carlo integrations. This sampling of random numbers and hence
phase space points can also be interpreted as event simulation. These events naturally
come with weights which correspond to the integrand. In experiment, however, we only
obtain unweighted events. Consequently, if we want to compare our simulated events
with the experimental measurements we first need to translate the weighted events into
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unweighted events. Usually, this this unweighting of events is inefficient and computa-
tionally expensive.

In the following, we first take the step from the numerical integration towards weighted
event generation. Afterwards, we emphasize the importance of unweighted events for
actual LHC analyses in more detail. We will describe the most common unweighting
method and explain its shortcomings. Finally, we define the unweighting efficiency as a
quality metric for the simulation and sampling method.

1.5.1 Weighted events

We consider again the integrated cross section for a 2→ n process being now parametrized
as

σ =
∫

Ω
dmx dσ

dx , (1.86)

where dσ/dx is the differential cross section with respect to the observables xi. We can
now think of an event x = (x1, . . . , xm) as a set of m observables which describe the
scattering process we are interested in. If we want to encode all physics information
including all correlations we need to have m ≥ 3n − 4. When performing this inte-
gral numerically we draw N phase space points or events {xi}Ni=1 and sum over their
differential cross sections

σ ≈ 1
N

N∑
i=1

dσ
dxi

. (1.87)

The differential cross section or event weight

wi := dσ
dx i

(1.88)

describes the probability that the event xi occurs. Thus, the after sampling N phase
space points {xi}Ni=1 and evaluating their event weights {wi}Ni=1 we have effectively gen-
erated N weighted events as the combined sample {xi, wi}Ni=1.

1.5.2 Unweighted events

When we think of events in the sense of a measurement at the LHC we still use a set of
observables to describe it. In nature, however, the events do not come with probabilities
or event weights as this quantum mechanical information is lost during the measurement.
You can however measure event rates and thus deduce the cross section statistically. For
this, we usually fill histograms of certain kinematic observables to obtain their differential
cross sections approximately.

When performing LHC analyses we would like to treat the measured and generated
events in the same way to make their comparison as simple as possible. Therefore, we
need to find a procedure to unweight the generated events. To be precise, we want to
transform a set of N weighted events {xi, wi}Ni=1 into a set of M unweighted events
{xi}Mi=1, where M ≤ N (N = M + l) in general. The most common unweighting
procedure is the hit-or-miss method which we describe in the following.
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Hit-or-miss method

The basic idea of this method is to translate the weight wi into a probability to keep
or reject the event xi. For this we determine the maximum weight wmax and define the
relative weight

wi,rel = wi
wmax

. (1.89)

Then, we a draw random number Ri ∈ [0, 1] for every event xi and keep it only if

wi,rel > Ri (1.90)

is satisfied, otherwise we reject it. An obvious shortcoming of this unweighting method
is that we lose a lot of events in general.

Unweighting efficiency and improved event generation

As we have already mentioned, with the hit-or-miss method we will inevitably lose a lot
of events. We can quantify the efficiency of the unweighting method with the unweighting
efficiency εuw being defined as [41]

εuw = E[w]
wmax

≤ 1, with E[w] = 1
N

N∑
i=1

wi (1.91)

This implies that if the integrand and hence the weights are strongly varying, i.e. E[w]�
wmax, we get very low unweighting efficiencies. In consequence, if we are interested to
do proper LHC analyses we need to generate a lot of weighted events in the first place
which is computationally expensive.
However, having more advanced sampling methods at hand, we can rewrite the original
integral (1.86) and thus redefine the event weights in order to obtain a larger unweighting
efficiency. For this, we shortly reinvestigate the role of importance sampling in the
context of event generation. Using the same reparametrization trick as in (1.72) and
with f(x) ≡ w(x) = dσ/dx the integrated cross section reads

σ =
∫

Ξ
dmy w(x)

g(x)

∣∣∣∣
x≡x(y)

(1.92)

where we have introduced a density function g ≈ C · w obeying the condition (1.73).
Now, in event generation this translates into events x(y)i with new weights

w̃i = wi
g
≈ C = const. (1.93)

As all weights w̃i are nearly constant, the unweighting procedure is much more effective

εuw = E[w̃i]
w̃max

≈ E[C]
C

= 1. (1.94)

We can conclude that an appropriate phase space sampling is crucial not only for numer-
ical integration but also for event generation. As we already pointed out by introducing
importance sampling and the adaptive multi-channel method, a lot of effort has already
been put into improving phase space sampling. However, typical unweighting efficien-
cies for state-of-the-art LHC analyses are gradually decreasing [35, 36]. Hence, modern
machine learning approaches like boosted decision trees or neural networks [37–41] have
been recently proposed to overcome current limitations. We will propose another method
based on generative neural networks in Chapter 3–5 to diminish the shortcomings of
standard Monte Carlo methods. The fundamentals of generative neural networks are
therefore introduced in the following Chapter 2
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Chapter 2
Neural Networks and Deep Learning

Deep learning or more specifically neural networks are a special kind of machine learn-
ing (ML). They are inspired by the human brain and are used as an automatic learning
algorithm. Typical tasks for neural networks involve regression and classification prob-
lems or more involved challenges like image generation or density estimation. In recent
years, the application of ML techniques received more and more attention among physi-
cists. In LHC physics the simulation of events, parton showering or detector effects is
most commonly performed with sophisticated Monte Carlo methods. However, these
methods face many challenges, such as high-dimensional phase-space integrals, event
unweighting, or complex and thus slow detector simulations. With the application of
ML methods some of these bottlenecks might be circumvented or at least diminished.
In this chapter, we first give a short introduction into the basic concepts and building
blocks of neural networks in Section 2.1. Afterwards, in Section 2.2 we explain the most
common training algorithms and optimization techniques and explain the meaning of
overfitting. Finally, in Section 2.3 and Section 2.4 we introduce generative adversarial
networks (GANs) [42] and invertible neural networks (INNs) [43], respectively, as they
are the most promising attempts to tackle the simulation and generation tasks mentioned
above. Some displayed figures and parts of the text in Sec. 2.3 are identical to the content
of Ref. [1].

2.1 An introduction to neural networks
Artificial neural networks (ANNs) are composed of neurons which are loosely modeled
after the human brain. Each of these neurons represent a simple mathematical function
and are connected to each other an entire network. These (deep) neural networks have
the necessary capacity to learn the complex tasks we are interested in.

2.1.1 Structure of an artificial neuron
In the most simple setup, the neural network consists of exactly one neuron. In general,
this neuron gets an arbitray number of inputs xi and has a single output y. In order to
get the output, the neuron performs the transformation

y = f

(
n∑
i=1

wixi + b

)
, (2.1)

where f is the activation function, and wi and b denote the trainable weights and bias,
respectively. The structure of an artificial neuron is depicted in Figure 2.1.
Having artificial neurons at hand, we can now construct deep neural networks which are
capable of solving real world problems.
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x2 w2 Σ f

activation
function

y

output

x1 w1

...
...

xn wn

weights

bias
b

inputs

Figure 2.1: Structure of a neuron. The input is multiplied with weights wi, summed up
with an additional bias and an activation function is applied.

2.1.2 Deep neural networks
In general, a neural network consists of several neurons, which are typically organized
in layers. The size of a layer is usually referred to as the width of the network. These
layers can further be stacked one after another and represents the depth. Depending on
the position in the network, we distinguish three kinds of layers: the input layer at the
beginning, the output layer at the end and the hidden layers in between.

hidden
layer 1

hidden
layer n

· · ·

input
layer

output
layer

Figure 2.2: Generic structure of a neural network. Each circle illustrates one neuron.
The blue layer on the left side is called the input layer, the orange layers are
the hidden layers and the red layer is the output layer. The arrows indicate
the connections between the neurons which are weighted by trainable weights
w.

As depicted in Figure 2.2, we restrict ourselves to feedforward neural networks in which
only connections to neurons in the next layer are possible. There are no cycles or loops
in the network. These networks are generally easier to train than networks with loops,
such as recurrant neural networks (RNNs), and are sufficient for to solve the problems
we are facing in our applications [99].

At this stage we need to specify the role of the weights wi, the bias b and the activa-
tion function f . The weights wi and bias b are the heart of every neural network as
they represent the tunable parameters being adjusted by the learning algorithm. Each
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connection between neurons, depicted as arrows in Figure 2.2, is weighted by a weight
and thus influences the importance of the inputs. On top of that, each neuron carries
a bias b which allows for a shift of the summed input. Up to now, all transformations
of the neural network are purely linear. Therefore, stacking layers and hence combining
multiple linear transformations will result in another linear transformation. Then, the
deep neural network is simply a linear transformation. In order to gain all benefits and
performance neural networks are known for we need to apply a activation function which
is non-linear. Only then, the neural network is also capable to learn non-linear and hence
more complex structures

2.1.3 Activation functions
As we have already discussed, we need to have an activation function which is non-
linear. There are many non-linear activation function which are suitable for neural
networks [100]. In the following, we only describe those which are used in our applications
in Chapter 3–5, as shown in Figure 2.3 together with their derivatives.

The sigmoid function

The sigmoid function or more specifically the logistic function is defined as

sigmoid(x) ≡ σ(x) := 1
1 + e−x

. (2.2)

Usually, the sigmoid function is used in the output layer of neural networks, for instance
representing probabilities in binary classification tasks. A nice feature of the sigmoid is
its simple derivative

σ′(x) = σ(x) (1 + σ(x)). (2.3)

which is beneficial for calculating the gradients in the training algorithm. However, for
large input values x the sigmoid is approximately flat and hence leads to small and
vanishing gradients [100].

The rectified linear unit function

The ReLU (Rectified Linear Unit) function is the most used activation function since
its proposal in 2010 [101]. It is defined as

ReLU(x) := max{0, x} =
{
x x > 0,
0 x ≤ 0.

(2.4)

This function is linear for positive inputs and zero for negative values. Therefore, the
evaluation of both the function itself and its derivative is numerically efficient. A down-
side of this activation function is known as the dying neuron problem [102]. In order to
overcome this issue the leaky ReLU function was suggested.

The leaky ReLU function

The leaky ReLU function is identical to the ReLU function for positive inputs but non-
zero for negative values. In particular, a hyperparameter α 6= 0 was introduced to solve
the dying neuron problem such that no zero gradient occurs [103]:

LeakyReLU(x) :=
{
x x > 0,
αx x ≤ 0.

(2.5)

where α is usually set to 0.3.
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Figure 2.3: Plots of activation functions and their derivatives. On the upper left the
ReLU activation function, on the upper right the LeakyReLU activation
function with α = 0.3, on the lower left the ELU activation function with
α = 1, and on the lower right the sigmoid activation function.

The exponential linear unit function

The ELU (Exponential Linear Unit) is also very similar to the ReLU activation function
and was suggested in 2015 [104]. For negative value it has an exponential shape, resulting
in a smoother activation function

ELU(x) :=
{
x x > 0,
α(ex − 1) x ≤ 0.

(2.6)

where the hyperparameter α controls the saturation point for negative inputs and is
usually set to one [100].

The softmax function

The softmax function [102] is given by

softmax(xi) := exi∑n
j=1 e

xj
, (2.7)

where the layer this function is applied to has n neurons and xi corresponds to the ith
neuron output. The output of this function is in the range [0, 1] and normalized such
that

n∑
i=1

softmax(xi) = 1. (2.8)

Thus, it is used for creating the class probability output in the final layer of a model
trained on a multi-class classification problem.
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2.2 Tranining algorithms and loss functions
Up to now, we only introduced the basic ingredients to construct a neural network.
However, we also need to have a recipe to adjust the trainable weights and hence train
the network properly. For this we need two other component: a training goal and an
algorithm that adjusts the weights such that this goal is achieved. In the following, we
explain theses with the help of a simple example. Thereafter, we emphasize common
problems in the training of neural networks and describe ways to avoid these problems.

2.2.1 Backpropagation
In order to train a neural network we need to define a training goal first. For this,
we introduce a function that compares the network output with the training data in a
quantitative manner. This function is called cost function or loss function. Usually, the
goal of the training is such that this loss function is minimized, i.e. the smaller the loss
value the better is the network performance. For instance, consider a regression task
in which the network tries to match target values ŷi for given inputs xi. Let us further
denote the composed function the network is representing as fθ, where θ denotes the
trainable network parameters, i.e. the weights w and the biases b. Thus, the network
outputs are given by

yi = fθ(xi). (2.9)

One possible loss function to tackle this regression task is the mean squared error (MSE)

LMSE = 1
n

n∑
i=1

(yi − ŷi)2 = 1
n

n∑
i=1

(fθ(xi)− ŷi)2. (2.10)

As the input and target values are fixed by the data, the loss function is only a function
of the neural network parameters L = L(θ). Therefore, the goal of the training algorithm
is to find the parameter configuration θ∗ that minimizes the loss function

θ∗ = arg min
θ

L(θ). (2.11)

If we neglect boundary effects on the parameter hypersurface4, a necessary condition to
find the global minimum of the loss function is

∇θL(θ) = 0. (2.12)

In general, this problem can not be solved analytically and hence we need to use a
numerical algorithm. The standard numerical method is stochastic gradient descent.

Stochastic gradient descent

In stochastic gradient descent (SGD) the parameters are updated after every single
prediction according to

θt+1 = θt − η∇θtL(θ), (2.13)
where η is the learning rate. In order to calculate the complete gradient of the loss func-
tion the gradients have to be propagated back through the network to the inputs [102].
As a consequence, every part of the neural network must be differentiable. Therefore,
it is especially important to have activation functions which are not only differentiable
but also simple and efficient to compute.

4In general, it is possible that the parameter configuration θ∗ that minimizes the loss is not a local
mimimum. Instead the parameter configuration lies on the edge of the parameter hypersurface.
However it turns out, that most of the time this is not a problem [105].
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2.2.2 Optimizer

Unfortunately, using the ordinary SGD algorithm often results in unstable training or
even prevents convergence. In general, minimizing the loss function comes with several
challenges. For instance, the loss function can have multiple local minima in the param-
eter hypersurface. However, the goal of the optimazation is to find a global minimum5.
The ability of the training algorithm to find other minima is called exploration whereas
the fast and precise descent into such a minimum is called exploitation. Typically, there
exists a trade-off between exploration and exploitation, i.e. improving the first usually
worsens the other one and vice-versa. A visualization of the exploration-exploitation
dilemma is shown in Figure 2.4. Therefore, more advanced optimizers have to be used
do not only calculate the parameter updates based on the gradient but also on other
quantities [106].

global minimum

local minimum

Loss function

Lack of exploration

Lack of exploitation

Figure 2.4: A visualization of the exploration-exploitation trade-off. The black line shows
a generic loss function in parameter space. The orange line indicates that
the optimizer has insufficient exploration capability and thus cannot find
the global minimum. On the other hand, the red line shows an optimizer
being unable to descend further into the global minimum, as it has a lack of
exploitation potential.

Momentum

The implementation of a momentum mt tries to smooth out the updates by adding a
fraction β of the previous update to the next one [107]

mt+1 = βmt + η∇θtL,
θt+1 = θt −mt+1.

(2.14)

This additional term helps to avoid getting stuck in a local minimum. Further, neural
networks without momentum tend to take a lot of sidesteps instead of going straight to
the minimum. A drawback of momentum is that we might overshoot the minimum.

5Note that we did not write the global minimum as there generally exist several parameter configurations
which lead to the same loss value [105].
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RMSprop

The RMSprop optimizer is based on the idea that it is insufficient to have a global
learning rate. Instead a separate learning rate for each parameter is required. Therefore,
RMSProp keeps track of the moving average of the squared gradient updates. If a certain
parameter is constantly updated with a small gradient, the root of the mean gradient
squares (RMS) will be small as well. Thus, we divide by the RMS to adjust the gradient
updates for each parameter

vt+1 = βvt + (1− β)(∇θtL)2,

θt+1 = θt −
η

√
vt+1 + ε

∇θtL,
(2.15)

where ε is just a regularization parameter.

Adam

The Adam optimizer combines momentum and RMSProp to adaptively estimate the
moment of each gradient [108]

mt+1 = β1mt + (1− β1)∇θtL,
vt+1 = β2vt + (1− β2)(∇θtL)2,

m̂t+1 = mt

1− βt1
,

v̂t+1 = vt
1− βt2

,

θt+1 = θt −
η

√
vt+1 + ε

m̂t+1.

(2.16)

The hyperparameters β1 and β2 are usually set to 0.9 and 0.999, respectively. Later in
all our applications Adam is the optimizer of our choice.

Learning rate decay

On top of this, it is sometimes beneficial to also decrease the learning rate during the
training. For instance, if we are close to the global minimum we want to have a smaller
learning rate and thus smaller steps to have a higher accuracy. There are several ways
to implement a decay. In all our projects we use the following learning rate schedule

η(k) = η0
1 + k γ

, (2.17)

where k denotes the training epoch, η0 the learning rate in the beginning, and γ is the
decay hyperparameter.

2.2.3 Overfitting
A problem that can occur with neural networks is overfitting [109]. As we usually
perform more parameter updates than we have training data available we inevitably do
several training iterations on the same data points. Thus, we risk overspecialisation or
overfitting which means that the network learns details which are specific to the training
data, as shown in Figure 2.5. To be more precise, this means that the network is not just
learning the underlying structures but rather memorizes every single data point and its
corresponding target value. A standard method to check whether the neural network is
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overfitting or not is by splitting the data into training data and test data. If the loss on
the training data is significantly smaller than on the test data the network is overfitting.
In general, the bigger the neural network the easier it can overfit.

Overfitting

Desired fitting

Training data

Figure 2.5: Overfitting of a neural network shown in a graphic example. The underlying
structure is a sinus function

There exist various attempts to avoid overfitting when training neural networks. The
most prominent methods are dropout [110], weight regularization [111,112], or an early
stopping of the training process [113].

2.3 Generative adversarial networks
When we are interested to employ neural networks for event generation we need to define
a suitable network. One of the most promising architectures are generative adversarial
networks (GANs) [42], which have already shown impressive results in tasks like the
generation of images, videos or music. The defining structural elements of GANs are
two competing neural networks, where a generator network G tries to mimic the data
while a discriminator network D is trained to distinguish between generated and real
data. These two networks play against each other until a Nash-equilibrium is reached
in which neither the discriminator nor the generator can improve further.

As a side remark, another common type of neural networks used for generative problems
are variational autoencoders (VAE) [114, 115]. While VAEs can be used to generate
new data samples, a key component is the latent modeling and the marginalization of
unnecessary variables, which is not a problem in generating LHC events. Further, as
GANs are known to generate better samples than VAEs we only focus on GANs in the
following.

2.3.1 Basic structure and loss functions
Let us denote the generator and discriminator weights as θ and ϕ, respectively. In
general, the generator is a mapping G : Z → Φ from a latent space Z to the target or
phase space Φ. Thus, the generator network induces a distribution

pz(z)
Gθ−−→ pθ(x) ≡ pθ(Gθ(z)), (2.18)
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where pz(z) is the prior distribution the random numbers are drawn from. The discrim-
inator network compares two distributions, the true data distribution pdata(x) and the
generated distribution pθ(x). From each of the two distributions we provide batches of
events {xdata} and {xG} sampled from pdata or pθ, respectively.

Generator{z} {xG} {xdata} Data

Discriminator

LG LD

Figure 2.6: Schematic diagram of a GAN. The input {z} describes a batch of random
numbers and {x} denotes a batch of events sampled either from pθ or pdata.
The blue (red) and arrows indicate which connections are used in the training
of the generator (discriminator).

The discriminator D(x) ∈ (0, 1) is trained to give D = 1 for each point in a true batch
and D = 0 for the each point in the generated batch. The corresponding loss function
is defined by

L(θ, φ) = Ex∼pdata [− logDϕ(x)] + Ez∼pz [− log(1−Dϕ(Gθ(z)))]. (2.19)

The discriminator is trained to minimize this loss while the generator tries to maximize
it. Our goal is to train the GAN such that it ends in a Nash-equilibrium. As the first
term in the loss function is not dependent on the generator weights θ we can rephrase
the task by writing it as two independent losses

LD = Ex∼pdata [− logDϕ(x)] + Ez∼pz [− log(1−Dϕ(Gθ(z)))],
LG = −Ez∼pz [− log(1−Dϕ(Gθ(z))],

(2.20)

where each need to be minimized by the corresponding network. Inspired by the original
formulation of the loss function the associated GAN is usually denoted as minimax GAN.
The evolution of the discriminator loss is illustrated in the left panel of Fig. 2.7. We can
compute the discriminator loss in the limit where the generator has produced a perfect
image of the true distribution. In this case the discriminator network will give D = 0.5
for each point x and the result becomes LD = −2 log 0.5 ≈ 1.4.
In the orginal paper [42], they also proposed the non-saturating GAN, in which the
generator loss function takes the form

LG = −Ez∼pz [log(Dϕ(Gθ(z)))]. (2.21)

It turns out that it is numerically more efficient to use the non-saturating GAN. In the
right panel of Fig. 2.7 we see how this assignment leads to larger gradients away from
the truth configuration.
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Figure 2.7: Discriminator and generator losses as a function of the value assigned by the
discriminator. The red line indicates batches from the truth distribution,
the blue lines batches from a generated distribution. The arrows indicate
the direction of the training.

2.3.2 Training stability and regularization

The key to the GAN training is the alternating training of the generator and discrim-
inator networks with their respective loss functions given in Eq.(2.20) and Eq.(2.21).
Here, the balance between generator and discriminator is crucial. On the one hand, the
generator can only be as good as the discriminator which defines the level of similarity
between true and generated data. On the other hand, a perfect discriminator leads to
a vanishing loss function, which reduces the gradient and slows down the training. This
interplay of the two networks often leads to stability issues in the training [116].

Gradient penalty regularization

A common way to stabilize networks are noise-induced regularization methods, or equiv-
alently including a penalty on the gradient for the discriminator variable D(x) [117].
Specifically, we apply the gradient to the logit function

d(x) = log
(

D(x)
1−D(x)

)
⇒ ∂d

∂x
= 1
D(x)

1
1−D(x)

∂D

∂x
(2.22)

enhancing its sensitivity in the regions D → 0 or D → 1. The penalty applies to regions
where the discriminator loss leads to a wrong prediction, D ≈ 0 for a true batch or
D ≈ 1 away from the truth. The gradient penalty term is defined by

LGP = Ex∼pdata

[
(1−D(x))2 |∇d(x)|2

]
+ Ez∼pz

[
D(G(z))2 |∇d(G(z))|2

]
, (2.23)

where the pre-factors (1−D)2 and D2 ensure that for a properly trained discriminator
this additional contribution vanishes. Thus, we add a term to the discriminator loss and
obtain the regularized objective [117]:

L
(GP)
D = LD + λDLGP, (2.24)

with a properly chosen variable λD.
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Spectral normalization

Another method of regularization can be obtained through spectral normalization (SN)
of the weights [118]. In SN we want to replace every discriminator weight ϕ by

ϕ→ ϕSN = ϕ

ζ(ϕ) , (2.25)

where ζ(ϕ) is the spectral norm of the weight matrix ϕ defined by

ζ(ϕ) := max
x 6=0

||ϕx||2
||x||2

= max
||x||=1

||ϕx||2 , (2.26)

with layer in-and outputs x. If all weights ϕ are normalized according to (2.25) the
discriminator is Lipschitz constraint [118] and bounded from above, i.e. ||D||Lip ≤ 1. In
general, the exact algorithm to calculate the spectral norm for each layer is computa-
tionally expensive. Therefore, we use the power iteration method to estimate ζ(ϕ) [119].
We start with random vectors u0 for each weight ϕ. The power iteration update rule is
then given by

vt+1 = ϕT ut
||ϕT ut||

, (2.27)

ut+1 = ϕvt+1
||ϕvt+1||

. (2.28)

Then the spectral norm can be approximated by

ζ(ϕ) ≈ uTϕv. (2.29)

When performing the weight updates with SGD or any other optimizer based on gra-
dient descent it is sufficient to perform one round of power iteration to achieve a good
performance [118].

Another method to avoid instabilities in the training of the GAN is to use the Wasserstein
distance [120,121] but our tests have shown that adding a gradient penalty term (2.24),
or applying spectral normalization (2.25) works better in our case.

2.4 Invertible neural networks
Another generative network architecture we use in our projects is an invertible neural
network (INN) [43–45]. They are specifically useful if we want to invert detector simula-
tions as we will see in Chapter 5. INNs are an alternative class of generative networks,
based on normalizing flows [122–125]. In particle physics such normalizing flow networks
have proven useful for instance in phase-space generation [41], linking integration with
generation [39, 40], or anomaly detection [126]. In order to understand the application
of INNs we briefly introduce the basic concepts of INNs and explain its fundamental
building block.

An invertible neural network learns a bijective mapping between the input and output
space. This yields the possibility to evaluate the model in either direction and hence gain
predictive capabilities in both directions. However, the usage of an INN is even benefical
when we are not neccessarily interested in both mappings. For instance, if we simply
use the architecture to define losses on both sides we can increase training stability and
convergence speed [43]. In general, INNs are designed to achieve three objectives:
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1. the mapping is bijective and thus invertible

2. the Jacobians for both directions are tractable

3. both directions can be evaluated efficiently. This third property goes beyond some
other implementations of normalizing flows [122,124].

2.4.1 Coupling blocks
The network architecture needs to be built such that it is easily invertible and satisfies
the mentioned goals. This can be achieved with coupling blocks [44,127]. Each of these
coupling blocks is invertible and hence stacking multiple of these blocks results in an
invertible model. We start by splitting the input vector u in two parts, u1 and u2. Using
an element-wise multiplication � and sum one could for instance define the output

v1 = u1 � s1(u2) + t1(u2) v2 = u2 � s2(v1) + t2(v1), (2.30)

where s1, s2, t1 and t2 describe arbitrary transformations that are usually parametrized
by neural networks. The inverse direction is then given by

u2 = v2 − t2(v1)
s2(v1) u1 = v1 − t1(u2)

s1(u2) . (2.31)

For numerical reasons this gets modified to include an exponential,

v1 = u1 � es1(u2) + t1(u2), v2 = u2 � es2(v1) + t2(v1), (2.32)
u2 = (v2 − t2(v1))� e−s2(v1), u1 = (v1 − t1(u2))� e−s1(u2). (2.33)

By construction, this inversion works independent of the form of si and ti. The structure
of the coupling block is illustrated in Figure 2.8.

v1+
⊙

⊙
+

u1

u2 v2

s1 t1 s2 t2in out

Figure 2.8: Structure of a coupling block. The input u is split in two parts u1 and
u2. These are then transformed via Eq. (2.32) into v1 and v2 according to
Eq. (2.32). In the end v1 and v2 are concatenated to form the complete
output v.

With the coupling blocks we need to make sure that the Jacobian is tractable throughout
the network. Following Eq. (2.32) we end up with an upper right triangular Jacobian
J1 after the first half of the forward pass [44]

J1 =
(

diag(es1(u2)) ∂v1
∂u2

0 1

)
. (2.34)

Analogously, we obtain for the Jacobian J2 of the second half of the coupling block

J2 =
(
1 0
∂v2
∂v1

diag(es2(v1))

)
. (2.35)
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Hence, the Jacobian J of the entire coupling block is given by

J = J2 · J1 =
(

diag(es1(u2)) ∂v1
∂u2

diag(es1(u2)) · ∂v2
∂v1

∂v1
∂u2
· ∂v2
∂v1

+ diag(es2(v1))

)
(2.36)

Indeed, the Jacobian of the entire coupling block is not a triangular matrix. However,
we are later only interested in the logarithmic Jacobian determinant which we can still
calculate efficiently. Using the relation det(A ·B) = detA detB we obtain

log (det J) = log (det J1) + log (det J2)

= log

dimu2∏
i=1

es1(u2)i

+ log

dim v1∏
i=1

es2(v1)i


=

dimu2∑
i=1

s1(u2)i +
dim v1∑
i=1

s2(v1)i.

(2.37)

As we can use the same trick throughout multiple coupling blocks in the network and
even in the inverse direction, the Jacobian of the entire network is tractable as required.
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Chapter 3
Event Generation

The research presented in this Sec. 3.2 has been previously published in Ref. [1]. Most
of the displayed figures and tables as well as the text are identical to the content of
this article. Furthermore, the results shown and illustrated in Sec. 3.4 have also been
presented in Ref. [128].

3.1 Introduction
First-principle simulations are a key ingredient to the ongoing success of the LHC, and
they are crucial for further developing it into a precision experiment testing the structure
of the Standard Model and its quantum field theory underpinnings. Such simulations
of the hard scattering process, QCD activity, hadronization, and detector effects are
universally based on Monte Carlo methods. Some of the shortcomings that come with
these methods might be alleviated when we add a new direction, like machine learning
techniques, to our tool box. While we should not expect them to magically solve all
problems, we have seen that modern machine learning can trigger significant progress
in LHC physics. The reason for our optimism related to event generation are generative
adversarial networks or GANs [42], which have shown impressive performance in tasks
like the generation of images, videos or music.

From the experimental side the detector simulation is the most time-consuming aspect
of LHC simulations, and promising attempts exist for describing the behavior of the
calorimeter with the help of generative networks [46–48, 50, 51, 129]. On the theory
side, we know that the parton shower can be described by a neural network [52–55].
It has been shown that neural networks can help with phase space integration [37, 38]
and with LHC event simulations [57–59]. One open question is why the GAN setup of
Ref. [57] does not properly work and is replaced by a variational autoencoder with a
density information buffer. Another challenge is how to replace the ad-hoc Z-constraint
in the loss function of Ref. [58] by a generalizable approach to on-shell resonances. This
problem of intermediate resonances is altogether avoided in Ref. [59]. It remains to be
shown how GANs can actually describe realistic multi-particle matrix elements over a
high-dimensional phase space in a flexible and generalizable manner.

Given this new piece of the event simulation puzzle through fast neural networks it should
in principle be possible to add parton showers, possibly including hadronization, and
detector effects to a full machine learning description of LHC events. Including higher-
order corrections is possible and should lead to ever higher gains in computing time,
assuming higher-orders are included in the training data. The interesting question then
becomes where established methods might benefit from the fast and efficient machine
learning input. Alternatively, we can replace the Monte Carlo event input and instead
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generate reconstructed LHC events and use them to enhance analyses or to study features
of the hard process. Indeed, the GAN approach also allows us to combine information
from actual data with first-principles simulations in a completely flexible manner.

This chapter consists of three parts and we show how we can efficiently GAN6 the simu-
lation of three different LHC processes. In Section 3.2 we start by reviewing some of the
features of phase space sampling with standard Monte Carlo methods and introducing
GANs serving the same purpose. We then add the MMD and describe how its been used
to describe intermediate resonances. We then apply the combined GAN-MMD network
to the 2→ 6 particle production process

pp→ tt̄→ (bq1q̄
′
1) (b̄q̄2q

′
2) (3.1)

describing all intermediate on-shell states with Breit-Wigner propagators and typical
width-to-mass ratios of few per-cent. We will focus on a reliable coverage of the full phase
space, from simple momentum distributions to resonance peaks, strongly suppressed
tails, and phase space boundaries.
Afterwards in Section 3.3 we impose full 4-momentum conservation and on-shell condi-
tions for the external particles in a general way, by reducing the number of generated
features to the degrees of freedom. As an example we consider the W + 2 jet production
process

pp→W+jj (3.2)

and show how these modifications lead to a significant gain in precision.
Finally, in Section 3.4 we modify the discriminator loss function such that it can handle
weighted events in the training data while the generator is still producing unweighted
events. For this, we first explain these modifications using simple toy models and bench-
mark the GAN performance against th standard Vegas [29, 30] algorithm. Finally, we
apply our unweighting GAN to weighted events stemming from Drell–Yan scattering
process

pp→ µ−µ+. (3.3)

3.2 Vanilla event generation
As a first benchmark example we consider top pair production with an intermediate
decay of two W -bosons

pp→ tt̄→ (bW−) (b̄W+)→ (bq1q̄
′
1) (b̄q̄2q

′
2). (3.4)

illustrated in Fig. 3.1. If we assume that the masses of all final-state particles are
known, as this can be extracted from the measurement, this leaves us with 18 degrees
of freedom, which energy-momentum conservation reduces to a 14-dimensional phase
space. In addition, our LHC simulation has to account for the 2-dimensional integration
over the parton momentum fractions.
In this section we will briefly review how standard methods describe such a phase space,
including the sharp features of the intermediate on-shell top quarks and W -boson. The
relevant area in phase space is determined by the small physical particle widths and
extends through a linearly dropping Breit-Wigner distribution, where it eventually needs
to include off-shell effects. We will then show how a generative adversarial network can
be constructed such that it can efficiently handle these features as well.

6From ‘to GAN’, in close analogy to the verbs taylor, google, and sommerfeld.
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3.2.1 Standard Monte Carlo
For the hard partonic process we denote the incoming parton momenta as pa,b and the
outgoing fermion momenta as pi. Using the general definition in Eq. (1.58), we can
parametrize the partonic cross section and the 14-dimensional phase space integration
for six external particles as

σ =
∫

dΦ6
|M(pa, pb; p1, . . . , p6)|2

2ŝ ,

with dΦ6 =
6∏
i=1

[
d3pi

(2π)32Ei

]
(2π)4δ(4)

( 6∑
i=1

pi −Q
)
.

(3.5)

where Q = pa + pb is the total momentum of the incoming partons. To cope with the
high dimensionality of the integral we adopt advanced Monte Carlo techniques such
as importance sampling which has been described in Section 1.4. There are several
implementations available, one of the most frequently used is Vegas [29, 30].
A major challenge in particle physics applications is that multi-particle amplitudes in the
presence of kinematic cuts typically have dramatic features. Our phase space sampling
not only has to identify the regions of phase space with the leading contribution to
the integral, but also map its features with high precision. For instance, the process
illustrated in Fig. 3.1 includes narrow intermediate on-shell particles. Around a mass
peak with Γ� m they lead to a sharp Breit-Wigner shape of the transition amplitude.
A standard way of improving the integration is to identify the invariant mass variable s
where the resonance occurs and switch variables to∫

ds F (s)
(s−m2)2 +m2Γ2 = 1

mΓ

∫
dz F (s) with z = arctan s−m

2

mΓ . (3.6)

This example illustrates how phase space mappings, given some knowledge of the struc-
ture of the integrand, allow us to evaluate high-multiplicity scattering processes.
Finally, in LHC applications we are typically not interested in an integral like the one
shown in Eq. (3.5). Instead, we want to simulate phase space configurations or events
with a probability distribution corresponding to a given hard process, shower configura-
tion, or detector smearing. This means we have to transfer the information included in
the weights at a given phase space point to a phase space density of events with uniform
weight. The corresponding unweighting procedure computes the ratio of a given event
weight to the maximum event weights, probes this ratio with a random number, and in
turn decides if a phase space point or event remains in the sample, now with weight one.
This procedure is highly inefficient.
Summarizing, the challenge for a machine learning approach to phase space sampling is:
mimic importance sampling, guarantee a precise mapping of narrow patterns, and avoid
the limited unweighting efficiency.

t

t

W

W

Figure 3.1: Sample Feynman diagram contributing to top-pair production, with inter-
mediate on-shell particles labelled.
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3.2.2 Network structure and resonances
Following Section 2.3, we denote the generator and discriminator weights as θ and ϕ,
respectively. The generator induces a distribution pθ(x) (2.18) of an event or phase
space configuration x, typically organized with the same dimensionality as the (phase)
space we want to generate. In order to train the GAN, we provide it with batches of
phase space configurations {xT } and {xG}, sampled from the true distribution pT or pθ,
respectively. We can then parametrize the loss functions as

LD = Ex∼pT [− logDϕ(x)] + Ex∼pθ [− log(1−Dϕ(x))], (3.7)
LG = Ex∼pθ [− logDϕ(x)] . (3.8)

As introduced in Eq. 2.23, we add a gradient penalty term [117] to the discriminator to
avoid instabilities in the training [117]:

L
(GP)
D = LD + λD Ex∼pT

[
(1−Dϕ(x))2 |∇dϕ(x)|2

]
(3.9)

+ λD Ex∼pθ
[
Dϕ(x)2 |∇dϕ(x)|2

]
, (3.10)

where we have used

dϕ(x) = log
(

Dϕ(x)
1−Dϕ(x)

)
. (3.11)

Maximum mean discrepancy

A particular challenge for our phase space GAN will be the reconstruction of the W and
top masses from the final-state momenta. For instance, for the top mass the discriminator
and generator have to probe a 9-dimensional part of the phase space, where each direction
covers several 100 GeV to reproduce a top mass peak with a width of Γt = 1.5 GeV.
Following the discussion of the Monte Carlo methods in Section 3.2.1 the question is
how we can build an analogue to the phase space mappings for Monte Carlos. Assuming
that we know which external momenta can form a resonance we explicitly construct the
corresponding invariant masses and give them to the neural network to streamline the
comparison between true and generated data. We emphasize that this is significantly
less information than we use in Eq. (3.6), because the network still has to learn the
intermediate particle mass, width, and shape of the resonance curve.

A suitable tool to focus on a low-dimensional part of the full phase space is the maximum
mean discrepancy (MMD) [61]. The MMD is a kernel-based method to compare two
samples drawn from different distributions. Consider two batches of points {x} and {y}
drawn from a distribution p and q, respectively. The MMD then computes a distance
between the distributions

MMD2(p, q) = = Ex,x′∼p[k(x, x′)]− 2Ex∼p,y∼q[k(x, y)] + Ey,y′∼q[k(y, y′)]. (3.12)

where k(x, y) can be any positive definite kernel function. Obviously, two identical distri-
butions lead to MMD(p, p) = 0 in the limit of high statistics. Inversely, if MMD(p, q) = 0
for randomly sampled batches the two distributions have to be identical p = q. The
shape of the kernels determines how local the comparison between the two distributions
is evaluated. Two examples are Gaussian or Breit-Wigner kernels

kGauss(x, y) = exp
(
−||x− y||

2
2

2σ2

)
, kBW(x, y) = σ2

||x− y||22 + σ2 , (3.13)
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Generator{z}, {m} {xG} {xT } MC Data

DiscriminatorMMD

LG LD

Figure 3.2: Schematic diagram of our GAN. The input {z} and {m} describe a batch of
random numbers and the masses of the external particles, and {x} denotes
a batch of phase space points sampled either from the generator or the true
data. The blue (red) lines and arrows indicate which connections are used
in the training of the generator (discriminator).

where the hyperparameter σ determines the resolution. For an optimal performance
it should be of the same order of magnitude as the width of the feature we are trying
to learn. If the resonance and the kernel width become too narrow, we can improve
convergence by including several kernels with increasing widths to the loss function.
The shape of the kernel has nothing to do with the shape of the distributions we are
comparing. Instead, the choice between the exponentially suppressed Gaussian and the
quadratically suppressed Breit-Wigner determines how well the MMD accounts for the
tails around the main feature. As a machine learning version of phase space mapping
we add this MMD to the generator loss

L
(MMD)
G = LG + λGMMD2, (3.14)

with another properly chosen variable λG. Similar efforts in using the MMD to generate
events have already been done in [130–132] and have also been extended to a adversarial
MMD version or MMD-GAN [133–135], in which the MMD kernel is learned by another
network.
In Fig. 3.2 we show the whole setup of our network. It works on batches of simulated
parton-level events, or unweighted event configurations {x}. The input for the genera-
tor are batches of random numbers {z} and the masses {m} of the final state particles.
Because of the random input a properly trained GAN will generate statistically indepen-
dent events reflecting the learned patterns of the training data. For both the generator
and the discriminator we use a 10-layer MLP with 512 units each combined with a leaky
ReLU activation function in the hidden layers. The remaining network parameters are
given in Tab. 3.1. The main structural feature of the competing networks is that the
output of the discriminator, D, is computed from the combination of true and generated
events and is needed by the generator network. The generator network combines the
information from the discriminator and the MMD in its loss function, Eq. (3.14). The
learning is done when the distribution of generated unweighted events {xG} and true
Monte-Carlo events {xT } are essentially identical. We again emphasize that this con-
struction does not (yet) involve weighted events. For the implementation of the GAN
we have used Keras (v2.2.4) [136] with a TensorFlow (v1.14) backend [137].
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3.2.3 Top-pair production
A sample Feynman diagram for our benchmark process

pp→ tt̄→ (bqq̄′) (b̄q̄q′) (3.15)

is shown in Fig. 3.1. For our analysis we generate 1 million samples of the full 2 → 6
events as training data sample with Madgraph5 [23] at a CM energy of 13 TeV. The
intermediate tops and W -bosons allow us to reduce the number of Feynman diagrams
by neglecting proper off-shell contributions and only including the approximate Breit-
Wigner propagators. Our results can be directly extended to a proper off-shell descrip-
tion [138–140], which only changes the details of the subtle balance in probing small but
sharp on-shell contributions and wide but flat off-shell contributions. Similarly, we do
not employ any detector simulation, because this would just wash out the intermediate
resonances and diminish our achievement unnecessarily.
Because we do not explicitly exploit momentum conservation our final state momenta
are described by 24 degrees of freedom. Assuming full momentum conservation would
for instance make it harder to include approximate detector effects. These 24 degrees
of freedom can be reduced to 18 when we require the final-state particles to be on-shell.
While it might be possible for a network to learn the on-shell conditions for external
particles, we have found that learning constants like external masses is problematic for
the GAN setup. Instead, we use on-shell relations for all final-state momenta in the
generator network.
Combining the GAN with the MMD loss function of Eq. (3.14) requires us to organize
the generator input in terms of momenta of final-state particles. With the help of a
second input to the generator, namely a 6-dimensional vector of constant final-state
masses, we enhance the 18-dimensional input to six 4-vectors. This way we describe all
final-state particles, denoted as {xG} in Fig. 3.2, through an array

x = {p1, p2, p3, p4, p5, p6} , (3.16)

where we fix the order of the particles within the events. This format corresponds to
the generated unweighted truth events {xT } from standard LHC event simulators. In
particular, we choose the momenta such that

pW− = p1 + p2 , pW+ = p4 + p5 , pt̄ = p1 + p2 + p3 , pt = p4 + p5 + p6 . (3.17)

For the on-shell states we extract the resonances from the full phase space and use
those to calculate the MMD between the true and the generated mass distributions.

Parameter Value Parameter Value

Input dimension G 18 + 6 Input dimension D 24
Layers 10 Batch size 1024
Units per layer 512 Epochs 1000
Trainable weights G 2.3M Iterations per epoch 1000
Trainable weights D 2.3M Number of training events 1× 106

λG 1
λD 10−3

Table 3.1: Details for our GAN setup.
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Figure 3.3: Energy (top) and transverse momentum (bottom) distributions of the final-
state b-quark (left) and the decaying top quark (right) for MC truth (blue)
and the GAN (red). The lower panels give the bin-wise ratio of MC truth
to GAN distribution. For the pT distributions we show the relative statistic
uncertainty on the cumulative number of events in the tail of the distribution
for our training batch size.

This additional loss is crucial to enhance the sensitivity in certain phase space regions
allowing the GAN to learn even sharp feature structures.

Flat distributions

To begin with, relatively flat distributions like energies, transverse momenta, or angular
correlations should not be hard to GAN [57–59]. As examples, we show transverse
momentum and energy distributions of the final-state b-quarks and the intermediate
top quarks in Fig. 3.3. The GAN reproduces the true distributions nicely even for the
top quark, where the generator needs to correlate the four-vectors of three final-state
particles.

To better judge the quality of the generator output, we show the ratio of the true and
generated distributions in the lower panels of each plot, for instance E(G)

b /E
(T )
b where

E
(G,T )
b is computed from the generated and true events, respectively. The bin-wise

difference of the two distributions increases to around 20% only in the high-pT range
where the GAN suffers from low statistics in the training sample. To understand this
effect we also quantify the impact of the training statistics per batch for the two pT -
distributions. In the set of third panels we show the relative statistical uncertainty on
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the number of events Ntail(pT ) per batch b in the tail above the quoted pT value

Ntail(pT ) = b (1−Ncum(pT )) = b

1− 1
σ

pT∫
0

dp′T
dσ
dp′T

 . (3.18)

The relative statistical uncertainty on this number of events is generally given by 1/
√
Ntail.

For the pT,b-distribution the GAN starts deviating at the 10% level around 150 GeV.
Above this value we expect around 25 events per batch, leading to a relative statistical
uncertainty of 20%. The top kinematics is harder to reconstruct, leading to a stronger
impact from low statistics. Indeed, we find that the generated distribution deviates by
10% around pT,t & 250 GeV where the relative statistic uncertainty reaches 15%.

We emphasize that this limitation through training statistics is expected and can be
easily corrected for instance by slicing the parameter in pT and train the different phase
space regions separately. Alternatively, we can train the GAN on events with a simple
re-weighting, for example in pT , but at the expense of requiring a final unweighting step.

Phase space coverage

To illustrate that the GAN populates the full phase space we can for instance look at
the azimuthal coordinates of two final-state jets in Fig. 3.4. Indeed, the generated events
follow the expected flat distribution and correctly match the true events.

Furthermore, we can use these angular correlations to illustrate how the GAN inter-
polates and generates events beyond the statistics of the training data. In Fig. 3.5 we
show the 2-dimensional correlation between the azimuthal jet angles φj1 and φj2 . The
upper-left panel includes 1 million training events, while the following three panels show
an increasing number of GANed events, starting from 1 million events up to 50 million
events. As expected, the GAN generates statistically independent events beyond the
sample size of the training data and of course covers the entire phase space.

Resonance poles

From Ref. [38] we know that exactly mapping on-shell poles and tails of distributions is
a challenge even for simple decay processes. Similar problems can be expected to arise
for phase space boundaries, when they are not directly encoded as boundaries of the
random number input to the generator. Specifically for our tt̄ process, Ref. [57] finds
that their GAN setup does not reproduce the phase space structure. The crucial task
of this section is to show how well our network reproduces the resonance structures of
the intermediate narrow resonances. In Fig. 3.6 we show the effect of the additional
MMD loss on learning the invariant mass distributions of the intermediate W and top
states. Without the MMD, the GAN barely learns the correct mass value, in complete
agreement with the findings of Ref. [58]. Adding the MMD loss with default kernel
widths of the Standard Model decay widths drastically improves the results, and the mass
distribution almost perfectly matches the true distribution in the W -case. For the top
mass the results are slightly worse, because its invariant mass needs to be reconstructed
from three external particles and thus requires the generator to correlate more variables.
This gets particularly tricky in our scenario, where the W -peak reconstruction directly
affects the top peak. We can further improve the results by choosing a bigger batch
size as this naturally enhances the power of the MMD loss. However, bigger batch sizes
leads to longer training times and bigger memory consumption. In order to keep the
training time on a responsible level, we limited our batch size to 1024 events per batch.
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Figure 3.4: φ distributions of j1 and j2. The lower panels give the bin-wise ratio of MC
truth to GAN distribution.
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Figure 3.5: Correlation between φj1 and φj2 for 1 million true events (upper left) and
for 1 million, 10 million, and 50 million GAN events.

As already pointed out, the results are not perfect in this scenario, especially for the top
invariant mass, however, we can clearly see the advantages of adding the MMD loss.

To check the sensitivity of the kernel width on the results, we vary it by factors of
{1/4, 4}. As can be seen in the lower panels of both distributions, increasing the resolu-
tion of the kernel or decreasing the kernel width hardly affects the network performance.
On the other hand, increasing the width decreases the resolution and leads to too broad
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Figure 3.6: Comparison of different kernel functions (left) and varying widths (right) and
their impact on the invariant mass of W boson (top) and top quark (bottom).

mass peaks. Similarly, if we switch from the default Breit-Wigner kernel to a Gaussian
kernel with the same width we find identical results. This means that the only thing we
need to ensure is that the kernel can resolve the widths of the analyzed features.

We emphasize again that we do not give the GAN the masses or even widths of the
intermediate particles. This is different from Ref. [58], which tackles a similar problem
for the Z → `` resonance structure and uses an explicit mass-related term in the loss
function. We only specify the two final-state momenta for which the invariant mass can
lead to a sharp phase space structure like a mass peak, define a kernel like those given in
Eq. (3.13) with sufficient resolution and let the GAN do the rest. This approach is even
more hands-off than typical phase space mappings employed by standard Monte Carlos.

Correlations

Now that we can individually GAN all relevant phase space structures in top pair produc-
tion, it remains to be shown that the network also covers all correlations. A simple test
is 4-momentum conservation, which is not guaranteed by the network setup. In Fig. 3.7,
we show the sums of the transverse components of the final-state particle momenta di-
vided by the sum of their absolute values. As we can see, momentum conservation at
the GAN level is satisfied at the order of 2%.

Finally, in Fig. 3.8 we show 2-dimensional correlations between the transverse momenta
of the outgoing b-quark and the intermediate top for the true (left) and GAN events
(right). The phase space structure encoded in these two observables is clearly visible,
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Figure 3.7: Sum of all px (py) momenta divided by the sum of the absolute values in the
left (right) panel, testing how well the GAN learns momentum conservation.

and the GAN reproduces the peak in the low-pT range, the plateau in the intermediate
range, and the sharp boundary from momentum conservation in the high-pT range. To
allow for a quantitative comparison of true and generated events we show the bin-wise
asymmetry in the lower left panel. Except for the phase space boundary the agreement
is essentially perfect. The asymmetry we observe along the edge is a result from very
small statistics. For an arbitrarily chosen pT value of 100 GeV the deviations occur for
pT,b ∈ [130, 140] GeV. We compare this region of statistical fluctuations in the asymmetry
plot with a 1-dimensional slice of the correlation plot (lower right) for pT,t = 100±1 GeV.
The 1-dimensional distribution shows that in this range the normalized differential cross
section has dropped below the visible range.

3.3 Precision event generation

So far, we have shown that it is possible to GAN the full phase space structure of a
realistic LHC process, namely top pair production all the way down to the kinematics
of the six final-state jets. Trained on a simulated set of unweighted events this allows us
to generate any number of new events representing the same phase space information.
With the help of an additional MMD kernel we described on-shell resonances. The only
additional input was the final-state momenta related to on-shell resonances, and the
rough phase space resolution of the on-shell pattern.

Until now, our comparison showed that relatively flat distributions can be reproduced
up to a deviation of 5% in the bulk and 20% in the tails. The mass values defining
intermediate resonance poles were also extracted from the dynamic GAN setup but also
limited in precision.

Consequently, the question rises if a more profound approach possibly using more phys-
ical knowledge helps to improve the precision of the GANned events. Therefore, in a
first step we compare two independent Monte Carlo samples. This will define an upper
limit of performance and hence doing better than that is virtually impossible. One of
the objective is to demonstrate that we can reach similar if not equal performances with
a GAN , making the MC and the generated events practically indistinguishable.
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3.3.1 Performance benchmark
As a benchmark model we now consider W + 2 jet production

pp→W+jj (3.19)

illustrated in Fig. 3.9. With 4-momentum conservation and on-shell conditions for the
final-state particles this leaves us with 3 · 3 − 4 + 2 = 7 degrees of freedom, taking the
parton momentum fractions into account.

j

W

j

Figure 3.9: Sample Feynman diagram contributing to W + 2 jet production.

For the analysis we generate 3 million Monte Carlo events using Madgraph5 [23] at a
CM energy of 14 TeV. In order to avoid divergencies in the cross section, we apply the
following simple phase cuts

pT,j > 20GeV, ∆Rjj =
√

∆φ2
jj + ∆η2

jj > 0.4. (3.20)
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These events are split into 3 different sets: a training sample, a test sample and a
benchmark sample with 1 million events each. To define a performance benchmark,
we compare the test sample with the benchmark sample. For this we plot various
kinematic observables Oi for both samples as well as their ratio and their absolute
relative difference. As an example, in Fig. 3.10 we show the energy and transverse
momentum distribution of the first jet in the upper row. In the lower row, we show the
invariant mass distribution and the difference of the azimuthal angle of both jets.

As we can see from the lower panels in Fig. 3.10, the absolute relative difference and
hence the deviation in this simple bin-wise comparison, is at the 1% level in the bulk
and high populated regions, and decreases to around 10% in the tails where the phase
space is sparsely populated.

10−3

10−2

10−1

1 σ
d
σ

d
E
j 1

Benchmark

Test

0.9

1.0

1.1

B
en

ch
m

ar
k

T
es

t

0 250 500 750 1000 1250 1500 1750 2000
Ej1 [GeV]

0.1

1.0

10.0

δ[
%

]

10−3

10−2

10−1

1 σ
d
σ

d
p
T
,j

1

Benchmark

Test

0.9

1.0

1.1

B
en

ch
m

ar
k

T
es

t

0 50 100 150 200
pT,j1 [GeV]

0.1

1.0

10.0

δ[
%

]

0.0

0.2

0.5

0.8

1.0

1.3

1 σ
d
σ

d
M
jj

×10−1

Benchmark

Test

0.9

1.0

1.1

B
en

ch
m

ar
k

T
es

t

0 200 400 600 800 1000

Mjj [GeV]

0.1

1.0

10.0

δ[
%

]

1.0

2.0

3.0

4.0

1 �
d
�

d
�
�

jj

⇥10�2

Benchmark

Test

0.9

1.0

1.1

B
en

ch
m

ar
k

T
es

t

0.0 0.5 1.0 1.5 2.0 2.5 3.0
��jj

0.1

1.0

10.0

�[
%

]

Figure 3.10: Energy (left) and transverse momentum (right) distribution of the first jet
(upper row), and the invariant mass distribution (left) and the difference of
the azimuthal angle (right) of both jets for the test (red) and benchmark
(blue) Monte Carlo sample. In the middle and lower panel, the ratio and
the absolute relative difference are shown.

3.3.2 W+2 jet production
The goal for our network is to generate events with high precision, i.e. having a deviation
around 1% in the bin-wise comparison mentioned above. For this, we need to modify
the neural network structure introduced in Section 3.2. In particular, we will use a more
physics driven approach to define a generalizable network structure that is suitable to
generate events in a more systematic and hence more precise manner. In detail, we want
to satisfy the following criteria:
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1. total 4-momentum conservation.

2. final state particles are on-shell.

3. proper description and parametrization of cuts and phase space boundaries.

Generator architecture

To begin with, we neglect the MMD term in the generator loss for now, as we do not
have any intermediate resonances in the considered process. The MMD can of course
always be added again if the considered process has strong varying features which need
to be described properly. In order to obey the first two conditions most easily we change
the number of generator outputs from 4n to 3n − 2, as the latter corresponds to the
degrees of freedom in a hadronic scattering process of n particles. Any other observable
can then easily be computed using momentum conservation and on-shell conditions.

In our example process (3.19) we have 3 final state particles and hence 7 degrees of
freedom. We use this example to explain the parametrization in the generator. Let us
assume, that the generator output is given by 7 real numbers {x1, y1, z1, x2, y2, z2, z3}.
We then parametrize the event in the following way

η1 = z1,

pT,2 = pmin
T,2 + ex2 , φ2 = y2, η2 = z2, (3.21)

pT,3 = pmin
T,3 + ex3 , φ3 = y3, η3 = z3,

where the associated 4-momenta are connected to the final state particles by

p1 = pW+ , p2 = pj1 , p3 = pj2 . (3.22)

Using these 7 degrees of freedom we can define the complete set of 4-momenta for the
entire event satisfying momentum conservation and the on-shell conditions by construc-
tion. The choice of having a pmin

T is given by fact that events are generated with a pT
cut on the jets. Having this built-in cut helps to better reproduce the sharp phase space
boundaries.

Discriminator architecture

For the discriminator we now employ spectral normalization [118] instead of a gradient
penalty term (2.23) as this is numerically more efficient and hence saves computation
time. Further, when using the spectral normalization instead of gradient penalty we
do not have to fine-tune any hyperparameter to balance the importance of the penalty
term.

In addition, we want to simplify the discriminator task in finding appropriate kinematic
observables to distinguish the true and generated samples as well as to increase the sen-
sitivity on those variables. For this, the discriminator does not only obtain the events
paramatrized in the 7 variables used by the generator but also additional features. In
particular, we implement two different layers between the generator and the discrimi-
nator. The first layer takes the minimal representation produced by the generator and
transforms it into a complete set of 4-momenta using momentum conservation and on-
shell conditions.

In the next layer, additional features such as ∆Rij , Mij , logE or

T (pT ) = log(pT − pcut
T ) (3.23)
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are added to improve the discriminator sensitivity on phase space boundaries or possible
sharp features. For instance, the observable T (pT ) maps the transverse momentum
distribution with a sharp boundary and a rapidly dropping tail into a gaussian like
distribution which is a much simpler discrimination variable. Indeed, we also take care
that both the generated batches {xG} as well as the true batches {xT } are parametrized
in the exact same way before feeding them into the discriminator.

Network performance

Using the mentioned ideas as a guideline, we figured out that we obtain the best results
when parametrizing each individual particle as

p̃i = {px,i, py,i, pz,i, ηi, T (pT,i)}, (3.24)

and adding four additional features to complete the event representation

x = {p̃W+ , p̃j1 , p̃j2 ,∆Rjj ,Mjj ,∆φjj ,∆ηjj}. (3.25)

For both the generator and the discriminator we use 6 layers with 128 units each com-
bined with a leaky ReLU activation function in the hidden layers. Additionally, we use
spectral normalization in the discriminator instead of a gradient penalty term. The other
network parameters are given in Tab. 3.2. For the implementation we completely rely
on the the TensorFlow (v2.1) framework [137].
In Fig. 3.11 we can see the results for 1 million GANed events compared to the truth
(test) data sample. We again show the energy and transverse momentum distribution of
the first jet as well as the invariant mass distribution and the difference in the azimuthal
angle of both jets. In all distributions we only have a deviation of around 1% in the
highly populated regions even compatible with 0 within the statistical error of the bin.
In the high energy tails we observe the same behavior as in our benchmark comparison in
Fig. 3.10, i.e. the deviation increases up to 10% which is, however, the performance limit
set by statistics. In the pT distribution we can see that due to the chosen parametrization
in the generator the phase space cut at pT = 20GeV is exactly reproduced by the
generated distribution. Furthermore, in the ∆φjj distribution, we can see that the GAN
is capable of reproducing the small peak around ∆φjj ∼ 0.4. This peak rises from
the ∆R > 0.4 cut which was needed to obey a finite cross section. Using different
parametrizations during the network hyperparameter tuning have shown that this peak
is only correctly resolved if we feed ∆φ into the discriminator. Thus, we can generally
conclude that non-trivial features or peaks are best resolved if they are directly given to
the discriminator.

Parameter Value Parameter Value

Input dimension G 7 Input dimension D 19
Layers 6 Batch size 2048
Units per layer 128 Epochs 500
Trainable weights G 85k Iterations per epoch 1000
Trainable weights D 85k Number of training events 1 · 106

Learning rate 1 · 10−4 Decay 0.1

Table 3.2: Details for our precision GAN setup.
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Figure 3.11: Energy (left) and transverse momentum (right) distribution of the first jet
(upper row), and the invariant mass distribution (left) and the difference
of the azimuthal angle (right) of both jets for the test (red) and GANned
(blue) sample. In the middle and lower panel, the ratio and the absolute
relative difference are shown.

3.4 Unweighting of weighted events
Inefficient unweighting procedures cause a main bottleneck for event generation as we
have already pointed out in Section 1.5.2. Therefore, we could significantly improve the
overall computation time of the simulation chain if we can train a GAN on possibly
weighted events while still generating completely unweighted events. In this section,
we first consider two simple toy examples: a one-dimensional camel distribution and
a two-dimensional circle which are expressed in two sets of weighted events. Using
the one-dimensional example we explain how the discriminator loss function needs to
be modified to capture the weight information in the training data. Along with the
previously defined unweighting efficiency (1.91) we can benchmark the performance of
our unweighting GAN against a standard method like Vegas [29, 30]. Especially in the
two-dimensional case we will benefit from the more flexible parametrization of neural
networks. Finally, we will apply the derived method on the simple but well understood
Drell–Yan process.

3.4.1 Toy examples
To start with, we consider a simple one-dimensional camel distribution given by

pcamel(x) = 0.3 N (x;µ = 0, σ = 0.5) + 0.7 N (x;µ = 2, σ = 0.5), (3.26)
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where N (x;µ, σ) is the normal distribution. To explain how we treat possible event
weights we define three sets of events. The first set of events

Xuw = (xcamel, wunit = const.) (3.27)

is a set of unweighted events which are distributed according to the camel function (3.26)
but carrying a unit weight explicitly. The second set of events

Xw = (xuniform, wcamel) (3.28)

has elements x which are distributed uniformly and a weight wcamel = pcamel carrying
the information of the camel function. The unit weight wunit in the first set is chosen
such that the weighted histograms of both event sets look the same. Finally, we consider
a third set

Xhybrid = (xq1 , wq2), (3.29)

where the probability information is spread across both the distribution of the elements
and the weights, such that pcamel(x) = Nq1(x)q2(x), with some normalization factor N .
In our example we chose q1(x) = N (x;µ = 0, σ = 1).

Standard GAN

First we consider the standard GAN application in which the full density information is
encoded in the distribution of the events. In this case, we use the non-saturating GAN
loss functions as introduced in (2.20) and (2.21)

LD = Ex∼pdata [− logDϕ(x)] + Ex∼pθ [− log(1−Dϕ(x))],
LG = −Ex∼pθ [log(Dϕ(x))].

(3.30)

To stabilize the training we again add the standard gradient penalty term LGP as defined
in (2.23). Both the generator and discriminator have 128 units in 4 layers. In the
hidden layers, we employ the ELU and leaky ReLU activation function in the generator
and discriminator, respectively. In order to compensate imbalance in the training the
discriminator is updated 4 times as often as the generator. We use this architecture for
all shown 1-dimensional examples.
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Figure 3.12: The distribution of the event weights wunit (left) and the GAN and truth
distribution of the combined Xuw sample (right). The lower panel of the
right plot shows the bin-wise ratio of both distributions.

In Fig. 3.12 we can see that our GAN nicely reproduces the full one dimensional target
distribution only being slightly off in the tails. This does not yield any news and only
serves as a benchmark for the more interesting setups in which we need to modify the
losses to handle weighted event sets.

55



3 Event Generation

Unweighting GAN

If we want to capture the event weights carried by each event we need to modify the
loss function by replacing the normal expectation value by a weighted mean for batches
coming from the weighted data set. This then gives

L
(uw)
D = Ex∼unif[−wcamel(x) logDϕ(x)]

Ex∼unif[wcamel(x)] + Ex∼pθ [− log(1−Dϕ(x))],

L
(uw)
G = −Ex∼pθ [log(Dϕ(x))],

(3.31)

where wcamel(x) = pcamel(x) is the camel distribution. Further, we have assumed that
wG(x) = const. = 1 and thus the weighted mean simply is the standard expectation value
for the generated batches. By this construction, the generator still produces unweighted
events even though it is trained on weighted truth events. Consequently, our unweighting
GAN (uwGAN) is effectively unweighting the data.
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Figure 3.13: The distribution of the event weights wcamel (left) and the uwGAN and
truth distribution of the combined Xw sample (right). The lower panel of
the right plot shows the bin-wise ratio of truth to uwGAN distribution.

In detail, if we train on the weighted event set Xw, we have wT (x) = pcamel(x). Applying
our modified uwGAN on the weighted event set Xw then results in generated unweighted
events XG,uw which are distributed according to the camel distribution, as shown in
Fig. 3.13.
We can now generalize this to the case in which the information is encoded in both, the
weights and the distribution of the events, such that pcamel(x) = Nq1(x)wq2(x). In this
case we can write the loss function as

L
(uw)
D = Ex∼q1 [−wq2(x) logDϕ(x)]

Ex∼q1 [wq2(x)] + Ex∼pθ [− log(1−Dϕ(x))],

L
(uw)
G = −Ex∼pθ [log(Dϕ(x))],

(3.32)

The results for the hybrid event sampleXhybrid is shown in Fig. 3.14. The uwGAN has no
problems to extract the information from both the weights and the data simultanously
and can translate this into unit weights and generates completely unweighted events.

Unweighting efficiency and weight distribution

As we have already introduced in Section 2.3.1, the generator is a mapping G : Z → Φ
from a latent space Z to the target space Φ inducing a distribution

pz(z)
Gθ−−→ pθ(x) ≡ pθ(Gθ(z)) (3.33)
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Figure 3.14: The distribution of the event weights wq2 (left) and the uwGAN and truth
distribution of the combined Xhybrid sample (right). The lower panel of the
right plot shows the bin-wise ratio of truth to uwGAN distribution.

on the target space, where pz(z) is the prior distribution on the latent space. Conse-
quently, following the idea of importance sampling in Section 1.4.2, we can understand
this induced distribution pθ as an estimator of the true distribution pθ ≈ pdata. In this
sense, the generator yields a better sampling of the target space and hence improves
the unweighting efficiency. In order to actually calculate the unweighting efficiency we
define

wθ(x) = pdata(x)
pθ(x) . (3.34)

This exactly recasts the idea of importance sampling and introduces a new distribution
or weight wθ(x) which we use for the actual unweighting procedure. Intuitively, it also
makes sense to define this quantity as the goal of the GAN is to achieve pθ(x) = pdata(x)
and hence wθ(x) = 1 leading to an unweighting efficiency of 1. We can now properly
unweight the GANned events using the hit-or-miss method introduced in Section 1.5.2.
In detail, this method now consists of the following steps

1. Generate data points {xG} and calculate the weights wθ(x).

2. Determine the maximal weight

wθ,max = max
x∈{xG}

wθ(x). (3.35)

3. Define the relative weights
wθ,rel(x) = wθ(x)

wθ,max
. (3.36)

4. Draw a random number Ri ∈ [0, 1] for every event xi ∈ {xG} and keep it only if

wθ,rel(xi) > Ri (3.37)

is satisfied, otherwise reject it

In order to calculate the unweighting efficiency we use its definition in Eq. (1.91) and
write it as

εuw =
Ex∈{xG}[wθ(x)]

wθ,max
. (3.38)
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We can now calculate the unweighting efficiency of our uwGAN for the camel distribution
function in Fig. 3.13 and obtain an unweighting efficiency of 40% to 50% over several
runs. Although the distributions look very similar, there are problems in the tails.
There, the weight wθ reaches values up to wθ,max ≈ 2.5. Since the efficiency calculation
is strongly dependent on the maximum weight, we get a low unweighting efficiency.

If we restrict ourselves only to events which are not to far in the tails, i.e. xG ∈ [1.5, 3.5],
we get an unweighting efficiency of 93%. Note that statistically 99.73% of the events
should be in the restricted interval indicating that the GAN only fails in regions of low
statistics.

In order to benchmark the performance of our uwGAN, we compare it to the results we
obtain when using the Vegas [29, 30] algorithm instead. After some adaption steps we
obtain an unweighting efficiency of 93%. However, after even more adaption steps the
efficiency goes down to around 80%. The reason for that is that the Vegas alogrithm
is designed to get good integration results by having a very tight grid in the bulk and
a very wide grid in the tails. Consequently, the longer Vegas adapts its grid the more
points are taken away from the tails which is fine for improving the integral estimate,
but it decreases the unweighting efficiency. This can be seen in the ratio of the truth
and Vegas distribution in the left plot of Fig. 3.15, where the ratio is fluctuating a lot.

Since the unweighting efficiency alone does not represent reliable quantity, we explicitly
show the weight distributions wθ and wVegas for our uwGAN and Vegas in the right plot
of Fig. 3.15. In a perfect scenario we would get a constant weight of one. We can see
that in the one dimensional case the Vegas algorithm leads to much better results. This
was expected as the Vegas algorithm is highly fine-tuned and designed for these kind of
distributions.

Two dimensional example: circle

After we have explained how to modify the loss functions using the one-dimensional ex-
ample we now want to consider a 2-dimensional example. If the chosen distribution does
not factorize, we do not expect Vegas to outperform our uwGAN anymore. Therefore,
we define a suitable 2-dimensional toy example: a circle in the x-y plane. In detail, the
distribution function is given by

pcircle(x, y) = Ncircle e
− 1

2σ2 (
√

(x−x0)2+(y−y0)2−r0)2
, (3.39)
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Figure 3.15: Desired and unweighted distribution with the VEGAS algorithm. In the
lower plot again the ratio of the distributions.
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where σ is the standard deviation and Ncircle is a normalization factor. When choosing
x0 = y0 = 0.5, r0 = 0.25 and σ = 0.05 we obtain Ncircle ≈ 5.079.

In comparison to the 1-dimensional case we slightly modify our network architecture
and replace the ELU activation function by the ReLU activation function in the gen-
erator. Furthermore, we now use 256 units within 8 layers in both the generator and
the discriminator. The results of the uwGAN for the 2-dimensional example is shown in
Fig. 3.16.
In Fig. 3.8 we show the results for the 2-dimensional example true (left) and GAN events
(right). The circular structure is clearly visible, and the GAN reproduces distribution
nicely. To allow for a more quantitative comparison of true and generated events we
show the bin-wise asymmetry in the lower left panel. Except for the tails and sparsely
populated regions the agreement is essentially perfect. In the lower right panel we show
a slice at x = 0.5 and see that indeed the GAN nicely reproduces the truth distribution.

When we calculate the unweighting efficiency we obtain an efficiency of 45%. This is
not as high as for the camel function. On one hand this is due to the higher dimension
which generally makes the generator mapping more complicated. On the other hand the
distribution is not just sparsely populated outside of the circle but also in the center.
Therefore, we also undershoot the central region and hence end up with an efficiency of
only 45%.

When applying the Vegas algorithm to the 2-dimensional case the algorithm cannot
reproduce the right shape. As we can see in the left panel of Fig. Fig. 3.17 we obtain a
quadratic distribution instead of the circle. This is mainly due to the fact that the circle
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Figure 3.16: Results for the two dimensional case for the true data (upper left), uw-
GAN data (upper right) and the asymmetry between both (lower left). In
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distribution is not factorizable

pcirle(x, y) 6= px(x) py(y). (3.40)

and hence cannot be parametrized with a rectangular grid. Consequently, we only get
an unweighting efficiency of 15% for the Vegas algorithm.
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Figure 3.17: Result for the unweighting procedure with VEGAS for the two dimensional
toy model.

As for the 1-dimensional, we show the weights wθ of wVegas in the right panel of Fig. 3.17.
We can see that we get a gaussian-like result for our uwGAN which is peaked around 1.
However, as already anticipated, the Vegas weight distribution is rather flat and does not
indicate a peak around 1. This shows, that our uwGAN is already clearly outperforming
Vegas in this 2-dimensional toy example. We expect Vegas to perform even worse if the
distribution is higher-dimensional and more complex.

3.4.2 Drell–Yan process
So far we have only considered toy examples to elaborate the details of our uwGAN
and showed that it already outperforms classical methods in 2-dimensional case. Now,
we want to apply the uwGAN on a realistic but simple LHC process. In particular, we
consider the Drall–Yan process producing two muons

pp→ µ−µ+, (3.41)

as illustrated in Fig. 3.18. For our analysis we generate 1 million weighted events with
Sherpa [24] at a CM energy of 14 TeV. We are interested in the fiducial phase space
defined by the following phase space cuts

pT,µ > 25 GeV |ηµ| < 2.5. (3.42)

Owing to momentum and energy conservation this also implies a cut on the invariant
mass

Mµµ > 2pT,µ = 50 GeV. (3.43)

For the generator architecture we employ the same ideas as presented in Section 3.3 and
produce only the degrees of freedom of the process. By construction this again guarantees
momentum conservation and on-shell conditions. Before passing to the discriminator
both the generated batches {xG} and the truth batches {xT } are parametrized as

x = {pµ− , pµ+ , w}, (3.44)
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γ, Z

µ+

µ−

Figure 3.18: Sample Feynman diagram contributing to myon pair production.

where pµ± is the 4-momentum in cartesian coordinates, and w is the associated event
weight. Since we want to produce unweighted events the generated event weight is simply
given by a unit weight wG = 1.

In Fig. 3.19 we show different kinematic distributions. As examples, we show the trans-
verse momentum, the azimuthal angle and the pseudorapidity distribution of the µ− as
well as the invariant mass of the muon pair. We can see that all distributions nicely
agree with the truth distribution. Only around the phase space cut in the transverse
momentum distribution the GAN is overshooting the truth distribution. However, so
far we did neither use an explicit cut parametrization in the generator nor did we feed
the T (pT ) (3.23) variable to the discriminator to enhance the sensitivity in that region.
Using the former one and adapting the parametrization in the generator will resolve
the problem as shown in Sec. 3.3. Further, we can see that the invariant mass Mµµ

distribution is extremely well reproduced even though we did not employ a MMD loss,
as introduced in Section 3.2.

Note that we would also like to calculate the unweighting efficiency in this more realistic
scenario. While the calculation of the induced distribution pθ is straight forward the
calculation of the truth event weight wT = pdata is generally non-trivial. The event
weight of a LHC process is the combination of the squared matrix element, the PDFs
and the phase space weight. In our case, the training data has been produced with
Sherpa which uses a combination of different phase space remappings to improve the
sampling efficiency. Unfortunately, once the events have been produced the internal
mappings are discarded and hence the phase space weight cannot be evaluated for the
GANed phase space points.

In order to solve this problem we could for instance employ the simple RAMBO algorithm
introduced in Sec. 1.4.1 to generate phase space points uniformly. In this case the phase
space factor or weight is only dependent on the total momentum Q (1.68) and hence easy
to compute. Usually, RAMBO is not the best choice as a phase space generator because
the generated phase space is flat and thus yields a bad sampling efficiency. However,
as the uwGAN can extract all necessary information from the weights, the RAMBO
algorithm does not limit the performance of our GAN.

3.5 Conclusion
We have shown that it is possible to GAN the full phase space structure of several
realistic LHC processes, such as top pair production all the way down to the kinematics
of the six top decay jets, W + 2 jet production and a simple Drell–Yan process. Trained
on a simulated set of either unweighted or weighted events this allows us to generate any
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Figure 3.19: Azimuthal angle (top left), pseudorapidity (top right) and transverse mo-
mentum (bottom left) distribution of the µ−, as well as the invariant mass
distribution (bottom right) of both myons for the truth (red) and GAN
(blue) events. The lower panels show the bin-wise ratio of MC truth to
GAN distribution.

number of new unweighted events representing the same phase space information.
With the help of an additional MMD kernel we described on-shell resonances as well as
tails of distributions. The only additional input was the final-state momenta related to
on-shell resonances, and the rough phase space resolution of the on-shell pattern.
Simple modifications to both the generator and discriminator network significantly in-
creases the performance of the GAN. Our detailed comparison showed that relatively flat
distributions can be reproduced at arbitrary precision, limited only by the statistics of
the training sample. Augmenting additional features to the discriminator input increases
its sensitivity to certain phase space regions and hence improves the GAN precision.
Replacing the normal expectation value in the discriminator loss with a weighted mean
the GAN can be trained on weighted data while still producing unweighted events. This
will speed-up the generation of training data and consequently the entire tool chain will
be computationally more efficient.
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Chapter 4
Sample-Based Subtraction of Distributions

The research presented in this chapter has been previously published in Reference [3].
The displayed figures and tables as well as most the text are identical to the content of
this article.

4.1 Introduction
Modern analyses of LHC data are increasingly based on a data-to-data comparison of
measured and simulated events. The theoretical basis of this approach are generated
samples of unweighted or weighted LHC events. To match the experimental precision
such samples have to be generated beyond leading order in QCD. In modern approaches
to perturbative QCD at the LHC such simulations include subtraction terms, leading
to events with negative weights. Examples for such subtraction event samples are sub-
traction terms for fixed-order real emission [62–66], multi-jet merging including a parton
shower [67, 68], on-shell subtraction [69], or the subtraction of precisely known back-
grounds [70].

GANs [42] are neural networks which naturally lend themselves to operations on event
samples, as we will show in this chapter. Such generative networks have been proposed
for a wide range of tasks related to LHC event simulation and are expected to lead
to significant progress once they become part of the standard tool box. This includes
for instance phase space integration [37], event generation [1, 57–59], detector simula-
tions [46–51, 129], unfolding [2, 4, 141], parton showers [52–56], or searches for physics
beyond the Standard Model [60].

In this chapter, we show how GANs can perform simple operations on event samples,
namely adding and subtracting existing samples. Such a network is trained to generate
unweighted events with a phase space density corresponding to a sum or difference of
two or more input samples. We will illustrate the idea behind a generative event sample
subtraction and addition in Section 4.2. This example shows how generative networks
can beat the statistical limitations of the training samples. Specifically, we produce
events with statistical fluctuations which are significantly smaller than the corresponding
statistical fluctuations of the training data. The feature behind this naively impossible
improvement are the excellent interpolation properties of neural networks in a high-
dimensional phase space.

In Section 4.3 we will then subtract unweighted 4-vector events for the LHC in two exam-
ples. First, we subtract the photon continuum from the complete Drell–Yan process and
find the Z-pole and the known interference patterns. This can be seen as a toy example
for a background subtraction at the level of parton-level event samples. For instance,
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this setup could allow us to study the kinematics of four-body decay signals, simulated
to high precision from observed background and signal-plus-background samples.

Finally, we combine a hard matrix element for jet radiation with collinear subtraction
events. This gives us an event sample that follows the matrix element minus the sub-
traction term without any intermediate binning in the phase space. We show how this
subtraction works even if we do not make use of the local structure of the subtraction
terms. It illustrates how simulations in perturbative QCD might benefit from GANs, in
soft-collinear subtraction, on-shell subtraction, or a veto-like combination of phase space
and parton shower.

4.2 Toy example
The advantage of GANs learning how to subtract event samples can be seen easily from
statistical uncertainties in event counts. Traditionally, we generate the two samples
and combine them through some kind of histogram. If we start with N + n events and
subtract N � n statistically independent events, the uncertainty on the combined events
in one bin is given by

∆n =
√

∆2
N+n + ∆2

N ≈
√

2N �
√
n. (4.1)

In any bin-wise analysis the bin width has to be optimized. On the one hand larger bins
with more events per bin minimize the relative statistical error, but on the other hand
they reduce the resolution of features.
In our GAN approach we avoid defining such histograms and replace the explicit event
subtraction by a subtraction of interpolated sample properties over phase space. We will
first develop this approach in terms of a simple toy example and then show how it can
be extended to unweighted 4-vector events as used in LHC simulations. Unfortunately,
there does not (yet) exist a rigid description of statistical and systematic uncertainties
associated with GANs, but we will show how the fluctuations we observe in our generated
samples are visibly smaller than what we would expect from the input data and Eq.(4.1).

Note, that a more general treatment of uncertainties in GANs has been investigated
in Ref. [142] and whether GANs can amplify the training statistics was examined in
Ref. [143].

4.2.1 Single subtraction
We start with a simple 1-dimensional toy model, i.e. toy events which are described
by a single real number x. We then define a base distribution PB and a subtraction
distribution PS as

PB(x) = 1
x

+ 0.1, PS(x) = 1
x
. (4.2)

The target distribution for the subtraction is then

PB−S = 0.1. (4.3)

To produce unweighted subtracted events our GAN is trained to generate the event
sets {xB} and {xS} simultaneously. It thereby learns the distribution PB−S using the
information encoded in the two input samples.
The corresponding GAN architecture is shown in Fig. 4.1 and consists of a generator
and two independent discriminators, one for each dataset. The generator takes random
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G{z}

c ∈ CB−S ∪ CS

{xG, c}

c ∈ CS

DB

DS

{xB}

{xS}

Data B

Data S

LDB

LDS

LG

Figure 4.1: Structure of our subtraction GAN. The input {z} describes a batch of random
numbers and {xB,S} the true input data batches. The label c encodes the
category of the generated events. Blue arrows indicate the generator training,
red arrows the discriminators training.

noise {z} as input and generates samples {xG, c}, where xG stands for an event and c
for a label. The underlying idea is to start from an event sample which follows PB and
split it into two mutually exclusive samples following PS and PB−S , with class labels
CS or CB−S . During training we demand that the distribution over events from class CS
follow PS while the full event sample follows PB. After normalizing all samples correctly
the events with class label CB−S will then follow the distribution PB−S .
Technically, the class label c attached to each event is a real 2-dimensional vector, such
that it can be manipulated by the network. Through the softmax function (2.7) in the
final generator layer the entries of c are forced into the interval [0, 1] and sum up to 1.
We then create a so-called one-hot encoding by mapping c to

cone-hot
i =

{
1 if ci = max(c)
0 else .

(4.4)

This representation is two-dimensional binary and most convenient for manipulating the
samples. We can use it to define the label classes via Ci = {c | cone-hot

i = 1}.
In Fig. 4.1 we see that for the class CS and the union of CS with CB−S we train the
discriminators to distinguish between events from the input samples and the generated
events. The training of the discriminators Di corresponding to the two input samples
{xS} and {xB} uses the standard discriminator loss function (2.20)

LDi = Ex∼pdatai
[− logDϕi(x)] + Ex∼pθ [− log(1−Dϕi(x)]. (4.5)

We also add the gradient penalty term (2.23) and obtain a regularized loss function

L
(GP)
Di

= LDi + λDiEx∼pdatai

[
(1−Dϕi(x))2 |∇dϕi(x)|2

]
+ λDi Ex∼pθ

[
Dϕi(x)2 |∇dϕi(x)|2

]
,

(4.6)

where we defined

dϕi(x) = log Dϕi(x)
1−Dϕi(x) . (4.7)

65



4 Sample-Based Subtraction of Distributions

0 25 50 75 100 125 150 175 200
x

10−2

10−1

100

P
(x

)

GAN vs Truth

B

S

B − S

0 25 50 75 100 125 150 175 200
x

0.08

0.09

0.10

0.11

0.12

0.13

P
(x

)

(B − S)GAN

(B − S)Truth ± 1σ

Figure 4.2: Left: Generated (solid) and true (dashed) events for the two input distri-
butions and the subtracted output. Right: distribution of the subtracted
events, true and generated, including the error envelope propagated from
the input statistics.

In parallel, we train the generator to fool the discriminators by minimizing

LG =
∑
i

Ex∼pθ [− logDϕi(x)]. (4.8)

An additional aspect in manipulating samples is that we need to keep track of the
normalization or number of events in each class. To generate a clear and differentiable
assignment we introduce the function

f(c) = e−α(max(c)2−1)2β ∈ [0, 1] for 0 ≤ ci ≤ 1. (4.9)

Adapting α and β we can make the gradient around the maximum steeper and push
f(0)→ 0. In that case f(c) ≈ 1 only if one of the entries of ci ≈ 1. By adding

L
(class)
G =

1− 1
b

∑
c∈batch

f(c)

2

(4.10)

to the loss function we reward a clear assignment of each event to one class and generate
a clear separation between classes. Finally, we use the counting function in combination
with masking to fix the normalization of each sample with

L
(norm)
G =

∑
i

( ∑
c∈Ci f(c)∑
c∈CB f(c) −

σi
σ0

)2

. (4.11)

Adding these losses to the generator loss we get

LG → L
(full)
G = LG + λclassL

(class)
G + λnormL

(norm)
G , (4.12)

with properly chosen factors λclass and λnorm. In this chapter we always use λclass =
λnorm = 1. For the denominator in Eq. (4.11) we always choose the approximation of
the number of predicted events in the base class CB = CB−S ∪CS as reference value. The
integrated rates σi have to be given externally. For our toy model we can compute them
analytically while for an LHC application they are given by the cross section from the
Monte Carlo simulation.
Our GAN uses a vector of random numbers as input. The size of the vector has to
be at least the number of degrees of freedom. For the implementation we have used
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Keras 2.2.4 [136] with a TensorFlow 1.14 backend [137]. The discriminator and gen-
erator networks consist of 5 layers with 128 units per layer using the ELU activation
function (2.6). With λDi = 5 · 10−5 and a batch size of 1024 events, we run for 4000
epochs. Each epoch consists of one update of the generator and 20 updates of the dis-
criminator. We found that the intense training of the discriminator is necessary to reach
sufficiently precise results. To obtain a good separation of the classes with f(c) we set
α = 10 and β = 1. Finally, using the adam optimizer [108] throughout this chapter,
we choose a learning rate of 3 · 10−4 for generator and discriminator and a large decay
following Eq. (2.17) of the learning rate of 2 · 10−2 for the discriminator which stabilizes
the training. The decay for the generator is slightly smaller with 5 · 10−3. Our training
datasets consist of 105 samples for each dataset {xS} and {xB}.

We show numerical results for a single GAN subtraction and analyze the size of the
statistical fluctuations in Fig. 4.2. In the left panel we show the two input distributions
defined in Eq. (4.2), as well as the true and generated subtracted distribution. The
dotted lines illustrate the shape of the training dataset, while the full lines show the
generated distribution using 5 · 106 events. The former two distributions only serve to
confirm that the GAN learns the input information correctly. The generated subtracted
events indeed follow the probability distribution in Eq. (4.3). Aside from the fact that
all three distributions show excellent agreement between truth and GANned events, we
see how the neural network interpolates especially in the tail of the distribution. In the
right panel of Fig. 4.2 we zoom into the subtracted sample to compare the statistical
uncertainties from the input data with the behavior of the GAN. The uncertainty is
estimated from the number of events per bin in the base and subtraction histogram NB

and NS , taking into account the corresponding normalization factors nB and nS . In
analogy to Eq. (4.1) we compute it as

∆B−S = ∆nBNB−nSNS

=
√

∆2
nBNB

+ ∆2
nSNS

=
√
n2
BNB + n2

SNS .

(4.13)

As mentioned above, we expect the GAN to deliver more stable results than we could
expect from the input sample, because the GAN interpolates all input distributions. This
way we avoid a bin-by-bin statistical uncertainty of the subtracted sample. Indeed, our
subtracted curve in the right panel of Fig. 4.2 lies safely within the 1σ region of the data.
The statistical fluctuations of the GANned events are much smaller than the statistical
fluctuations in the input data. On the other hand, the GANned distribution shows
systematic deviations, but also at a visibly smaller level than the statistical fluctuation
of the input data. While this observation does not imply a proof that GANs can beat
the statistical limitations of the input data, they give a clear hint that the interpolation
properties can balance statistics at some level.

4.2.2 Combined subtraction and addition
To show how our approach could be generalized to subtracting and adding any number
of event samples we can extend our single subtraction toy model by a third sample
to be added to the difference described in Eq. (4.3). We now consider three samples
corresponding to the 1-dimensional distributions

PB(x) = 1
x

+ 0.1, PS(x) = 1
x
, PA(x) = m

π

γ

γ2 + (x− x0)2 . (4.14)
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As a third input we add the Breit-Wigner distribution PA, so our target distribution
becomes

PB−S+A = m

π

γ

γ2 + (x− x0)2 + 0.1

= 5
π

10
100 + (x− 90)2 + 0.1 , (4.15)

for the values m = 5, γ = 10, and x0 = 90. We now sample {xB}, {xS} and {xA}
individually from the input distributions and want to learn the probability distribution
PB−S+A. The approach is the same as described before, but for three classes as shown
in Tab. 4.1 and a three-dimensional class vector. Treating the subtraction exactly as
before we obtain our target distribution PB−S+A by adding the events with class CA.
Compared to the sample subtraction introduced before, adding samples is obviously not
a big challenge. In principle, we could just add the unweighted event samples in the
correct proportion, learn the phase space structure with a GAN, and then generate any
number of events very efficiently. The reason why we discuss this aspect here is that it
shows how our subtraction GAN can be generalized easily.
In Fig. 4.3 we show the numerical results of subtracting one distribution {xS} from the
base distribution {xB} and adding a second distribution {xA} with a distinct feature.
As before, this combination is learned from the three input distributions without binning
the corresponding phase space. The hyperparameters are slightly modified with respect
to the simple subtraction model. The networks now consist of 7 layers with 128 units
which we train for 1000 epochs with 4 iterations. We fix the relative weight of the
gradient penalty to λDi = 5 · 10−5. The separation of the three classes is efficient for
α = 5 and β = 1. Finally, we set the learning rate to 8 · 10−4 and its decay to 2 · 10−2

for generator and discriminator. The remaining parameters are the same as for the pure
subtraction case. In the left panel of Fig. 4.3 we confirm that the GAN indeed learns
the three input structures correctly and interpolates each of them smoothly. We also
see that the generated events follow the combination B − S + A with its flat tails and
the central Breit–Wigner shape. As for the pure subtraction in Fig. 4.2 we also compare
the statistical fluctuation of the binned input data with the behavior of the GANned
events. The GAN extracts the additional Breit–Wigner feature with high precision, but,
as always, some systematic deviations arise in the tails of the distribution.

4.2.3 General setup
Finally, we note that our network setup is not limited to three classes. We can gen-
eralize it to a base distribution, M subtraction datasets, and N added datasets. The
corresponding category assignment, generalized from Tab. 4.1, is given in Tab. 4.2 and

CB−S CS CA

Data B 1 1 0
Data S 0 1 0
Data A 0 0 1

B − S +A 1 0 1

Table 4.1: Category assignment for a combined addition and subtraction of three sam-
ples.
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Figure 4.3: Left: Generated (solid) and true (dotted) events for the three input distribu-
tions and the combined output. Right: distribution of the combined events,
true and generated, including the error envelope propagated from the input
statistics.

encoded in an enlarged classification vector c. The base class is then defined as

C =
M⋃
i=0
Ci . (4.16)

In this case the network has to learn allM+N+1 input distributions through individual
discriminators DB, DSi , and DAj with i ≤ M and j ≤ N . The rough structure of the
network is given in Fig. 4.4. The training of the generator follows directly from the
description above. While we do not benchmark this extended setup in this chapter, we
expect it to be useful when a set of subtraction terms accounts for different features,
and splitting them improves their simulation properties.
Until now we have always assumed that we can subtract a sample {xS} from a sample
{xB} and find a well-behaved distribution forB−S. Specifically, the resulting probability
PB−S should be positive all over phase space. This is not always the case. First, we
note that a global sign of the combination is not a problem, because we can always
learn S −B instead of B − S. Next, changing signs in the S or B contributions can be
accommodated by splitting the respective sample according to the sign and applying the
combined subtraction and addition described in Section 4.2.2. A phase space dependent

C0 C1 C2 · · · CM CM+1 · · · CM+N

Data B 1 1 1 · · · 1 0 · · · 0
Data S1 0 1 0 · · · 0 0 · · · 0
Data S2 0 0 1 0 0 · · · 0
...

...
...

. . .
...

...
Data SM 0 0 0 1 0 · · · 0
Data A1 0 0 0 · · · 0 1 0
...

...
...

...
. . .

...
. . .

Data AN 0 0 0 · · · 0 0 1

Combination 1 0 0 · · · 0 1 · · · 1

Table 4.2: Details for the category selection in the general case.
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Figure 4.4: Structure of our general subtraction and addition GAN. The input {z} de-
scribes a batch of random numbers and {x} the true input data or generated
batches. The label c encodes the category of the generated events. Blue ar-
rows indicate the generator training, red arrows the discriminators training.

sign in S−B could be most easily accommodated by adding a constant off-set either by
hand or again using the combined subtraction and addition. A typical example would
be to add the Born term to the virtual correction before subtracting the dipole.
In cases where this is not a suitable solution, we can replace the categories CB−S and CS
by the three categories CB∩S , CB\S , and CS\B. They indicate events corresponding to B
and S, only B, or only S. The discriminator compares for instance the combination of
CB∩S and CB\S with the B-data. The difference B−S will be given by events with label
CB\S in regions where B > S and events with label CS\B in regions where B < S, the
latter weighted with weight minus one. While this simple extension of the label vector is
very straightforward, the third category induces an additional degree of freedom in the
way the network can distribute events into different categories. This freedom needs to
be constrained to prevent the network from simply assigning for instance all events into
the categories CB\S , and CS\B. A possible solution would be to maximize the number of
events in CB∩S via a term in the loss function and force the network to share as many
events between the distributions as possible.

4.3 LHC events

After showing how it is possible to GAN-subtract 1-dimensional event samples from
each other we want to show how such a tool can be applied in LHC physics. In this case
the (unweighted) events are 4-momenta of external particles. We ignore all information
on the particle identification, except for its mass, which allows us to reduce external
4-momenta to external 3-momenta [1, 2]. Because the input events might have been
object to detector effects we do not assume energy-momentum conservation for the entire
event. This means that the network has to learn the 4-dimensional energy-momentum
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conservation and this subtraction of simple LHC events is inherently multi-dimensional.
We will present two simple examples for LHC event subtraction, the separation of on-
shell Z and photon contributions to the Drell-Yan process and the subtraction of collinear
gluon radiation in Z+jet production.

4.3.1 Background subtraction
Our first example for event subtraction at the LHC is the Drell–Yan process, which
receives contributions with distinct phase space features from the photon and from the
Z-boson, as seen in Fig. 4.5. The specific question in our setup is if we can subtract
a background-like photon continuum contribution from the full process and generate
events only for the Z-exchange combined with the interference term,

B : pp→ e+e−

S : pp→ γ → e+e− .
(4.17)

We generate 1M events with Madgraph5 [23] for an LHC energy of 13 TeV, applying
minimal cuts on the outgoing electrons. We require a minimal pT of 10 GeV, a maximal
rapidity of 2.5 for each electron, and a minimal angular separation of 0.4. We do not
apply a detector simulation at this stage, because our focus is on comparing the generated
and true distributions, and we have already shown that detector simulations can be
included trivially in our GAN setup [1, 2].

Aside from the increased dimension of the phase space the subtraction GAN has exactly
the same structure as the toy example of Section 4.2. The hyperparameters have to be
adjusted to the increased dimensionality of the phase space. We use a 16-dimensional
latent space. The discriminator and generator networks consist of 8 layers with 80 and
160 units per layer, respectively. In this high-dimensional case we use the leaky ReLU
activation function. Further, we choose λDi = 10−5 and a batch size of 1024 events and
train for 1000 epochs. Each epoch consists of 5 iterations in which the discriminator
gets updated twice as much as the generator. For a proper separation of the classes with
f(c) we set α = 5 and β = 1. Finally, we choose a large decay of the learning rate of
10−2 which stabilizes the training and pick a learning rate at the beginning of 10−3. Our
training datasets consist of 105 samples for each dataset {xB} and {xS}..

In Fig. 4.6 we show the performance of the LHC event subtraction for two example
distributions. First, we clearly see the Z-mass peak in the lepton energy of the full
sample, compared with the feature-less photon continuum in the subtraction sample.
The subtracted curve is expected to describe the Z-contribution and the interference. It
smoothly approaches zero for small lepton energies, where the interference is negligible.

γ, Z

e+

e−

Z

g

Figure 4.5: Sample Feynman diagrams for the background subtraction (left) and
collinear subtraction (right) applications.
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Figure 4.6: Left: Generated (solid) and true (dashed) e+e− events at the LHC for the
two input distributions and the subtracted output. Right: distribution of the
subtracted events, true and generated, including the error envelope propa-
gated from the input statistics.

Above that we see the Jacobian peak from the on-shell decay, and for larger energies
a small interference term enhancing the high-energy tail. In the right panel we show
the subtracted curve including the statistical uncertainties from the input samples. As
the second observable we show the transverse momentum of the electron. Here the Z-
pole appears as a softened endpoint at mZ/2. The photon continuum dominates the
combined distribution for small transverse momenta. Indeed, the GAN-subtracted on-
shell and interference contribution is localized around the endpoint, with a minor shift
in the resolution at the edge.

Indeed, our subtraction of the background to a di-electron resonance is not a state-of-
the-art problem in LHC physics. A more interesting application of our method could
be four-body decays. We could start from a combined signal plus background sample of
Higgs decays to four fermions, generate a background-only sample using control regions,
and then GAN a set of signal events. While in a regular analysis the events we obtain
from subtracting a background from the signal-plus-background sample do not reflect the
signal properties, our GANned subtraction events should reflect all kinematic features
of the signal events in the data.

72



4 Sample-Based Subtraction of Distributions

0 200 400 600 800 1000
Eg [GeV]

10�2

10�1

100

101

d
�

d
E

g
[p

b
/G

eV
]

GAN vs Truth

B

S

B � S

0 200 400 600 800 1000
Eg [GeV]

10�2

10�1

100

1 �
d
�

d
E

g
[p

b
/G

eV
]

(B � S)GAN

(B � S)Truth ± 1�

0 20 40 60 80 100
pT,g [GeV]

10�2

10�1

100

101

102

d
�

d
p T

,g
[p

b
/G

eV
]

GAN vs Truth

B

S

B � S

0 20 40 60 80 100
pT,g [GeV]

100

1 �
d
�

d
p T

,g
[p

b
/G

eV
]

(B � S)GAN

(B � S)Truth ± 1�

Figure 4.7: Left: Generated (solid) and true (dashed) Zg events at the LHC for the two
input distributions and the subtracted output. Right: distribution of the
subtracted events, true and generated, including the error envelope propa-
gated from the input statistics.

4.3.2 Collinear subtraction
The second example for event subtraction at the LHC is collinear radiation off the initial
state, for instance

B : pp→ Zg (matrix element)
S : pp→ Zg (collinear approximation)

(4.18)

We generate 1M events for the hard process with Sherpa [24], where the Z-boson decays
to electrons. For the network we combine the electron and positron momenta to a
4-momentum of the Z-boson, so we obtain a Breit–Wigner distribution with mee =
66 ... 116 GeV instead of an on-shell condition. We then subtract the corresponding
Catani-Seymour dipoles [62] for the gluon radiation off each of the incoming quarks,
based on 1M events each. The corresponding Feynman diagram is shown in the right
panel of Fig. 4.5. To avoid the soft divergence we require pT,g > 1 GeV in the training
data, a smaller cutoff would be possible but increases the training time. We apply the
same external cutoff to the GANned samples, aligning the phase space boundaries of the
training and GANned data sets by hand.
The problem with this specific process is that the Catani-Seymour dipoles describe the
full matrix element over a huge part of phase space [?] and the combination of hard
matrix element and dipoles is typically tiny and negative. We discussed changing signs
in probability distributions in Section 4.2.3. In addition, the one distribution a GAN
can never generate is a probability distribution compatible with zero everywhere. In this
case the GAN would either over-fit statistical fluctuations or become unstable. This is
why in our toy application we shift the Catani-Seymour dipole by a constant such that
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the cancellation of the divergent matrix element still works, but the combined result
integrated over phase space remains finite.

Note that the kinematics of our subtraction terms are not the same as in fixed-order
calculations, instead it is similar to the mapping in the modified subtraction method
MC@NLO [144]. In this case the global efficiency of event generators at NLO accuracy
is dominated by the efficiency of computing the subtracted real-emission corrections,
which presents a major challenge for event simulation at the HL-LHC [36,145].

The hyperparameters have to be modified with respect to the background subtraction
example, due to the large cancellations in the low energy regime. Now, the discriminator
and generator networks consist of 8 layers with 256 and 512 units per layer, respectively.
In the generator we alternate leaky ReLU and tanh activation functions. We achieve the
best and most stable results choosing λDi = 10−3 with a batch size of 1024 events. We
train for 60000 epochs, where each epoch consists of 5 iterations in which the discrimi-
nator gets updated twice as much as the generator. In this example, the discriminator
gets the events in the {E, pT , η, φ} representation, which is better suited to resolve the
pT distribution. The other hyperparameters are kept the same as in the background
subtraction.

We show the results from the collinear subtraction in Fig. 4.7. The GAN perfectly
reconstructs the cancellation in the energy spectrum and the transverse momentum of
the emitted gluon. The left panel shows the distribution of the real (B) and dipole (S)
contributions to the process and their difference (B − S). With the logarithmic axis we
see that the GAN smoothly interpolates over the entire energy range. For small gluon
energies and momenta the GAN reproduces the rate increase towards the (enforced)
phase space boundary, including the finite value of the subtracted combination B − S.
Also in the high energy region, which suffers from low statistics, the GAN nicely matches
the truth distributions. In the right panel we show the subtracted curve including the
error envelope of the input data.

As before, we only use the established NLO dipole as a simple structure to illustrate the
features of our subtraction GAN. Proper applications could be the more complicated
subtraction terms beyond NLO or the subtraction of on-shell resonances [69]. The latter
would combine aspects discussed in Section 4.3.1 and Section 4.3.2 and allow for a fully
inclusive study of the kinematics in the off-shell process, without having to actually do
a subtraction and deciding if a given event is more likely to be part of the on-shell or
off-shell sample.

4.4 Conclusion
We have shown how to generate events representing the difference between two input
distributions with a GAN. As a toy example we used events representing a 1-dimensional
probability distribution. Because the GAN interpolates the input while learning the
difference between the two distributions, it circumvents the statistical limitations of
large cancellations. We have found that the GAN-subtracted events lead to a very
stable phase space coverage and beat the statistical limitations of the input sample over
the entire phase space.

For a slightly more realistic setup we have GANned background subtraction and collinear
dipole subtraction for Drell–Yan production at the LHC. In the first case the network
learned on-shell final state momenta to subtract the photon-induced continuum from
the full e+e− production. It could serve as a test case for a background subtraction for

74



4 Sample-Based Subtraction of Distributions

four-body decays, such that the GANned signal events reflect the kinematic correlations
of the actual signal events hidden in the background.

In the second case we combined the hard matrix element with modified Catani-Seymour
dipoles for gluon emission into a stable finite prediction of the real emission process. We
are aware of the fact that our toy examples are not more than an illustration of what a
subtraction GAN can achieve. However, we have shown how to use a GAN to manipulate
event samples avoiding binning (at least in particle physics) and we hope that some of
the people who do LHC event simulations for a living will find this technique useful.
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Chapter 5
Unfolding of Detector Level Events

The research presented in this chapter has been previously published in Ref. [2] and [4].
The displayed figures and tables as well as most of the text are identical to the content
of these articles.

5.1 Introduction
The unique feature of LHC physics from a data science perspective is the comparison of
vast amounts of data with predictions based on first principles. This modular predic-
tion starts with the Lagrangian describing the hard scattering, then adds perturbative
QCD providing precision predictions, resummed QCD describing parton showers and
fragmentation, hadronization, and finally a full detector simulation [146]. In this so-
defined forward direction all simulation modules are based on Monte Carlo techniques,
and in the ideal world we would just compare measured and simulated events and draw
conclusions about the hard process. This hard process is where we expect to learn about
new aspects of fundamental physics, for instance dark matter, extended gauge groups,
or additional Higgs bosons.

Because our simulation chain works only in one direction, the typical LHC analysis
starts with a new, theory-inspired hypothesis encoded in a Lagrangian as new particles
and couplings. For every point in the new physics parameter space we simulate events,
compare them to the measured data using likelihood methods, and discard the new
physics hypothesis. This approach is extremely inefficient. First, we know that the best
way to compare two hypotheses is the log-likelihood ratio based on new physics and
Standard Model predictions for the hard process. Using this ratio in the analysis is
the idea behind the matrix element method [147–152], but usually this information is
not available. Second, any new physics hypothesis has free parameters like masses or
couplings, and even if an analysis is independent of these model parameters we cannot
avoid simulating events for each point in model space. Finally, it is impossible to derive
competitive limits on a new model by recasting an existing analysis.

All these shortcomings of LHC analyses point into the same direction: we need to
invert the simulation chain, apply this inversion to the measured data, and compare
hypotheses at the level of the hard scattering. For hadronization and fragmentation
an approximate inversion is standard in that we always apply jet algorithms to extract
simple parton properties from the complex QCD jets. Obviously, this only works for
analyses which do not benefit from subjet information. For the detector simulation
either at the level of particles or at the level of jets this problem is usually referred to as
detector unfolding. For instance in top physics we also unfold kinematic information to
the level of the decaying top quarks, assuming that the top decays are correctly described
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by the standard model [153,154]. If we assume that QCD jet radiation adds little to our
new physics search, we should at some level be able to also unfold this last simulation
step. This is the goal of this chapter.

Technically, we propose to use invertible networks (INNs) [43–45] or GANs [42] to in-
vert parts of the LHC simulation chain. This application builds on a long list of one-
directional applications of generative or similar networks to LHC simulations, including
phase space integration [37, 38], amplitudes [155, 156], event generation [1, 57–59, 157],
event subtraction [3], detector simulations [46–51, 129, 158, 159], unfolding [141] parton
showers [52–55], or searches for physics beyond the Standard Model [60].

The question is if and how we can invert them. In Sec. 5.2 we shortly introduce the inverse
problem and explain it with the help of a toy example. Afterwards, we start with a naive
GAN and INN inversion and see how a mismatch between local structures at parton level
and detector level leads to problems. We then introduce a fully conditional GAN [71]
(FCGAN) and conditional INN (cINN) [72, 73] to invert a fast detector simulation [27]
for the process

pp→ ZW+ → (`−`+) (jj), (5.1)

as illustrated in Fig. 5.1. We will see how the fully conditional setup gives us all the
required properties of an inverted detector simulation. The cINN adds even more sam-
pling elements to the generation of unfolded configurations. For arbitrary kinematic
distributions we can test the calibration of this generative network output using truth
information and find that unlike GANs the cINN lives up to its generative promise: for
a single detector-level event the cINN generates probability distributions in the multi-
dimensional parton-level phase space.

Finally, we show in Sec. 5.5 how the inversion can link two phase spaces with different
dimensions. This means that we can for instance unfold based on a model with a variable
number of final state particles at the detector level. This is crucial when we include
higher-order perturbative corrections, which come with an increased number of partons
in the final state. The hard scattering process which we choose to unfold then includes
a reduced number of relevant final-state particles. We show how the cINN can account
for this QCD jet radiation and unfolds it together with the detector effects. In other
words, the network distinguishes between jets from the hard process and jets from QCD
radiation and it also unfolds the kinematic modifications from initial state radiation, to
provide probability distributions in the parton-level phase space of a pre-defined hard
process.

5.2 Unfolding basics
Unfolding particle physics events is a classic example for an inverse problem [160]. In
the limit where detector effects can be described by Gaussian noise, it is similar to
unblurring images. However, actual detector effects depend on the individual objects,
the global energy deposition per event, and the proximity of objects, which means they
are much more complicated than Gaussian noise. The situation gets more complicated
when we add effects like QCD jet radiation, where the radiation pattern depends for
instance on the quantum numbers of the incoming partons and on the energy scale of
the hard process.
What we do know is that we can describe the measurement of phase space distributions
dσ/dxd as a random process, just as the detector effects or jet radiation can be simulated

78



5 Unfolding of Detector Level Events

by a set of random numbers describing a Markov process. This means that also the
inversion or extraction of dσ/dxp is a statistical problem.

5.2.1 Binned toy model and locality
As a one-dimensional toy example we can look at a binned (parton-level) distribution
σ

(p)
j which gets transformed into another binned (detector-level) distribution σ(d)

j by the
kernel or response function gij ,

σ
(d)
i = gijσ

(p)
j . (5.2)

We can postulate the existence of an inversion with the kernel ḡ through the relation

σ
(p)
k =

N∑
i=1

ḡkiσ
(d)
i =

N∑
j=1

(
N∑
i=1

ḡkigij

)
σ

(p)
j with

N∑
i=1

ḡkigij = δkj . (5.3)

If we assume that we know the N2 entries of the kernel g, this form gives us the N2

conditions to compute its inverse ḡ. We illustrate this one-dimensional binned case with
a semi-realistic smearing matrix

g =


1− ε ε 0
ε 1− 2ε ε

0 ε 1− ε

 , (5.4)

where ε � 1 is a small migration or smearing parameter. We illustrate the smearing
pattern with two input vectors, keeping in mind that in an unfolding problem we typically
only have one kinematic distribution to determine the inverse matrix ḡ,

σ(p) = n


1
1
1

 ⇒ σ(d) = σ(p),

σ(p) =


1
n

0

 ⇒ σ(d) = σ(p) + ε


n− 1
−2n+ 1

n

 . (5.5)

The first example shows how for a symmetric smearing matrix a flat distribution removes
all information about the detector effects. This implies that we might end up with a
choice of reference process and phase space such that we cannot extract the detector
effects from the available data. The second example illustrates that for bin migration
from a dominant peak the information from the original σ(p) gets overwhelmed easily.
We can also compute the inverse of the smearing matrix in Eq.(5.4) and find

ḡ ≈ 1
1− 4ε


1− 3ε −ε ε2

−ε 1− 2ε −ε
ε2 −ε 1− 3ε

 , (5.6)

where we neglect the sub-leading ε2-terms whenever there is a linear term as well. The
unfolding matrix extends beyond the nearest neighbor bins, which means that local
detector effects lead to a global unfolding matrix and unfolding only works well if we
understand our entire data set. The reliance on useful kinematic distributions and the
global dependence of the unfolding define the main challenges once we attempt to unfold
the full phase space of an LHC process.
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5.2.2 Bayes’ theorem and model dependence

Over the continuous phase space a detector simulation can be written as

dσ
dxd

=
∫

dxp g(xd, xp)
dσ
dxp

, (5.7)

where xd is a kinematic variable at detector level, xp the same variable at parton level,
and g a kernel or transfer function which links these two arguments. We ignore efficiency
factors for now, because they can be absorbed into the parton-level rate. To invert the
detector simulation we define a second transfer function ḡ such that [161–163]

dσ
dxp

=
∫

dxd ḡ(xp, xd)
dσ
dxd

=
∫

dx′p
dσ
dx′p

∫
dxd ḡ(xp, xd)g(xd, x′p). (5.8)

This inversion is fulfilled if we construct the inverse ḡ of g defined by∫
dxd ḡ(xp, xd)g(xd, x′p) = δ(xp − x′p), (5.9)

all in complete analogy to the binned form above. The symmetric form of Eq. (5.7) and
Eq. (5.8) indicates that g and ḡ are both defined as distributions. In the g-direction
we use Monte Carlo simulation and sample in xp, while ḡ needs to be sampled in g(xp)
or xd. In both directions this statistical nature implies that we should only attempt to
unfold sufficiently large event samples.

The above definitions can be linked to Bayes’ theorem if we identify the kernels with
probabilities. We now look at ḡ(xd|xp) in the slightly modified notation as the probability
of observing xd given the model prediction xp and g(xp|xd) gives the probability of
the model xp being true given the observation xd [164, 165]. In this language Eq.(5.7)
and (5.8) describe conditional probabilities, and we can write something analogous to
Bayes’ theorem,

ḡ(xp|xd)
dσ
dxd
∼ g(xd|xp)

dσ
dxp

. (5.10)

In this form ḡ(xp|xd) is the posterior, g(xd|xp) as a function of xp is the likelihood,
dσ/dxp is the prior, and the model evidence dσ/dxd fixes the normalization of the
posterior. From standard Bayesian analyses we know two things:

(i) the posterior will in general depend on the prior, in our case the kinematics of the
underlying particle physics process or model.

(ii) when analyzing high-dimensional spaces the prior dependence will vanish when the
likelihood develops a narrow global maximum.

If the posterior ḡ(xp|xd) in general depends on the model dσ/dxp, then Eq.(5.8) does
not look useful. On the other hand, Bayesian statistics is based on the assumption that
the prior dependence of the posterior defines an iterative process where we start from
a very general prior and enter likelihood information step by step to finally converge
on the posterior. The same approach can define a kinematic unfolding algorithm [166].
Will will not discuss these methods further, but come back to this model dependence
throughout this chapter.
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5.2.3 Reference process pp→ ZW

To provide a quantitative estimate of unfolding with neural networks we use the process

pp→ ZW± → (`−`+) (jj). (5.11)

One of the contributing Feynman diagrams is shown in Fig. 5.1. With jets and leptons
in the final state we can test the stability of the unfolding network for small and for
large detector effects. We generate the ZW events using Madgraph5 [23] without any
generation cuts and then simulate parton showering with Pythia8 [25] and the detector
effects with Delphes [27] using the standard ATLAS card. For jet clustering we use
the anti-kT algorithm [167] with R = 0.6 implemented in FastJet [168]. All jets are
required to have

pT,j > 25 GeV and |ηj | < 2.5 . (5.12)

For the hadronically decayingW -boson the limited calorimeter resolution will completely
dominate over the parton-level Breit-Wigner distribution. After applying the cuts we
have 320k events which we split into 90% training and 10% test data.

In a first step, we are only interested in inverting these detector effects. The results are
shown in Sec. 5.3 and Sec. 5.4. For the simulation this implies that we switch off initial
state radiation as well as underlying event and pile-up effects and require exactly two
jets and a pair of same-flavor opposite-sign leptons. The jets and corresponding partons
are separately ordered by pT . The detector and parton level leptons are assigned by
charge. This gives us two samples matched event by event, one at the parton level (xp)
and one including detector effects (xd). Each of them is given as an unweighted set of
four 4-vectors. These 4-vectors can be simplified if we assume all external particles at
the parton level to be on-shell. Obviously, this method can be easily adapted to weighted
events as we have already shown in Sec. 3.4.

In a second step we include initial state radiation and allow for additional jets in Sec. 5.5.
We still require a pair of same-flavor opposite-sign leptons and at least two jets in
agreement with the condition in Eq. (5.12). The four jets with highest pT are then used
as input to the network, ordered by pT . Events with less than 4 jets are zero-padded.
The second data set is only used for the conditional INN.

5.3 GAN unfolding detector effects
A standard method for fast detector simulation is smearing the outgoing particle mo-
menta with a detector response function. This allows us to generate and sample from a

W

Z

j

j

ℓ+

ℓ−

Figure 5.1: Sample Feynman diagram contributing to ZW production, with intermediate
on-shell particles labelled.
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G {xG}{xd} D

{xp}detector parton

LD

LGMMD

Figure 5.2: Structure of a naive unfolding GAN. The input {xd} describes a batch of
events sampled at detector level and {xG,p} denotes events sampled from
the generator or parton-level data. The blue (red) arrows indicate which
connections are used in the training of the generator (discriminator).

probability distribution of smeared final-state momenta for a single parton-level event.
For the inversion we need to rely on event samples, as we can see from a simple example:
we start from a sharp Z-peak at the parton level and broaden it with detector effects.
Now we look at a detector-level event in the tail and invert the detector simulations, for
which we need to know in which direction in the invariant mass the preferred value mZ

lies. This implies that unfolding detector effects requires a model hypothesis, which can
be thought of as a condition in a probability of the inversion from the detector level.
The problem with this perspective is that the parton-level distribution of the invariant
mass requires a dynamic reconstruction of the Breit-Wigner peak, which is not easily
combined with a Markov process. From this argument it is clear that unfolding only
makes sense at the level of large enough event samples.

From Sec. 1.3.2 we know how to set up a GAN to either generate detector-level events
from parton-level events or vice versa. In our current setup the events are an unweighted
set of four 4-vectors, two jets and two leptons. The final-state masses are fixed to the
parton-level values. Our hadronic final state is defined at the level of jet 4-vectors. This
does not mean that in a possible application we take a parton shower at face value. All
we do is assume that there is a correspondence between a hard parton and its hadronic
final state, and that the parton 4-momentum can be reconstructed with the help of
a jet algorithm. The question if for instance an anti-kT algorithm is an appropriate
description of sub-jet physics does not arise as long as the jet algorithm reproduces the
hard parton momentum.

5.3.1 Naive GAN

Following the notations in Sec. 2.3, our GAN comprises a generator network Gθ compet-
ing against a discriminator network Dϕ in a min-max game, as illustrated in Fig. 5.2. For
the implementation we use Keras (v2.2.4) [136] with a TensorFlow (v1.14) backend [137].
As the starting point, Gθ is randomly initialized to produce an output, typically with
the same dimensionality as the target space. It induces a probability distribution pθ(x)
of a target space element x, in our case a parton-level event. To be precise, the generator
obtains a batch of detector level events as input and generates a batch of parton level
events as output, i.e. Gθ({xd}) = {xG}. The discriminator is given batches {xG} and
{xp} sampled from pθ and the parton-level target distribution pp. It is trained as a
binary classifier, such that Dϕ (x ∈ {xp}) = 1 and Dϕ (x) = 0 otherwise. Following the
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conventions of Sec. 2.3 the loss functions are given by

LD = Ex∼pp [− logDϕ(x)] + Ex∼pθ [− log(1−Dϕ(x))], (5.13)
LG = Ex∼pθ [− logDϕ(x)] . (5.14)

We again add gradient penalty term [117] to the discriminator to avoid instabilities in
the training [117]:

L
(GP)
D = LD + λD Ex∼pp

[
(1−Dϕ(x))2 |∇dϕ(x)|2

]
(5.15)

+ λD Ex∼pθ
[
Dϕ(x)2 |∇dϕ(x)|2

]
, (5.16)

with a properly chosen pre-factor λD and where we define

dϕ(x) = log
(

Dϕ(x)
1−Dϕ(x)

)
. (5.17)

If the training of the generator and the discriminator with their respective losses Eq. (5.16)
and Eq. (5.14) is properly balanced, the distribution pθ converges to the parton-level dis-
tribution pp, while the optimized discriminator is unable to distinguish between real and
generated samples.

If we want to describe phase space features, for instance at the LHC, it is useful to add
a MMD [61] contribution to the loss function as we have already shown in Sec. 3.2. It
allows us to compare pre-defined distributions, for instance the one-dimensional invariant
mass of an intermediate particle. We add this MMD to the generator loss

L
(MMD)
G = LG + λGMMD, (5.18)

with another properly chosen variable λG. Note that we now use MMD instead of MMD2

to enhance the sensitivity of the model [130]. As a naive approach to GAN unfolding we
use detector-level event samples as generator input. The network input is always a set
of four 4-vectors, one for each particle in the final state, with their masses fixed [1]. In
the GAN setup we train our network to map detector-level events to parton-level events.
Both networks consist of 12 layers with 512 units per layer. With λG = 1, λD = 10−3

and a batch size of 512 events, we run for 1200 epochs and 500 iterations per epoch.

In Fig. 5.3 we compare true parton-level events to the output from a GAN trained to
unfold the detector effects. We run the unfolding GAN on a set of statistically indepen-
dent, but simulation-wise identical sets of detector-level events. Both, the relatively flat
pT,j1 and the peaked mjj distributions agree well between the true parton-level events
and the GAN-inverted sample, indicating that the statistical inversion of the detector
effect works well.

A great advantage of this GAN approach is that, strictly speaking, we do not need event-
by-event matched samples before and after detector simulation. The entire training is
based on batches of typically 512 events, and these batches are independently chosen
from the parton-level and detector-level samples. Increasing the batch size within the
range allowed by the memory size and hence reducing the impact of event-wise matching
will actually improve the GAN training, because it reduces statistical uncertainties [1].

The big challenge arises when we want to unfold an event sample which is not statistically
equivalent to the training data; in other words, the unfolding model is not exactly the
same as the test data. As a simple example we train the GAN on data covering the
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Figure 5.3: Example distributions for parton level truth, after detector simulation, and
GANned back to parton level. The lower panels give the ratio of parton level
truth and reconstructed parton level.

full phase space and then apply and test the GAN on data only covering part of the
detector-level phase space. Specifically, we apply the two sets of jet cuts

Cut I : pT,j1 = 30 ... 100 GeV, (7)
Cut II : pT,j1 = 30 ... 60 GeV and pT,j2 = 30 ... 50 GeV, (8)

which leave us with 88% and 38% of events, respectively. This approach ensures that
the training has access to the full information, while the test sample is a significantly
reduced sub-set of the full sample.
In Fig. 5.4 we show a set of kinematic distributions, for which we GAN only part of
the phase space. As before, we can compare the original parton-level shapes of the
distributions with the results from GAN-inverting the fast detector simulation. We see
that especially the GANned pT,j distribution is strongly sculpted by the phase space
cuts. This indicates that the naive GAN approach to unfolding does not work once
the training and test data sets are not statistically identical. In a realistic unfolding
problem we cannot expect the training and test data sets to be arbitrarily similar, so
we have to go beyond the naive GAN setup described in Fig. 5.2. The technical reason
for this behavior is that events which are similar or, by some metric, close on detector
level are not guaranteed to be mapped onto events which are also close on parton level.
Looking at classification networks this is the motivation to apply variational methods,
for instance upgrade autoencoders to variational autoencoders. For a GAN we discuss
a standard solution in the next section.
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Figure 5.4: Parton level truth and GANned distributions when we train the GAN on
the full data set but only unfold parts of phase space defined in Eq.(7) and
Eq.(8).

5.3.2 Conditional GAN
The way out of the sculpting problem when looking at different phase space regions is
to add a conditional structure to the GAN [71] shown in Fig. 5.2. The idea behind the
conditional setup is not to learn a deterministic link between input and output samples,
because we know that without an enforced structure in the weight or function space the
generator does not benefit from the structured input. In other words, the network does
not properly exploit the fact that the detector-level and parton-level data sets in the
training sample are paired. A second, related problem of the naive GAN is that once
trained the model is completely deterministic, so each detector-level event will always be
mapped to the same parton-level events. This goes against the physical intuition that
this entire mapping is statistical in nature.

In Fig. 5.5 we introduce a fully conditional GAN (FCGAN). It is identical to our naive
network the way we train and use the generator and discriminator. However, the input
to the generator are actual random numbers {z}, and the detector-level information
{xd} is used as an event-by-event conditional input on the link between a set of random
numbers and the parton-level output, i.e. Gθ({z}, {xd}) = {xG} and hence pθ(xG) ≡
pθ(xG(z, xd)). This way the FCGAN can generate parton-level events from random noise
but still using the detector-level information as input. To also condition the discriminator
we modify its loss to

LD → L
(FC)
D = Ex∼pp,y∼pd [− logDϕ(x, y)] + Ex∼pθ,y∼pd [− log(1−Dϕ(x, y))], (5.19)

and the regularized loss function changes accordingly,

L
(GP)
D → L

(GP, FC)
D = L

(FC)
D + λD Ex∼pp,y∼pd

[
(1−Dϕ(x, y))2 |∇dϕ(x, y)|2

]
+ λD Ex∼pθ,y∼pd

[
Dϕ(x, y)2 |∇dϕ(x, y)|2

]
,

(5.20)

The generator loss function now takes the form

LG → L
(FC)
G = Ex∼pθ,y∼pd [− logDϕ(x, y)] . (5.21)

Note, that we do not build a conditional version of the MMD loss. The hyper-parameters
of our FCGAN are summarized in Tab. 4.2. Changing from a naive GAN to a fully
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G{z} {xG} D

Condition

{xd}

{xp}

detector

parton

LD

LGMMD

Figure 5.5: Structure of our fully conditional FCGAN. The input {z} describes a batch
of random numbers and {xG,d,p} denotes events sampled from the generator,
detector-level data, or parton-level data. The blue (red) arrows indicate
which connections are used in the training of the generator (discriminator).

conditional GAN we have to pay a price in the structure of the training sample. While
the naive GAN only required event batches to be matched between parton level and
detector level, the training of the FCGAN actually requires event-by-event matching.

In Fig. 5.6 we compare the truth and the FCGANned events, trained on and applied
to events covering the full phase space. Compared to the naive GAN, inverting the
detector effects now works even better. The systematic under-estimate of the GAN rate
in the tails no longer occurs for the FCGAN. The reconstructed invariantW -mass forces
the network to dynamically generate a very narrow physical width from a comparably
broad Gaussian peak. Using our usual MMD loss developed in Chapter 3 and Ref. [1]
we reproduce the peak position, width, and peak shape to about 90%. We emphasize
that the MMD loss requires us to specify the relevant one-dimensional distribution, in
this case mjj , but it then extracts the on-shell mass or width dynamically.

As for our naive ansatz we now test what happens to the network when the training
data and the test data do not cover the same phase space region. We train on the
full set of events, to ensure that the full phase space information is accessible to the
network, but we then only apply the network to the 88% and 38% of events passing
the jet cuts I and II defined in Eq.(7) and Eq.(8). We show the results in Fig. 5.7. As

Parameter Value Parameter Value

Layers 12 Batch size 512
Units per layer 512 Epochs 1200
Trainable weights G 3M Iterations per epoch 500
Trainable weights D 3M Number of training events 3× 105

λG 1
λD 10−3

Table 5.1: FCGAN setup.
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Figure 5.6: Example distributions for parton level truth, after detector simulation, and
FCGANned back to parton level. The lower panels give the ratio of parton
level truth and reconstructed parton level. To be compared with the naive
GAN results in Fig. 5.3.

observed before, especially the jet cuts with only 40% survival probability shape our four
example distributions. However, we see for example in the pT,jj distribution that the
inverted detector-level sample reconstructs the patterns of the true parton-level events
perfectly. This comparison indicates that the FCGAN approach deals with differences
in the training and test samples very well.
Because we want to push our FCGAN to its limit we move on to harsher cuts on the
inclusive event sample. We start with

Cut III : pT,j1 = 30 ... 50 GeV pT,j2 = 30 ... 40 GeV pT,`− = 20 ... 50 GeV, (12)

which 14% of all events pass. In Fig. 5.8 we see that also for this reduced fraction of
test events, the FCGAN inversion reproduces the true distributions extremely well, to
a level where it appears not really relevant what fraction of the training and test data
correspond to each other.
Finally, we apply a cut which not only removes a large fraction of events, but also cuts
into the leading peak feature of the pT,j1 distribution and removes one of the side bands
needed for an interpolation,

Cut IV : pT,j1 > 60 GeV . (13)

For this choice 39% of all events pass, but we remove all events at low transverse mo-
mentum, as can be seen from Fig. 5.6. This kind of cut could therefore be expected to
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Figure 5.7: Parton level truth and FCGANned distributions when we train the GAN on
the full data set but only unfold parts of phase space defined in Eq.(7) and
Eq.(8). To be compared with the naive GAN results in Fig.5.4.

break the unfolding. Indeed, the red lines in Fig. 5.8 indicate that we have broken the
mjj reconstruction through the FCGAN. However, all other (shown) distributions still
agree with the parton-level truth extremely well. The problem with the invariant mass
distribution is that our implementation of the MMD loss is not actually conditional.
This can be changed in principle, but standard implementations are fairly inefficient
and the benefit is not clear at the moment. At this stage it means that, when pushed
towards its limits, the network will first fail to reproduce the correct peak width in the
mjj distribution, while all other kinematic variables remain stable.

Finally, just like in Sec. 3.2 we show 2-dimensional correlations in Fig. 5.9. We stick
to applying the network to the full phase space and show the parton level truth and
the FCGAN-inverted events in the two upper panels. Again, we see that the FCGAN
reproduces all features of the parton level truth with high precision. The bin-wise rela-
tive deviation between the two 2-dimensional distributions only becomes large for small
values of Ej1 , where the number of training events is extremely small.

5.3.3 New physics injection

As discussed before, unfolding to a hard process is necessarily model-dependent. Until
now, we have always assumed the Standard Model to correctly describe the parton-level
and detector-level events. An obvious question is what happens if we train our FCGAN
on Standard Model data, but apply it to a different hypothesis. This challenge becomes
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Figure 5.8: Parton level truth and FCGANned distributions when we train the GAN on
the full data set but only unfold parts of phase space defined in Eqs.(12)
and (13).

especially interesting if this alternative hypothesis differs from the Standard Model in
a local phase space effect. It then allows us to test if the generator network maps the
parton-level and detector-level phase spaces in a structured manner. Such features of
neural networks are at the heart of all variational constructions, for instance variational
autoencoders which are structurally close to GANs. Observing them for GAN unfolding
could turn into a significant advantage over alternative unfolding methods.

Therefore, we add a fraction of resonant W ′ events from a triplet extension of the
Standard Model [169], representing the hard process

pp→W ′
∗ → ZW± → (`−`+) (jj) (5.22)

to the test data. We simulate these events with Madgraph5 using the model imple-
mentation of Ref. [170] and denote the new massive charged vector boson with a mass
of 1.3 TeV and a width of 15 GeV as W ′. For the test sample we combine the usual
Standard Model sample with the W ′-sample in proportions 90%− 10%. The other new
particles do not appear in our process to leading order. Because we want to test how
well the GAN maps local phase space structures onto each other, we deliberately choose
a small width ΓW ′/MW ′ ∼ 1%, not exactly typical for such strongly interacting triplet
extensions.

The results for this test are shown in Fig. 5.10. First, we look at transverse momen-
tum distribution of final-state particles, which are hardly affected by the new heavy
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Figure 5.9: Two-dimensional parton level truth (upper left) and FCGANned (upper
right) distributions when we train the GAN on the full data set and unfold
over the full phase space. The lower panels show the relative deviation be-
tween truth and FCGANned and the one-dimensional Ej1 distribution along
fixed pT,``.

resonance. Both, the leading jet and the lepton distributions are essentially identical
for both truth levels and the FCGAN output. The same is true for the invariant mass
of the hadronically decaying W -boson, which nevertheless provides a useful test of the
stability of our training and testing.

Finally, we show the reconstructed W ′-mass in the lower-right panel. Here we see the
different (normalized) truth-level distributions for the Standard Model and the W ′-
injected sample. The FCGAN, trained on the Standard Model, keeps track of local phase
space structures and reproduces the W ′ peak faithfully. It also learn the W ′-mass as the
central peak position very well. The only issue is the W ′-width, which the network over-
estimates. However, we know already that dynamically generated width distributions
are a challenge to GANs and require for instance an MMD loss. Nevertheless, Fig. 5.10
clearly shows that GAN unfolding shows a high degree of model independence, making
use of local structures in the mapping between the two phase spaces. We emphasize that
the additional mass peak in the FCGANned events is not a one-dimensional feature, but
a localized structure in the full phase space. This local structure is a feature of neural
networks which comes in addition to the known strengths in interpolation.
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5.4 INN unfolding detector effects
So far we have shown how a GAN and more spefically a conditional GAN can be used
to invert detector effects. As an alternative to our FCGAN we now study the usage of
a conditional INN (cINN) for the same purpose. We introduce the cINN in two steps,
starting with the non-conditional, standard setup. The construction of the INN we use
in our analysis combines two goals [43]:

1. the mapping from input to output is invertible and the Jacobians for both direc-
tions are tractable;

2. both directions can be evaluated efficiently. This second property goes beyond
some other implementations of normalizing flow [122,124].

While the final aim is not actually to evaluate our INN in both directions, we will see that
these networks can be extremely useful to invert a Markov process like detector smearing.
Their bi-directional training makes them especially stable. Moreover, in Sec. 5.4.3 we
will show how especially the conditional INN retains a proper statistical notion of such
an inversion. For the implementation we use Pytorch (v1.2.0) [171].

5.4.1 Naive INN
While it is clear from our discussion in the previous section and Ref. [2] that a standard
INN will not serve our purpose, we still describe it in some detail before we extend
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Figure 5.10: Parton level truth and FCGANned distributions when we train the network
on the Standard Model only and unfold events with an injection of 10% W ′

events. The mass of the additional s-channel resonance is 1.3 TeV.
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Figure 5.11: Structure of INN. The {xd,p} denote detector-level and parton-level events,
{zd,p} are random numbers to match the phase space dimensionality. A
tilde indicates the INN generation.

it to a conditional network. Following the conventions of our GAN analysis and in
analogy to Eqs. (5.7) to (5.9) we define the network input as a vector of hard process
information xp ∈ RDp and the output at detector level via the vector xd ∈ RDd . If
the dimensionalities of the spaces are such that Dp < Dd we add a noise vector z with
dimension Dd −Dp to define the bijective, invertible transformation,(

xp

z

)
Pythia,Delphes:g→

←−−−−−−−−−−−−−−−→
← unfolding:ḡ

xd. (5.23)

A correctly trained network g with the parameters θ then reproduces xd from the com-
bination xp and z. Its inverse ḡ instead reproduces the combination of xp and z from
xd.

The defining feature of the INN illustrated in Fig. 5.11 is that it learns both directions
of the bijective mapping in parallel and encodes them into one network. Such a simul-
taneous training of both directions is guaranteed by the building blocks of the network,
the invertible coupling layers [44, 127] as introduced in Sec. 2.4.1. For notational pur-
poses we ignore the random numbers in Eq.(5.23) and assume that this layer links an
input vector xp to an output vector xd after splitting both of them in halves, xp,i and
xd,i for i = 1, 2. The relation between input and output is given by a sub-network,
which encodes arbitrary functions s1,2 and t1,2. Following the conventions Eq.(2.32) and
Eq.(2.33) we can parametrize the mappings of g and g̃ as

g :
(
xd,1

xd,2

)
=
(
xp,1 � es2(xp,2) + t2(xp,2)
xp,2 � es1(xd,1) + t1(xd,1)

)
, (5.24)

ḡ :
(
xp,1

xp,2

)
=
(

(xd,1 − t2(xp,2))� e−s2(xp,2)

(xd,2 − t1(xd,1))� e−s1(xd,1)

)
. (5.25)

Again, this inversion works independent of the form of s and t. By construction, the Ja-
cobian of the network function is tractable and hence its determinant is easy to compute,
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as shown in Eq.(2.37). Such coupling layer transformations define a so-called normal-
izing flow, when we view it as transforming an initial probability density into a very
general form of probability density through a series of invertible steps. We can relate
the two probability densities as long as the Jacobians of the individual layers can be
efficiently calculated.

Since the first use of the invertible coupling layer, much effort has gone into improving
its efficiency. The All-in-One (AIO) coupling layer includes two features, introduced by
Ref. [44] and Ref. [45]. The first modification replaces the transformation of xp,2 by a
permutation of the output of each layer. Due to the permutation each component still
gets modified after passing through several layers. The second modification includes
a global affine transformation to include a global bias and linear scaling that maps
x→ sx+ b. Finally, we apply a bijective soft clamping after the exponential function in
Eq.(5.25) to prevent instabilities from diverging outputs.

The INN in our simplified example combines three contributions to the loss function.
First, it tests if in the Delphes direction of Eq.(5.23) we indeed find g(xp) = xd via
the mean squared error (MSE) function. While this is theoretically sufficient to obtain
the inverse function, also testing the inverse direction ḡ(xd) = xp greatly improves the
efficiency and stability of the training. Third, to resolve special sharp features like
the invariant mass of intermediate particles we again use the MMD as introduced in
Sec. 3.2.2.

In Sec. 3.2 and Sec. 5.3.2 we already compared common kernel choices, like Gaussian or
Breit-Wigner kernels

kGauss (x, y) = exp − (x− y)2

2σ2 or kBW (x, y) = σ2

(x− y)2 + σ2
(5.26)

with a fixed or variable width σ [2]. Inside the INN architecture the Breit-Wigner kernel
is the best choice to analyze the distribution of the random numbers as part of the loss
function [43].

We now use the INN network to map parton-level events to detector-level events or
vice-versa. In a statistical analysis we then use standard kinematic distributions and
compare the respective truth and INN-inverted shapes for both directions. The left
panels of Fig. 5.12 shows the transverse momentum distributions of the two jets and
their invariant mass for both directions of the INN. The truth events at parton level and
at detector level are marked as dashed lines. Starting from each of the truth events we
can apply the INN describing the detector effects as xd = g(xp) or unfolding the detector
effects as xp = ḡ(xd) in Eq.(5.23). The corresponding solid lines have to be compared
to the dotted truth lines, where we need to keep in mind that at the parton level the
relevant objects are quarks while at the detector level they are jets.

For the leading jet the truth and INNed detector-level agree very well, while for the
second jet the naive INN fails to capture the hard cut imposed by the jet definition. For
the invariant mass we find that the smearing due to the detector effects is reproduced well
with some small deviations in the tails. In the unfolding direction both pT distributions
follow the parton level truth. The only difference is a systematic lack of events in the tail
for the second quark. This is especially visible in the ratio of the INN-unfolded events
and the parton-level truth, indicating that also at small pT the network does not fill the
phase space sufficiently. Combining both directions we see that in forward direction the
INN produces a too broad pT -distribution, the unfolding direction of the INN produces
a too narrow distribution. The conceptual advantage of the INN actually implies a
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Figure 5.12: INNed pT,q and MW,reco distributions from a naive INN (left) and the
noise-extended eINN (right). In green we compare the detector-level truth
to INNed events transformed from parton level. In blue we compare the
parton-level truth to INNed events transformed from detector level. The
lower panels show the ratio of INNed events over parton-level truth.

disadvantage for the inversion of particular difficult features. Finally, the invariant mass
of the W is reproduced perfectly without any systematic deviation.

5.4.2 Noise-extended INN

While our simplified example in the previous section shows some serious promise of
INNs, it fails to incorporate key aspects of the physical process. First of all, the number
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of degrees of freedom is not actually the same at parton level and at detector level.
External partons are on their mass shell, while jets come with a range of jet masses.
This mismatch becomes crucial when we include missing transverse momentum in the
signature. We generally need fewer parameters to describe the partonic scattering than
the detector-level process. For a fixed set of parton-level momenta we usually smear each
momentum component to simulate the detector measurement. These additional degrees
of freedom are of stochastic nature, so adding Gaussian random variable on the parton
side of the INN could be a first step to address this problem.
To also account for potentially unobservable degrees of freedom at the parton level we
extend each side of the INN by a random number vector. The mapping in Eq.(5.23) now
includes two random number vectors with dimensions Dzd = Dp and Dzp = Dd,(

xp

zp

)
Pythia,Delphes:g→

←−−−−−−−−−−−−−−−→
← unfolding:ḡ

(
xd

zd

)
. (5.27)

In addition, a pure MSE loss can not capture the fact that the additional noise generates
a distribution of detector-level events given fixed parton momenta. It would just predict
a mean value of this distribution and minimize the effect of the noise. A better solution
is an MMD loss for each degree of freedom in the event and the masses of intermediate
particles, as well as the Gaussian random variables. On the side of the random numbers
this MMD loss ensures that they really only encode noise. Again it is beneficial for the
training to use the inverse direction and apply additional MMD losses to the parton level
events as well as the corresponding Gaussian inputs. Finally we add a weak MSE loss
on the four vectors of each side to stabilize the training.

In the right panels of Fig. 5.12 we show results for this noise-extended INN (eINN). The
generated distributions are similar to the naive INN case and match the truth at the
parton level. A notable difference appears in the second jet, the weak spot of the naive
INN. The additional random numbers and MMDs provide more freedom to generate the
peak in the forward direction and also improve the unfolding in the low-pT and high-pT
regimes.

Aside from the better modeling, the noise extension allows for a statistic interpretation of
the generated distributions and a test of the integrity of the INN-inverted distributions.
In the left panel of Fig. 5.13 we illustrate the goal of the statistical treatment: we start
from a single event at the detector level and generate a set of unfolded events. For
each of them we evaluate for instance pT,q1 . Already in this illustration we see that the
GAN output is lacking a statistical behavior at the level of individual events, while the
noise-extended eINN returns a reasonable distribution of unfolded events.

To see if the width of the noise-extended eINN output is correct we take 1500 parton-
level and detector-level event pairs and unfold each event 60 times, sampling over the
random variables. This gives us 1500 combinations like the one shown in the left panel
of Fig. 5.13: a single parton-level truth configuration and a distribution of the eINNed
configuration. To see if the central value and the width of the eINNed distribution can
be interpreted statistically as a posterior probability distribution in parton phase space
we analyze where the truth lies within the eINN distribution for each of the 1500 events.
For a correctly calibrated curve we start for instance from the left of the kinematic
distribution and expect 10% of the 1500 events in the 10% quantile of the respective
probability distribution, 20% of events in the 20% quantile, etc. The corresponding
calibration curves for the noise-extended eINN are shown in the right panel of Fig. 5.13.
While they indicate that we can attempt a statistical interpretation of the INN unfolding,
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Figure 5.13: Left: illustration of the statistical interpretation of unfolded events for one
event. Right: calibration curves for pT,q1 extracted from the FCGAN and
the noise-extended eINN.

the calibration is not (yet) perfect. A steep rise for the lower quantile indicates that
too many events end up in the first 10% quantile. In other words, the distributions we
obtain by sampling over the Gaussian noise for each event are too narrow.
While our noise-extended eINN takes several steps in the right direction, it still faces
major challenges: the combination of many different loss functions is sensitive to their
relative weights; the balance between MSE and MMD on event constituents has to
be calibrated carefully to generate reasonable quantile distributions; when we want to
extend the INN to include more detector-level information we have to include an equally
large number of random variables on the parton level which makes the training very
inefficient. This leads us again [2] to adopt a conditional setup.

Parameter INN eINN

Blocks 24 24
Layers per block 2 2
Units per layer 256 256
Trainable weights ∼ 150k ∼ 270k
Epochs 1000 1000
Learning rate 8 · 10−4 8 · 10−4

Batch size 512 512
Training/testing events 290k / 30k 290k / 30k
Kernel widths ∼ 2, 8, 25, 67 ∼ 2, 8, 25, 67
Dp +Drp

12 + 4 12 + 16
Dd +Drd

16 + 0 16 + 12
λMMD 0.1 (masses only) 0.2
λMMD increase - -

Table 5.2: INN and noise-extended eINN setup and hyper-parameters.
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Figure 5.14: Structure of the conditional INN. The input are random numbers {z} while
{xd,p} denote detector-level and parton-level data. The latent dimension
loss L follows Eq.(5.28), a tilde indicates the INN generation.

5.4.3 Conditional INN

If a distribution of parton-level events can be described by n degrees of freedom, we
should be able to use normalizing flows or an INN to map a n-dimensional random num-
ber vector onto parton-level 4-momenta. To capture the information from the detector-
level events we need to condition the INN on these events [2, 42, 71], so we link the
parton-level data xp to random noise z under the condition of xd. Trained on a given
process the network should now be able to generate probability distributions for parton-
level configurations given a detector-level event and an unfolding model. We note that
the cINN is still invertible in the sense that it includes a bi-directional training from
Gaussian random numbers to parton-level events and back. While this bi-directional
training does not represent the inversion of a detector simulation anymore, it does sta-
bilize the training by requiring the noise to be Gaussian.

A graphic representation of this conditional INN or cINN is given in Fig. 5.14. We
first process the detector-level data by a small subnet, i.e. xd → f(xd), to optimize its
usability for the cINN [72]. The subnet is trained alongside the cINN and does not need
to be reversed or adapted. We choose a shallow and wide architecture of two layers with a
width of 1024 internally, because four layers degrade already the conditional information
and allow the cINN to ignore it. When a deeper subnet is required we advertize to
use an encoder, which is initialized by pre-training it as part of an autoencoder. We
apply this technique when using the larger ISR input, where it leads to a more efficient
training. After this preprocessing, the detector information is passed to the functions
si and ti in Eq.(5.25), which now depend on the input, the output, and on the fixed
condition. Since the invertibility of the network is independent of the values of si and
ti, the network remains invertible between the parton-level events {xp} and the random
variables {z}. This feature stabilizes the training. The cINN loss function is motivated
by the simple argument that for the correct set of network parameters θ describing si
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Figure 5.15: cINNed pT,q and mW,reco distributions. Training and testing events include
exactly two jets. In the left panels we use a data set without ISR, while in
the right panels we use the two-jet events in the full data set with ISR. The
lower panels give the ratio of cINNed to parton-level truth.

and ti we maximize the (posterior) probability p(θ|xp, xd) or minimize

L = −Exp∼pp,xd∼pd [log p(θ|xp, xd)]
= −Exp∼pp,xd∼pd [log p(xp|xd, θ)]− log p(θ) + const.

= −Exp∼pp,xd∼pd

[
log p(g(xp, xd)) + log

∣∣∣∣∣∂g(xp, xd)
∂xp

∣∣∣∣∣
]
− log p(θ) + const. ,

(5.28)

where we first use Bayes’ theorem, then ignore all terms irrelevant for the minimization,
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Figure 5.16: Left: illustration of the statistical interpretation of unfolded events for one
event. Right: calibration curves for pT,q1 extracted from the FCGAN and
the noise-extended eINN, as shown in Fig. 5.13, and the cINN.

and finally apply a simple coordinate transformation for the bijective mapping. The
last term is a simple weight regularization, while the first two terms are called the
maximum likelihood loss. Since we impose the latent distribution of the random variable
p(g(xp, xd)) to produce a normal distribution centered around zero and with width one,
the first term becomes

log p(g(xp, xd)) = −||g(xp, xd))||22
2 . (5.29)

The parameters of our cINN are given in Tab. 5.3.
In the left panels of Fig. 5.15 we show the unfolding performance of the cINN, trained
and tested on the same exclusive 2-jet events as the simpler INNs in Fig. 5.12. Unlike
the naive and the noise-extended INNs we cannot evaluate the cINN in both directions,
detector simulation and unfolding, so we focus on the detector unfolding. The agreement
between parton-level truth and the INN-unfolded distribution is around 10% for the
bulk of the pT distributions, with the usual larger relative deviations in the tails. An
interesting feature is still the cut pT,j > 20 GeV at the detector level, because it leads to
a slight shift in the peak of the pT,j2 distribution. Finally, the reconstructed invariant
W -mass and the physical W -width agree extremely well with the Monte Carlo truth
owing to the MMD loss.

As in Fig. 5.13 we can interpret the unfolding output for a given detector-level event
statistically. First, in the left panel of Fig. 5.16 we show a single event and how the
FCGAN, INN, and cINN output is distributed in parton level phase space. The separa-
tion between truth and sampled distributions does not have any significance, but we see
that the cINN inherits the beneficial features of the noise-extended eINN. In the right
panel of Fig. 5.16 we again reconstruct the individual probability distribution from the
unfolding numerically. We then determine the position of the parton-level truth in its
respective probability distribution for the INN and the cINN. We expect a given per-
centage of the 1500 events to fall into the correct quantile of its respective probability
distribution. The corresponding calibration curve for the cINN is added to the right
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panel of Fig. 5.16, indicating that without additional calibration the output of the cINN
unfolding can be interpreted as a probability distribution in parton-level phase space
for a single detector-level event, as always assuming an unfolding model. Instead of the
transverse momentum of the harder parton-level quark we could use any other kinematic
distribution at parton level. This marks the final step for a statistically interpretable
unfolding.

5.5 Unfolding parton showering

In the previous sections we have used a simplified data set to explore different possibilities
to unfold detector level information with invertible networks and GANs. We limited the
data to events with exactly two jets, by switching off initial state radiation (ISR). This
guarantees that the two jets come from the W -decay, so the network does not have to
learn this feature. In a realistic QCD environment we do not have that information,
because additional QCD jets will be radiated off the initial and final state partons.
In this section we demonstrate how we can unfold a sample of events including ISR
and hence with a variable number of jets using a cINN. We know that with very few
exceptions [172, 173] the radiation of QCD jets does not help to understand the nature
of the hard process. The question is if the unfolding network can not only invert the
detector effects, but also QCD jet radiation including kinematic modifications to the
hard process in our case done by Pythia8. We note that this approach does not define
a specific hard process. It allows us to define the relevant hard process with any number
of external jets and other features, and to unfold the detector-level events to the parton-
level phase space for this hard process.

Parameter cINN no ISR cINN ISR incl.

Blocks 24 24
Layers per block 2 3
Units per layer 256 256
Condition/encoder layers 2 8
Units per condition/encoder layer 1024 1024
Condition/encoder output dimension 256 256
Trainable weights ∼ 2 M ∼ 10 M
Encoder pre training epochs - 300
Epochs 1000 900
Learning rate 8 · 10−4 8 · 10−4

Batch size 512 512
Training/testing events 290k / 30k 620k / 160k
Kernel widths ∼ 2, 8, 25, 67 ∼ 2, 8, 25, 67
Dp 12 12
Dd 16 25
λMMD 0.5 0.04
λMMD increase - 1.6 / 100 epochs

Table 5.3: cINN setup and hyper-parameters.
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Figure 5.17: cINNed pT,q and mW,reco distributions. Training and testing events include
exactly three (left) and four (right) jets from the data set including ISR.

5.5.1 Individual n-jet samples
In Sec. 5.4.3 we have shown that our cINN can unfold detector effects for ZW -production
at the LHC. The crucial new feature of the cINN is that it provides probability distri-
bution in parton-level phase space for a given detector-level event. The actual unfolding
results are illustrated in Fig. 5.15, focusing on the two critical distribution known from
the corresponding FCGAN analysis. The event sample used throughout Sec. 2.3 and
Sec. 2.4 includes exactly two partons from a W -decay with minimal phase space cuts
on the corresponding jets. Strictly speaking, these phase space cuts are not necessary
in this simulation. The correct definition of a process described by perturbative QCD
includes a free number of additional jets,

pp→ ZW± + jets→ (`−`+) (jj) + jets , (5.30)

For the additional jets we need to include for instance a pT cut to regularize the soft and
collinear divergences at fixed-order perturbation theory. The proper way of generating
events is therefore to allow for any number of additional jets and then cut on the number
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of hard jets. Since ISR can lead to jets with larger pT than the W -decay jets, an
assignment of the hardest jets to hard partons does not work. We simply sort jets and
partons by their respective pT and let the network learn their relations. We limit the
number of jets to four because larger jet numbers appear very rarely and would not give
us enough training events.

Combining all jet multiplicities we use 780k events, out of which 530k include exactly
two jets, 190k events include three jets and 60k have four or more jets. We split the data
into 80% training data and 20% test data to produce the shown plots. For the network
input we zero-pad the event-vector for events with less than four jets and add the number
of jets as additional information. The training samples are then split by exclusive jet
multiplicity, such that the cINN reconstructs the 2-quark parton-level kinematics from
two, three, and four jets at the detector level.

As before, we can start with the sample including exactly two jets. The difference to
the sample used before is that now one of the W -decay jets might not pass the jet pT
condition in Eq.(5.12), so it will be replaced by an ISR jet in the 2-jet sample. Going
back to Fig. 5.15 we see in the right panel how these events are slightly different from
the sample with the W -decay jet only. The main difference is in pT,q2 , where the QCD
radiation produces significantly more soft jets. Still, the network learns these features,
and the unfolding for the sample without ISR and the 2-jet exclusive sample has a
similar quality. In Fig. 5.17 we see the same distributions for the exclusive 3-jet and
4-jet samples. In this case we omit the secondary panels because they are dominated by
the statistical uncertainties of the training sample. For these samples the network has
to extract the parton-level kinematics with two jets only from up to four jets in the final
state. In many cases this corresponds to just ignoring the two softest jets and mapping
the two hardest jets on the two W -decay quarks, but from the pT,q2 distributions in
Fig. 5.15 we know that this is not always the correct solution. Especially in the critical
mjj peak reconstruction we see that the network feels the challenge, even though the
other unfolded distributions look fine.

5.5.2 Combined n-jet sample
The obvious final question is if our INN can also reconstruct the hard scattering process
with its two W -decay quarks from a sample with a variable number of jets. Instead
of separate samples, as in Sec. 5.5.1, we now interpret the process in Eq.(5.30) as jet-
inclusive. This means that the hard process includes only the two W -decay jets, and
all additional jets are understood as jet radiation, described either by resummed ISR or
by fixed-order QCD corrections. The training sample consists of the combination of the
right panels in Fig. 5.15 and the two panels in Fig. 5.17. This means that the network
has to deal with the different number of jets in the final state and how they can be
related to the two hard jets of the partonic ZW → ``jj process. The number of jets in
the final state is not given by individual hard partons, but by the jet algorithm and its
R-separation.

In Fig. 5.18 we show a set of unfolded distributions. First, we see that the pT,j thresholds
at the detector level are corrected to allow for pT,q values to zero. Next, we see that the
comparably flat azimuthal angle difference at the parton level is reproduced to better
than 10% over the entire range. Finally, the mjj distribution with its MMD loss re-
generates the W -mass peak at the parton level almost perfectly. The precision of this
unfolding is not any worse than it is for the case where the number of hard partons and
jets have to match and we only unfold the detector effects.
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Figure 5.18: cINNed example distributions. Training and testing events include two to
four jets, combining the samples from Fig. 5.15 and Fig. 5.17 in one network.
At the parton level there exist only two W -decay quarks.

In Fig. 5.19 we split the unfolded distributions in Fig. 5.18 by the number of 2, 3, and
4 jets in the detector-level events. In the first two panels we see that the transverse
momentum spectra of the hard partons are essentially independent of the QCD jet
radiation. In the language of higher-order calculations this means that we can describe
extra jet radiation with a constant K-factor, if necessary with the appropriate phase
space mapping. Also the reconstruction of the W -mass is not affected by the extra jets,
confirming that the neural network correctly identifies the W -decay jets and separates
them from the ISR jets. Finally, we test the transverse momentum conservation at
the unfolded parton level. Independent of the number of jets in the final state the
energy and momentum for the pre-defined hard process is conserved at the 10−4 level.
The kinematic modifications from the ISR simulation are unfolded correctly, so we can
compute the matrix element for the hard process and use it for instance for inference.

5.6 Conclusion

We have shown that it is possible to invert a simple Monte Carlo simulation, like a
fast detector simulation, with a fully conditional GAN. Our example process is WZ →
(jj)(``) at the LHC and we GAN away the effect of standard Delphes. A naive GAN
approach works extremely well when the training sample and the test sample are very
similar. In that case the GAN benefits from the fact that we do not actually need an
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Figure 5.19: cINNed example distributions. Training and testing events include two to
four events, combining the samples from Fig. 5.15 and Fig. 5.17 in one
network. The parton-level events are stacked by number of jets at detector
level.
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Figure 5.20: Illustration of the complementary FCGAN/cINN and OmniFold [174] ap-
proaches.
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event-by-event matching of the parton-level and detector-level samples.
If the training and test samples become significantly different we need a fully condi-
tional GAN to invert the detector effects. It maps random noise parton-level events
with conditional, event-by-event detector-level input and learns to generate parton-level
events from detector-level events. First, we noticed that the FCGAN with its structured
mapping provides much more stable predictions in the tails of distributions, where the
training sample is statistically limited. Then, we have shown that a network trained on
the full phase space can be applied to much smaller parts of phase space, even including
cuts in the main kinematic features. The FCGAN successfully maintains a notion of
events close to each other at detector level and at parton level and maps them onto
each other. This approach only breaks eventually because the MMD loss needed to map
narrow Breit-Wigner propagators is not (yet) conditional in our specific setup.

Finally, we have seen that the network reproduces an injected new physics signal as a
local structure in phase space. This large degree of model independence reflects another
beneficial feature of neural networks, namely the structured mapping of the linked phase
spaces.

Afterwards, we have shown how an invertible network (INN) and in particular a con-
ditional INN can also be used to unfold detector effects for the same process. The
cINN is not only able to unfold the process over the entire phase space, it also gives
correctly calibrated posterior probability distributions over parton-level phase space for
given detector-level events. This feature is new even for neural network unfolding.

Next, we have extended the unfolding to a variable number of jets in the final state.
This situation will automatically appear whenever we include higher-order corrections
in perturbative QCD for a given hard process. The hard process at parton level is defined
at the training level. We find that the cINN also unfolds QCD jet radiation in the sense
that it identifies the ISR jets and corrects the kinematics of the hard process to ensure
energy-momentum conservation in the hard scattering.

In combination, these features should enable analysis techniques like the matrix element
method and efficient ways to communicate analysis results including multi-dimensional
kinematic distributions.

Note that while finishing the projects presented in this chapter, the OmniFold approach
appeared [174]. It aims at the same problem as our FCGAN and cINN, but as illustrated
in Fig. 5.20 it is completely complementary. Our FCGAN or cINN uses the simulation
based on Delphes to train a generative network, which we can apply to LHC events
to generate events describing the hard process. The OmniFold approach also starts
from matched simulated events, but instead of inverting the detector simulation it uses
machine learning to iteratively translate each side of this link to the measured events.
This way both approaches should be able to extract hard process information from LHC
events, assuming that we understand the relation between perturbative QCD predictions
and Monte Carlo events.
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In this thesis we have presented three different applications for generative networks:
event generation, sample-based subtraction of distributions, and detector unfolding. For
this we employed generative adversarial networks (GANs) and invertible neural networks
(INNs) as machine learning based methods to perform LHC simulations. We have shown,
how these more advanced approches can circumvent or at least alleviate shortcomings
of regular simulation methods.
In detail, in Chapter 3 we constructed a GAN which is capable of reproducing the
full phase space structure of a realistic LHC process, namely top-pair production all
the way down to its decay products. We have seen that using a simple feed-forward
neural network in both the generator and discriminator network we can nicely reproduce
flat observables such as the transverse momentum up to a deviation of 10%, as shown
in Fig. 3.3. We have further shown in Fig. 3.5 and Fig. 3.8 that even 2-dimensional
correlations are perfectly reproduced. Furthermore, by including an additional MMD
term to the generator loss, our GAN was even capable of resolving sharp phase space
structures originating from intermediate on-shell resonances, as shown in Fig. 3.6. A
notable feature of this MMD term is that no extra mass or width information about the
resonance is needed and that the peak structure is extracted completely dynamical. We
only need to know which final-state 4-momentum combination encodes the intermediate
resonance. Hence, this MMD term represents a novel approach to map out resonances
appropriately.
Even though this setup has already shown remarkable results, we studied this GAN
approach in more detail since we wanted to push the precision to a level being comparable
to state-of-the-art simulation methods. Therefore, in Sec. 3.3 we modified the generator
and discriminator architecture in such a way that the inputs and outputs are more
physically motivated as well as more generalizable to other processes. For this, we
considered W + 2 jet production and investigated how much further we can push the
precision of our GAN. We found that applying our modifications, we can improve our
GAN performance to decrease the overall deviation to the 1% level in the bulk and
10% in the sparsely populated phase space regions, as shown in Fig. 3.11. In order to
benchmark this performance we compared it to two independent Monte Carlo samples
of the same size in Fig. 3.10. We can see that our GAN already reaches similar if not
equal precision.
Another question which has risen while working on the projects mentioned above was
how we can deal with training data which is not yet unweighted but contains non-unit
weights. In detail, we were interested to train a GAN on these weighted events while still
producing unweighted events as before. Therefore, we have modified the discriminator
loss function such that the event weights in the training data are taken into account.
More specifically, we replaced the standard expectation value by a weighted mean using
the event weights. As we did not modify the loss terms corresponding to the generated
events we have restricted our generator to produce unweighted events only. In order
to check whether these modifications are correct, we have considered two toy examples
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shown in Fig. 3.13 and Fig. 3.16. Besides, showing the distributions we also calculated
the unweighting efficiency defined in Sec. 1.5.2 for both examples and obtained efficien-
cies of 50% and 45% for an 1-dimensional and 2-dimensional example, respectively. We
compared these with unweighting efficiencies obtained by the Vegas algorithm. With
Vegas we got efficiencies of 93% and 15% for the 1-dimensional and 2-dimensional case,
respectively. From this we can conclude that the neural network approach is outper-
forming standard techniques if the considered distribution is non-factorizable and more
complex. As a physics application we considered muon pair production via the Drell–
Yan scattering. We can see in Fig. 3.19 that our GAN can still nicely reproduce the
correct distributions when trained on weighted data.
In Chapter 4, we employed GANs to subtract and add distributions based on samples
to avoid current statistical limitations of bin-wise methods. For this, we extended our
GAN architecture by adding a discriminator for each available dataset we wanted to train
on. For instance, we considered two simple 1-dimensional distributions represented as
event samples, and we were interested in the difference of both distributions. We further
wanted to generate new samples distributed according to this difference. In order to
do so, we employed two discriminator networks, where one discriminator was trying
to distinguish generated events from true events being drawn from either of the two
distributions, and the other one only classified events which were either fake or true
following one of the two distributions. By supplementing each event with a class label
we were able to directly generate evens which were distributed according to the difference
of both distributions, as shown for a toy example in Fig. 4.2. Furthermore, we considered
two different LHC applications: background subtraction and collinear dipole subtraction
for Drell–Yan scattering.
In the first example, the network was trained to subtract the photon-induced contribution
from the full e+e− production at LO. Even though this does not yield a state-of-the-art
problem for LHC analyses we could further employ it for more involved background
subtractions in four body-decays while still preserving all kinematic correlations. In the
second example, we combined the full LO matrix element for Z + g production and
the collinear approximated contribution expressed as modified Catani-Seymour dipole
to obtain events following the finite contribution from real gluon emission.
Finally, in Chapter 5, we considered another application of GANs and also INNs. There,
we were interested in unfolding detector effects. As a naive ansatz we used both a
standard GAN and INN to directly map from the detector level to the parton level.
As we can see in Fig. 5.3 and Fig. 5.12 this works fine if we unfold the entire data at
once. However, once we try to cut on detector level events and only unfold a part of the
data this procedure fails. The reason for this is that two events which might be close
on detector level are not mapped onto events which are also close on parton level. In
other words, the network does not learn a mapping between both spaces in a structured
manner. In order to solve this problem, we introduced a conditional setup in which the
network tries to map random numbers onto the parton level but being conditioned on
detector level events. Using this conditioning the slicing of detector level input does not
brake the unfolding procedure and we obtain the correct parton level distributions, as
shown in Fig. 5.6. A nice feature which only comes with INNs is that they are also
capable to give a correctly calibrated posterior probability distribution over parton-level
phase space for a single detector-level event. This is new and unique even for neural
network unfolding.
Additionally, we have shown that the GAN network also reproduces an possible new res-
onance as a local structure in phase space even though it was trained on SM events only,
as illustrated in Fig. 5.10. From this we can conclude that the neural network preserves
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local structures in the mapping between the input and target space.Furthermore, we
have also considered unfolding of a variable number of jets and inverted parton shower-
ing. We found that the conditional INN can also unfold QCD jet radiation and identifies
the ISR jets correctly. It also preserves 4-momentum conservation in the hard scattering
process.

Putting everything together, we can conclude that machine learning and especially neural
networks can be used for various tasks to supplement standard LHC analyses. While
our applications already serve as good examples on how to use generative networks in
particle physics there is still more of the story to tell. Undoubtedly, the application of
machine learning and neural networks will be beneficial in many other areas of theoretical
physics. For instance, neural networks could also be used to speed-up the evaluation of
complicated higher-order matrix elements. In either case, we should expect that machine
learning will have a huge impact on theoretical and experimental high-energy physics
research in the future.
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