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=> bound states with positively charged nuclei.
=> new catalyzed reactions occur!

(1) strong constraints on X lifetime and abundance.

standard BBN p Catalyzed B&BN
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O(10%) enhancement !l
- too much Li6é6 !l
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Cafalyzed BBN (CBBN) Pospelov ‘06

If there were negatively charged particle, X~ at BBN,...

=> bound states with positively charged nuclei.
=> new catalyzed reactions occur!

(1) strong constraints on X lifetime and gk

(2) there may already exist a hint o

. X lifetime is
> Li7 problem. —\ 0(1000) sec.

CBBN can solve it!
("Be X)+p — (°B

Pospelov, 06; , w Such a long-lived charged particle

Bl S A naturally arises in SUSY models with

(+ many others)

+ Kamimura, Kino, Hiyama, 08 nglViﬁnO LSP + stau NLSP!
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graviton €.

gravitino G

extremely weakly interacting
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Compare it with Electroweak Symmetry

Electroweak symmetry Su pergra vity

_‘_ +3/2

Spin spin

Z,W bosons ‘ Gravitino \

— discovered in 1983 — discovered in 20XX (7!)
— establish Standard Model — establish Supergravity !!




Compare it with Electroweak Symmetry

Electroweak symmetry Supergravity

gauge boson mass gravitino mass

G

gauge coupling
SUGRA coupling

Higgs VEV SUSY breaking VEV
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Why Gravitino LSP ?

Dark Matter in SUSY

In SUSY models + R-parity,
LSP (=Lightest SUSY Particle) is stable.

R-parity + (even) R-parity — (odd)

MLSP
X LSP cannot decay!!

=) If neutral, Dark Matter candidate!
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Why Gravitino LSP ?

Dark Matter candidates
in SUSY Standard Model

In SUSY Standard Model in SUGRA,

UL) UR;
dr /), dr;

squarks : ( sleptons :

——~——

gauginos and higgssinos :( x3?, xit,

neutral and color-singlet

gravitino :

excluded by direct

detection experiments
(cf. Falk, Olive, Srednicki, 94)

Only Neutralino and Gravitino are viable candidates!
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Gravitino mass.... model dependent.
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Why Gravitino LSP ?

Other SUSY particle masses = O(100 GeV)-0O(1 TeV)

Gravitino mass.... model dependent.

Gravitino mass

PAMELA & ATIC? PAMELA & ATIC?
(with decaying (with decaying
composite DM) gravitino DM)

ravi’ry-MSB

Gravitino LSP




Why Gravitino LSP ?

Other SUSY particle masses = O(100 GeV)-0O(1 TeV)

Gravitino mass.... model dependent.

Gravitino mass
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* Why Gravitino LSP ?

SUSY models

neutralino gravitino
LSP LSP

others hfty-fifty?




NLSP (Next-to-Lightest SUSY Particle)

In Gravitino LSP scenario, the NLSP is long-lived.

R-parity + (even)

R-parity — (odd)

MNLSP

extremely weak
interaction

Mmea _1sp

NLSP can decay
only to Gravitino

Lifetime e.g. for mnLsp =~ 200 GeV
mwLsp ~ O(day) for mg ~ 10 GeV
T~wLsP ~ O(10 min) for mg ~ 1 GeV

T™~LsP ~ O(10 sec) for mg ~ 0.1 GeV
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In general, from RGE, tendency is
e M(color singlet) < M(colored)
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In general, from RGE, tendency is
e M(color singlet) < M(colored)
* M(weak singlet) < M(weak charged)
e M(3rd family) < M(Ist and 2nd family)
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Why Stau NLSP ?

In general, from RGE, tendency is
e M(color singlet) < M(colored)
* M(weak singlet) < M(weak charged)
e M(3rd family) < M(Ist and 2nd family)

Mass [GeV]

10 12 14 16
Log,,(Q/1 GeV)

typical RG evolution (from S.P.Martin, hep-ph/9709356)
gaugino
Higgsino

slepton guing

~

q
squarks

[ In most cases, either Stau or Neutralino is the NLSP
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» Gravitino LSP and Stau NLSP
IS a natural choice.




*Why Stau NLSP ?

= Long-lived
SUSY models charged particle.

neutralino gravirino

LSP LSP
Stau NLSP

Neutralino
NLSP

others

» Gravitino LSP and Stau NLSP
IS a natural choice.




NLSP Lifetime

5 2~
' — Gr) ~ |
48 & m3

Lifetime (decay length) of NLSP stau

e.g., for mz = 100 GeV ,
2\ keV MeV GeV

ps ns IS = ms sec day
1| 11—
mm m Km




NLSP Lifetime

pa m§ m2~ 5
't — GT) ~ & 1 s
48 =

Lifetime (decay length) of NLSP stau
e.g., for mz = 100 GeV ,

eV keV MeV GeV

Lifetime measurement

<> SUSY breaking scale F=+v3msMp

<> gravitino mass mg
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NLSP Lifetime

s m§ m2~ 5
't — GT) ~ L (1 G)
|

48 =

Lifetime (decay length) of NLSP stau
e.g., for mz = 100 GeV ,

eV keV MeV GeV
L —— ] ————
pPS NS PSS sec day
S
CTx: 5'”"5"”'
—— 5: A ——————
' Detector | .

Size! No In-flight decay,

| but maybe accessible.







Planck scale measurement

slepton
r P lepton
1 ./

Lgupergravity _ 8,,5-“*_” Y~.PpT + h.Cc. + -+
Supergravity V2 Mr "{(Yp R
Gravitino

t e

T A

Gravitino
(missing)




Planck scale measurement

= MPE, (supergravity)

(using energy momentum)

: measurable ) o
consistency measurable | 2
heck!! mZ =mi —2mzE. —m

C | ,

T4—@- > G
?

M3 (gravity) = CEO (2.44 x 108 Gn:a"ﬁnr’)2

Newton const.



Stop and Decay
of
Long-lived charged massive particles

(CHAMPS)
at
the LHC detectors

S.Asai, KH, S.Shirai, arXiv:0902.3754



e typically most of CHAMPs have large
velocity and escape from detector:
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e typically most of CHAMPs have large
velocity and escape from detector:

e some of them have sufficiently small
velocity and stop at calorimeters.

3
example of SUS with outs without cuts

. assume:
model pOII‘If SPS7 | Fe 1440mm (barrel)

( Osusy = 3.5 pb ) By b e Sl N Cu 1400mm (end-cap)

0.4

! . -:.-:..1" .h!. -::'. .
03F Sl N,
5 e A stopped events

>2F e about 1% of

Y TABLE II: The number of stopping staus for 10 fb™*.

o1t o total SUSY events
e =3 1 e a few per day

FIG. 1: n — (7 distribution of the staus. The red line shows
the limit for the stau to stop in the detector.
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Flgure 1-1 Cwerell layout of the ATLAS detector.

* but their late-fime decay has wrong fiming
and wrong direction;

e difficult to reject backgrounds

e difficult o trigger.

..... during pp collision.




Idea:
stop the pp collision !!

...and optimize the frigger to detect
CHAMP decay.

e for short lifetime: use beam-damp signal.
e for long lifetime: use winter shutdown.




e for short lifetime: use beam-damp signal.

(I) select the stopping event by online Event Filter.

SUSY stopped!!
events
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e for short lifetime: use beam-damp signal.

(I) select the stopping event by online Event Filter.
(1) missing ET > 100 GeV (_A/i_ standard
(2) 1 jet PT > 100 GeV + 2 jets PT > 50 GeV SUSY cuts
(3) isolated track with PT > 0.1 m(CHAMP). €1, CHAMP

candidate
(4) extrapolate the track to calorimeter and

energy deposit < 0.2 p(CHAMP). \ e

(5) extrapolate the track to muon system and

no muon track. sfopplng
events

SUSY stopped!!
events

QNN




e for short lifetime: use beam-damp signal.

(I) select the stopping event by online Event Filter.

SUSY stopped!!
events

QNN




e for short lifetime: use beam-damp signal.

(I) select the stopping event by online Event Filter.

. GO ) trigger
(II) send a beam-damp signal, which immediately
stops the pp collision.

beam-damp

SUSY stopped!!




e for short lifetime: use beam-damp signal.

(I) select the stopping event by online Event Filter.

r
| N ) trigger

(II) send a beam-damp signal, which immediately

stops the pp collision.

(III) change the trigger menu to the one optimized
for CHAMP decay.

beam-damp

< >
change

SUSY stopped!!

even’r“ trigger menu
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e for short lifetime: use beam-damp signal.

(I) select the stopping event by online Event Filter.

r
, N ) trigger
(II) send a beam-damp signal, which immediately
stops the pp collision.

(III) change the trigger menu to the one optimized
for CHAMP decay.

(IV) wait for CHAMP decay.

beam-damp

< >
change

SUSY stopped!!

ents trigger menu
¢M decay!!




e for short lifetime: use beam-damp signal.

A ———a . =

(I) select the stopping event by online Event Filter.

r
. T ) trigger
(II) send a beam-damp signal, which immediately
stops the pp collision.

(III) change the trigger menu to the one optimized
for CHAMP decay.

(IV) wait for CHAMP decay.

beam-damp restart pp collision

<€ >
SUSY stoppedi! change SUSY

events trigger menu events
¢M decay!! /\ time
30 >




e for long lifetfime: use winter shutdown

running (pp collision) winter shutdown

stopped




e for long lifetfime: use winter shutdown

running (pp collision) winter shutdown

< >
stopped change

trigger menu




e for long lifetfime: use winter shutdown

running (pp collision) winter shutdown

< >
stopped change

trigger menu




olifetime measurement: SUMMARY

——

TABLE III: Expected statistical errors for each lifetime. (Np)
is the expected number of staus’ decays in the corresponding
period.

10 fb~! 100 fb~!
lifetime | (Np) o (Np) o
0.1 sec | 0.01 | 0.1 sec | 0.1 | £0.1 sec Shor.l- g

02sec | 1.8 |+0.15sec| 18 |£0.05sec| assumption
0.5sec | 36 | £0.1 sec | 352 |£0.03 sec

1 sec 96 | £0.1 sec | 956 |£0.04 sec d d 'I' 1
10 sec | 235 | +0.7 sec | 2353 | 0.2 sec ed iIme: 1 SecC

100 sec | 257 | +7 sec |2574| +2.0 sec waifing time: 30 min.
1000 sec| 217 | T150 sec | 2168 | 51 sec

10 day | 26 |+2.2 day| 262 |40.7 day
100 day | 143 | *3? day 1430 | *% day running: 200 days

10 year | 14 | T7 year | 138 | 7' year X

+224
long

0(0.1 sec ... 100 years) can be probed!!




Summary

If we will see

long-lived charged massive particle at the LHC,
the lifetime measurement is important both for
cosmology and particle physics.

The discovery of late decay, and the lifetime
measurement is possible for a very wide range,

from O(0.1 sec) to O(100 years) !!!

Future works:
study of decay products (energy? particle IDs?)
what about long-lived colored particle (R-hadrons) ?










Backup Shdes



Suppose that we will see
long-lived charged massive particle at the LHC,
e.g., Stau NLSP in SUSY models.




Suppo. ® momentum measurement p
long-li
e.g., sf{®+ TOF (time of flight) measurement T

= velocity B = L/T

B ® Mass m = P/(BY)cf De Roeck, Ellis, Gianotti, Moortgat, Olive, Pape, 05

Am; Ap 2 At .
= D B~ A ~ 10 — 20% in each event
p

ms

Am;
O(1000) 7 — < 1%
mz=

® Properties of other particles can also be studied
from kinematical information.

e®then, the next target is the lifetime!!l

( Note: searches inside sea water exclude
completely stable massive charged particle.)




* What is Gravitino?

Compare it with Electroweak Symmetry

Electroweak symmetry Supergravity
— spontaneously broken — spontaneously broken
spin spin
+3/2
+1
Higgs —+—]_/2 super—Higgs
0 mechanism mechanism
—1/2
—1
—3/2

Z,W bosons ‘ Gravitino \

— discovered in 1983 — discovered in 20XX (?!)
— establish Standard Model — establish Supergravity !!




* What is Gravitino?

Compare it with Electroweak Symmetry

Electroweak symmetry Supergravity
— spontaneously broken — spontaneously broken

gauge boson mass gravitino mass

gauge coupling
SUGRA coupling

Higgs VEV SUSY breaking VEV




