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Outline

@ Why do we care about this?

© Reminder: Parton showers

© Correcting the parton shower to LO

@ Matching the parton shower with NLO ME's
@ Merging the parton shower with LO ME'’s

© Conclusion & outlook
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What Monte Carlo’s are good for . ..
. and what not ...
@ To my understanding, Monte Carlo’s are indispensible to

extrapolate from a control region
to the signal region of a background process.

@ Any discovery, that is solely based on Monte Carlo's, or

maybe worse, its fine details, will most likely not be
trusted.
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The impact of HO QCD
Example: SUSY searches (4 jets + K1), observable: Mg

ATLAS TDR plot done with pythia ‘

=> only parton shower for extra jets
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Motivation Parton showers NLO matching LO merging

Summar

Specifying higher-order corrections: v* — hadrons

LO: *—b Q
NLO{J; @ In general: N"LO < O(a?)

NAILQ:

+% @ But: only for inclusive quantities

(e.g.: total xsecs like v* —hadrons).

Counter-example: thrust distribution

MOk, 2L0(d /) @ In general, distributions are HO.

@ Distinguish real & virtual emissions:
Real emissions — mainly distributions,
° %5 AT virtual emissions — mainly normalization|
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Higher orders in simulation



Motivation Parton showers

NLO matching LO merging

Summar

Anatomy of HO calculations: Virtual and real
corrections

LO: ;
\A<>,V\| — NLO corrections: O(as)
NLOZ]"(:Q‘”'Z' %l *+ Virtual corrections = extra loops

| Real corrections = extra legs
|”<+’“<:n.['>"+>>")

@ UV-divergences in virtual graphs — renormalization

o But also: IR-divergences in real & virtual contributions
Must cancel each other, non-trivial to see:

N vs. N + 1 particle FS, divergence in PS vs. loop

F. Krauss
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Motivation Parton showers ME corrections NLO matching LO merging

Cancelling the IR divergences: Subtraction method
@ Total NLO xsec:
ONLO = OBorn T j de‘Mﬁ/ -+ ] (,14/(

MU

@ IR div. in real piece — regularize:

J kMg — [ dPkIM]
@ Construct subtraction term with same IR structure:
[ APk (IM[% — M%) = [ d*k|M|%s = finite.
Possible: [ dPk|M |2 = opom [ dPk|S[?, universal |S2.
o [dPkIM3 + om [ dPk|S|? = finite (analytical)
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Motivation Parton showers ME corrections NLO matching LO merging Summar

State-of-the-art NLO calculations: General strategy
@ Construct Born + 1st order terms

@ Subtraction term: Born term x (analytical) divergences

Evaluate loop term analytically - perform cancellation

@ Monte Carlo separately over subtracted real emission and
virtual4-subtraction term

Limitations
@ So far only loops with < 5 propagators under full control

—> in general, only 2 — 3 processes at NLO

But exiting new methods start hitting the market!

@ Soft/collinear corners maybe still badly described

F. Krauss
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Availability of exact calculations

. done

A for some processes
B first solutions

1 2 3 4 5 6 7 8 9 nlegs

F. Krauss
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Parton showers VIE correc s NLO matching LO merging Summar

Parton showers
@ Universal pattern of soft & collinear radiation:

dt
d0N+1 ~ dO’N Z == Qg dz Pa*)bc(z).
aeN 7

@ Introduce “resolution of partons” (e.g. p7n)
—> Large logarithms at each emission.

@ Resummation of soft & collinear logs in Sudakov form factor:

/ dt’ T
AL(t, to) =exp |— - dz as P pe(2)
to z_

@ Interpretation: No-emission probability (— simulation).
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Parton showers

n-jet rates @ NLL

S.Catani et al. Phys. Lett. B269 (1991) 432

Example: NLL-jet rates in v* — jets

Ro(Qjet) = [Aq(Ec,m. ) Qjct)}z
' _6 Rg(Qjet) = A¢(Ec.m., Qjet)
SRR Aq(Ee.m.; Qjer)

- [ dq |2as(q)F4(Ec.om. , q)
/ q[ (@)a ! Dq(a, Qjet)

Aq(qs Qjet)Ag(a; Qjet)

(Tg(Ec.m., q) = z-integrated splitting function,
acts as matrix element approximation)

Higher orders in simulation



Motivation Parton showers V NLO matching LO merging

ME vs. PS Orders in ME & PS
@ Matrix elements good for: S

hard, large-angle emissions; T o4
take care of interferences. -+

@ Parton shower good for:
soft, collinear emissions; +
resums large logarithms.

ekact ME
LO 5jet, but also
NLO 4jet

@ Want to combine both!
Avoid double-counting. o
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ME corrections

Correcting the parton shower: eTe™ — 3 jets

.
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Generate jet with PS, accept or reject with ME/PS.
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Motivation Parton showers ME corrections NLO matching LO merging Summar

Practicalities of ME-corrections
@ Obviously, ME < PS is not always fulfilled.

@ Could enhance PS expression by a (large) factor.
Question: Efficiency of the approach?

@ Therefore: realized in few processes only:
Best-known: ee — qq, qg — V, t — bW

@ Beware of “power-showers"”.

F. Krauss
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Motivation Parton sh s VIE corrections NLO matching LO merging Summar

MCGNLO

S.Frixione, B.R.Webber, JHEP 0206 (2002) 029
S.Frixione, P.Nason, B.R.Webber, JHEP 0308 (2003) 007

o Want:

@ NLO-Normalisation and first (hard) emission correct,
o Soft emissions correctly resummed in PS.

@ Method:

@ Modify subtraction terms for real infrared divergences,
@ use first order parton shower-expression,
@ this is process-dependent!

@ In practise much more complicated.

@ Implemented for DY, W-pairs, gg — H, Q-pairs.

F. Krauss
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NLO matching

MCONLO example results: W-pairs @ Tevatron
10l A 50 T T
g
% 1071 i E
& [
3 w2 MC@NLO S
N
D HERWIG
w8 NLO
1974 L | |
10t 10% 103
PT(m (GeV)

F. Krauss

Higher orders in simulation



NLO matching

A little MCONLO problem: tt at Tevatron

T T T T T (=) 0]
04 [~ Tevatron — raon

do/dy, (pb)
03 -

100

0.2 -

PP — ti+jet+ X
0.1 . .

VE = 1,00 Tev
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Motivation Parton showers V NLO matching LO merging Summar

PowHEG

S.Frixione, P.Nason, C.Oleari, JHEP 0711 (2007) 070
@ Occurrence of negative weights in MC@GNLO.

@ Improved matching scheme avoiding negative weights:

o Generate process with LO kinematics and NLO weight

@ Generate hardest emission according to real-emission ME:
~exp [~ [ dD10n11(Prt1)/on(Pn)]

o Effect: Replacing the approximation (splitting function) with
exact result

@ Reproduces rate and first emission at NLO accuracy.

@ Shower-independent: The method of choice.

F. Krauss
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NLO matching

PowHEG vs. MCONLO (stolen from C.Oleari)

( Higgs boson rapidity distribution at Tevatron and LHC )

T T T T T T T
0.0200 - Tevatren - 1.00¢ LHC POWHEG-+HERWIG
e MC@®NLO
0.0100 E aE
0501
0.0050 . 3 1
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POWHEG+PYTHIA
0.0005 MC@NLO igh
i 010 pit>10
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L 1 L I L L 0.05 i I
0.0001 o7 2 0 2 F3 -4 -2 o 2 +
Yiet — ¥u Yiet — Yu

Dip inherited from the even-deeper dip of HERWIG. MC@NLO fills partially the dip.

The dip in the MC@NLO result is compatible with an effect beyond NLO.
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NLO matching

PowHEG vs. MCONLO (stolen from C.Oleari)
C Higgs boson production at the LHC )
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NLO matching

PowHEG vs. MCONLO (stolen from C.Oleari)

C Higgs boson production at the LHC )
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NNLO result obtained with HNNLO by Catani & Grazzini
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Motivation Parton s VIE co S NLO matching LO merging Summar

Combining MEs & PS: LO-Merging

S.Catani, F.K., R.Kuhn and B.R.Webber, JHEP 0111 (2001) 063
F.K., JHEP 0208 (2002) 015

o Want:

@ All jet emissions correct at tree level + LL,
@ Soft emissions correctly resummed in PS

o Method:

@ Separate Jet-production/evolution by Qje; (ki algorithm).
o Produce jets according to LO matrix elements

o re-weight with Sudakov form factor + running s weights,
@ veto jet production in parton shower.

@ Process-independent implementation.

F. Krauss
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LO merging

n-jet rates @ NLL, again Sudakov weights

S.Catani et al. Phys. Lett. B269 (1991) 432 Example ry* — qag
At NLL-Accuracy
Ro(Qjet) = [Ag(Ec.m. Qjet)}z

R3(Qjet) = Ag(Ec.m., Qjet)

A(Ec.m.,Q'et)
- [ dq |20s(q)g(Ec.m. , q) —L -2 Xt/
/ [ ' Aq(d, Qjer)

Wend = —29 A (B, Gier)
Bq(9; Qjet)Ag(q; Qjet) as(Qjet)
Aq(Ec,m,a Qjct)
——————"A4(9, Qjet)Ag (9 Qjet)
Dg(a, Q) o erITE

F. Krauss

Higher orders in simulation



LO merging

Algorithm as scale-setting prescription
@ Example: p, distribution of jets @ Tevatron

@ Consider exclusive W + 1- and W + 2-jet production

Comparison with MCFM; J.Campbell and R.K.Ellis, Phys. Rev. D 65 (2002) 113007
in : F.K., A.Schilicke, S.Schumann and G.Soff, Phys. Rev. D 70 (2004) 114009

10 U @EERED Wijj @ Tevatron
T T T
iy T
10
oF MCFMNLO| =
Cuts pye>20GeV, I ¥l<1 10t S w0’
o « a
- 10 P> 15Gev, n"j<2 _ g
3 Pye> 20GeV = g
9 o) —
S 8R>10 g 20
raell e 102F -
g 10 & -
3 i)
3 5 o
° S POF: ctegel } -
= 3 sl| Cuts ppe>20Gev, In' Tt i
10°F 10 pro 15 eV, <2 .
P> 20GeV i
OR>10 1
10° | il n T T | | |
20 40 8 100 120 140 160 180 20 6 8 100 120 140 160 1
p; (&) [Gev] p, (firstjet) [Gev]

Sherpa = tree-level matrix elements with as scales and Sudakov form factors.

Higher orders in simulation



Vetoing the shower

Ec
Wveto = 1+ /

Qjet

{exp </Ec m.

Qjet

m. Ec.m
dglg(Ec.m., q) + /

2
dqlg(Ec.m. ,q))} =

LO merging

Qjet Qjet

—2
Ay “(Ec.m.; Qjet)

— Cancels dependence on Qj;.

. q
dqlg(Ec.m. q)/ dq' Tg(Ec.m.q') + - - -

F. Krauss
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LO merging

Combining MEs & PS: Independence on @t
Example: p; of W in pp — W + X @ Tevatron

F.K., A.Schilicke, S.Schumann and G.Soff, Phys. Rev. D 70 (2004) 114009

Qiet = 10GeV Qiet = 30GeV Qiet = 50 GeV

> > >
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o — weges | o — wigets | o — wezers ]
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5 ] S
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Comparison with data from Tevatron

p, of Z-bosons

R TR IR C R S A R ER AR RS R SRR AN
JSF’ Lk [AAAL AL LA Mk |
— oz o —nz

—2z+0jet ~_ ——Zz+0jet
—Zetje oja —Zeija

i o i

. coF 10 . cor

T || N A W N N vl N
0 20 40 60 80 100 120 140 160 180 200 0 5
P/l Gev

10 15 20 25 30 35 40 45 50
P/l Gev

F. Krauss

Higher orders in simulation



LO merging

Combining MEs & PS

Comparison with data from Tevatron
Jet multiplicities in pp — Z + X (00 ot 5066)

data wistat error

I
2 E DO Runll Preliminary| =  daawistat & sys error @ DO Runll Preliminary | = s & sys erer
b L ot Ewfb L e
z [ Pythia range stat & sys =
]
S S
z z
1F
=0 T H 3 o T B 3 [ 5 6
Jet Multiplicity

< LT S 4F
g ] c 4
T 4r [
£ 3 [ | xS
g2 . [
o ; N T l %] i
= LE + S 1F :
s F N !  f i o !
8 g L

n o f ]

L. , , , , , , L. , , , , L |

027y T 2 3 4 5 3 0275 T 2 3 7 5 6
Jet Multiplicity Jet Multiplicity
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LO merging

Combining MEs & PS

Comparison with data from Tevatron
Jet spectra (1st jet) in pp — Z+ X (DO-Note 5066)
@ — o Gareseo [ — o R
% o DO Runll Preliminary - S DO Runll Preliminary = ;h;:;m::;f""'
Z . [ Pythia range stat & sys a [ Sherpa range stat & sy
= 10 == 5
510 s
! | |
80100 150 200 250 300 30 00 0 200 250 300 350
p, Ijet [GeV] p Ijet [GeV]
$4f g s
52 T H 42
[T 2 s "
5 1t P LA T T
s F s ‘
et o \
02 . , . R P —— 02 i |
255 100 180 200 250 ~ 300 380 50 100 150 200 250 300 350
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LO merging

Combining MEs & PS

Comparison with data from Tevatron
Jet spectra (2nd jet) in pp — Z + (DO-Note 5066)

Gata wistal error %)

imi u  data wistat & sys error
DO Runll Preliminary -
= 0 Pythia range stat & sys
-—

data wisat ertor
m  datawistat & sys ermor

[ sherpa range stat

I herpa range stat & sys

DO Runll Preliminary

Nr. of Events
2
Nr. of Event;

40 60 80 100 120 140 160 180 40 60 80 100 120 140 160 180

P, 2"jet [GeV] [ 2" jet [GeV]

< < LF
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<4 g L ] |
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LO merging

Comparison with Runll Z + X data: p”

Nr. of Events

Data / PYTHIA

BN W

20 40 60 80

100 120
[ 39jet [GeV]

e
——

Al

00120
[ 3jet [GeV]

20 40 60 80

DO Runll Preliminary | % i’;;:‘,i“;;f;;te"‘“
I Pythia range stat & sys

Nr. of Events

Data / SHERPA

[SRNERINT}

(DO-Note 5066)

data wistat error

DO Runll Preliminary

®  data wistat & sys erfor
[ Sherpa range stat
I Sherpa range stat & sys

20 40 60 80 100 120
P, 3Yjet [GeV]
bt
£ I ;
L l J
20 40 60 80 100 120

[ 3"jet [GeV]
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LO merging

Combining MEs & PS

Comparison with data from Tevatron
Azimuthal correlation (£ jet2jet) I pp — Z + X (00t s066)
g 250 L Eae 2 is
gzoug gzw
;wog 2100
s0F 507
3 o 0‘5 ‘1 1.‘5 2‘ 2.‘5 I‘i
A (jetjet)
<y £ 4F
I gy
SN TLILTFEITFEL FELLALLE T T T P
g 1 ¥ PR LAETEEASET IR TS DX AARRARE
F ) 8 !
02 05 1 15 2 25 3 02 05 T 5 3 75 3
A @ (jetjet) A g(etjet)
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Motivation Parton showers ME corrections NLO matching LO merging Summary

Other prescriptions
o CKKW-L L.Lénnblad, JHEP 0205 (2002) 046

o Start with ME, jets defined with k; algorithm,
Cluster backwards with shower-specific k|,

Use “PS-history” to fix starting conditions for shower,
Use first trial emission to reject/accept event

Run shower below jet scale.

¢ © ¢ ¢

(*) MLM M.Mangano et al., Nucl. Phys. B632 (2002) 343

o Start with ME, jets defined with cones,

o Feed configuration into shower, through LHA interface,

o Match cone jets before hadronisation with partons,
reject event in case of mismatch.

@ Theory: CKKW and CKKW-L equivalent, MLM not.

F. Krauss
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NLO matching LO merging Summar

Comparison with other merging algorithms: MLM

J.Alwall et al. Eur. Phys. J. C53 (2008) 473

Jet rates in inclusive W+jets at Tevatron

2.0 [ o[W™/~ 4+ 2N jets]/<o>, Tevatron

—-
o
AL A

—
o
=
=]

1; iox: Alﬂpﬂjﬂn H H il

[ 279 box: Ariadne
0.5 3™ pox: Helac

4" box: Madevent

0.0

v
o
v
=
v
[\
v
w
v
i

F. Krauss

Higher orders in simulation



Comparison with other merging algorithms:

Higher orders in simulation

LO merging

J.Alwall et al. Eur. Phys. J. C53 (2008) 473

p. of jets in inclusive W+jets at Tevatron

jltlﬂq_:z(je“)

T T
solid:Alpgen i

dashes:Ariadne
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plot:MadEvent

T T
Eq(jet3)

i

L meGete)
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Sumr
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Motivation Parton orrec s NLO matc 4 LO merging

Comparison with other merging algorithms: MLM
J.Alwall et al. Eur. Phys. J. C53 (2008) 473

n of jets in inclusive W+jets at Tevatron
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NLO matching LO merging Summar

Comparison with other merging algorithms: MLM
J.Alwall et al. Eur. Phys. J. C53 (2008) 473

Jet rates in inclusive W+jets at LHC
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LO merging Summar

Comparison with other merging algorithms: MLM

J.Alwall et al. Eur. Phys. J. C53 (2008) 473

p. of jets in inclusive W+jets at LHC

solibiAlpgen | 3 [

dashes:Ariadne Eq(jet3)
dotdash:Helac
plot:MadEvent

Eq(jet4)

300 400 0
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LO merging

Comparison with other merging algorithms:
J.Alwall et al. Eur. Phys. J. C53 (2008) 473

n of jets in inclusive W+jets at LHC
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LO merging

V+ jets at Tevatron: Experimental
Matching (stolen from G.Brooijmans)

Matching

e The problem for “matrix element” (i.e. LO 2—n, n<9)

generators:

o If generate e.g. W+0j, W+1j, W+2j, W+3j, W+4j separately,
then run parton shower, can get double counting of jets from
parton shower and matrix element

® Soneed to remove/suppress the extra events, two procedures

® MLM (kind of ad-hoc)

® CKKW (state of the art, but new & ~hard to use)
® Matching is, at this point, an art rather than a science

e Will hopefully be ~solved by 2009

9

Gustaaf Brooijmans Vejets
R R R ERRRRRRRRRRRRRRRRRRRRRRRRRRRRBRRERERERAABBD—DDDEDEBDPDC—CBI—xE=mBmBBRR

F. Krauss
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LO merging

Problems in matching (stolen from G.Brooijmans)

Data and ME

® Remember, alpgen currently the main generator used

e Experiments have large “inertia” (rather have “known”

problems...) Hint of Trouble....

i i @
o (7W4»‘em)+ ‘z 2 |E‘|S( : ; CD‘F Run \I‘Dmlni‘ﬂarg ;E,amf L=17®" W+ 2jets
S ast  CDFData oL = 520 pb’ *. ! > D@ Preliminary
27 wie e e R ¢ Data
5 UF s hewsnenmessn E (Apgenpythia)[ W « jets
3 = hadron levei. o E corestion E - IRy feles)
255 4 Lo Alpgen + PYTHA -+ E 2000 J;’.‘ |
E Total ¢ notmallzsd fo Data El SM bkgd
£ 5 3 'os [ISM bkg
E i+ E| L
o - E
£ ) g + E L
= +” o o 3 1000 J
st = 3 3
e = ] o
Sl | L
05 1 15 2 25 3 3.5 4 4.5
Di-et & Rijetjety) ol
But Ag sensitive to UE, MPI? eemr
Jil sensiave 1o { "
o > 7 of Leading Jet
Gustaaf Brocijmans Simulason & Experiment 2%
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LO merging

Problems in matching (stolen from G.Brooijmans)

® After all these corrections....

o L= W 2jets
DO Preliminary D

[Jw +jors
Baco

e 8"
e Maybe it’s matching?
arXiv0706.2569
04 T T T T T T T 04 T T
s 03f @ f?d:f—!—rtsg,_t‘ﬁﬂi
£ o2l #™7 Apoen 4w Alpgen, MadEvent,
s . Atagne —— .
= of L Helac with MLM,
gy — +—! Sherpa and Ariadne
| e with CKKW
2 15 1 05 0 05 1 1@
"
Gustas Brooijmans Slmulation & Experiment 27
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LO merging

Problems in matching (stolen from G.Brooijmans)

Why Is This Bad?

e Experimentally, we determine contribution to
“W4jets” from QCD multijet, Z+jets, top, ...

e But if we lack the necessary precision in
understanding the shape of the actual W+jets
contribution, we can’t*

o Measure WW — fvjj 620
o)
e Scarchfor H—= WW — /v ?:90
(42

e Search for qq — Wyqq — Wqq (the only VBF précess
accessible at the Tevatron...)

“Can’tis a strong word... we can reweigh & assign a systematic uncertainty of the same size as the effect

30

Gustasf Brooijmans Simulation & Experiment

F. Krauss

Higher orders in simulation



LO merging

Problems in matching (stolen from G.Brooijmans)

How Important Is This?

® The understanding of W+jets (i.e. the discrepancy
between data and alpgen, and between various

generators) is currently one of the major difficulties in
many Tevatron analyses

e Comparisons between the other generators and data will
hopefully be available soon

e Based on the plots, I believe/hope the problem can be
e Understood, and
e Solved = “Mega-W precision”

o IMHO it would be a mistake to postpone this to LHC

e [t will probably be harder, + no need to delay

Gustasf Brooijmans
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LO merging

Sherpa & Alpgen vs. data
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Sherpa & Alpgen vs. data
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Sherpa

& Alpgen

g 14f DO An Il L=1.0 16" — Dam
= — HLE pEICD + corr
i :
2
5 .b
“sne ALPGENSPY
=l o =h =M B
g CTEQS 1M POF
L Tl
A g ) 30t 4 X
2:_55 <M, <115 GeV, [f]<1.7 L

P05, g2 20GeV, 1 <28

=+ Dasa ! ALP+PY == SHERPA | ALP.

= NLO pQCD | ALP+PY

Ratio

Scale and POF unc.

vs. data

T
20_[" 02 Aun I, L=1.0 16

do/dly’| (pb)
& &

1af

(s ) 4 et 4 X

4 Data / ALPLEY
==NLO pOCD / ALP.PY
2% Scale and POF vnc.

o

115GV, |f|<1.7
" Ren0.5, 7 > 20 GV, || <28

LO merging

=+ Datz

— NLGpOCD + coir
o= = M@
CTEGS 8M POF

et ALPGENPY

W=l = M Bl

CTEQSAM POF

== SHERPA | ALPLPY
wwis PYTHIA | ALP4PY
** ALPGEN: +HER/FY

2
1.5]
1
L 0.8F L I}
] 0.5 1 1.5 2 25 . 02 04 08 08 1 12 1.4 16 18
Tl '

F. Krauss

Higher orders in simula




LO merging

Sherpa & Alpgen vs. data

g 14 D@ Run 1l L=10 == Daa 3 ,,GL DG Fun 1L, L=1.0 &' = Dan
— NLOpOCD +earr] = °°F — NLO pOCD + corr
[T . %"3 Ho=p =M o
CTEQs6MPDF | 5 16, GTEQS6M POF
*= =+ ALPGENSHER 1| ===+ ALPGER:HER
. oot | b M2
3 GTEQS 1M POF
10|
& ..
¥ B
Wzl + e BE 2t ) +jol+ X
o 85 < Mu< 115GV, 1)< 1.7 IE e5aM 800V, 117 )
Ruwen0.5, £ > 20GaV, [y <28 = 25 A =05, g2 20 Gev, <28
. i)
ARG T . = ! N
o ¥ - Data ) ALPHER —=SHERPA/ALPAHER 2 | naia s ALPAHER — = SHERPA | ALP+ HER
I} = s PYTHIA I ALPSHER | H 2.4 =t s PYTHIA ALPYHER |
€ [—NLOPOCD/ALPIHER o g BGEN PYHER ) [ —NLOPGCDALPHHER oo lpGEN, (Pyis HER
2.5 ¥ Scate and POF unc of ¢4 Sealo and PDF unc
’
| i OB i . WERPIET
[ 0.5 1 1.5 2 25 @ 02 04 0B 08 1 12 14 156 18
ot
gl ¥

F. Krauss

Higher orders in simula



LO merging

Interesting features: summary (stolen from
G.Brooijmans)

Using MC Generators
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® Clearly, ratio 5lpgen/sherpa depends on who runs the
generator..... (there are many parameters!)

Gustasf Brosijmans Ve 25
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Motivation Parton showers V NLO matching LO merging Summary

Conclusion

@ Astonishing change of paradigm in MC generators:
Pushing towards precision (matching and merging)

@ Sociological: Field is becoming playground of
QCD-theorists
= new ideas, new technology (NLO)

@ Practical: Development of better tools.

o Extremely powerful if used together!

@ But: Validation and training needed

F. Krauss

Higher orders in simulation



Motivation arton s ers ME corrections NLO matching LO merging Summary

Outlook

@ Work started to push for NLO merging:
o Calculate exclusive NLO for exactly n jets
o Select configuration according to this rate and NLO-ME.
o Reject with modified Sudakov form factor
(expand to first order in «, and subtract)
Generate hardest emission with ME (like PowHEG).
Also: better control due to better showers.

@ Time scale for eTe™: first half of 2009.
@ Similar effort in CKKW-L (Ariadne), published recently.

¢ ©

>

F. Krauss
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Motivation Parton sh s ‘ ns NLO matching LO merging Summary

Implementing CSW recursion relations: A snaphot

F.Cachazo, P.Svrcek and E.Witten, JHEP 0409 (2004) 006
R.Britto, F.Cachazo, B.Feng PRL94 (2005) 181602

@ Obtained summing over colours and helicities,
sampling much better

@ But: old-fashioned Berends-Giele methods superior
F.A.Berends, W.T.Giele NPB306 (1988) 759

C.Duhr, S.Hoeche, F.Maltoni, JHEP 0608 (2006) 062

@ 2 — n gluons, 10* phase space points

n BG, CO BG, CD CSW, CO CSW, CD BCF, CO BCF, CD
2 0.24 0.28 0.31 0.26 0.28 0.33
4 12 1.04 1.63 1.75 0.84 1.32
6 14.2 7.19 27.8 30.6 11.9 59.1
8 276 82.1 919 1890 597 8690
10 7960 864 48900 - 64000

F. Krauss
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NLO matching LO merging Summary

COMIX - a new matrix element generator for Sherpa
T.Gleisberg & S.Hoeche, JHEP 0812 (2008) 039
@ Colour-dressed Berends-Giele amplitudes in the SM
@ Fully recursive phase space generation

@ Example results (cross sections):

gg — ng Cross section [pb]

n 8 9 10 11 12

\/s [GeV] 1500 2000 2500 3500 5000

Comix 0.755(3) | 0.305(2) | 0.101(7) | 0.057(5) | 0.019(2)

Maltoni (2002) | 0.70(4) | 0.30(2) | 0.097(6)

Alpgen 0.719(19)
o [ub] Number of jets
bb + QCD jets 0 1 2 3 4 5 6
Comix 4B15) 883(2) | 1.826(8) | 0.450(2) | 0.1500(8)| 0.0544(6)| 0.023(2)
ALPGEN 4716) 883(1) | 1.822(9) | 0.459(2) | 0.150(2) | 0.053(1) | 0.0215(8)
AMEGIC++ 4B14) 884(2) | 1.817(6)

F. Krauss
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Motivation Parton s VIE co s NLO matching LO merging Summary

COMIX - a new matrix element generator for Sherpa
T.Gleisberg & S.Hoeche, JHEP 0812 (2008) 039
@ Colour-dressed Berends-Giele amplitudes in the SM
@ Fully recursive phase space generation

@ Example results (phase space performance):

24000 — HAAG |~
r — Rambo| 7
22000 CSL

- e 6g T~

M| M|
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10°

F. Krauss

Higher orders in simulation



Summary

Further performance tests

T.Gleisberg, S.Hoche and F.K., arXiv:0808.3672 [hep-ph]

@ All numbers on 2.53 GHz Intel Core Duo T9400 CPU
@ List time for reaching the stat. error.

pp — n jets
gluons only n=2 n=3 n=4 n= n==6
So 0.1% 0.1% 0.2% 0.5% 1%
o mclpbl 8.915 - 107 | 5.454.10% | 1.150.10° | 2.757.10° | 7.95.10%
CSW (HAAG) 4 165 1681 12800 2. 10°
CSW (CSI) = 480 6500 11900 197000
AMEGIC (HAAG) 6 492 41400 - =
COMIX (RPG) 159 5050 33000 38000 74000
COMIX (CSI) = 780 6930 6800 12400

F. Krauss
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Parton s NLO matching Summary

Further performance tests
T .Gleisberg, S.Hoche and F.K., arXiv:0808.3672 [hep-ph]
@ All numbers on 2.53 GHz Intel Core Duo T9400 CPU
@ List time for reaching the stat. error.
pp — n jets
lel quark line n=2 n=3 n=24 n= n=
so 0.1% 0.1% 0.2% 0.5% 1%
amc [pb] 1.456 - 10° 1.051-107 | 2.490-10° | 6.75-10° | 2.14.10°
CSW (HAAG) 10 354 6980 60000 9.10°
AMEGIC (HAAG) 13 930 73000 = =
COMIX (RPG) 254 5370 15900 36800 64100
< 2 quark lines n=2 n=3 n= n=25 n==6
amc [pb] 1.5129 - 10% | 1.1198-107 | 2.831-10° | 8.12.10° | 2.71.10°
CSW (HAAG) 16 730 12300 120000 2.107
AMEGIC (HAAG) 19 1530 78000 = =
COMIX (RPG) 525 10800 25600 59000 113000

Higher orders in simulation



Motivation Parton sh s VIE corrections NLO matching O g Summary

Further performance tests

T.Gleisberg, S.Hoche and F.K., arXiv:0808.3672 [hep-ph]

@ All numbers on 2.53 GHz Intel Core Duo T9400 CPU
@ List time for reaching the stat. error.

@ Note: With Comix can easily go up to < 6 jets.

pp — Z + n jets
gluons only n=0 n=1 n=2 n=3 n=4
omclpb] 1080.8 121.67 54.67 23.59 11.22
o 0.1% 0.1% 0.1% 0.2% 0.5%
CSW (MC) 12 210 4100 57000 1500000
AMEGIC (MC) 7 98 1060 10400 310000
COMIX (RPG) 15 364 6400 16400 54000

F. Krauss
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Motivation Parton s VIE co s NLO matching LO merging Summary

Dipole showers

Implemented in Ariadne ( L.Lonnblad, Comput. Phys. Commun. 71, 15 (1992)).

Upshot
@ Expansion around soft logs, particles always on-shell
2 2
do = O'O—CFazs(kL)%
4 il

@ Always color-connected partners (recoil of emission)
—> emission: 1 dipole — 2 dipoles.

@ Quantum coherence on similar grounds for angular and
kr-ordering.

F. Krauss

Higher orders in simulation



IS Radiation

@ There is none! (in
og k. Ariadne)

Radiation pattern

Treat radiation in DIS as FS radiation between

/ remnant & quark
Yy /
/,,/ % \\\ Thus, no real Dipole Shower for pp collisions.
/ g @ Cut FS phase space of
// A A o
LN N remnants:

/

//

F. Krauss
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Motivation Parton showers V NLO matching LO merging Summary

Initial state dipole showers

J.Winter & F.K., JHEP 0807, 040 (2008)

@ Complete perturbative formulation.

@ Dipoles and their radiation
associated to IS-IS, IS-FS and
e FS-FS colour lines.

@ Beam remnants kept outside
evolution.

@ Onshell kinematics, evolution in k.

F. Krauss
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Motivation Parton showers col ns NLO matching LO merging Summary

Results for the new dipole shower

J.Winter & F.K., JHEP 0807, 040 (2008)

30 e

=~ CDF data (2000)
P2 | I Dipole shower.p (16, &Py 2 hadr. ]
— Dipole shower,pj 9, . & PY6:2 hadr

@ Testbed: DY production.

@ P71 spectrum of Z° boson.

do/dp; [pb/GeV]

@ Mainly recoils vs. 1st
emission:

on Run 1
bv construction: %g:gH1}111})11}NH1}1H}m}m}m}m}m
y < 03 Muﬁ,m =
ME-corrected. §qa8 LR
¢ 0 M e T i om0

pr [GeV]
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Motivation Parton s col s NLO matching LO merging

Summary

A new parton shower approach
Using Catani-Seymour splitting kernels

First discussed in: Z.Nagy and D.E.Soper, JHEP 0510 (2005) 024;

Implemented by M.Dinsdale, M.Ternick, S.Weinzierl Phys.Rev.D76 (2007) 094003,

and S.Schumann& F.K., JHEP 0803 (2008) 038.

@ Catani-Seymour dipole subtraction terms as universal
framework for QCD NLO calculations.

o Factorization formulae for real emission process:

@ Full phase space coverage & good approx. to ME.

Example: final-state final-state dipoles

splitting: pjj + Pk — pi + Pj + Pk

. i Pj PPk
variables: y;i y = J zi = L
ik PiPj+PiPK+PjPK ! PiPKk+PjPk

consider q;; — ajgj: (Vo;g; k(% ¥j,k)) = CF {ﬁ = (1L 4F ii)}

F. Krauss
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Summary

Results in eTe™ collisions at LEP1

S.Schumann& F.K., JHEP 0803 (2008) 038.
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Summary

Results in eTe™ collisions at LEP1

S.Schumann& F.K., JHEP 0803 (2008) 038.

Major @ LEP1 Minor @ LEP1
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Results in eTe™ collisions at LEP1

S.Schumann& F.K., JHEP 0803 (2008) 038.
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Summai

CS-Shower: Results in pp collisions

S.Schumann& F.K., JHEP 0803 (2008) 038.
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CS-Shower: Results in pp collisions

S.Schumann& F.K., JHEP 0803 (2008) 038.

normalised distribution of ng @ Tevatron Run |
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