Modern statistics -- how can we gain some intuition analysis tools apply our

Daniel Whiteson, UC Irvine & Kyle Cranmer, NYU

February 26, 2009

Daniel Whiteson/UC Irvine

Slide 1

• State of the art

- Matrix element techniques for likelihood ratios

- List of issues/advances
 - Issue 1: Overspecific matrix-elements
 - Issue 2: "Stone-age" matrix-elements
 - Issue 3: Reliance on simulation
 - Issue 4: Statistical applications

Want to compare two hypotheses: SM (null) SM+X (new physics)

Want to compare two hypotheses: SM (null) SM+X (new physics) Best approach is the likelihood ratio:

$$LR(event z) = \frac{P(z | SM)}{P(z | SM+X)}$$

z is vector of measured quantities (leptons, jets, etc)

The probabilities are not trivial to calculate

 $\frac{P(z | SM)}{P(z | SM+X)}$

Traditionally,

(1) choose some distinguishing variable

(2) Simulate events, fill histograms for both hypotheses

Note: Two events with same m_{reco} have identical effect on analysis

Likelihood parameterization. Curse of dimensionality makes it difficult to parametrize in more than 1 or 2 dimensions

The probabilities are not trivial to calculate

P(z | SM) P(z | SM+X)

Advanced,

(1) Use NN/BDT/KDE to reduce many dimensions down to 1(2) Simulate events, fill histograms for both hypotheses

February 26, 2009

Matrix-element likelihood: Calculate probability directly

P(event z | SM) = P(z | process A) + P(z | process B) +

where

$f_{TF}(y,z)$

The transfer function takes us from parton(y) to detector-level(z)

Use a parametrized description

- Angles are perfectly measured (jets, leptons)
- Energy response can be parametrized

Equivalent to parametric detector simulation -Can never be as detailed as full simulation -Retains connection to physics intuition

In contrast to reco-mass templates -Less/no intuition in parametrization -Disconnect from physics knowledge

Previous applications

Consider continuous parameter of SM (M_{top})

P(CDF | M_t) = P(event z_1 | M_t) x P(z_2 | M_t) x P(z_3 | M_t) Note that P is a function of M

February 26, 2009

Previous applications

Consider continuous parameter of SM (M_{top})

P(CDF | M_t) = P(event z_1 | M_t) x P(z_2 | M_t) x P(z_3 | M_t) Note that P is a function of M

Previous applications

Consider continuous parameter of SM (M_{top})

<u>Note:</u> each event's likelihood has a different dependence on top mass events contribute more than just location of peak allows well-measured events to have stronger impact

Daniel Whiteson/UC Irvine

Slide 12

How does this compare to other techniques?

I've heard rumors that the "MT2" technique has been applied to CDF data and gives a 20% improvement

Issue #1

The matrix elements are too specific or "I prefer to just use kinematics"

P(z | A) =
$$\int dy |\mathcal{M}_A|^2 f_p f_p f_{TF}(y,z) = d\sigma_A/dz$$

Method allows any matrix-element from

1) OSET description

^

- 2) Effective Lagrangian of your choice
- 3) SM ttbar
- 4) SSM (not MSSM), UED, etc

Fair point:

This does not allow for easy generalization of common features across similar processes: i.e. incomplete specification of kinematics. Squark pairs -> 2 leptons, 2 jets, ME_T

Effective Lagrangian: squark, chargino, sneutrino/LSP. (Choose SUSY-like spins)

Thanks to Johan, Tilman, Frank, Mihoko...

LSP from/as sneutrino

Squark pairs -> 2 leptons, 2 jets, ME_T

Effective Lagrangian: squark, chargino, sneutrino/LSP. (Choose SUSY-like spins)

Issue #2

The matrix elements are from the stone age or "Why did we spend 10 years developing ME+PS machinery if you're going to just use the Z+2p ME?"

*intregrating over p_T of the hard process has been done, but not rigorously

New prescription

- Use X, X+1p, X+2p MEs
- Run parton-shower code on external legs to generate soft P_{T}
- Cluster particle jets and match (piggyback on matching technology!)
- Transfer function now only describes detector response

Issue #3

Reliance on simulation for transfer functions or

"Tevatron experiments only used these at the end of their runs, because they're too dependent on simulation to be used in early data."

Major weakness

TFs derived from simulation

- Relies on simulation to be tuned
- This will take a long time
- requires large sample

Is this necessary?

Samples used to tune jet response are also powerful to determine TFs

Use: Z+jets, gamma+jets, semileptonic ttbar

TFs from data

<u>Fit TFs from data samples</u> Maximize

$$\prod_{X} P(x|TF) = \int dp |\mathcal{M}|^2 f_{TF}(x,p)$$

w.r.t TF parameters

Advantages

Same strategy as MC tuning

- find sample which is clean, and sensitive to TFs

No reliance on simulation

- this integral can be very fast (done analytically)

TFs naturally fit to give best description

- even if model is imperfect
- systematics can be extracted as well

First Try

<u>Toy example</u> Smear with 10-GeV width Gaussian

Extract parameters from smeared events

Smear partons with double Gaussian TF 2x5=10 parameters: $\mu_1,\mu_2,\sigma_1,\sigma_2,f$ [const and energy dep for each] inspired by CDF transfer functions

Results

Events Smear partons with TFs

Fit Minimize 10D space with Minuit

Check

Resmear partons with fitted parameters

Caveats No backgrounds, no ISR, etc

Issue #4 Statistical applications or "Your talk was supposed to be on statistics..."

New approach for searches

<u>Use mass shape information</u> Calculate likelihood (L) for each event as function of mass (M) and signal rate (S)

Define measured mass, signal as point (M,S) which maximizes joint L

Use Feldman-Cousins to set limits

Advantages P explicitly a function of M Example: heavy t' search For true mass = 340 For true signal = 8

Contour

Region in true space for a measured value

Our 95% CL band is made from all the true points whose 95% band in measured space includes our measured value.

If region includes $N_{signal} = 0$, set a limit If region excludes $N_{signal} = 0$, claim a discovery

Summary

Matrix-element-based likelihoods

-apply our physics intuition and a-priori knowledge

Technically have been primitive

- limited by CPU resources
- can/should apply same technology to ME-based MC generation as to ME-based likelihood calculations

Current weaknesses can be overcome

- Simulation dependence
- Statistical applications

Searches

Non-optimal information use:

For analysis at M_h only evaluate $P_s(M_h)$ no maximization over M_h

Well measured events contribute as much as poorly measured events

Limit at each point done independently $P_s(110)$ does not affect limit at $M_h=115$

Wide events have same effect as narrow events

Searches

Non-optimal information use:

For analysis at M_h only evaluate $P_s(M_h)$ no maximization over M_h

Well measured events contribute as much as poorly measured events

Limit at each point done independently $P_s(110)$ does not affect limit at $M_h=115$

Wide events have same effect as narrow events

