Modern statistics -- how can we gain some intuition analysis tools apply our

Daniel Whiteson, UC Irvine
\&
Kyle Cranmer, NYU

- State of the art
- Matrix element techniques for likelihood ratios
- List of issues/advances
- Issue 1: Overspecific matrix-elements
- Issue 2: "Stone-age" matrix-elements
- Issue 3: Reliance on simulation
- Issue 4: Statistical applications

Want to compare two hypotheses: SM (null) SM+X (new physics)

Want to compare two hypotheses: SM (null) SM+X (new physics)
Best approach is the likelihood ratio:

$$
L R(\text { event } z)=\frac{P(z \mid S M)}{P(z \mid S M+X)}
$$

z is vector of measured quantities (leptons, jets, etc)

The probabilities are not trivial to calculate

$$
\begin{aligned}
& P(z \mid S M) \\
& \hline P(z \mid S M+X)
\end{aligned}
$$

Traditionally,
(1) choose some distinguishing variable
(2) Simulate events, fill histograms for both hypotheses

Note:Two events with same $\mathrm{m}_{\text {reco }}$ have identical effect on analysis

Likelihood parameterization. Curse of dimensionality makes it difficult to parametrize in more than 1 or 2 dimensions

The probabilities are not trivial to calculate

$P(z \mid S M)$
$P(z \mid S M+X)$

Advanced,

(1) Use NN/BDT/KDE to reduce many dimensions down to 1
(2) Simulate events, fill histograms for both hypotheses

Matrix-element likelihood:

Calculate probability directly

$$
P(\text { event } z \mid S M)=P(z \mid \text { process } A)+P(z \mid \text { process } B)+\ldots
$$

where

$$
\mathrm{P}(\mathrm{z} \mid \mathrm{A})=\int \mathrm{dy}\left|\mathcal{M}_{\mathrm{A}}\right|^{2} \mathrm{f}_{\mathrm{p}} \mathrm{f}_{\mathrm{p}_{A}} \mathrm{f}_{\mathrm{TF}}(\mathrm{y}, \mathrm{z})=\mathrm{d} \sigma_{\mathrm{A}} / \mathrm{dz}
$$

 describes parton-shower and detector response in parametrized form (Issue 2)

Matrix-element*PDFs for process A (Issue 2)
Integration over parton-level quantities

$\underline{f}_{T F}(y, z)$

The transfer function takes us from parton(y) to detector-level(z)

Use a parametrized description

- Angles are perfectly measured (jets, leptons)
- Energy response can be parametrized

Previous applications

Consider continuous parameter of SM ($\mathrm{M}_{\text {top }}$)

$P\left(\right.$ CDF $\left.\mid M_{t}\right)=P\left(\right.$ event $\left.z_{1} \mid M_{t}\right) \times P\left(z_{2} \mid M_{t}\right) \times P\left(z_{3} \mid M_{t}\right) \ldots$
Note that P is a function of M

Previous applications

Consider continuous parameter of SM ($\mathrm{M}_{\text {top }}$)

Previous applications

Consider continuous parameter of SM ($\mathrm{M}_{\text {top }}$)

Note: each event's likelihood has a different dependence on top mass events contribute more than just location of peak allows well-measured events to have stronger impact

How does this compare to other techniques?
l've heard rumors that the "MT2" technique has been applied to CDF data and gives a 20% improvement

MT2 (3/fb)
167.9 +- 4.5 (stat) +-2.8 (syst)

ME method ($2 / \mathrm{fb}$)
$171.2+-2.7$ (stat) +-2.9 (syst)

Issue \#1

The matrix elements are too specific or
"I prefer to just use kinematics"

$$
P(z \mid A)=\int d y\left|\mathcal{M}_{A}\right|^{2} f_{p} f_{p} f_{T F}(y, z)=d \sigma_{A} / d z
$$

Method allows any matrix-element from

1) OSET description
2) Effective Lagrangian of your choice
3) SM ttbar
4) SSM (not MSSM), UED, etc

Fair point:
This does not allow for easy generalization of common features across similar processes: i.e. incomplete specification of kinematics.

Squark pairs -> 2 leptons, 2 jets, ME_{T}
Effective Lagrangian: squark, chargino,sneutrino/LSP. (Choose SUSY-like spins)
Thanks to Johan, Tilman, Frank, Mihoko...

LSP from/as sneutrino

Squark pairs -> 2 leptons, 2 jets, ME_{T}
Effective Lagrangian: squark, chargino,sneutrino/LSP. (Choose SUSY-like spins)

1 LSP from/as sneutrino

Issue \#2

The matrix elements are from the stone age or
"Why did we spend 10 years developing ME +PS machinery if you're going to just use the $Z+2 p$ ME?"

Each object connected to a final-state particle No allowance for radiation*
*intregrating over p_{T} of the hard process has been done, but not rigorously

New prescription

- Use X, X+1p, X+2p MEs
- Run parton-shower code on external legs to generate soft P_{T}
- Cluster particle jets and match (piggyback on matching technology!)
- Transfer function now only describes detector response

$\underline{2 \text { jet event }}$

PS gives description of p_{T} of tt system

3 jet event

Deweighted by prob for soft PS jet
to be reconstructed
over jet threshold
$\mathrm{TF}(10 \mathrm{GeV}$ shower $\rightarrow 15 \mathrm{GeV}$ jet)

Deweighted by prob to lose hard jet TF($\mathrm{p} \rightarrow \mathrm{no}$ jet)

Integrate over 4v of hard gluon

PS gives description of p_{T} of $\mathrm{tt}+\mathrm{g}$ system

Issue \#3

Reliance on simulation for transfer functions or
"Tevatron experiments only used these at the end of their runs, because they're too dependent on simulation to be used in early data."

Simulation free?

Major weakness

TFs derived from simulation

- Relies on simulation to be tuned
- This will take a long time
- requires large sample

Simulation free?

Is this necessary?
Samples used to tune jet response are also powerful to determine TFs

Use: Z+jets, gamma+jets, semileptonic ttbar

TFs from data

Fit TFs from data samples Maximize

$$
\begin{aligned}
& \prod_{\mathrm{X}} \mathrm{P}(\mathrm{x} \mid \mathrm{TF})=\int \mathrm{dp}|\mathcal{M}|^{2} \mathrm{f}_{\mathrm{TF}}(\mathrm{x}, \mathrm{p}) \\
& \text { w.r.t TF parameters }
\end{aligned}
$$

Advantages

Same strategy as MC tuning

- find sample which is clean, and sensitive to TFs

No reliance on simulation

- this integral can be very fast (done analytically)

TFs naturally fit to give best description

- even if model is imperfect
- systematics can be extracted as well

First Try

Toy example
Smear with $10-\mathrm{GeV}$ width Gaussian

Extract parameters from smeared events

More realistic Transfer Functions

Smear partons with double Gaussian TF
$2 \times 5=10$ parameters: $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, f$
[const and energy dep for each]
inspired by CDF transfer functions

Results

Events
Smear partons with TFs

Fit

Minimize 10D space with Minuit

Check
Resmear partons with fitted parameters

Caveats
No backgrounds, no ISR, etc

Parton energy 50-100

Parton energy 35-50

Parton energy 100-500

Issue \#4

Statistical applications
or
"Your talk was supposed to be on statistics..."

CDF Wh:
form discriminant for each event $P_{s} / P_{s}+P_{b}$
Create templates and fit for best signal rate $\mathrm{S}_{\text {best }}$

Specific template used for each mass M P_{s} not maximized over M

New approach for searches

Use mass shape information
Calculate likelihood (L) for each event as function of mass (M) and signal rate (S)

Define measured mass, signal as point (M,S) which maximizes joint L

Use Feldman-Cousins to set limits

Advantages

P explicitly a function of M

Example: heavy t' search
For true mass $=340$
For true signal $=8$

Contour

Region in true space for a measured value

Our 95\% CL band is made from all the true points whose 95% band in measured space includes our measured value.

If region includes $\mathrm{N}_{\text {signal }}=0$, set a limit If region excludes $\mathrm{N}_{\text {signal }}=0$, claim a discovery

Matrix-element-based likelihoods

-apply our physics intuition and a-priori knowledge

Technically have been primitive

- limited by CPU resources
- can/should apply same technology to ME-based MC generation as to ME-based likelihood calculations

Current weaknesses can be overcome

- Simulation dependence
- Statistical applications

Non-optimal information use:
For analysis at M_{h} only evaluate $P_{s}\left(M_{h}\right)$ no maximization over M_{h}

Well measured events contribute as much as poorly measured events

Limit at each point done independently $P_{s}(110)$ does not affect limit at $M_{h}=115$

Wide events have same effect as narrow events

Non-optimal information use:
For analysis at M_{h} only evaluate $P_{s}\left(M_{h}\right)$ no maximization over M_{h}

Well measured events contribute as much as poorly measured events

Limit at each point done independently $P_{s}(110)$ does not affect limit at $M_{h}=115$

Wide events have same effect as narrow events

