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New physics relevant to the LHC has over the last decade become a quite baroque field. From
the simple alternative of either (perturbative) supersymmetry of (strongly interacting) technicolor
we have evolved into a world of many different models attempting to solve the hierarchy problem,
provide a dark matter candidate and not get killed by electroweak precision data or flavor measure-
ments. This is an incoherent set of notes on all kinds of topics I have been thinking about in the
run-up to the LHC, and they have not been updated since...
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User manual

These notes are based on a set of SUPA lectures given in Edinburgh between 2005 and 2008. Each of them
lasted around eight hours and was meant to broaden everybody’s perspective on physics beyond the Standard
Model, explicitly including the lecturer’s. The text is divided into different topics:

1. supersymmetry is still the leading candidate for new physics at the LHC, at least when we look at the
number of search channels planned. This part is the only one which got updated more recently for a set
of talks at TASI-East in Mainz...

2. extra dimensions came to life in the late 1990s, when phenomenologists noticed that they could hijack US
faculty jobs from the string community claiming to work on similarly fundamental and beautiful concepts.
Since then, flat extra dimensions have kind of stalled in their development while warped extra dimensions
have become more popular as the weakly interacting description of strongly interacting models....

3. little Higgs models are a realization of an old idea: can we write down some kind of symmetry which
protects the Higgs mass as a Goldstone via its breaking mechanism.

4. models without a Higgs boson have been around longer than the Higgs boson, or at least our theoretical
insight that there should be one. They simply do not go away, so we should keep in mind that they might
be able to explain some very unfortunate experimental outcomes at the LHC.

Historically, two more SUPA lectures on QCD and on Higgs physics are not part of this writeup, but have
served as the basis for their own quite extensive lecture notes (arXiv:0910.4182). At a more advanced level,
this writeup has also lead to a review articles on new physics at the LHC together with David Morrissey and
Tim Tait (arXiv:0912.3259).
Last, but not least, the literature listed for each of these sections is not meant to cite the relevant research
papers. Instead, I collected a set of review papers or advanced lecture notes supplementing this set of lecture
notes in different directions of interest.

As the author of these notes I am confident that they are far from bug free. So if you think you read them very
carefully and you did not email me at least a handful typos and complaints about poor explanations, you did
not read them carefully enough.
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I. SUPERSYMMETRY

Supersymmetry is a well-established model to solve to problems of the Standard Model: first there exists a
theoretical problem, called the hierarchy problem. It describes the fact that our observed Higgs mass is light,
while in a quantum theory all scalar masses are expected to range around the upper cutoff scale of the theory.
Or in other words, the loop corrections to the Higgs mass and the counter term have to cancel to a very large
degree. The second problem is experimental: we know that dark matter exists and that is has a particle nature.
A TeV-scale extension of the Standard Model with a weakly interacting stable particle serves as an excellent
candidate to solve this problem. Finally, supersymmetry allows us to build a grand unified theory as well as
possible links to gravity and super-strings.

When giving a brief introduction into supersymmetry at this level we have to make a choice at the very
beginning. We could, for example, begin with the supersymmetry as the last missing piece in the set of
symmetries of our Standard Model. However, from there we will never make it to a semi-detailed account
of the minimal supersymmetric Standard Model (MSSM). Similarly, we could generalize our four-dimensional
space-time to a superspace with additional supersymmetric directions, and again we would not make it to the
MSSM.
The way supersymmetry is presented here is therefore mathematically hand-waving. We start by writing
down the Lagrangian for example of QED and then step by step supersymmetrize it. We guess the SUSY
transformations of the fields, then check that our SUSY-QED Lagrangian is indeed supersymmetric, and then
derive an algebra of the SUSY transformation. This approach closely follows the lecture notes by Ian Aitchison
(hep-ph/0505105), slightly re-ordered and shortened in many places.
One aspect of supersymmetry which we will focus on a little closer are the different sources of scalar self
couplings. Mathematically they might not be the most important structures in supersymmetry, but when
constructing the MSSM and its Higgs sector they play a crucial role we will discuss in some length.

A. Supersymmetry as an extended symmetry

Before we can construct a supersymmetric gauge theory we need to briefly think about all symmetry operators
we can apply to such a theory. These operators we can classify according to their Lorentz structure, following
the original approach of Haag, Lopuszanski, and Sohnius (1975):

– Lorentz scalar, e.g. charge, isospin

– four-vector, e.g. space-time translations

– antisymmetric tensor, e.g. angular momentum

– symmetric tensor, but not allowed due to Coleman-Mandula theorem

The one structure not listed above, but which is nevertheless allowed is an operator with a spinor charge

Q|J〉 =

∣∣∣∣∣J ± 1

2

〉
, (1)

where J is the spin of the field or particle involved. In our usual gauge theories such a symmetry operator
used to be unthinkable because spin fixes (Fermi- or Bose-Einstein) statistics and distinguishes matter from
interaction particles.

An obvious observation is that under a supersymmetry transformation

Q|φ〉 → |Q̃〉

spin 0→ spin
1

2
(2)

degrees of freedom should not vanish. So the question becomes what the fermionic partner of a complex scalar
(2 dof) might be. A Dirac spinor obeying the Dirac equation (i∂µγµ − m)Ψ = 0 has four entries, which in
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general means it represents four degrees of freedom on its mass shell. One way to reduce the degrees of freedom
of a Dirac fermion is via chirality projections

PL,R =
1± γ5

2
=

1

2

(
1±

(
1 0
0 −1

))
=


(

1 0
0 0

)
(

0 0
0 1

) .

This means we can use it to dissect a Dirac spinor,

Ψ =

(
ψ
χ

)
⇒ PLΨ =

(
ψ
0

)
and PRΨ

(
0
χ

)
. (3)

The two chiral fermion fields φ and χ have two degrees of freedom on-shell or four degrees of freedom off-shell.
The obey the two-component Dirac equation

σµpµψ =mχ

σ̄µpµχ =mψ , (4)

in terms of the 2× 2 Pauli matrices

σµ =

(
1 ,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
σ̄µ =

(
1 ,

(
0 −1
−1 0

)
,

(
0 i
−i 0

)
,

(
−1 0
0 1

))
. (5)

They are hermitian (σµ)† = σµ, (σ̄µ)† = σ̄µ and normalized σiσi = 1. Note that Eq.(4) indicates that the two
chiral fields are mixed by their mass, i.e. in the presence of a finite fermion mass m we have to automatically
consider both components and hence the complete Dirac spinor. Now, we can write a Lagrangian for a massive
fermion in Weyl spinors

L ⊃ Ψ(iγµ∂µ −m)Ψ = ψ†iσµ∂µψ + χ†iσ̄µ∂µχ−m(ψ†χ+ χ†ψ) . (6)

After this short discussion of notation, let us construct a supersymmetric, massless QED.

1. Scalar electron partner

Following the discussion above, massless QED means that in the full Lagrangian we can pick either χ or ψ
for the fermion field and then add a complex scalar field. The kinetic term for the Weyl fermion follows from
Eq.(6),

L = ∂µφ
†∂µφ+ χ†iσ̄µ∂µχ . (7)

We postpone a look at the degrees of freedom at this stage. The scalar field fulfills the a Klein-Gordon equation
of motion,

∂µ

(
∂L

∂(∂µφ†)

)
− ∂L
∂φ

= 0 ⇒ ∂µ∂
µφ ≡ �φ = 0 . (8)

The question is if this Lagrangian can ever be supersymmetric under a transformation of the kind{
φ
χ

}
SUSY−→

{
χ
φ

}
+ δξ

{
φ
χ

}
. (9)
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Generally, we can define a SUSY transformation proportional to a spinorial generator ξ. We can to some
degree guess its form step by step: obviously, the variation of the scalar field δξφ has to be a Lorentz invariant
proportional to the fermion field χ. The corresponding transposed spinor is going to be the spinorial shift ξT .
Because of Lorentz invariants the two Weyl spinors need to get contracted through the antisymmetric tensor
εij = −iσ2. This gives us

δξφ = ξT (−iσ2)χ = (ξ1ξ2)

(
0 −1
1 0

)(
χ1

χ2

)
. (10)

The mass dimensions are [δξφ] = 1, [χ] = M3/2, and correspondingly [ξ] = M−1/2.

Following similar arguments we can try to construct the SUSY transformation of the scalar field. First, the
mass dimensions of all fields are [δξχ] = M3/2, [ξ] = M−1/2, and [φ] = M . That suggests that δξχ ∼ φξ lacks
a partial derivative ∂µφ with [∂µ] = M to increase the mass dimensions on the right hand side. Next, Lorentz
invariance requires us to saturate the open index in δξχ ∼ (∂µφ)ξ with the only structure we have at hand, the
Pauli matrices. As mentioned above, this is not Lorentz invariant unless we replace ξ → iσ2ξ

∗. Including a
free normalization factor A this gives

δξχ = −Aiσµ(iσ2ξ
∗)(∂µφ) . (11)

Note that compared to Aitchison’s review we are choosing a different sign of A.

Before we tackle the actual Lagrangian we also need the transformations of the hermitian conjugate fields:

δξφ
† =χ†(iσ2)ξ∗ in analogy to (A ·B)† = B†A†

δξχ
† =−A(∂µφ

†)(ξT iσ2)iσµ . (12)

By brute force we then find

δξL =δξ
[
∂µφ

†∂µφ+ χ†iσ̄µ∂µχ
]

=∂µ(δξφ
†)∂µφ+ ∂µφ

†∂µ(δξφ) + (δξχ
†)iσ̄µ∂µχ+ χ†iσ̄µ∂µ(δξχ)

=∂µ(χ†λσ2ξ
∗)∂µφ− ∂µφ†∂µ(ξT iσ2χ)−A(∂µφ

†)(ξT iσ2iσ
µ)(iσ̄ν∂νχ)−Aχ†iσ̄ν∂νiσµiσ2ξ

∗∂µφ
?
= 0 . (13)

For illustration purposes we limit ourselves to only terms including ξ∗,

δξL
∣∣∣
ξ∗

= ∂µχ
†iσ2ξ

∗∂µφ+ iAχ†σ̄ν∂νσ
µσ2ξ

∗∂µφ

= i(∂µχ
†)σ2ξ

∗∂µφ+ iAχ†σ2ξ
∗(∂µ∂

µφ) using σ̄ν∂νσ
µ∂µ = (∂0 + σ̄ ~∇)(∂0 − σ̄ ~∇) = ∂2

0 − ~∇2 = ∂µ∂
µ

A=1
= i∂µ

(
χ†σ2ξ

∗(∂µφ)
)

(14)

The supersymmetric variation of the Lagrangian, shown here only for the term proportional to ξ∗, becomes a
total derivative exactly for A = 1. Because total derivatives in the Lagrangian do not have any physical effect
this uniquely fixes A and with it the supersymmetry transformations of φ and χ. Under those assumptions
L = ∂µφ

†∂µφ+ χ†iσ̄µ∂µχ is indeed supersymmetric under the two transformations

δξφ = −iξTσ2χ δξχ = σµ(σ2ξ
∗)(∂µφ) . (15)

2. Wess-Zumino model

If we assume that φ and χ transform into each other under SUSY transformations they will form some kind of
supersymmetric multiplet. The question arises if successive SUSY transformations simply transform the two
fields into each other or under what circumstances this happens. In particular, we might hope that such a
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condition leads us to a specific form of the algebra of SUSY transformations which per se do not commute.
Again, we simply compute

[δη, δξ] φ = (δηδξ − δξδη) φ =− iδη(ξTσ2χ)− (ξ ↔ η)

=− iξTσ2δηχ− (ξ ↔ η) δη only acting on SUSY fields

=− iξTσ2(−iσµiσ2η
∗)∂µφ− (ξ → η)

=− iξTσ2σ
µσ2η

∗∂µφ− (ξ ↔ η)

=− iξT (σ̄µ)T η∗∂µφ− (ξ ↔ η) using σ2σ
µσ2 = (σ̄µ)T

=− i(ξT σ̄µT η∗)T∂µφ− (ξ ↔ η) just a number cT ≡ c
= + iη†σ̄µξ∗∂µφ− (ξ ↔ η) sign from Grassmann ξ , (16)

giving us

[δη, δξ] φ = i(η†σ̄µξ∗ − ξ†σ̄µη∗) ∂µφ . (17)

The mass units [φ] = M , [η†] = M−1/2 = [ξ], and [∂µφ] = [∂µ][φ] = M2 match. This relation suggests an
operator identity [δη, δξ] = (η†σ̄µξ − ξ†σ̄µη)∂µ defining the algebra of the SUSY transformations. Before we
can postulate such an operator relation we should compute the commutator acting on the Weyl fermion χ, still
on foot and bare of any elegance:

δηδξχ =δησ
µσ2ξ

∗∂µφ

=σµσ2ξ
∗∂µ(δηφ)

=σµσ2ξ
∗∂µ(−ηT iσ2χ)

=− iσµσ2ξ
∗ηTσ2∂µχ

= . . . skipping Aitchison Eqs.(241-247)

=− iη(ξ†σ̄µ∂µχ) + iηTσ2σ
µσ2ξ

∗∂µχ

=− iη(ξ†σ̄µ∂µχ)− i(ξ†σ̄µη∗)∂µχ . (18)

If we want to prove Eq.(17) on the operator level the second term is exactly what we want, while with first
term is not at all appreciated.
To get rid of the first term we now have a look at the degrees of freedom for the off-shell fields, i.e. without
requiring them to obey their respective equation of motion.

φ : complex scalar field, 2 entries or d.o.f.  ψ/χ : complex Weyl spinors, 4 entries or d.o.f. (19)

The degrees of freedom of our two fields do not match, which means that the SUSY transformations cannot
simply transform one of them into the other and back. What we need is an additional field F with two degrees
of freedom. This will then give us the freedom to choose its SUSY transformation δξF as well as its contributions
to δξφ and δξχ proportional to F such that

1. the commutator [δη, δξ] acts identically on all three fields and closes for the complete multiplet {φ, χ, F}

2. L(φ, χ, F ) is SUSY-invariant, modulo total derivatives

We might hope to limit F to an auxiliary field, which means it should neither propagate not couple to the two
physical fermion and scalar fields. If the Lagrangian is of the form LF ∼ F †F , with the corresponding mass
dimension [F ] = M2, the equation of motion for F becomes

∂µ

(
∂L

∂(∂µF †)

)
− ∂L
∂F

= −F † = 0 . (20)
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This way the auxiliary field F indeed does not propagate. Next, we construct the SUSY transformations,
starting with δξF ∝ ξTχ. The mass dimensions suggest δξF ∼ ξT∂µχ. We need to saturate the Lorentz index,
and it turns out that

δξF = −iξ†σ̄µ∂µχ and δξF
† = +i(∂µχ

†)σ̄µξ (21)

do the job.

To cure the problematic additional contribution to [δη, δξ]χ we postulate

δξφ = −iξTσ2χ , (22)

which gives us an additional contribution to Eq.(18)

δξχ
∣∣∣
F

= ξF

δηδξχ
∣∣∣
F

= δηξF = −iξη†σ̄µ∂µχ , (23)

cancelling the unwanted of the two terms and ensuring [δη, δξ]χ ∼ ∂µφ. Finally, the transformation of the scalar
field does not need to be changed,

δξχ = σµσ2ξ
∗∂µφ+ ξF . (24)

With that replacement the commutator [δη, δξ] acts the same way on our fermion and our scalar. The remaining
task is to check this operator identity acting on F ,

[δη, δξ] F =δηδξF − (η ↔ ξ)

=δη(−iξ†σ̄µ∂µχ)− (η ↔ ξ)

=− iξ†σ̄µ∂µ(δηχ)− (η ↔ ξ)

=− iξ†σ̄µ∂µ(σνσ2η
∗∂νφ+ ηF )− (η ↔ ξ)

=− iξ†σ̄µσνσ2η
∗∂µ∂νφ− iξ†σ̄µη∂µF − (η ↔ ξ)

=i(−ξ†σ̄µ + η†σ̄µξ) ∂µF , (25)

where in the last step the first term vanishes after adding the permutation of η and ξ. This means that for all
three fields in the supersymmetric multiplet {φ, χ, F} the SUSY algebra becomes

[δη, δξ] = i(η†σ̄µξ∗ − ξ†σ̄µη∗)∂µ . (26)

To test the second requirement on our wish list we need to compute the SUSY transformation of the terms
including F in the Lagrangian

δξF
†F =(δξF

†)F + F †δξF

=i(∂µχ
†)σ̄µξF − iF †ξ†σ̄µ∂µχ

δξ(χ
†iσ̄µ∂µχ)

∣∣∣
F

=(δξχ
†)iσ̄µ∂µχ+ iχ†σ̄µ∂µ(δξχ)

∣∣∣
F

=iF †ξ†σ̄µ∂µχ+ iχ†σ̄µξ∂µF . (27)

Adding both contributions indeed leaves us with the total derivative δξLF ∼ i∂µ(χ†σ̄µξF ).

What we derived is the Lagrangian of the Wess-Zumino model

LWZ = ∂µφ
†∂µφ+ iχ†σ̄µ∂µχ+ F †F , (28)
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with a massless Weyl fermion χ, a massless charged scalar φ, and an auxiliary field F . The latter can be
replaced by its equation of motion,

∂L
∂F

= F † = ∂µ

(
∂L

∂(∂µF †)

)
= 0 ⇔ F = 0 (29)

This means that in the Wess–Zumino Lagrangian the auxiliary field makes little sense. This will change when
eventually we introduce additional terms, which give it a on-trivial equation of motion.

3. Fermionic photon partner

After super-symmetrizing the matter content we next describe the photon in a supersymmetric Lagrangian.
Starting with the photon with two on-shell degrees of freedom we expect another Weyl fermion to appear, the
photino with two degrees of freedom. This is at least true if we pretend to not have learned anything from the
appearance of the F field; we really expect the photino and another auxiliary field to match all off-shell degrees
of freedom.

A good guess for the Lagrangian of the supersymmetric abelian U(1) gauge sector is

L = −1

4
FµνF

µν + iλ†σ̄µ∂µλ with Fµν = ∂µAν − ∂νAµ . (30)

The fermionic part completely corresponds to the Wess-Zumino Lagrangian Eq.(28). The difference between
the electron and the photino is the charge: for QED the electron has a fundamental charge and the photino is
neutral, while for QCD the quarks will carry fundamental color charge and the gluino adjoint color charge.

Next, we guess the SUSY transformations of the photon and the photino fields. The mass unit of the transformed
photon field is [δξA

µ] = M , while on the left hand side we expect [ξ] = M−1/2 and [λ] = M3/2 to appear. This
would allow us to write δξA

µ ∼ ξσ̄µλ, including the Lorentz index on the right hand side while avoiding ∂µ

and its mass unit. In addition, we need to ensure that Aµ is a real field, so we postulate

δξA
µ = ξ†σ̄µλ+ h.c. = ξ†σ̄µλ+ λ†σ̄µξ . (31)

We construct the SUSY transformation for the photino field in terms of the gauge-invariant field strength tensor
appearing in the Lagrangian. Its mass dimension is [Fµν ] = M2. If the basic structure is δξλ ∼ ξFµν we need
to contract two Lorentz indices. A good guess, modulo a normalization constant, is

δξλ = C
i

2
σµσ̄νξFµν and δξλ

† = −C∗ i
2
ξ†σ̄νσµξFµν . (32)

As before, we can compute the SUSY transformation of the Lagrangian to adjust the normalization factor C

δξ

(
−1

4
FµνF

µν

)
=− 1

4
((δξFµν)Fµν + Fµν(δξF

µν))

=− 1

4
((∂µδξAν − ∂νδξAµ)Fµν + Fµν(∂µδξA

ν − ∂νδξAµ))

=− 1

2
(∂µδξAν − ∂νδξAµ)Fµν

=− 1

2
∂µδξAν F

µν +
1

2
∂νδξAµ F

µν

=− ∂µ(δξAν) Fµν with Fµν = −F νµ

=− Fµν∂µ(ξ†σ̄νλ+ λ†σ̄νξ) . (33)
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The photino contribution gives us an additional contribution, only considering the part proportional to ξ†,

δξ(iλ
†σ̄µ∂µλ)

∣∣∣
ξ†

=i(δξλ
†)σ̄µ∂µλ

∣∣∣
ξ†

+ iλ†σ̄µ∂µ(δξλ)
∣∣∣
ξ†

=
C∗

2
ξ†σ̄νσµFµν σ̄

ρ∂ρλ

=
C∗

2
ξ†(σ̄νσµσ̄ρ)Fµν∂ρλ

=
C∗

2
ξ†[gνµσ̄ρ − gνρσ̄µ + gµρσ̄ν − iεµνρσσ̄σ] Fµν∂ρλ

=
C∗

2
ξ†[−gνρσ̄µ + gµρσ̄ν − iεµνρσσ̄σ] Fµν∂ρλ integration by parts Fµν∂ρλ ∼ λ∂ρFµν

=
C∗

2
ξ†[−gνρσ̄µ + gµρσ̄ν ] Fµν∂ρλ using εµνρσ(∂ρ∂µAν − ∂ρ∂νAµ) = 0

=
C∗

2
ξ†[−σ̄µ∂νλ+ σ̄ν∂µλ]Fµν

=
C∗

2
ξ†[+σ̄ν∂µλ+ σ̄ν∂µλ]Fµν using again Fµν = −Fνµ

=C∗ξ†σ̄ν(∂µλ)Fµν , (34)

which precisely cancels the ξ† contribution from the photon’s kinetic term in Eq.(33), provided C∗ = 1,

δξλ =
i

2
σµσ̄νξFµν . (35)

This way the non-interacting photon-photino Lagrangian is, just like the electron-selectron Lagrangian, super-
symmetric in itself.

To confirm the SUSY algebra Eq.(59) we need to also compute [δη, δξ] acting on the photon and the photino
fields. Without going into the details we quote the result that again the algebra does not hold when we apply
it to the photino field λ. Remembering the off-shell degrees of freedom the photon as a general gauge boson
indeed has three degrees of freedom while the Weyl spinor has four. We can solve this by introducing one
additional bosonic degree of freedom through a real scalar field D. What should the SUSY transformation of
this field look like? Based on the mass dimension [D] = M2 we can first try the same transformation as for
F shown in Eq.(21). The only additional modification needed is that the D field is real, so we have to form a
hermitian SUSY variation of D,

δξD = −i
(
ξ†σ̄µ(∂µλ)− (∂µλ)†σ̄µξ

)
. (36)

The transformation of the photino field follows the example of the electron, where the auxiliary field F is
replaced by D in Eq.(24),

δξλ =
1

2
σ̄µσ̄νξFµν + ξD . (37)

To the original photon–photino Lagrangian of Eq.(30) gets the expected D2 correction for the real auxiliary
field,

L = −1

4
FµνF

µν + iλ†σ̄µ∂µλ+
D2

2
. (38)

If we assume, as before, that the SUSY transformation of the photon field Fµν does not change, the two new
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contributions to the SUSY transformation of the Lagrangian are

δξ

(
1

2
D2

)
=D δξD

=− iDξ†σ̄µ∂µλ+ iD(∂µλ)†σ̄µξ

δξ(λ
†iσ̄µ∂µλ)

∣∣∣
D

=(δξλ
†)iσ̄µ∂µλ

∣∣∣
D

+ λ†iσ̄µ∂µ(δξλ)
∣∣∣
D

=iDξ†σ̄µ∂µλ+ iλ†σ̄µ∂µ(ξD)

=iDξ†σ̄µ∂µλ+ iλ†σ̄µξ∂µD

=iDξ†σ̄µ∂µλ+ i∂µ(λ†σ̄µξD)− i(∂µλ†)σ̄µξD (39)

The two contribution together form a total derivative. This means that The complete non-interacting photon-
photino Lagrangian is supersymmetric and the three fields {λ,Aµ, D} form a closed multiplet under the SUSY
algebra Eq.(59). As for the Wess–Zumino Lagrangian the auxiliary field at this stage would simply be removed
through its equation of motion D = 0. However, we will see that this is not the final word.

4. Supersymmetric QED

In the last two sections we have derived individual Lagrangians for the electron-selectron multiplet and for the
photon-photino multiplet. Combining the two we can build the Lagrangian of supersymmetric QED. The only
thing we need to remember is how interactions appear through the covariant derivative

∂µ → Dµ := ∂µ + iqAµ . (40)

This construction ensures that the Lagrangian is gauge invariant. This has two aspects: first, replacing ∂µ
in the actual Lagrangian ensures gauge invariance of the Lagrangian defined as a combination of Eq.(28) and
Eq.(38),

L = (Dµφ)†(Dµφ) + iχ†σ̄µDµχ+ F †F † − 1

4
FµνF

µν + iλ†σ̄µ∂µλ+
D2

2
. (41)

Note the annoying double use of D,Dµ and F, Fµν which we nevertheless keep because they are standard in
the literature.

The covariant derivative appears in the kinetic term of the electrons just as in the usual QED, and it should
therefore appear in the supersymmetric version for the selectrons. This way both matter states will couple to
photons the same way. Because in QED the covariant derivative does not appear in the photon kinetic term, it
should also not appear for the photino. Otherwise the photino would couple to the photon, which should only
occur for a non-abelian gauge theory like supersymmetric QCD.
In addition, replacing ∂µ in the SUSY transformations keeps the SUSY transformations to break gauge invari-
ance, i.e. SUSY transformations and gauge transformations commute,

δξφ = −iξTσ2χ δξA
µ = αξ†σ̄µλ+ h.c.

δξχ = σµσ2ξ
∗Dµφ+ ξF δξλ = α

i

2
σµσ̄νξFµν + αξD

δξF = −iξ†σ̄µDµχ δξD = −iαξ†σ̄µDµλ+ h.c. (42)

The only change as compared to the original transformations is that we have shifted the SUSY transformation
in the photon–photino Lagrangian by ξ → αξ.

The Lagrangian Eq.(41) describes several interactions: the photon coupling to the selectron and the electron
related by a SUSY transformation of the matter fields; a non-abelian gluon would also couple to the gluino,
which is not the case for the photino. What we are missing in an electron-selectron-photino coupling for
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which there is no reason to be absent. So the more general question becomes: what terms can we add to the
Lagrangian in Eq.(41) while keeping the theory renormalizable and SUSY invariant?
When we think about ways to link the two Lagrangians consistent with our symmetries, two interaction terms
with a combined mass dimension four come to mind: first, the electron–selectron–photon vertex mentioned
above, with a massless charge Aq; and second, a selectron coupling to the auxiliary field in the photon multiplet

L → L+Aq
(
(φ†χ) · λ+ h.c.

)
+Bq φ†φD . (43)

Obviously, these interactions mix the two multiplets and hence mix the two transformations ξ and αξ. What
we need to compute it the SUSY transformation of the additional terms in the Lagrangian Eq.(43). Terms
appearing include

– A δξλ ⊃ A ξD giving a B-type contribution;

– B δξD ⊃ αB ξ†σ̄µDµλ giving an A-type contribution;

– B δξφ ⊃ B ξTχ giving an A-type contribution.

Skipping the details we quote that we would find Aα = −B from all B-type contributions involving D. In
addition, A = −2α follows from the A-type contributions plus the χχAµ term in original Lagrangian. Last but
not least, we find B = −1 once we induce φφAµ in original Lagrangian. All constraints combined give us for
the remaining free parameters

A = −
√

2 B = −1 α = − 1√
2
. (44)

The charge q is fixed by Dµ = ∂µ+ iqAµ and hence the electric charge of φ, χ, λ. The complete supersymmetric
QED Lagrangian reads

LSQED = (Dµφ)†(Dµφ) + iχ†σ̄µDµχ+ F †F − 1

4
FµνF

µν + iλ†σ̄µDµλ+
D2

2
−
√

2q
[
(φ†χ) · λ+ h.c.

]
− qφ†φD ,

(45)

with the scalar electron φ, the Weyl-fermion electron χ, the photon Aµ, and the photino λ. One thing to
remember at this stage: the electron-selectron-photino coupling is formulated in terms of the left-handed Weyl
spinor and the corresponding scalar field. This structure will not change once we include another, right-
handed, Weyl spinor to construct the Dirac spinor of a Standard Model fermion. Therefore, this coupling
defines something like ‘left-handed’ or ‘right-handed’ scalar partners as those scalars which couple to the two
chiralities of the Standard Model fermion.

5. Scalar interactions

The Lagrangian in Eq.(45) is complete and has all the symmetries we require, but it still includes two auxiliary
fields. Each of them can be removed by its equation of motion,

∂L
∂F

= F † = ∂µ

(
∂L

∂(∂µF †)

)
= 0 ⇔ F = 0

∂L
∂D

= D − qφ†φ = ∂µ

(
∂L

∂(∂µD†)

)
= 0 ⇔ D = qφ†φ (46)

First, we replace D, inducing four-scalar interactions proportional to the gauge coupling q. They are called
D-terms and read

LSQED ⊃
D2

2
− qφ†φD =

q2

2
(φ†φ)(φ†φ) = q2(φ†φ)(φ†φ) = −1

2
q2(φ†φ)2 (47)

LSQED = (Dµφ)†(Dµφ) + iχ†σ̄µDµχ+ F †F − 1

4
FµνF

µν + iλ†σ̄µDµλ−
√

2q
[
(φ†χ) · λ+ h.c.

]
− 1

2
q2(φ†φ)2 .
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Second, neither the supersymmetric QED Lagrangian nor the Wess-Zumino model of Eq.(28) make sense of an
auxiliary F field with a constant value zero. What we need is additional occurrences of F in the Lagrangian,
which will lead to a non-trivial equation of motion. In our search for supersymmetric and renormalizable terms
we can add a general function of the scalar field W (1)(φ) to the Wess-Zumino Lagrangian, in complete analogy
to Eq.(43),

LWZ → LWZ +
(
W (1)F + h.c.

)
(48)

This is the same spirit as adding a scalar Higgs potential to the Standard Model Lagrangian. The only condition
from renormalizability is that the mass dimension of W (1)(φ) has to be two. This gives rise to a non-trivial
equation of motion for F

∂L
∂F

= 0 ⇔ F † = −W (1) and F = −W † . (49)

The Wess–Zumino Lagrangian now reads

LWZ → LWZ + |W (1)|2 . (50)

If we only allow for one set of matter fields, that really is the end of the story, provided that the general
potential W (1)(φ) does not spoil the supersymmetry.
Finally (really!), introducing a general scalar potential should remind us of electroweak symmetry breaking in
the Standard Model. If we want to consider massive fermions, Eq.(6) tells us that we need to allow for two
Weyl spinors for the left-handed or right-handed electrons. Giving the corresponding Weyl fermions an index,
the Wess–Zumino Lagrangian with a generalized electron mass term becomes

LWZ → LWZ + |W (1)
i |

2 − 1

2

(
W

(2)
ij χ

†
iχj + h.c.

)
(51)

To be consistent, we also give the potential W (1)(φ) and index. With both of these new terms we again have
to ensure that the Wess–Zumino Lagrangian is supersymmetric, δξLWZ = 0. Skipping the derivation we quote
that this translates into the following requirements

1. ∂W
(2)
ij /∂φk has to be symmetric in the three possible indices (i, j, k);

2. ∂W
(2)
ij /∂φ

†
k = 0, which means we cannot use the conjugate scalar field in W

(2)
ij (φ);

3. the symmetry of the Lagrangian under SUSY transformations can be restored by requiring a single source
W (φ) of the two functions of the scalar fields, namely

W
(1)
i =

∂W

∂φi
and W

(2)
ij =

∂2W

∂φi∂φj
. (52)

Skipping many of the intermediate steps this gives us

δξL =− iW (2)
ij ξ†σ̄µχi∂µφj − iW (1)

i ξ†σ̄µ(∂µχi)

=− i ∂
2W

∂φi∂φj
ξ†σ̄µχi∂µφj − i

∂W

∂φi
ξ†σ̄µ(∂µχi)

=− i ∂
2W

∂φi∂φj
∂µφj ξ

†σ̄µχi + i∂µ

(
∂W

∂φi

)
ξ†σ̄µχi after integrating by parts

=i

[
− ∂2W

∂φi∂φj
∂µφj + ∂µ

∂W

∂φi

]
ξ†σ̄µχi

=i

[
− ∂2W

∂φi∂φj
∂µφj +

∂2W

∂φi∂φj
∂µφj

]
ξ†σ̄µχi = 0 . (53)
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If the scalar potentials should be renormalizable, a power series in the fields φj , and fulfill the above conditions,
we can translate the general form of Eq.(52) into

W =
mij

2
φ1φj +

yijk
6
φiφjφk

⇒ W
(1)
i = mijφj +

1

2
yijkφjφk

⇒ W
(2)
ij = mij + yijkφk (54)

These scalar potentials W (1) and W
(2)
ij give rise to a multitude of effects linked to the mass/Yukawa coupling

of the fermion χ,

|W (1)
i |2: φ mass term m2

ij

|W (1)
i |2: φ3 coupling mijyijk

|W (1)
i |2: φ4 coupling yijkyijk

W
(2)
ij χiχj : χ mass term mij

W
(2)
ij χiχj : φχ2 coupling yijk

These F -term contributions ensure that the scalar φ and fermion χ masses match as well as the self couplings
φ3 and φ4 and the φχχ Yukawa couplings match. All couplings are proportional to the particle masses and
come in addition to the gauge-sector D-terms. We can safely assume that the many scalar interactions will
make the corresponding supersymmetry calculations lengthy. On the other hand, we will see below that the
F -terms and D-terms are crucial to understand the structure of the MSSM Higgs sector.to here

B. Superfields

One problem with this derivation of the supersymmetric Lagrangian is that the algebra of SUSY generators
drops on our heads out of nowhere. What we found is that the matter (chiral) and photon (vector) multiplets
closed under

[δη, δξ] = iη†σ̄µξ∗∂µ + h.c. . (55)

From quantum mechanics we know that in position space the derivative on the right hand side corresponds
to the momentum operator. We can try to write the known SUSY transformation φ → φ + δξφ in terms of
SUSY generators Q,

(1 + iξ ·Q)φ (1− iξ ·Q) = φ+ iξ ·Qφ− iφξ ·Q = φ+ i[ξ ·Q,φ] with ξ ·Q ≡ −iξTσ2Q . (56)

If we identify this with a Lorentz-invariant infinitesimal transformation defined by the SUSY generator Q and
the spinor-valued shift parameter ξ we find

δξφ = −iξTσ2χ
?
= i[ξ ·Q,φ] . (57)

This is not yet the complete form. From the calculations we did until now we remember that there are two
independent SUSY shifts, ξ and ξ∗, which means we should include a second commutator ξ̄ · Q̄ ≡ ξ†iσ2Q

∗ and
arrive at

δξφ
?
= i[ξ ·Q+ ξ̄ · Q̄, φ] . (58)
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In terms of these SUSY generators we can let the SUSY algebra fall on our heads and at least get a rough idea
what it means

{Qa, Qb} =0

{Q†a, Q
†
b} =0

{Qa, Q†b} =(σµ)abPµ . (59)

The SUSY generators just like fermion field operators anti-commute, and we replace i∂µ ↔ Pµ.

Beyond infinitesimal transformations we can interpret ξ as a coordinate θ of a superspace (x, θ, θ∗), made out of
space-time and two additional Grassmann directions. A superspace transformation of a superfield Φ(x, θ, θ∗),
which we still have to define, reads

Φ(x, θ, θ∗) = U(x, θ, θ∗) Φ(0, 0, 0) U−1(x, θ, θ∗) with U(x, θ, θ∗) = eix·P eiθ·Qeiθ̄·Q̄ . (60)

The generalized finite unitary transformations includes the proper definitions of x · P , θ · Q, and θ̄ · Q̄. Two
successive superspace transformations are defined as U(a, ξ, ξ∗)U(x, θ, θ∗) Φ(0) U−1(x, θ, θ∗)U−1(a, ξ, ξ∗) and
can be calculated using the Baker-Campbell-Hausdorff formula

eAeB = eA+B+ 1
2 [A,B]+ 1

6 [[A,B]B]+... . (61)

Our SUSY algebra from Eq.(59) gives for this repeated transformation

U(a, ξ, ξ∗)U(x, θ, θ∗) Φ(0) U−1(x, ξ, ξ∗)U−1(a, θ, θ∗) = Φ(x+ a− iθσµξ∗, θ + ξ, θ∗ + ξ∗) (62)

with an additional superspace shift 0→ xµ → xµ + aµ − iθσµξ∗.

Defining superspace and superfields living in this space is certainly a compelling concept. On the other hand,
the question is if we can make use of them. Because θ, θ∗ are Grassmann variables, i.e. for their components
there is (θ1)2 = 0 = (θ2)2, we can expand any superfield as a finite Taylor series. For illustration purposes we
again focus on one of the two Grassmann directions,

Φ(x, θ) = Φ0(x) + θ · Φ1(x) +
θ · θ

2
Φ2(x) (63)

In that approximation the superspace shift reads

δξΦ(x, θ) =− iθσµξ∗∂µΦ(x, θ) + ξ · ∂
∂θ

Φ(x, θ)

=− iθσµξ∗ ∂µ
(

Φ0 + θ · Φ1 +
θ · θ

2
Φ2

)
+ ξa

∂

∂θa

(
Φ0 + θ · Φ1 +

θ · θ
2

Φ2

)
=− iθσµξ∗

(
∂µΦ0 + θ · ∂µΦ1 +

θ · θ
2
∂µΦ2

)
+ ξ · Φ1 + (ξ · θ) Φ2

=ξ · Φ1 − iθσµξ∗∂µΦ0 + (ξ · θ) Φ2 − iθσµξ∗(θ · ∂µΦ1) with Grassmann components θa

!
=(δξΦ)0 + θ · (δξΦ)1 +

θ · θ
2

(δξΦ)2 . (64)

Term by term in powers of θ we can identify these two results, giving us

δξΦ0 = ξ · Φ1

θ · δξΦ1 = −iθσµξ∗∂µΦ0 + (ξ · θ)Φ2 = θ · σµσ2ξ
∗∂µΦ0 + (θ · ξ)Φ2

(θ · θ) δξΦ2 = −iθσµξ∗(θ · ∂µΦ1) = −(θ · θ) iξ†σ̄µ∂µΦ1 with σ2σ
µσ2 = σ̄µT (65)

We we define a chiral, matter superfield as

Φ(x, θ) = φ(x) + θ · χ(x) +
θ · θ

2
F (x) (66)
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This returns our individual transformations of Eq.(22), Eq.(24), and Eq.(21),

δξφ = ξ · χ
δξχ = σµσ2ξ

∗∂µφ+ ξF

δξF = −iξ†σ̄µ∂µχ , (67)

but in a much more elegant manner.

C. The MSSM

One aspect of supersymmetric QED we have neglected until now is fermion masses. Our current Lagrangian
only includes a right-handed electron field, according to Eq.(6) not enough to give mass to the electron. Note
that this does not mean that our scalar electron is massless. Even though this is really a trivial change we still
need to include a left-handed electron ψ and its scalar partner φL. Our theory then contains a Dirac fermion
e± ≡ Ψ = (ψ, χ) and a set of left and right scalar electrons ẽL,R. The vector field Aµ is the photon, so the only
question left is what to do with the one remaining Weyl spinor λ. We can construct a four spinor out of λ and
−iσ2λ

∗

ΨM =

(
λ

−iσ2λ
∗

)
. (68)

It has the correct Lorentz transformation properties and under charge conjugation gets mapped on itself. This
means that the photino, a Majorana fermion, is its own anti-particle. Just a side remark concerning charges of
Majorana spinors: for example in the kinetic term in a hermitian Lagrangian we see that they have to be real.
This is possible for example for the adjoint representation of SU(N).

As discussed already, there are two multiplets which form the Lagrangian of supersymmetric QCD. The set of
(chiral) multiplets containing all matter particles in the MSSM are, with their charges

scalar fermion SU(3)C SU(2)L U(1)Y
(ũL, d̃L) (uL, dL) 3 2 1/3

ũR uCR 3̄ 1 −4/3

d̃R dCR 3̄ 1 2/3

(H+
u , H

0
u) (H̃+

u , H̃
0
u) 1 2 1

(H0
d , H

−
d ) (H̃0

d , H̃
−
d ) 1 2 −1

Remember that the Yukawa couplings arise from W
(2)
ij and supersymmetry explicitly requires ∂W

(2)
ij /∂φ

†
2 = 0.

This is once reason why we need two Higgs doublets to give mass to up-type and down-type fermions, instead
of H and H† in the Standard Model. Because of the supersymmetry the masses of the fermion and the two
scalar fermions are identical.

The second kind of multiplet are gauge multiplets which include interaction fields and their fermionic partners

fermion boson SU(3)C SU(2)L U(1)Y
g̃ g 8 1 0

W̃±, W̃ 0 W̃±W 0 1 3 0

B̃ B 1 1 0

The fact that the Goldstone modes in the Higgs doublets are absorbed by the massive weak gauge fields W±

and Z0 indicates that there is no reason why the weak gauginos and the Higgsinos should not mix. The two
mass matrices for the neutralinos and charginos then read

mB̃ 0 −cβswmZ +sβswmZ

0 mW̃ +cβcwmZ −sβcwmZ

0 −µ
symmetric −µ 0


(

mW̃±

√
2sβmW√

2cβmW µ

)
(69)
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with sβ = sinβ and cβ = cosβ. The neutralino mass matrix is symmetric because if the Majorana nature of
the states.

A key ingredient of the MSSM, which we have never discussed in the construction of the Lagrangian, is R parity.
It implies that ever term in the Lagrangian includes an even power of supersymmetric partner fields. We need
it because if we really carefully search for gauge invariant, renormalizable and perfectly allowed terms in the
Lagrangian we will find superpotential terms of the kind

W = λijkLiLj ēK + λ′ijkLiQj d̄k + λ′′ijkūid̄j d̄k (70)

involving quark and lepton fields. Proton decay mediated through these renormalizable interactions

is about the last thing we want, because the proton life time is experimentally constrained to exceed ∼ 1016 GeV
What we need is a suppression of well over 10 orders of magnitude, so the decay operator should include at
least one factor 1/MGUT or 1/MPlanck. This is why we upgrade R parity to a global symmetry, based on the
charges

R =

{
+1 SM particles and 2HDM

−1 SUSY partners
or R = (−1)3B+L+2S (71)

in terms of the baryon number, the lepton number, and the spin of the particle. It forbids all interactions shown
in Eq.(70). This parity has another extremely useful effect: it does not allow the lightest supersymmetric particle
(LSP) to decay into two Standard Model states. If this LSP is stable and weakly interacting, it can serve as a
candidate for dark matter. The R parity can be upgraded to an R symmetry, but at the expense of adding a
significant number of degrees of freedom.

Last, but not least we need to talk about SUSY breaking. Unless we do something about it, SUSY predicts
new scalar particles with a mass of mẽ = me = 511 keV, which again is experimentally excluded. Going back
to the original motivation of supersymmetry we can precisely analyze what type of SUSY-breaking terms in
the Lagrangian are allowed without ruining the cancellation of quadratic divergences in the Higgs mass. These
terms are called soft breaking terms, and while they lead to logarithmic divergences, they by definition do not
re-introduce quadratic divergences. They include e.g. scalar masses, fermion masses, and trilinear scalar terms.
Instead of discussing SUSY breaking here, we refer to a great review on the topic by Steve Martin, the famous
supersymmetry primer hep-ph/9709356.
There, we can find careful discussion on different SUSY breaking mechanisms, or better different ways to
communicate SUSY breaking from a hidden sector into the visible sector. They include

– gravity mediation (mSUGRA)

– gauge mediation (GMSB)

– anomaly mediation (AMSB) in extra dimensions

– gaugino mediation (G̃MSB) in extra dimensions

· · ·

D. MSSM Higgs Sector

A major supersymmetric modification of the Standard Model particles and interactions happens in the Higgs
sector, without involving actual supersymmetric partners. Here, the MSSM introduced a set of new states with
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SM-like R parity. The reason is that supersymmetry requires ∂W
(2)
ij /∂φ

†
k = 0. Our scalar potential

W
(2)
i = ∂W/∂φi = mijφj + yijkφjφk/2 (72)

then forces us to introduce two Higgs doublets to introduce masses for up-type and down-type fermions.
From the Standard Model Higgs sector we know that the quartic Higgs self coupling is crucial to form the
Higgs potential. In supersymmetry we can make use of three different sources of scalar self interactions in the
Lagrangian. First, there are the F terms from the SUSY-conserving scalar potential introduced in Section I A 5

W ⊃ µHuDd for Hu =

(
H+
u

H0
u

)
Hd =

(
H0
d

Hd̄

)
LW = |µ|2

(
|H+

u |2 + |H−d |
2 + |H0

u|2 + |H0
d |2
)

(73)

In addition, we can use the gauge-coupling mediated SUSY-conserving D terms introduced at the end of
Section I A 3. For the Higgs sector they involve the abelian U(1) terms D = gφ+φ as well as the non-abelian
SU(2) terms Dα = g′

∑
i

φ+
i T

αφi with the Pauli matrices as generators Tα

LD =
g2

8

[((
|H+

u + |H0
u|2
)
−
(
|H−d |

2 + |H0
d |2
))2

+ 4|H+
u H

0
d +H0

uH
−
d |

2
]

+
g′2

8

[(
|H+

u |2 + |H0
u|2
)
−
(
|H−d |

2 + |H0
d |2
)]2

. (74)

Last, but not least we can use scalar masses and self couplings as part of the set of soft SUSY breaking terms

Lsoft = −m2
Hu

(
|H+

u |2 + |H0
u|2
)
−m2

Hd

(
|H−d |

2 + |H0
d |2
)

+ b
(
H+
u H

−
d −H

0
uH

0
d + h.c.

)
. (75)

All these terms we can collect into the Higgs potential for a two Higgs doublet model

V =
(
|µ|2 +m2

Hu

) (
|H+

u |2 + |H0
u|2
)

+
(
|µ|2 +m2

Hd

) (
|H0

d |2 + |H−d |
2
)

+ b
(
H+
u H

−
d −H

0
uH

0
d + h.c.

)
+
g2 + g′2

8

(
|H+

u |2 + |H0
u|2 − |H−d |

2 − |H0
d |2
)2

+
g2

2
|H+

u H
0
d +H0

uH
−
d |

2 (76)

Because now we have two Higgs doublets to play with we can first rotate them independently. First, we choose
H+
u = 0 at the minimum of V , i.e. at the point given by ∂V/∂H+

u = 0. This translates into the condition

bH−d + g2H0
dH

0
uH
−
d =

(
b+ g2H0

dH
0
u

)
H−d = 0 , (77)

where the terms quadratic in H+
u do not contribute. One way to fulfill this condition is by requiring the term

in parentheses to vanish. For the term proportional to b in V this means

V ⊃ b
(
H+
u H

−
d −H

0
uH

0
d + h.c.

)min
= −2bH0

uH
0
d = 2g2|H0

u|2|H0
d |2 > 0 , (78)

independent of the sign of b. This does not help to find a minimum for the potential. The second way to fulfill
Eq.(77) is to require H−d = 0, which gives us a minimum value of

V =
(
|µ|2 +m2

Hu

)
|H0

u|2 +
(
|µ|2 +m2

Hd

)
|H0

d |2 − b
(
H0
uH

0
d + h.c.

)
+
g2 + g′2

8

(
|H0

u|2 − |H0
d |2
)2

=
(
|µ|2 +m2

Hu

)
|H0

u|2 +
(
|µ|2 +m2

Hd

)
|H0

d |2 − 2b|H0
u||H0

d |+
g2 + g′2

8

(
|H0

u|2 − |H0
d |2
)2

, (79)

where we absorb the phase of b into a rotation of H0
dH

0
u. At the minimum, the entire b term then becomes

real. One special direction of the potential is given by |H0
u| = |H0

d | ≡ |H0| which reduces the potential value at
the minimum to

V =
(
2|µ|2 +m2

Hu +m2
Hd
− 2b

)
|H0|2 . (80)
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The condition that the potential be bounded from below for electroweak symmetry breaking then gives

2|µ|2 +m2
Hu +m2

Hu > 2b . (81)

Aside from the pure existence of a minimum in the potential we need to ensure that this minimum is stationary
in both directions

0
!
=

∂V

∂|H0
u,d|

∣∣∣∣∣
|H0
i |=vi

=2
(
|µ|2 +m2

Hu,d

)
|H0

u,d| − 2b|H0
d |+

g2 + g′2

4

(
|H0

u,d|2 − |H0
d |2
)

2|H0
u,d|

∣∣∣∣∣
|H0
i |=vi

⇔ |µ|2 +m2
Hu,d

=b+
g2 + g′2

4

(
v2
d,u − v2

u,d

)
(82)

From the Standard Model Higgs sector we know that we can replace the gauge couplings squared by the gauge
boson masses

m2
Z =

g2 + g′2

2

(
v2
u + v2

d

)
m2
W =

g2

2

(
v2
u + v2

d

)
(83)

and define

tanβ =
vu
vd

or vu = v sinβ and vd = v cosβ (84)

with the usual v = 246 GeV. The stability conditions Eq.(82) then read

|µ|2 +m2
Hu = b cotβ +

m2
Z

2
cot 2β |µ|2 +m2

Hd
= b tanβ − m2

Z

2
cos 2β . (85)

This relation fixes for example b, but we will for now keep it to shorten our calculations and results.

Going back to the physics Higgs fields we start by counting the degrees of freedom in two Higgs doublets and
their functions in breaking electroweak symmetry

physical H+ long. W+ physical h0, H0 long. W 0
3 &physical A0

↘ ↙ ↘ ↙(
H+
u

H0
u

)
=

(
ReH+

u + i ImH+
u

vu + ReH0
u + i ImH0

u

) (
H+
d

H−d

)
=

(
vd + ReH0

d + i ImH0
d

ReH−d + i ImH−d

)
(86)

↗ ↖ ↗ ↖
physical h0, H0 long. W 0

3 &physical A0 physical H− long. W−

As expected, we have three Goldstone modes, ImH+
u , ImH−d , and one linear combination of ImH0

u and ImH0
d ,

giving mass to the W± and the Z0 boson. The remaining five degrees of freedom form scalar particles, one
charged Higgs boson H±, two neutral CP-even Higgs bosons H0

u, H
0
d mixing into the mass eigenstates h0 and

H0, and a pseudo-scalar Higgs boson A0 from the remaining imaginary part. The masses of the physical modes
are given by

2m2
i =

∂2V

∂|Hi|2

∣∣∣∣∣
|H0
j |=vj

. (87)
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As an illustration, let us first compute pseudoscalar mass mA0

V =
(
|µ|2 +m2

Hu

)
(ImH0

u)2 +
(
|µ|2 +m2

Hd

)
(ImH0

d)2 + 2b ImH0
u ImH0

d

+
g2 + g′2

8

[
(ReH0

u)2 + (ImH0
u)2 − (ReH0

d)2 − (ImH0
d)2
]2

∂V

∂(ImH0
u)

=2
(
|µ|2 +m2

Hu

)
ImH0

u + 2b ImH0
d +

g2 + g′2

8
2 [. . . ] 2 ImH0

u

∂2V

∂(ImH0
u)2

=2
(
|µ|2 +m2

Hu

)
+
g2 + g′2

2
[. . . ] +

g2 + g′2

2
ImH0

u 2 ImH0
u

∂2V

∂(ImH0
u)2

∣∣∣∣∣
vev

=2
(
|µ|2 +m2

Hu

)
+
g2 + g′2

2

(
v2
u − v2

d

)
=2b cotβ using Eq.(85) (88)

In complete analogy, we find ∂2V/∂(ImH0
d)2 = 2b tanβ in the minimum of the potential. The mixed double

derivative we can immediately read off as ∂2V/∂(ImH0
d)/∂(ImH0

u) = b. This means that there will be a mass
matrix for the two CP-odd Higgs and Goldstone modes

M2
A = b

(
cotβ 1

1 tanβ

)
with the eigenvalues

 m2
G0 = 0 Goldstone in Z0

m2
A0 =

2b

sin 2β
physical A0

The mixing angle between these two Goldstone/Higgs modes is given by β, the ratio of the two vacuum
expectation values contributing e.g. to mZ .

The same thing we can do the two CP-even scalar Higgs bosons, starting with ReH0
u

V ⊃
(
|µ|2 +m2

Hu

)
(ReH0

u)2 − 2b ReH0
u ReH0

d +
g2 + g′2

8

[
(ReH0

u)2 − (ReH0
d)2 + . . .

]2
∂V

∂(ReH0
u)

=2
(
|µ|2 +m2

Hu

)
ReH0

u − 2b ReH0
d +

g2 + g′2

8
2 [. . . ] 2 ReH0

u

∂2V

∂(ReH0
u)2

=2
(
|µ|2 +m2

Hu

)
+
g2 + g′2

2
[. . . ] +

g2 + g′2

2
ReH0

u 2 ReH0
u

=2
(
|µ|2 +m2

Hu

)
+
g2 + g′2

2
[. . . ] + (g2 + g′2) (ReH0

u)2

∂2V

∂(ReH0
u)2

∣∣∣∣∣
vev

=2
(
|µ|2 +m2

Hu

)
+
g2 + g′2

2

(
v2
u − v2

d + 2v2
u

)
=2
(
|µ|2 +m2

Hu

)
+
g2 + g′2

2

(
3v2
u − v2

d

)
=2b cotβ +

g2 + g′2

2

(
v2
d − v2

u

)
+
g2 + g′2

2

(
3v2
u − v2

d

)
using Eq.(85)

=2b cotβ +
(
g2 + g′2

)
v2
u

=2
(
b cotβ +m2

Z sin2 β
)

(89)

As before, we also need the mixed derivative, which now includes two terms

∂2V

∂(ReH0
u)∂(ReH0

d)

∣∣∣∣∣
vev

=− 2b+
g2 + g′2

2
ReH0

u (−2) ReH0
d

=− 2b− (g2 + g′2)v2 sinβ cosβ

=− 2b−m2
Z sin 2β

(90)
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From those results we obtain the mass matrix for the two CP-even Higgs bosons ReH0
u and ReH0

d

M2
h,H =

 b cotβ +m2
Z sin2 β −b− m2

Z

2
sin 2β

−b− m2
Z

2
sin 2β b tanβ +m2

Z cos2 β


=

 m2
A

2
sin 2β cotβ +m2

Z sin2 β −m
2
A +m2

Z

2
sin 2β

−m
2
A +m2

Z

2
sin 2β

m2
A

2
sin 2β tanβ +m2

Z cos2 β


=

 m2
A cos2 β +m2

Z sin2 β −m
2
A +m2

Z

2
sin 2β

−m
2
A +m2

Z

2
sin 2β m2

A sin2 β +m2
Z cos2 β

 (91)

with an additional mixing angle α and the mass eigenvalues

2m2
h0,H0 =m2

A +m2
Z ∓

((
m2
A +m2

Z

)2 − 4m2
Am

2
Z cos2 2β

)1/2

'm2
A ∓

(
m4
A − 4m2

Am
2
z cos2 2β

)1/2
for mA � mZ

'm2
A ∓m2

A

(
1− 4m2

Z

m2
A

cos2 2β

)1/2

m2
h0,H0 =

m2
A

2
∓ m2

A

2

(
1− 2m2

Z

m2
A

cos2 2β

)
=

{
m2
Z cos2 2β bound from above

m2
A high mass scale

(92)

In the same limit m2
A ∼ b� m2

Z we can immediately read off the the mixing angle α off the mass matrix

M2
h,H ' b

(
cotβ −1

−1 tanβ

)
⇒ α = β (93)

This summarizes the situation of the two-Higgs doublet model (type-II) which is part of the MSSM: instead of
one physical Higgs boson we have five of them. In the limit of large mA and large mH± the two CP-even Higgs
bosons split into a light state with a tree-level upper mass limit smaller than mZ and a heavy state at the same
mass scale as mA. This means that in terms of Higgs searches the MSSM is actually more predictive than the
Standard Model, where the Higgs mass is a free parameter. The reason is that instead of introducing a quartic
Higgs couplings λ we can use the set of scalar self interactions defined by the MSSM. Loop corrections mostly
from the top and stop self energies in the propagator of the light Higgs boson raise the upper limit on the Higgs
mass from the tree-level value below mZ to roughly 135 GeV, for a large mass splitting between the top quark
and its supersymmetric partners.

E. Literature

There are by now a great many text books and review articles on supersymmetry. Some which I really like is

– the very comprehensive review/book by Ian Aitchison (hep-ph/0505105) from where I took essentially all
formulas

– the standard review on slightly more advanced SUSY and SUSY breaking by Steven Martin (hep-
ph/9709356), continuously updated to lead our way to SUSY discovery at the LHC.

Acknowledgments: Supersymmetry is the model for new physics I grew up with as a graduate students. I
would like to thank all the people who taught me this model together with the firm conviction that there
has to be interesting physics out there. First and foremost this was Peter Zerwas, but also Michael Spira,
Wim Beenakker, and on the experimental side Giacomo Polesello and Dirk Zerwas. Finally, Uli Baur served
as a great role model when he criticized the MSSM believers and still never stopped believing that there is
interesting new physics waiting to be discovered.
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mφ A0

HWW,HZZ

H0 135 GeV

H±
←−

h0
hWW,hZZ

mA
↑

120 GeV

II. EXTRA DIMENSIONS

A. The Standard Model as an effective theory

Before we can even start talking about physics beyond the Standard Model, we have to define what we mean by
the Standard Model. For those of you who attended Graham Kribs’ journal club — remember the discussion
between him and Thomas Binoth. There are different ways we can look at the Standard Model, regardless of it
great success over by now many decades of measurements. Both approaches have basic structures in common:

– a gauge theory with the group structure SU(3)⊗ SU(2)⊗ U(1)

– massive electroweak gauge bosons masses through spontaneous symmetry breaking (Higgs mechanism
with v = 246 GeV and mH unknown)

– Dirac fermions in the usual doublets and with masses equal to their Yukawa couplings

There are two philosophies behind writing down a Lagrangian for this model:

1. write a renormalizable Lagrangian with all dimension–4 operators consistent with the particle content
and all symmetries

2. write a general effective–theory Lagrangian with these particles and all symmetries. Higher–dimension
operators will appear and have to be suppressed by some scale Λ

The difference between these two approaches are higher–dimensional operators, operators which have an explicit
suppression by a large mass. If this scale Λ is large enough, we might never see the difference between the two
approaches in high–energy experiments. If Λ is smaller, we might see the Standard Model break down as an
effective theory, for example at the LHC, and we should be able to determine its ultraviolet completion.

1. Experimental hints

LEP and Tevatron

LEP(2) and Tevatron experiments have for many years tested the Standard Model to energy scales of
100 · · · 500 GeV. All their results are in perfect agreement with the Standard Model, apart from that fact
that we could have seen direct evidence for the Higgs boson:
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– electroweak gauge bosons discovered with masses mW ∼ 80 GeV, mZ ∼ 91 GeV
no anomalous W,Z decays

– 6 quarks found, mt ∼ 172 GeV
typical decay t→ bW+ observed, no anomalous decays

– leptons, including τ as expected.

– electroweak precision data with global fit:
mH ∼ 110 GeV best value
mH / 250 GeV 1 σ bound
mH > 114 GeV from direct search at LEP2

Z
Z

H

e−

e+

ff

where ff are mostly H → bb and Z → l+l−, νν.

The possible problem with the electroweak precision data is the quality of the global fit. Its best χ2 value is
poor. A reason might be that some for example b observables might be inconsistent, but we do not know ⇒
not conclusive

Muon anomalous magnetic moment (g-2)

The anomalous magnetic moment of the muon is one of the best–measured parameters in high–energy physics,
even though most of the physics which goes into its determination we would call low–energy physics nowadays.
Unfortunately, the Brookhaven experiment, which recently delivered the best available measurement, has been
shut down. If you want to know more about this observable — Dominik Stöckinger recently wrote a great
review on it.

The measured value of the anomalous magnetic moment of µ is

aexp
µ =

1

2
(g − 2)exp

µ = (11659208± 6) · 10−10 (94)

while the Standard Model predictions range between two different approaches

aexp
µ − aSM

µ = (31.7± 9.5) · 10−10 : 3.3σ

aexp
µ − aSM

µ = (20.2± 9.0) · 10−10 : 2.1σ (95)

The general agreement in high–energy physics is: a 5 σ deviation from the background is called a discovery,

everything else is either a rumor or a hint or a matter of taste ⇒ not conclusive

Atomic parity violation

We know that electroweak gauge bosons have couplings which distinguish between the chirality of fermions
in the ff ′W and ffZ vertices. In the interaction between the nucleus and the electrons in an atom, this
interaction leads to parity violation, which can be measured:
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γZ

e

Cs

e
Beyond the Standard Model we can look for so–called leptoquarks, scalars or vectors which carry baryon and
lepton number and occur in the crossed channel compared to the usual γ, Z exchange:

S

e e
Again, this experiment in Boulder was terminated with around 2 σ discrepancy between the Standard Model

prediction and the final measurement ⇒ not conclusive

Cosmology

The last Nobel prize went to studies of the cosmic microwave background. The most recent WMAP data
(combined with large–scale structure measurements) confirms conclusively the existence of cold dark matter in
the universe:

ΩDMh
2 = 0.094 ... 0.129 (96)

where Ω = 1 is critical density for flat universe and h = H0/100 km/s/Mpc ∼ 0.7 is just a c–number connected
to the Hubble constant H0 ∼ 73 km/s/Mpc. Different measurements determine the matter content of the
universe (averaged over all distances) to:

– baryon density Ωb h
2 = 0.024± 0.001

– matter density Ωm h
2 = 0.14± 0.02

Error estimates are mixture of serious studies, chemistry and miracles. Such a dark matter particle is not part
of the Standard Model. Most generally, it could be a stable particle with electroweak interactions and a mass
around 200 GeV. Unfortunately, we have not observed such a particle in direct of indirect searches for dark

matter ⇒ conclusive!

Flavor Physics

Flavor physics has been a major effort over the last decade — in particular once we put together B and K
physics, neutrino physics, and low–energy searches for example for proton decay or neutrinoless double–beta
decay. Unfortunately, all these measurements have revealed little but the existence of a finite neutrino mass of
which we still do not know the over–all scale:

– proton decay not observed

– flavor changing neutral current not observed

– neutrinoless double–β decay not observed

– no unexplained effects in B physics
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– no unexplained effects in K physics

– ....

If we want to phrase it positively, we conclude that we have not found anything and not gained any clues for

physics beyond the Standard Model ⇒ unfortunately conclusive .

2. Theoretical hints

Let us start from assuming that the Standard Model is a renormalizable theory (it has no inverse powers of
mass in the Lagrangian). This means that it does not have a built–in energy scale where it breaks down.
An exception is gravity, because we know that at energies above the Planck scale 1019 GeV gravitational
interactions become strong and our world should be described by some combination of the Standard Model and
quantum gravity. All current observables probe scales E / 100 TeV = 105 GeV so we can ignore Planck–scale
or quantum gravity effects for now.

Standard Model beyond tree-level

At next–to–leading order, the (bare) leading order Higgs mass gets corrected by loops involving Standard Model
particles:

+

H

+

t

t

+

+ ...

W-Z

We can for example compute the 4–point Higgs loop with the coupling:

H H

= −3
4 ig

2 m
2
H

m2
W

The amplitude for this diagram is given in terms of the 4–momentum q in the loop and in terms of the cutoff
scale Λ. Note that the Standard Model with only dimension–4 operators does not offer an interpretation for
such a scale, so at the end of the argument we have to perform the limit Λ → ∞. Introducing a cutoff scale
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and sending it to infinity is certainly a physical regularization scheme:

M2
H =

∫ Λ d4q

(2π)4

(
−3

4
i...

)
1

q2 −m2
H

=

∫
d4q

(2π)4

(
1

q2 −m2
H

− 1

q2 − Λ2

)
Pauli–Villars regularization

= (m−H2 − Λ2)

∫
d4q

(2π)4

1

(q2 −m2
H)(q2 − Λ2)

= (m2
H − Λ2)

∫
d4q

(2π)4

∫ 1

0

dx

∫ 1

0

dy
2δ(1− x− y)

[(q2 −m2
H)x+ (q2 − Λ2)y]

2

= 2(m2
H − Λ2)

∫ 1

0

dx

∫ 1

0

dy δ(1− x− y)

∫
d4q

(2π)4

1

[q2 − xm2
H − yΛ2]

2

∼ 2(m2
H − Λ2)

∫ 1

0

dx

∫ 1

0

dy δ(1− x− y)
i

16π2

= − 2iΛ2

16π2

(
−3

4
ig2 m

2
H

m2
W

)
now with couplings

= − 3

32π2
g2 m

2
H

m2
W

Λ2 (97)

where in the first line we have set (−3/4i...) = 1 for simplicity. The Pauli–Villars regularization using a cutoff
scale Λ works as:

1

q2 −m2
H

− 1

q2 − Λ2
=


1

q2 −m2 q2LLΛ2

1
q2 − q2 q2 � Λ2

(98)

How does this affect the mass?

+ + +...

=
1

q2 −m2
H

+
1

q2 −m2
H

M2
H

1

q2 −m2
H

+
1

q2 −m2
H

M2
H

1

q2 −m2
H

M2
H

1

q2 −m2
H

+ ...

=
1

q2 −m2
H

∞∑
n=0

(
M2

H

1

q2 −m2
H

)n
=

1

q2 −m2
H

1

1−M2
H

1
m2 −m2

H

=
1

q2 −m2
H −M2

H

(99)

This means, the next–to–order contributions shift the leading–order unrenormalized mass m2
H,b to the un-

renormalized next–to–leading order value m2
H,b +M2

H . We could calculate all Standard–Model corrections

proportional to Λ2 and obtain:

m2
H = m2

H,b +
3g2

32π2

Λ2

m2
W

[
m2
H + 2m2

W +m2
Z −

4nf
3
m2
t

]
(100)

This form is dictated by the fact that the Higgs couples to every Standard–Model particle proportional to its
mass. This formula means that the unrenormalized Higgs mass will always be driven to the cutoff Λ of the
Standard Model, unless we do something about it.
The naive solution m2

H+2m2
W +m2

Z−4nfm
2
t/3 = 0 is called Veltman’s condition, but it is of course only 1–loop

solution. Moreover, talk to Martin Schmaltz about it and watch his (correct) rant about different particles in
the loop behaving differently in the Pauli–Villars regularization.
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Dimensional regularization

In modern calculations we usually use dimensional regularization, d4q → dNq. In his QCD book Rick Field
gives the formula for the relevant Feynman integral:∫

dNq

(2π)N
(q2)R

(q2 −m2)M
=

i(−)R−M

(16π2)N/4
(m2)R−M+N/2 Γ(R+N/2)Γ(M −R−N/2)

Γ(N/2)Γ(M)
(101)

With R = 0,M = 1, N = 4− 2ε we find∫
dNq

(2π)N
(q2)R

(q2 −m2)M
= − i

(16π2)N/4
(m2

H)−1+N/2 Γ(N/2)Γ(1−N/2)

Γ(N/2)Γ(1)

= − i

(16π2)1−ε/2 m
2−2ε
H

Γ(ε)

ε− 1

= − i

(16π2)1−ε/2 m
2−2ε
H

e−γEε

ε− 1

(
1

ε
+
ζ2
2
ε+ ...

)
We can use a simple trick xε = exp(log xε) = exp(ε log x) = 1 + ε log x+ ε2/2 log2 x+ ... to compute the limit
ε→ 0 ∫

dNq

(2π)N
(q2)R

(q2 −m2)M
=

i

16π2
m2
H

(
1

ε
+O(ε0)

)
(102)

The next–to–leading order contribution to the Higgs mass now looks like m2
H/ε +O(ε0) and will be removed

by for example on–shell or MS renormalization. The problem with this magical vanishing of the quadratic
divergence is that dimensional regularization (4− 2ε) is not a physical regularization scheme, as far as we can
see...

Numerical results

We can quantify the level of fine tuning, which would be required to remove the huge next–to–leading order
contributions using a counter term.

m2
H = m2

H,b +M2
H − δm2

H (103)

which using for example Λ = 10 TeV implies

δm2
H ∼M2

H =


− 3

8π2 λ
2
t Λ2 ∼ −(2 TeV)2 t loop

1
16π2 g

2 Λ2 ∼ (100 TeV)2 W loop

1
16π2 λ

2 Λ2 ∼ (500 TeV)2 H loop

(104)

For a varying cutoff scale Λ we find:

mH = m2
H,b − δm2

H +


(−100 + 10 + 5) (200 GeV)2 for Λ = 10 TeV

(−10000 + 1000 + 500) (200 GeV)2 for Λ = 100 TeV

...

(105)

To summarize our arguments for physics beyond the Standard Model, before we discuss possible scenarios, here
is the short list:

1. the experimental reason to believe in BSM physics is dark matter (or the experience that until now every
increase in energy has brought us in new physics). Any new 100 GeV WIMP can do the job

2. the theoretical reason to believe in BSM physics is the lack of stability of fundamental scalar masses in
perturbative field theory
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⇒ So what could this new physics at the TeV scale be?

supersymmetry cancel Λ2 terms

little Higgs (bosonic supersymmetry) cancel Λ2 terms

composite-Higgs models: technicolor, topcolor, ... cut off integral

extra dimensions ΛPlanck → TeV

... ...

B. Fundamental Planck scale in (4+n) dimensions

1. Einstein–Hilbert action and proper time

To understand the trick of extra dimensions, we have to generalize the Einstein–Hilbert action to (4 + n) > 4
dimensions.
Let’s first remember/learn what this action means (following e.g. Peacock’s book):

S = −1

2

∫
d4x
√
−gM2

? R (106)

The root
√
−g can also be written as

√
|g|, remembering that we are using the metric ηµν = (+,−,−,−).

Start with the relativistic distance between two space–time points

ds2 = ηµνx
µxν (107)

where we call

ds2 < 0, spacelike

ds2 = 0, lightlike

ds2 > 0, timelike(the only allowed for massive particles)

(108)

To get a feeling for what ds2 means let’s integrate it along a path in space–time:

– (trivial case of) object at rest: ∆xµ = (∆t, 0, 0, 0)∫
d4x
√
ds2 =

∫ √
ηµνxµxν =

∫ √
(dt)2 =

∫
dt = ∆t (109)

which is just the time felt by this observer at rest

– moving along x̂ direction∫
d4x
√
ds2 =

∫ √
(dt)2 − (dx)2 invariant under Lorentz trafos, go check...

=

∫ √
(dt)2 in proper Lorentz frame

= ∆t again time felt by the resting observer (110)

⇒ definition of proper time:

dτ =
√
ηµνxµxν (111)
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2. Free fall, metric and Christoffel symbols

Start with the equations describing a freely falling object

d2xµ

dτ2
= 0 equation of motion for trajectory xµ

dτ2 = ηµνdx
µdxν just definition of dτ2

dxµ =
∂xµ

∂yν
dyν coordinate transformation (112)

This means for the proper time

dτ2 = ηµνdx
µdxν

= ηµν
∂xµ

∂yρ
dyρ

∂xν

∂yσ
dyσ

=

(
ηµν

∂xµ

∂yρ
∂xν

∂yσ

)
dyρdyσ≡ gρσdyρdyσ (113)

→ definition of general metric tensor and its transformation law

gρσ = ηµν
∂xµ

∂yρ
∂xν

∂yσ
(114)

Similarly, we can transform the equation of motion (just sketched here)

dxµ

dτ
=
∂xµ

∂yν
∂yν

dτ

0 ≡ d2xµ

dτ2
=

d

dτ

∂xµ

∂yν
· ∂y

ν

dτ
+
∂xµ

∂yν
∂2yν

dτ2

=
dyν

dτ

∂xµ

∂yν∂yρ
∂yρ

dτ
+
∂xµ

∂yν
∂2yν

dτ2

⇔ 0 ≡ d2yν

dτ2
+ Γνρσ

dyρ

dτ

dyσ

dτ
(115)

→ definition of Christoffel symbol

Γνρσ =
∂yν

∂xµ
∂2xµ

∂yρ∂yσ
(116)

which together with the metric tensor completely describes the kinematics in general relativity. The next
question would be — can we express for example the Christoffel symbol in terms of the metric?
Compute

∂gρσ
∂yλ

=
∂

∂yλ

(
ηµν

∂xµ

∂yρ
∂xν

∂yσ

)
= Γµρλgσµ + Γµσλgρµ (117)

which by exchanging indices can be combined to

∂gµν
∂yλ

+
∂gµλ
∂yν

− ∂gνλ
∂yµ

= 2Γρνλgρµ (118)

using gρµg
µρ = 1.

In other words, we can express the Christoffel symbols in terms of the metric tensors (and its derivatives):

Γρνλ =
1

2
gρµ

(
∂gµν
∂yλ

+
∂gµλ
∂yν

− ∂gνλ
∂yµ

)
(119)

If we now have a guess, we would think that we can write the action for general relativity in terms of the metric
tensor.
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3. Simple invariant Lagrangian

Again, I will just sketch how we can write down a simple Lagrangian for general relativity. The transformation
of the metric tensor from one coordinate system x into another one x′ reads:

g′µν =
∂xρ

∂x′µ
∂2xσ

∂x′ν
gρσ (120)

which fixes the Jacobian

det g′µν =

∣∣∣∣ ∂x∂x′
∣∣∣∣2 det gµν (121)

which we can use to compensate the Jacobian from the integration measure

d4x′µ =

∣∣∣∣∂x′∂x

∣∣∣∣ d4xµ (122)

to build a very simple Lorentz–invariant Lagrangian∫
d4x
√
−g ρ = const (123)

for any Lorentz–scalar density ρ.
What kind of scalar — made out of gµν and possibly Γµρσ — can we use to for example include sources (particles)
in this action? A guess would be to find a tensor made out of second derivatives to be useful in a field equation
and gives the right special relativistic limit. Luckily, there is a unique tensor which serves this purpose (following
Peacock’s book): the Riemann tensor

Rµαβγ ≡
dΓµαγ
dxβ

−
dΓµαβ
dxγ

+ ΓµσβΓσγα − ΓµσγΓσβα (124)

which can be contracted to give the Ricci tensor

Rαβ ≡ Rµαβµ (125)

and the Ricci scalar

R ≡ gαβRαβ ≡ Rµµ (126)

which is precisely the scalar we are looking for to put into our action!
Before constructing the action we should check the mass units:

[d4x] = m−4

[g] = m0

[Γ] = m

[R] = m2 (127)

which means that [d4x
√
−gR] = m−2. So we are not quite there yet, the mass unit of the action is still wrong.

We have to introduce a fundamental mass parameter into general relativity which we call M?. We arrive at:

S = −1

2

∫
d4x
√
−gM2

? R (128)

with a conventional numerical c-number factor in front. Since we are still talking about 4 dimensions we can
identify M? ≡MPlanck, with the Planck mass measured through the gravitational coupling GN .
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4. Now we are ready!

For the rest of the discussion of large flat extra dimensions I will largely follow Graham Kribs’ hep-ph/0605325,
both in logic and notation. Our first task is to write down the Einstein–Hilbert action in (n+4) dimensions, to
see how extra space dimensions actually solve the hierarchy problem. Inserting the Ricci scalar — derived from
the Riemann tensor as unique a building bock for Einstein’s field equations — into our old action we obtain
the correct (4 + n)–dimensional action as

Sbulk = −1

2

∫
d4+nx

√
−g(4+n) Mn+2

? R(4+n) (129)

where bulk means that this action governs our (4 + n)–dimensional space, to be distinguished from ‘brane’,
which refers to a 4–dimensional subspace where all or some of our Standard Model field live. The increased
power of the Planck mass M? is again chosen to correct the over–all mass dimension. The mass dimension of
the (4 + n)–dimensional Ricci scalar is the same as it’s 4–dimensional counterpart, because it is created by the
number of space–time derivatives.
This formula still has to be filled with physics content, i.e. we have to define g(4+n) and R(4+n). Of course, we
have to distinguish the different Dirac indices we are talking about. In general, the usual space–time vector get
extended to xA = {xµ, yj} where the usual Greek indices run from µ = 0 · · · 3 and the additional Roman indices
run fill the remaining n components. I will try to stick to running the Roman indices as j = 4 · · · (4 + n). The
capital Roman index describes the bulk and runs from A = 0 · · · (4 + n). The bulk metric can be written as

ds2 = g
(4+n)
MN dxMdxN M,N = 0, ..., n+ 4− 1

= g(4)
µν dx

µdxν − dxjdxj j = 4, ..., n+ 4− 1

= (ηµν + hµν) dxµdxν − dxMdxM allowing for a 4–dimensional graviton

= (ηµν + hµν) dxµdxν − r2dΩ(n) after compactifying j on a torus (130)

Note that this simple model requires the extra dimensions to be flat (compactifying on a torus does not mean
we bend them, it is just another way of referring to periodic boundary conditions). The power of r arises
because ds2 is bilinear in the space–time vector. At this point, I should reiterate the specific requirements we
have to make on the extra dimensions to make the following argument.

– if we write the split (4 + n)–dimensional metric tensor it looks like g(4+n) = g(4) ⊗ (−1), as long as we
assume that the extra dimensions are flat. We cannot allow any sources (particles or stars or black holes)
off our Standard Model brane. Sources on our brane will of course affect the bulk, but we will discuss later
how a mathematically infinitely narrow brane is unrealistic. So we might imagine looking at a slightly
wider brane and ignore the bulk region close to the brane, so we can assume that the extra dimensions are

indeed flat. For the Einstein–Hilbert action this means
√
g(4+n) =

√
g(4), as long as the extra dimensions

are perpendicular to our (3+1)–dimensional brane.

– the special geometry of the extra dimensions allows us to rewrite and if possible integrate out all additional
dimensions, as long as we assume that the extra dimensions are orthogonal to our brane, as suggested by
the diagonal metric tensor:∫

d4+nx =

∫
d4x rn dΩ(n) = (2πr)n

∫
d4x ≡ Vtorus

∫
d4x (131)

– from looking at Riemann’s tensor you can guess that flat, orthogonal, extra dimensions without any
sources will hardly affect the Ricci scalar. More specifically, the Ricci scalars in 4 and (4 +n) dimensions
can be linked through Einstein’s field equations, which we have not talked about yet. In the absence of
matter (which we are assuming for the extra dimensions) they read

Rjk −
1

n+ 2
gjkR = 0 (132)

which after contracting with gjk requires R = 0. In other words, the extra–dimensional part of R is zero,
or R(4+n) = R(4).
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We can combine these pieces and simplify the higher–dimensional bulk action

Sbulk = −1

2
Mn+2
?

∫
d4+nx

√
−g(4+n) R(4+n)

= −1

2
Mn+2
? (2πr)n

∫
d4x

√
−g(4) R(4)

≡ −1

2
M2

Planck

∫
d4x
√
−g(4) R(4) (133)

In the last line we have matched the two theories, i.e. we have assumed that from a 4–dimensional point of view
the actions have to be identical, as long as we do probe high enough energy scales to observe quantum–gravity
effects.
This leads us to the basis of extra dimensions as a solution to the hierarchy problem: the 4–dimensional Planck
scale MPlanck which we measure on our brane/in our world is not the fundamental scale of gravity. It is merely
a derived parameter which depends on the fundamental (4 +n)–dimensional Planck scale and on the geometry
of the extra dimensions, in the simplest case the compactification radius of the n–dimensional torus. Matching
the two theories gives

MPlanck = M? (2πrM?)
n/2 (134)

The derived 4–dimensional Planck scale is indeed measured to be around 1019 GeV. If we can assume that
the correction factor (2πrM?)

n is large we can postulate that the fundamental Planck scale M? is not much
larger than 1 TeV. In that case the cutoff of our field theory is not much above the expected Higgs boson
mass and there is no problem with the stability of the two scales mH and M?, which we introduced as the
hierarchy problem.
Assuming M? = 1 TeV we can solve the equation above for r for a given number of extra dimensions and obtain
the compactification radius:

n r

1 1012 m

2 10−3 m

3 10−8 m

... ...

6 10−11 m

Obviously, the case n = 1 is dangerous, because gravity gets modified at large distances. For larger values of
n we have to test Newtonian gravity at small distances, which is harder. However, small distances just means
larger energies, and we might be able to find cosmological or collider observables which are sensitive to such
effects. Graham in his overview discusses quite a few of them.

C. Gravitons in flat (4+n) dimensions

Note that at this point we have not talked about particles in the theory. Let’s still assume that Standard Model
fields do not propagates in more than 4 dimensions. All we postulate is a continuation of Newtonian gravity
into (4 + n) dimensions.
Let’s consider two masses on our Standard Model brane. For large distances r′ � r the two masses are far
enough apart that the curled–up extra dimensions will not be resolved. Again, we can think about large
distances as small energies, which means that our test energy 1/r′ is too small to see effects coming in at much
larger energies 1/r. Which means that for r′ � r we observe ordinary 4–dimensional Newtonian gravity.
Probing smaller distances r′ (or higher energies 1/r′) the 4–dimensional distance will fit into the extended extra
dimensions, which means that gravity propagates into all (4 + n) dimensions and the volume integral over the
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n–dimensional torus is cut off by a (4 + n)–dimensional sphere with radius r′:

V (r′) =


−GN

m1m2

r′
r′ � r (4–dim theory at small energies)

−G(4+n)
N

m1m2

r′
∼ −GN

M2
Planck

M2
?

m1m2

r′
= −GN (2πM?)

n m1m2

r′1−n
r′LLr

(135)

tp: this argument sound totally convincing, but I think the power of r′ should actually be 1 + n,
have to check, damnit! For the 4–dimensional theory Newton’s constant is defined as GN = 1/(16πM2

Planck).

Modulo c-number pre-factors it is obvious that the fundamental Planck scale in the bulk is given by G
(4+n)
N =

1/(16πM2
? ). Such a modification of Newtonian gravity can be tested experimentally without even looking at

the details of a model!

1. Propagating an extra–dimensional graviton

Now we understand why large extra space dimensions solve the hierarchy problem. We also know how Newtonian
gravitation is modified. However, if M? ∼ 1 TeV and we can probe these scales at colliders, we have to
understand quantum gravity effects at colliders. Which takes us to Kaluza–Klein effective theories.
First, we expand the (4 + n)–dimensional metric around the flat metric ηMN , treating the resulting (n + 4)–
dimensional graviton field hMN as a small perturbation:

ds2 = g
(4+n)
MN dxMdxN M,N = 0, ..., 3 + n

=

(
ηMN +

1

M
n/2+1
?

hMN

)
dxMdxN

(136)

The factor 1/M
n/2+1
? fixes the mass unit of the graviton to [h] = m1+n/2. In general, for a boson in (4 + n)-

dimensions we would expect to be able to write down a squared mass term (corresponding to the Klein–Gordon
equation) in the Lagrangian, which means [d4+nxm2 SS] = m−4−nm2m2(1+n/2) = m0 for the correct mass
dimension of the bosonic field.
At this stage we would not get around computing Ricci tensor/scalar (which I will of course not do in this
lecture), to express the left–hand side of Einstein’s equation RAB−gABR/(2 +n) in terms of the graviton field
hAB and its derivatives. Here is how it would be done. We start with the definitions in (n+ 4) dimensions and
a short-hand notation of derivative with respect to xC :

RAB = RMABM =
dΓMAM
dxB

− dΓMAB
dxM

+ ΓMSBΓSMA − ΓSSMΓSBA

R = gABRAB

ΓMAB =
1

2
gMS

(
∂gSA
∂xB

+
∂gSB
∂xA

− ∂gAB
∂xS

)
=

1

2

(
ηMS − 1

M?
hMS

)
(∂BhSA + ∂AhSB − ∂shAB)

(137)

Note that the definition of RAB includes total derivatives with respect to x. Just to give you an idea we can
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compute the partial derivative of the Christoffel symbols:

∂BΓMAM =
1

2
∂B

(
ηMS − 1

M
1+n/2
?

hMS

)
(∂MhSA + ∂AhSM − ∂ShAM )

+
1

2

(
ηMS − 1

M
1+n/2
?

hMS

)
(∂B∂MhSA + ∂B∂AhSM − ∂B∂ShAM )

= − 1

2M
1+n/2
?

∂Bh
MS (∂MhSA + ∂AhSM − ∂ShAM )

+
1

2

(
∂B∂

ShSA + ∂B∂Ah
S
S − ∂B∂ShSA

)
− 1

2M
1+n/2
?

hMS (∂B∂MhSA + ∂B∂AhSM − ∂B∂ShAM ) (138)

∂MΓMAB =
1

2
∂M

(
ηMS − 1

M
1+n/2
?

hMS

)
(∂BhSA + ∂AhSB − ∂ShAB)

+
1

2

(
ηMS − 1

M
1+n/2
?

hMS

)
(∂M∂BhSA + ∂M∂AhSB − ∂M∂ShAB)

= − 1

2M
1+n/2
?

∂Mh
MS (∂BhSM + ∂AhSB − ∂ShAB)

+
1

2

(
∂S∂BhSA + ∂S∂AhSB − ∂S∂ShAB

)
− 1

2M
1+n/2
?

hMS (∂M∂BhSA + ∂M∂AhSB − ∂M∂ShAB) (139)

The other kind of terms in RAB yields similar terms of the kind:

ΓMSBΓSMA =
1

4

(
η − 1

M
1+n/2
?

...h

)
(∂h+ ...)

(
η − 1

M
1+n/2
?

...h

)
(∂η + ...) (140)

Combining all these terms should (according to Graham, who cites another paper by Gian Giudice, Ricardo
Rattazzi and James Wells) give the final result for the left–hand side of Einstein’s equations:

RAB −
1

n+ 2
gABR

=
1

M
1+n/2
?

[
�hAB − ∂A∂ChCB − ∂B∂ChCA + ∂A∂

BhCC − ηAB�hCC + ηAB∂
C∂DhCD

]
(141)

for a general metric/graviton in (4 + n) dimensions. The d’Alembert operator is defined as � = ∂C∂
C .

2. Brane matter and bulk gravitons

The right–hand side of Einstein’s equations is given by the energy–momentum tensor, again normalized to the
proper mass dimension. The energy–momentum tensor can be computed from the Lagrangian for the respective
theory using a function derivative with respect to the metric. We will give examples later, at this point all we
need to know is that TAB is a function which includes all particle fields which live on our brane (and possibly
in the bulk):

RAB −
1

2 + n
gABR = − TAB

M2+n
?

(142)

The usual 4–dimensional Tµν we have to generalize to (4 + n) dimensions. Obviously, the tensor rank (size of
the matrix) increases from 4 × 4 to (4 + n) × (4 + n). Moreover, each entry now has dimension m4+n, which
requires the proper normalization using the usual (only) mass scale M?.
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Our model is still assuming that all Standard Model fields are confined to our brane. In that case we can
simplify the (4 + n)–dimensional energy–momentum tensor:

– all matter is localized to yj = 0, which means all entries in the energy–momentum tensor have to be
localized:

TAB(x; y) = TAB(x)δ(n)(y) (143)

note that this δ(y) is dodgy from a Heisenberg uncertainty point of view, because we pretend to know
exactly the location of a matter particle in the extra dimension. Which means we know nothing about
its momentum into this direction. However, the momentum we also localize, so that scattering processes
with exclusively Standard Model particles observe 4–momentum conservation on the brane. The solution
to this problem is to postulate a small finite width of the Standard Model brane. As far as this size is
larger than the inverse energy scale we are probing our system with, this approximation is not a problem.
Naturally, a size 1/M? will be fine, because above this scale we will not be able to compute anything with
our effective Kaluza–Klein theory anyhow.

– finite entries into the energy–momentum tensor only appear on the brane, which together with the last
point gives us the form of the energy momentum tensor as it appears on the right–hand side of Einstein’s
equations:

TAB(x; y) = ηµA η
ν
B Tµν(x) δ(n)(y) =

(
Tµν(x) δ(n)(y) 0

0 0

)
(144)

Of course, the x appearing in the argument of our energy–momentum tensor do not have to be only
space coordinates. It means that all arguments of Tµν are localized to the Standard Model brane. As our

usual check we look at the mass dimensions of our different objects: if [TAB ] = m4+n and [δ(n)(y)] = mn

(remember how is cancels integrations) then [Tµν ] = m4, as expected.

The set of (n + 4)2 Einstein equations now splits into homogeneous equations for the bulk (including the
bulk–brane mixing indices) and into a regular inhomogeneous equation for the brane:

Rµν −
1

2 + n
gµνR = − Tµν

M2+n
?

is a 4-dimensional theory!

Rµk −
1

2 + n
gµkR = 0

Rjk −
1

2 + n
gjkR = 0 the condition for solving the hierarchy problem R(4) ≡ R(4+n) (145)

Just as before, we postulate periodic boundary conditions in all extra dimensions, with a compactification
radius r

xM = (xµ; yi) i ≥ 1 yi ≡ yi + 2πr (146)

which means we can write hAB(xM ) as a Fourier series in the extra dimensions:

hAB(x; y) =

∞∑
m1=−∞

· · ·
∞∑

mj=−∞

h
(m)
AB (x)√
(2πr)n

ei
mjyj
r (147)

Note that we are now evaluating the graviton in a mixed position space xµ and (Fourier–) momentum space
(yj 7→ mj).
We can rewrite the left–hand side of the Einstein equations in this mixed space. We already phrased it in terms
of the (4 +n)-dimensional graviton field hAB and its derivatives. Take for example the first (d’Alembert) term:

RAB −
1

2 + n
gABR ∼

1

M
1+n/2
?

(�hAB + · · · ) ≡ − TAB

M2+n
?

= −
ηµAη

ν
BTµνδ

(n)(y)

M2+n
?

(148)
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The d’Alembert term can be written in its Fourier components

�hAB =
∑
mj

1

(2πr)n/2
∂C∂

C
[
h

(m)
AB (x) ei(m·y)/r

]
=
∑
mj

1

(2πr)n/2
∂C

[(
δCµ h

(m)
AB (x) + h

(m)
AB (x)

imj

r
δCj

)
ei(m·y)/r

]

=
∑
mj

1

(2πr)n/2

[(
∂µ∂

µh
(m)
AB (x) + 0

)
+

(
δCµ h

(m)
AB (x) + h

(m)
AB (x)

imj

r
δCj

)
imk

r
ηCk

]
ei(m·y)/r

=
∑
mj

1

(2πr)n/2

[
�h(m)

AB (x)− h(m)
AB (x)

mjmj

r2

]
ei(m·y)/r

=
∑
mj

1

(2πr)n/2
ei(m·y)/r

(
�+ k̂2

)
h

(m)
AB (x) (149)

with k̂ ≡ mj/r and k̂2 ≡
∑
|mj/r|2. The d’Alembert box operator acting on h

(m)
AB (x) is just ∂µ∂

µ. This Fourier
transform works the same way for hµν , hµj , hjk.
The right-hand side of Einstein’s equations are either zero∑

mj

1

(2πr)n
0 · ei(m·y)/r = 0 (150)

or functions of the 4-dimensional variables∑
mj

1

(2πr)n
f(x) · ei(m·y)/r. (151)

Even though the graviton fields h
(m)
AB (x) are not yet the physical fields we will define in a minute, we already see

the structure of the equation of motion for all fields involved: they include a quadratic term (�2+k̂2)hAB(x) = ...
which means that they have masses mj/r, where mj are integers. Kaluza-Klein gravitons have a massless ground
state mj = 0 and excited states labeled by |−→mj |.

3. Kaluza–Klein towers

The detailed form of the physical graviton fields is not particularly important. Their precise definition can
be found in the Giudice-Rattazzi-Wells paper, their counting of degrees of freedom in Graham’s lectures. The
Einstein equations in the most convenient form look like:

(�+ k̂2) G(k)
µν =

1

MPlanck

[
−Tµν +

(
∂µ∂ν
m̂2

+ ηµν

)
Tλλ
3

]
massive graviton

(�+ k̂2) H(
−→
k )=

1

2MPlanck

√
3(n− 1)

n+ 2
Tµµ scalar, includes radion

(�+ k̂2) V
(k)
µj = 0 graviscalars

(�+ k̂2) S
(k)
jk = 0 massive graviphotons (152)

The structure of these equation reveals a few particularities: the fields V
(k)
µj and S

(k)
jk do not couple to the

Standard model, because in the presence of a general energy-momentum tensor they still behave like free

massless fields. The massive gravitons G
(k)
µν couple to the Standard Model. Their Fourier coordinate only

appears as a mass term k̂2 and in the coupling to the trace of the energy-momentum tensor. This means
their couplings are level–degenerate and their masses and couplings depend only on the length, but not on the
orientation of the vector mj .
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I can only quote the properties of conformally invariant theories, where Tµµ = 0. For such massless theories we
find

(�+ k̂2) G(k)
µν = − Tµν

MPlanck
(153)

which describes physical gravitons at the LHC, produced by quark or gluon interactions and either vanishing
or decaying to leptons.

The scalar mode H(
−→
k ) plays a special role. Its massless mode is called a radion and corresponds to a fluctuation

of the volume of the compactified extra-dimension. We assume that the compactification radius r is somehow
stabilized, and such mechanism gives mass to the radion. More importantly, the radion only couples to a
massive theory, so it is not surprising that as a scalar with no Standard Model charge it will mix with a Higgs
boson without very drastic effects.
Before we discuss the coupling of gravitons to Standard Model particles we introduce a mechanism for summing
over the Kaluza-Klein levels. The mass splitting between the KK states is given by 1/r which translates into
(M? = 1 TeV as before):

δm ∼ 1

r
= 2πM?

(
M?

MPlanck

)2/n

=


0.003 eV (n = 2)

0.1 MeV (n = 4)

0.05 GeV (n = 6)

(154)

On the scale of modern light-energy experiments, this mass splitting is tiny,
0.003 eVLL0.1 MeVLL0.05 GeVLLmZ . This means, at colliders we will be confronted with towers
composed out of a huge number of tightly spaces massive gravitons with identical couplings to Standard–Model
particles. Instead of summing for example over all gravitons radiated off an LHC process, we can integrate
over a continuous graviton mass space.
For n dimensions we want to compute the numbers of gravitons with masses between |k| and |k + dk|. k
represents the number of gravitons in the compactified n dimensions. In other words, we need to integrate an
n-dimensional sphere:

dN = Sn−1 |k|n−1 d|k| (155)

with the area of an n-sphere

Sn−1 =
2πn/2

Γ(n/2)
(156)

This density in terms of states we can translate into a mass density kernel, using

dm

d|k|
=

1

r
⇒ dN = Sn−1 r

nmn−1 dm ⇒ dN = Sn−1
1

(2πM?)n

(
MPlanck

M?

)2

mn−1 dm (157)

We will later think of this distribution as a kernel in for example final-state phase space integrals. Two properties
of this distribution dN can be easily read off. The integral is IR finite∫

dN =

∫ µ

0

Sn−1
1

(2πM?)n

(
MPlanck

M?

)2

mn−1 dm = Sn−1
1

(2πM?)n

(
MPlanck

M?

)2
mn

n

∣∣∣∣∣
µ

0

= Sn−1
1

(2πM?)n

(
MPlanck

M?

)2
µn

n
(158)

and in the UV it is strongly peaked, the stronger the larger n. Note that the limit between the well-defined
IR tail and the sharp UV peak is based on the specific of the model, in our case on the existence of only one
compactification length scale.
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4. Graviton Feynman rules

To compute graviton production cross sections like pp→ KK+jet or pp→ KK→ µ+µ− we need to couple the
gravitons to the Standard model, i.e. write a proper Lagrangian.
Start from the general relativity Lagrangian in (4 + n) dimensions

S = −1

2

∫
d4+nx

√
|g|Mn+2

? R =

∫
d4+nL(4+n) (159)

which we can express in term of the graviton field hAB (still in (4+n) dimensions)

L = −1

2
hAB�hAB +

1

2
hAA�h

B
B − hAB∂A∂BhCC + hAB∂A∂Ch

C
B −

1

M
1+n/2
?

hABTAB (160)

The last term corresponds to the right–hand side of the Einstein equations. Instead of deriving this coupling
term we can at least check its consistency: if the equations for pure Newtonian gravity give

RAB −
1

n+ 2
gAB R = 0 (161)

then the inhomogeneous term on the right–hand side

RAB −
1

n+ 2
gAB R = − TAB

M2+n
?

(162)

has to correspond to a term in in the Lagrangian, given by the usual Euler–Lagrange equations:

∂Ladd

∂hAB
=

∂

∂hAB

(
− 1

M
1+n/2
?

hABTAB

)
= − TAB

M
1+n/2
?

(163)

Note the mismatch in powers of M?. We have used a different normalization for Einstein’s equation; for L the
proper mass unit is indeed [1/M2+n

? hAB TAB ] = m−1+n/2m1+n/2m4+n = m4+n.
The tensor graviton field hAB we as usually Fourier transform and express in the more appropriate 4-dimensional
Kaluza–Klein fields. Let’s assume a massless Standard Model, or in other words we are going to study QED
and QCD with KK gravitons. This is appropriate for LHC or linear–collider observables, as long as we stay
away from top–quark production. In that case all we are left with is:

L = −
∑[

− 1

2
Gµν(�+m2)Gµν +

1

2
Gµµ(�+m2)Gνν −Gµν∂µ∂νGλλ +Gµν∂µ∂λG

λ
ν

− 1

MPlanck
GµνTµν

]
(164)

Two things we observe:

1. the graviton spin–2 propagator is a mess

2. the interaction with massless Standard Model particles is easy

Next, we have to compute the energy–momentum tensor, for example for QED:

L = −1

4
FµνF

µν = −1

4
(∂µAν − ∂νAµ) (∂µAν − ∂νAµ)

= −1

2
∂µAν ∂

µAν +
1

2
∂µAν ∂

νAµ (165)

which means

∂L
∂Aν

= 0
∂L

∂(∂µAν)
= −1

2
∂µAν +

1

2
∂νAµ (166)
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and gives for the Euler–Lagrange equations (Maxwell equation):

0 = ∂µ

(
∂L

∂(∂µAν)

)
= −1

2
∂µ∂

µAν + ∂ν(∂µA
µ) = −1

2
(�Aν − ∂ν(∂µA

µ)) (167)

Remember the link with Noether’s theorem and the conserved current

∂µjµ(x) = 0 with jµ =
∂

∂(∂µAν)
δAν (168)

Similarly, define the energy–momentum tensor:

Tµν =
∂L

∂(∂µAρ)
∂νAρ − Lηµν

=

(
−1

2
∂µAρ +

1

2
∂ρAµ

)
∂νAρ +

1

4
FρσF

ρσηµν

= −1

2
(∂µAρ − ∂ρAµ) ∂νAρ +

1

4
FρσF

ρσηµν

= −1

2
Fµρ∂νAρ +

1

4
FρσF

ρσηµν (169)

From this we can (following Richard Ball’s lecture) compute the symmetric energy–momentum tensor

Tµν = −FµρF νρ +
1

4
FρσF

ρσ ηµν (170)

Including fermions we find the energy–momentum tensor for complete massless QED:

−1

MPlanck
TµνG

µν =
−1

MPlanck

[ i
4

Ψ (γµ∂ν + γν∂µ) Ψ− i

4

(
∂µΨγν + ∂νΨγµ

)
Ψ

+
1

2
eQΨ (γµAν + γνAµ) Ψ + FµρF

ρ
ν +

1

4
ηµνFρσF

ρσ
]
Gµν (171)

To obtain the Feynman rules we have to just extract the terms proportional to the relevant external fields:

f(k1)− f(k2)−Gµν − i

4MPlanck
(Wµν +Wνµ)

with Wµν = (k1 + k2)µγν

f(k1)− f(k2)−Aσ −Gµν − i

2MPlanck
eQ (Xµνσ +Xνµσ)

with Xµνσ = γµηνσ

Aρ(k1)−Aσ(k2)−Gµν − i

MPlanck
(Wµνρσ +Wνµρσ)

with Wµνρσ =
1

2
ηµν (k1σk2ρ − (k1 · k2)ηρσ + ...) (172)

The same thing we can do for QCD (gluon with Dirac and SU(3) indices) to be able to compute LHC cross
sections:

f − f − gaσ −Gµν − i

2MPlanck
gST

a (Xµνσ +Xνµσ)

gaρ − gbσ −Gµν − i

MPlanck
gab (Wµνρσ +Wνµρσ) (173)

plus a gggG vertex due to gluon self coupling...
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5. ADD gravitons at the LHC

Flat and large extra dimensions are often named ADD after the early papers by Nima Arkani-Hamed, Savas
Dimopoulos and Gia Dvali. We can compute the rate for real graviton emission at the LHC pp→ KK+jet on
the parton level, using the Feynman rules derived above. It is two–step procedure, first computing the rate for
the radiation of one KK state and then adding the entire KK tower:

dσone graviton = | < f,G|Tµνhµν |p1, p2 > |2 (2π)4 δ4(pi − pf )
dΦf

F (p1, p2)

dσKK tower = dσone gravitonSδ−1m
n−1 dm

(2πM?)n

(
MPlanck

M?

)2

(174)

The (huge) factor M2
Planck from the KK tower summation gets absorbed into the matrix element square, i.e

the effective coupling we see after adding the tower is 1/M? ∼ 1/ TeV instead of 1/MPlanck, because of the
integration over the all states in the KK tower!
Virtual s–channel gravitons can be observed in qq̄ → µ+µ− and gg → µ+µ− processes. The amplitude reads

A =
1

M2
Planck

∑(
Tµν

Pµναβ
s−m2

KK

Tαβ +
n− 1

3(n+ 2)

Tµµ T
ν
ν

s−m2
KK

)
=

1

M2
Planck

∑(
Tµν

Pµναβ
s−m2

KK

Tαβ

)
for massless particles

=
1

M2
Planck

∑(
Tµν

ηµαηνβ + ηµβηνα − ηµνηαβ + ηµνηαβ/3

2(s−m2
KK)

Tαβ

)
leading in 1/mKK

=
1

M2
Planck

∑(
1

s−m2
KK

1

2
(TµνT

µν + TµνT
νµ − 0)

)
(175)

Because the KK tower couples universally to Standard Model particles, the virtual–graviton amplitude is simply
a sum over propagators, in our case in the s channel

A =
1

M2
Planck

TµνT
µν
∑ 1

s−m2
KK

(176)

Again we integrate over the KK tower, up to a cutoff in the mKK integral Λ and obtain a general
dimension–8 operator

A ∼ Sδ−1

2

Λn−2

Mn+2
?

(177)

This is not good because of the powers of the unknown cutoff in the numerator. A good effective theory should
not give cross section predictions which basically require knowledge of the UV completion of the theory to
produce sensible results. We can make such assumptions for example completing our KK theory with open or
closed string resonances. Or we simply observe that gravity might be non-perturbatively UV–save and use this
behavior to compute well–defined LHC cross sections. But we are still thinking about how to solve this...

D. Warped extra dimensions

Briefly after the flat (ADD) models, another way of solving the hierarchy problem was suggested by Lisa Randall
and Raman Sundrum. Again it makes use of one extra dimension, but one which is specifically not flat. This
finite extra dimension is bounded by two branes, on one of which we exist with all Standard Model particles
(RS-I).
Strictly speaking, we compactify our 5th dimension on a S1/Z2 orbifold. S1 is simply a circle (just like the
torus in ADD), which is equivalent to periodic boundary conditions. S1/Z2 means we map one half of this
circle on the other, so we really only have half a circle with no periodic boundary conditions, but two different
branes at y = 0 and y = b, y being the additional space coordinate x4.
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I will skip everything that has to do with the cosmological constant and the Planck brane and focus on the
hierarchy problem, i.e. mHLLMPlanck on the TeV brane. Instead, we will focus on the TeV brane with its
effective 4–dimensional gravitons and their Feynman rules

1. Newtonian gravity in a warped extra dimension

Nobody can stop us from postulating a 5–dimensional metric:

ds2 = e−2k|y|ηµνdx
µdxν − dy2 ⇔ gAB =

(
e−2k|y|ηµν 0

0 ηjk

)
(178)

The metric in 4 orthogonal directions to y depends on |y|. The absolute value appearing in |y| corresponds to
the Z2 (orbifolding) as S1/Z2. When looking at our (3+1)–dimensional brane we can take into account the
warp factor e−2k|y| in two ways (with some caveats):

1. use gµν = ηµνe
−2k|y| everywhere, which is a pain but possible

2. replace xµ in 5 dimensions by effective coordinates e−k|y|dx̃µ and gµν by g̃µν = ηµν (tilde means 4–
dimensional variables)

The second vision means we shrink our effective 4–dimensional metric along y and forget about the curved
space, because the warp factor does not depend on xµ. The general–relativity action for Newtonian gravity
we can write in terms of the 5–dimensional fundamental Planck scale MRS. In our hand–waving argument we
have to transform the 5–dimensional Ricci scalar. Just looking at the mass dimensions we see that R has mass
dimension 2, or by looking at the definition of R x dimension (-2). This suggests that the 4–dimensional Ricci

scalar R̃ which we see in 4 dimensions should roughly scale like x−2 ∼ x̃−2 exp (+2k|y|), leading us to a wild

guess R ∼ R̃ exp (+2k|y|). The formula for the action with separated x and y integrals we start from already
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includes the effective 4–dimensional coordinates:

S = −1

2

∫ b

0

dy

∫
d4x̃ e−4k|y|RM3

RS

∼ −M
3
RS

2

∫ b

0

dy

∫
d4x̃ e−4k|y| R̃ e2k|y|

= −M
3
RS

2

∫ b

0

dy e−2k|y|
∫

d4x̃ R̃

= −M
3
RS

2

(
− 1

2k
e−2kb +

1

2k

)∫
d4x̃ R̃ obviously b > 0

= −M
3
RS

4k

(
1− e−2kb

) ∫
d4x̃ R̃

∼ −M
3
RS

4k

∫
d4x̃R̃ assume kb� 1, for reasons seen later

≡ −M
2
Planck

2

∫
d4x̃ R̃ the usual dimensional–analysis matching⇒ (179)

The naive matching with 4–dimensional Newtonian gravity (in this case just naive dimensional analysis) means
M2

Planck ∼ M3
RS/(2k). This does not solve the hierarchy problem because it looks like MRS ∼ k ∼ MPlanck ∼

1019 GeV is the most reasonable solution.
Fortunately, this is not the whole story. Consider the Standard Model Lagrangian on the TeV brane (y = b) in
the x̃µ coordinates, i.e. with a warp factor. If we want to solve the hierarchy problem, the scalar Higgs part is
crucial:

SSM =

∫
d4x̃ e−4kb LSM

=

∫
d4x̃ e−4kb

[
(DµH)†(DµH)− λ(H†H − v2)2 + ...

]
(180)

From the Higgs–mass term we see that we can rescale all Standard Model fields — in that case H as well as
v — by the warp factor on the TeV brane exp (−kb). The same we have to do for the space coordinate, as
described above and for gauge fields which appear in the covariant derivative. To get rid of the entire pre-factor
we have to absorb four powers of the exp (−kb) in each term of the Standard Model Lagrangian.
If we only consider contributions to LSM of mass dimension 4, we can simply rescale all SM fields according to
their mass dimension:

H̃ = e−kbH scalars

Ãµ = e−kbAµ or D̃µ = e−kbDµ

Ψ̃ = e−3kb/2Ψ fermions (181)

which also means for all masses

m̃ = e−kbm

ṽ = e−kbv

(182)

while the Yukawa couplings as dimensionless parameters in the Lagrangian are not affected. If we assume
kb ∼ 35 we find

ṽ ∼ 0.1 e−kb MPlanck ∼ 0.1 TeV (183)

Note that the derived Planck scale MPlanck is still large. To solve the hierarchy problem we have shifted all
dimensionful parameters, including the Higgs mass by the warp factor e−k|y| = e−kb. The fundamental Higgs
mass and the fundamental Planck mass are of the same order, only the derived Higgs mass (and all mass scales
on the TeV brane) appears smaller, because of the warped geometry in the 5th dimension. In contrast, on the
Planck brane at, where the warp factor is exp (−k|y|) = 1, nothing has happened.
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2. Gravitons in a warped dimension

Before we introduce metric fluctuations (gravitons) into our RS model, it turns out to be useful to rewrite the
metric by rescaling the 5th dimension y → z to be able to write the metric as:

ds2 = e−A(z)
(
gµνdx

µdxν − dz2
)

(184)

To simplify things we assume for the following brief discussion y > 0. This is obviously justified, as long as we
limit our interest to the TeV brane. First, we define A(z) = 2ky and rewrite the metric using the ansatz:

e−2ky = e−A(z) =
1

(1 + kz)2
⇔ A(z) = 2 log(k|z|+ 1) (185)

The Planck brane at y = 0 sits at z = 0. Assuming k > 0 we find that y > 0 corresponds to z > 0. To check if
we indeed obtain the correct metric, we start from the two variables being connected as:

y =
1

k
log(1 + kz) ⇔ z =

1

k

(
eky − 1

)
⇒ dz

dy
= eky

⇒ dy = e−ky dz = e−A(z)/2 dz (186)

and indeed find the correct pre-factor of dz2.
To introduce tensor gravitons we write the relevant part of the metric:

ds2 = e−A(z)
(
ηµν + hµν(x, z) dxµdxν − dz2

)
(187)

The left-hand side of Einstein’s equations we know is GAB = RAB − RgAB/(n + 2). Including a finite warp
factor A = 2ky 6= 0 gives rise to an additional term, which in our case (gAB = e−AηAB) reads:

δGAB =
2 + n

2

[
1

2
∂AA∂BA+ ∂A∂BA+ ηAB

(
∂C∂

CA− 1 + n

4
∂CA∂

CA

)]
=

3

2

[
1

2
∂AA∂BA+ ∂A∂BA+ ηAB

(
∂C∂

CA− 1

2
∂CA∂

CA

)]
d = 5

=


3
2

(
1
2A
′2 +A′′ −A′′ + 1

2A
′2
)

= 3
2A
′2 G55

3
2ηµν

(
A′′ − 1

2A
′2
)

Gµν
(188)

Combined with some source–free right–hand side of Einstein’s equations just proportional to the cosmological
constant, this gives us the proper description of our two branes. As a matter of fact, the G55 equation is already
solved by our ansatz for A(z).
Instead of looking at the branes in 5–dimensional space, we use the formula to write down the the effects of
introducing a graviton perturbation on the TeV brane. Csaba Csaki leaves calculating the additional contri-
bution δGAB introduced by A 6= 0 in gAB = e−A(ηAB + hµν) in the gauge hµµ = 0 = ∂µh

µ
ν as a fairly involved

exercise, and I will do the same thing. The Einstein equations without sources become:

− 1

2
∂C∂

Chµν +
2 + n

4
∂CA ∂Chµν = 0 (189)

They have a linear term which does not look at all like an equation of motion and which we therefore do not

like. We can get rid of it rescaling (as usual) hµν = e(2+n)/4h̃µν , according to the bosonic mass dimension

[h] = m1+n/2. This gives

−1

2
∂C∂C h̃µν +

(
(2 + n)2

32
∂CA∂CA−

2 + n

8
∂CA∂

CA

)
h̃µν = 0

−1

2
∂C∂C h̃µν +

(
9

32
A′2 − 3

8
A′′
)
h̃µν = 0 usingA = A(z) (190)
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as the equation of the motion for the rescaled graviton field h̃µν . We can solve this equation of the motion for

h̃µν(x, z) by separating variables:

h̃µν(x, z) = ĥµν(x) Φ(z) (191)

which yields

0 ≡ −∂C∂C
(
ĥµν(x) Φ(z)

)
+

(
9

32
A′2 − 3

8
A′′
)
ĥµν(x) Φ(z)

= −
(
∂C∂C ĥµν(x)

)
Φ(z)− ĥµν(x)

(
∂2
zΦ(z)

)
+

(
9

32
A′2 − 3

8
A′′
)
ĥµν(x)Φ(z)

(192)

If we simply give a mass to the tensor graviton ĥµν using the ansatz

∂µ∂
µĥµν = m2ĥµν (193)

we can plug this into the equation of motion and get an equation out of which ĥµν drops out trivially:

−m2ĥµν Φ−
(
∂2
zΦ
)
ĥµν +

(
9

16
A′2 − 3

4
A′′
)
ĥµν Φ = 0

⇔ −
(
∂2
zΦ
)

+

(
9

16
A′2 − 3

4
A′′
)

Φ = m2Φ (194)

This is a Schrödinger–type equation of Φ, with a potential term:

V (z) =
9

16
A′2 − 3

4
A′′ (195)

Given the form A(z) = 2 log(k|z|+ 1), we can compute the potential

z > 0 A′ =
2

kz + 1
k =

2k

kz + 1
=

2k

k|z|+ 1
⇒ A′2 =

4k2

(k|z|+ 1)2

A′′ = 2k · −1

(kz + 1)2
· k = − 2k2

(k|z|+ 1)2

z < 0 A′ =
2

−kz + 1
(−k) =

−2k

k|z|+ 1
⇒ A′2 =

4k2

(k|z|+ 1)2

A′′ = −2k ·
(−kz + 1)2

· (−k) =
2k2

(k|z|+ 1)2
(196)

For the potential on our brane this means (z > 0):

V (z) =
9

16

4k2

(k|z|+ 1)2
+

3

4

2k2

(k|z|+ 1)2
=

15

4

k2

(k|z|+ 1)2
(197)

First, we have a zero mode which solves the equation:

−∂2
zΦ(0) + V (z)Φ(0) = 0

⇒ Φ(0)(z) = e−3A(z)/4

⇒ h0
µν = e+3A/4 h̃(0)

µν = e+3A/4 ĥ(0)
µν Φ(0) = ĥ(0)

µν (x) (198)

Rewriting z → y, we find Φ(0)(y) = e−3k|y|/4 = e−3kb/4 on our TeV brane. Indeed, gravity on the TeV brane is
weak because of the exponentially suppressed wave–function overlap.
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Using the form of V (z) we can compute the masses of the KK gravitons on the TeV brane

− ∂2
zΦ +

15

4

k2

(k|z|+ 1)2
Φ = m2Φ (199)

The boundary conditions on the brane are given by the orbifold identification y → −y which requires for
(z > 0)

0 ≡ −∂zhµν = ∂z(e
+3A/4ĥµνΦ) =

(
3

4
A′Φ + ∂zΦ

)
e3A/4ĥµν

=

(
3

2

k

kz + 1
Φ + ∂zΦ

)
e3A/4ĥµν (200)

which implies

∂2
zΦ = −3

2
kΦ

∣∣∣∣
Planck

∂2
zΦ = −3

2

k

kz + 1
Φ

∣∣∣∣
TeV

(201)

With these boundary conditions the solution of the equation of motion can be expressed in terms of Bessel
functions, which are numbered by an index which corresponds to the mass introduced above:

Φm(z) =
1√

kz + 1

[
am Y2

(
m

(
z +

1

k

))
+ bm J2

(
m

(
z +

1

k

))]
(202)

More importantly, the masses of these modes are given in terms of the roots of the Bessel function

mj = xj k e
−kb with J1(xj) = 0

or xj = 3.8, 7.0, 10.2, 16.5, .. for j = 1, 2, 3, 4... (203)

This means that the KK excitations in the RS I model with one warped extra dimensions are not quite equally
spaced. To compute the mass values we remember that we can choose kb ∼ 35 and k ∼ MPlanck to solve
the hierarchy problem: ke−kb ∼ TeV. In other words, the KK gravitons in the warped model have TeV–scale
masses and mass differences. Obviously, this is phenomenologically very different for the large (ADD) extra
dimensions. For warped extra dimensions we will not produce a tightly spaced KK tower, but for example
distinct heavy s–channel excitations. One advantage of such a scenario is that we can measure things like the
KK masses and spins at colliders directly.

To answer the question if we can measure these properties we have to compute the coupling strength of KK
gravitons to matter, like quarks or gluons or electrons as the initial state in collider experiments. Remember
that in the ADD case we had found tiny Planck–suppressed couplings for each individual KK graviton, which
corresponded to an inverse–TeV–scale coupling once we integrated over the KK tower. For the warped model
the relative coupling strengths on the Planck brane and on the TeV brane are approximately given by the
ration of the wave function overlaps. While the zero–mode graviton has to be strongly localized on the Planck
brane, to explain the weakness of Newtonian graviton the TeV brane, the KK gravitons do not have strongly
peaked wave functions in the additional dimension. Hence, the ratio of wave functions becomes (assuming that
the Bessel functions with their normalized arguments will not make a big difference):

Φ(z)
∣∣
TeV

Φ(z)
∣∣
Planck

∼
√
kz + 1

∣∣
Planck√

kz + 1
∣∣
TeV

∼ 1

ekb/2
(204)

The coupling of the KK states is given by the left–hand side of Einstein’s equations which enters the Lagrangian
just as for the large extra dimensions. We have to distinguish between the flat zero mode with un-suppressed
wave function overlap and the KK modes with the wave function normalization ∼ 1/

√
kz + 1:

L ∼ 1

MPlanck
Tµνh(0)

µν +
1

MPlancke−kb
Tµν

∑
h(m)
µν (205)

This means that the Randall–Sundrum–KK gravitons indeed couple with TeV scale gravitational strength and
can be produced at colliders in sufficient numbers, provided they are not too heavy. Similarly to the flat extra
dimensions, the couplings of the different KK excitations are (approximately) universal.
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E. Ultraviolet Completions

In this addendum I will briefly describe the problem how to formulate an ultraviolet completion of extra–
dimensional models. For example in ADD models the LHC can explicitely probe energy ranges above MPlanck,
either in real graviton emission or in virtual graviton exchange. As we saw in the last sections, real graviton
emission as well as virtual graviton exchange is only suppressed by powers of M?, after we integrate over the
entire KK tower.
Strictly speaking, this statement is not correct. When we for example write down the higher–dimensional
operator arising from s–channel graviton exchange, it will come with powers of MPlanck in the denominator,
due to the graviton couplings. In addition, it will have powers of the ultraviolet cutoff Λ of the KK integration
in the numerator, and the two of them only cancel if we assume Λ = MPlanck. This is motivated by the
conservative estimate that for energies above MPlanck our KK effective theory does not describe the graviton
exchange correctly and that setting all contributions arising from the ultraviolet completion of our theory to
zero will be on the safe side for LHC predictions. If we knew the structure of the ultraviolet completion of the
KK effective theory, which would need to be something like a quantum theory of gravity, we could compute
these contributions and take them into account for the LHC cross section prediction.

1. String theory

One possible ultraviolet completion of gravity could be string theory. The effects of such a hypothetical
UV completion are nicely computed in a classical paper by Maxim Perelstein and others (hep-ph/0001166):
in general, we can compute for example the scattering qq̄ → µ+µ− without using Feynman rules, but will
nevertheless arrive at the Standard–Model result as the leading term. In addition, string theory predicts
a common form factor for all different helicity amplitudes contributing to this process. This form factor
is essentially the Veneziano amplitude and includes the inverse string scale α′ = 1/M2

S . While we do not
exactly know the size of this scale, for extra–dimensional models it has to be between the well–tested weak
scale v = 246 GeV and M?. Perelstein and collaborators compute this Veneziano form factor for the process
e+e− → γγ, which is equivalent to gg → µ+µ−, and expand it in powers of α′:

Γ(1− α′s) Γ(1− α′t)
Γ(1− α′(s+ t))

=
Γ(1− s/M2

S) Γ(1− t/M2
S)

Γ(1− (s+ t)/M2
S)

= 1− π2

6

st

M4
S

+O
(
M−6
S

)
(206)

The parameters s and t are the usual Mandelstam variables in the (2 → 2) process. This form of the string
corrections corresponds to our KK effective field theory, modulo a normalization factor which relates the two
mass scales MS and MPlanck. Hence, this series in MS is not what we are interested as the UV completion of
our theory.
The string theory approach becomes more interesting at higher energies. The Veneziano form factor we gave
above is proportional to Γ(1 − s/M2

S), which has poles for negative integer arguments 1 − s/M2
S = −(n + 1)

for n = 1, 2, .... These poles lie at s = nM2
S , which tells us that the string resonances in the s channels have to

appear as 1/(1−nM2
S) in the transition amplitude. Starting from the energy threshold MS our UV completion

consists of real particles of mass
√
nMS appearing in our amplitude. This is the kind of UV completion we are

looking for and which we can base cross–section calculations on.
Note that scattering partons with energies above the fundamental Planck scale probes the trans–Planckian
regime of our theory of gravity without necessarily producing black–hole solutions. Black holes can occur in
colliders, but they require the two partons to scatter at very high energies while at the same time getting closer
than the Schwarzschild radius. The Schwarzschild radius rh depends on the collider energy, and the production
cross section of a black hole is essentially the geometric factor πr2

h, provided the two beam collide with a small
enough impact parameter. The question how these black holes can then be detected depends largely on the
question is we actually produce a thermalized black hole, which would just decay to may particles via Hawking
radiation, whereas otherwise the signature would look very similar to an old–fashioned contact–interaction.
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2. Fixed–point gravity

According to a classical paper by Weinberg, another UV completion of gravity could be described by the possible
existence of a gravitational fixed point. Such a fixed point would not be a unique feature of extra–dimensional
models, but in contrast to the four–dimensional case the LHC could observe it in such models with a low
fundamental Planck scale. In other words, we can simply generalize a well-established field of gravitational
research.
The starting point for our argument is a renormalization group analysis of the effective action of gravity, i.e.
the generalization of the Einstein–Hilbert action to scale–dependent parameters:

1

16πGk

∫ √
|g|
(
Λk +R+O(R2)

)
+ Smatter,k + Sgf,k + Sghosts,k (207)

The first term in the action is the cosmological constant, the second term is the Ricci scalar describing free
gravity, and the remaining terms are the Standard–Model action without any gravity terms. Because of the Ricci
scalar’s mass dimension two, higher powers of R correspond to higher orders in 1/M?, the only scale present in
the gravitational part of the action. We will briefly discuss the limitations of perturbative gravitation later.
The index k refers to an energy scale at which we evaluate these parameters, for example the gravitational
coupling G ∼ 1/M2

? . Scale–dependent parameters are of course nothing new, we know for example how to
evaluate the strong coupling αs(µR) at proper values of the renormalization scale. What we need to know to
evolve our theory from one scale to another is the renormalization group equation for the gravitational coupling.
Since we know the mass dimension of the gravitational coupling constant we can use a renormalization scale µ
to define its dimensionless version in (4 + n) dimensions and add the usual renormalization constant in front:

g(µ) = Gµ2+n −→ Z(µ)−1Gµ2+n (208)

As the anomalous dimension of any field or Lagrangian parameter we refer to the quantum (or renormalization)
contribution to the classical mass dimension of the bare field or parameter appearing in the Lagrangian. In this
case the anomalous dimension of the gravitational coupling is η = −d logZ/d logµ = −1/Z dZ/d logµ. In terms
of this anomalous dimension, which in general will be a function of µ, we can write down a renormalization
group equation for g(µ):

dg

d logµ
=

d

d logµ

(
1

Z
Gµ2+n

)
= G

(
− 1

Z2

dZ

d logµ
µ2+n +

1

Z
µ
dµ2+n

dµ

)
=

1

Z
Gµ2+n

(
− 1

Z

dZ

d logµ
+ (2 + n)

)
= (η + n+ 2) g (209)

This equation can have two fixed points. First, vanishing values of g are stable with respect to scale variations,
which means the running of the gravitational coupling has a fixed point at g = 0. A fixed point at the trivial
value g = 0 we call a Gaussian fixed point. This fixed point exists for any value of η and describes the usual
regime of Einstein–Hilbert gravity we know.
Let’s assume that η > 0, so that the change of g(µ) with µ has a positive sign. This means that for large
positive and negative values of log µ there could be another fixed point for a finite values g = g∗, where

η(µ) = −(2 + n) G ∼ g∗
µ2+n

(210)

The scale factor valid around the fixed–point regime implies that for small scales the dimensionful gravitational
coupling would become large, while for large scale it would be suppressed by a scale factor 1/µ2+n. Note that
in this argument we have omitted constant terms in the solution of the differential equation, so that we should
not claim that the gravitational coupling vanishes at large scales.

The system we really need to solve is a coupled set of differential equations including the renormalization group
equation for η(µ) and for the cosmological constant λ(µ) = Λ(µ)/µ2. However, for example in the papers by
Martin Reuter or Daniel Litim we see that the general pattern of the non–Gaussian fixed point does not change,
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and indeed the gravitational coupling will be asymptotically free, i.e. become small in the ultraviolet. The
expressions for the physical observables in the UV fixed point in the literature are

λ∗ =
D2 −D − 4−

√
2D(D2 −D − 4)

2(D − 4)(D − 1)

g∗ = Γ

(
D

2
+ 2

)
(4π)D/2−1

(√
D2 −D − 4−

√
2D
)2

2(D − 4)2(D + 1)2
D = 4 + n (211)

Note that this UV behavior of the gravitational couplings is exactly the opposite of what we usually think of
when we are concerned with gravity becoming a strongly interacting theory at the Planck scale. Weak gravity
in the ultraviolet we can think of as asymptotically free gravity.
In the usual sense we consider a theory renormalizable if in the far ultraviolet its coupling strength becomes
infinitely small. Weinberg’s approach, on which this study of the UV behavior of gravity builds, is to generalize
the concept of renormalizability to theories with a finite UV limit of the coupling. Because of the vanishing
of G in the UV, we still expect no unphysical UV divergences in such a theory. This of course does not
mean that gravity will be a perturbatively renormalizable field theory — it cannot, because it has a coupling
constant with an inverse mass dimension, but ultraviolet safety is a useful extension of the usual perturbative
renormalizability condition which has been proven to hold for Yang–Mills theories.

Unfortunately, in the trans–Planckian energy regime we cannot write a perturbative series for example in R.
However, the existence of a non–trivial fixed point for the gravitational coupling has been shown including
higher–order corrections in the Einstein–Hilbert action up to

√
gR8 and including a coupling to matter fields.

While this ordering scheme in powers of R is of course not well defined once we are looking at energies beyond
M?, there is no good reason for this fixed–point behavior to change at some arbitrary higher power of R.
Moreover, it is interesting to notice that our fixed–point theory naively appears to break down if we include the
R2 term in the action. This term leads to propagators of the mass dimension 1/p4, which can be considered
sub–leading remainders of the sum of two propagators with the leading behavior 1/p2, provided one of these
propagators appears with a negative sign. Such particles are usually referred to as ghosts and are unphysical
degrees of freedom. They should not appear in our theory! On the other hand, work by Gomez and Weinberg
gives us reasons to believe that such ghost contributions vanish after taking into account all orders in R. Because
one should not trust the perturbative expansion of the effective action in R this is a particularly welcome result,
increasing our trust in the stable fixed–point behavior which has until now appeared order by order in R.

The next question is: how do we include the leading effects of this fixed–point behavior in our LHC calculations
without having to take into account the running of all parameters with the scales for example present in the
virtual–graviton propagator. The obvious way is to include a running gravitational coupling, following the
paper by JoAnne Hewett and Tom Rizzo. The coupling of the integrated KK–graviton tower to the energy–
momentum tensor, given by 1/M2+n

? , is simply modified by a form factor

1

M2+n
?

−→ 1

M2+n
?

[
1 +

(
µ

aM?

)2+n
]−1

(212)

with a fudge factor a ∼ 1. For large scales µ this form factor becomes smaller, (hopefully) regularizing the
LHC cross section prediction in the ultraviolet.

When writing down the integral over the virtual KK graviton propagator 1/(s −m2
KK) we see that there are

two integrals, one over the KK tower mKK and one over the partonic center-of-mass energy
√
s or over the

parton momentum fractions (x1x2). In the form–factor approach the authors choose µ =
√
s, which regularizes

this dimension of this integral, but not the other. The mKK integral they still have to cut off and integrate into
the form 1/M2+n

? instead of the integrand’s single–graviton coupling 1/M2+n
Planck.

Separating the two integrations gives us another handle at the beneficial effects of the renormalization–group
running of gravity. In the energy range

√
s < M? we can clearly identify the IR and the UV regime of the

mKK integral. The transition between these two regimes should take part around Λtrans ≡ M?, the only scale
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known to the theory. Because we do not know the exact matching behavior we simply assume a sudden change
between the regimes at mKK = Λtrans. From QCD studies we expect the dominant difference between the IR
and UV regimes to be the anomalous dimension of the gravitational coupling and of the graviton field. The
scalar graviton propagator then becomes:

P (s,mKK) =


1

s+m2
KK

m < Λtrans (IR)

Mn+2
?

(s+m2
KK)n/2+2

m > Λtrans (UV)

(213)

In the regime
√
s < M? this change in the anomalous dimension indeed regularizes the mKK integration in the

virtual–graviton amplitude. Compared to a simple cut off at Λ the effective dimension-8 operator describing
virtual graviton exchange in the production process gg → µ+µ− shifts from

S =
Sn−1

M2+n
?

∫ Λ

0

dm mn−1 P (s,m)

=
Sn−1

M4
?

1

n− 2

(
Λ

M?

)n−2 [
1 +O

( s

Λ2

)]
→ Sn−1

M4
?

1

n− 2

(
Λmatch

M?

)n−2 (
1 +

n− 2

4

)[
1 +O

( s

Λ2

)]
(214)

We can refer to the cut-off result as the IR contribution of the integral, and it is indeed proportional to the
cut-off Λ in the numerator. For the combined fixed–point IR and UV integral this dependence is replaced by
a power dependence on the matching scale, which for good reasons we assume to be M?. The IR part of the
integral is of course independent of the UV completion and a function of the number of extra dimensions n.
In this specific case the UV part of the integral turns out to be independent of n, except for the geometry
factor Sn−1. We see that for larger values of n > 5 the UV contribution can be numerically dominant when
computing LHC signal rates.
In the remaining part of the integration region

√
s > M? we probe gravity clearly beyond the Planck scale.

This also means that in the LHC scattering amplitude the fundamental Planck scale should only appear as a
coupling, but not as a dynamic mass scale. Modulo a c-number normalization we simply estimate any gravity–
induced operator by factors of

√
s to get the correct mass dimension. The matching around

√
s ∼ M? is

unfortunately not determined: either we fix the matching scale to M? and adjust the prefactor of the high–
√
s

contribution to match the well–known low–
√
s solution; or we fix the normalization of both parts and compute

the matching scale. Interestingly, the latter gives a matching scale more than a factor two below M?...to be
continued....?

F. Literature

There is a huge number of papers available on extra dimensions, most notably a huge number of great original
papers. Here, I would like to list some more pedagogical reviews which I read to prepare this lecture and which
I can recommend to everybody who is interested in deepening their knowledge (ordered by appearance in the
lecture):

– a very good and seriously complete review on dark matter is the one by Bertone, Hooper, Silk (hep-
ph/0404175). Dan also wrote a popular book on the same topic, you can find it on Amazon

– the argument about the Higgs–mass divergence at one loop you can find in Martin Schmaltz’ hep-
ph/0210415

– a great collection of loop formulas and a great appendix including integrals is Rick Field’s book ‘Appli-
cations of Perturbative QCD’

– most of this lecture is based on Graham Kribs’ TASI lecture (hep-ph/0605325)
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– more very useful TASI lectures you can find by Csaba Csaki (hep-ph/0404096 and hep-ph/0510275)

– and by Raman Sundrum (hep-th/0508134)

– for the more formally interested, there is a great introduction by Gregory Gabadadze (hep-ph/0308112)

– the as far as I am concerned best paper written on extra dimensions is Gian Giudice, Riccardo Rattazzi
and James Wells’ hep-ph/9811291

– starting from some ideas on n = 1 we have tried to review the LHC prospects for ADD models in
hep-ph/0408320

Acknowledgments: I would like to thank all the people who have helped me understand enough about extra
dimensions to give this lecture. Historically, there is Tao Han, who always tried to convince me that these
models were great, and Gian Giudice with whom I actually wrote a paper on extra dimensions. Graham Kribs
was the one who answered all the questions I had in my infinite ignorance, thanks a ton! Daniel Litim deserves
the all the credit for recognizing that even virtual gravitons can be made sense of, provided we get the UV
completion right. And last but not least I would like to thank Maria Ubiali who produced this beautiful writeup
out of my of hand–written collection of kitchen–table notes.
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III. LITTLE HIGGS MODELS

A. Electroweak Symmetry Breaking

To discuss the motivation of a new–physics model, like the Little–Higgs models, we have to sketch the Standard
Model Lagrangian, including mass terms. These introductory comments are particularly nicely presented in
Wolfgang Kilian’s book, and I will try to follow his conventions. Fermion fields have mass dimension 3/2, so
it is easy to add mass terms to the dimension-4 Lagrangian. The only thing we have to make sure is that we
combine the left– and right–handed doublet and singlets properly

L3 ∼ −QLMQQR − LLMLLR + ... (215)

Dirac mass terms simply link SU(2) doublet fields for leptons and quarks with right–handed singlets and gives
all fermions in the Standard Model masses. In general, these mass terms can be diagonal matrices in generation
space, which implies that we might have to rotate the fermion field from an interaction basis into the mass
basis where these mass matrices are diagonal. The only problem with these mass terms is that they are not
gauge invariant... The interaction of fermions with gauge bosons is most easily written in terms of covariant
derivatives. The terms

L4 ∼ QLi 6DQL +QRi 6DQR + LLi 6DLL + LRi 6DLR −
1

4
AµνA

µν ... (216)

describe electromagnetic interactions using such a covariant derivative Dµ = ∂µ + ieqAµ with the photon field
collected in the field–strength tensor Aµν = ∂µAν − ∂νAµ. The same form works for the weak interactions,
except that the weak interaction knows about the chirality of the fermion fields, so we have to distinguish
6D →6DL,R. The covariant derivatives in terms of the SU(2) basis matrices read

DLµ = ∂µ + ieqAµ + igZ

(
−qs2

W +
τ3

2

)
+ i

g√
2

(
τ+W+

µ + τ−W−µ
)

DRµ = DLµ

∣∣∣∣
τ≡0

τ+ =

(
0 1

0 0

)
τ− =

(
0 0

1 0

)

τ1 =

(
0 1

1 0

)
τ2 =

(
0 −i
i 0

)
τ3 =

(
1 0

0 −1

)
(217)

Note that we can write the Pauli matrices as τ1,2,3 as well as τ+,−,3. The latter form of the generators
corresponds to the two charged and one neutral vector bosons. While the usual basis is written in terms of
complex numbers, the second set of generators reflects the fact that for SU(2) as for any SU(N) we can find
a set of real generators in the adjoint representation. When we exchange the two bases we only have to make
sure we get the factors

√
2 right

√
2
(
τ+W+

µ + τ−W−µ
)

=
√

2

(
0 W+

µ

0 0

)
+
√

2

(
0 0

W−µ 0

)
≡ τ1W 1

µ + τ2W 2
µ =

(
0 W 1

µ

W 1
µ 0

)
+

(
0 −iW 2

µ

iW 2
µ 0

)

⇐⇒W+
µ =

1√
2

(
W 1
µ − iW 2

µ

)
W−µ =

1√
2

(
W 1
µ + iW 2

µ

)
(218)

The third term in the Standard Model Lagrangian we have to have a close look at is the dimension-2 mass
term for gauge bosons which we know as

L2 ∼M2
WW

+,µW−µ +
1

2
M2
ZZ

µZµ. (219)
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The factor 1/2 in front of the W mass corresponds to the factors 1/sqrt2 in the SU(2) generators τ±. Of
course, in the complete Standard Model Lagrangian there are many additional terms, e.g. kinetic terms of all
kinds, but they do not affect our discussion of U(1)Y and SU(2)L gauge invariance. We know already that the
problems with gauge invariance lies in the dimension-2 and dimension-3 mass terms.

Again following Wolfgang’s book we write down the local U(1)Y and SU(2)L transformations. We start with
a slightly complicated–looking way of writing the abelian hypercharge U(1) transformations, making it more
obvious how they mix with the neutral component of SU(2) to give the electric charge

V †(x) = exp

(
i

2
β(x)τ3

)
⇔ V (x) = exp

(
− i

2
β(x)τ3

)
exp(−iβq) exp

(
i

2
βτ3

)
= exp

(
−iβ 11 + τ3

2

)
exp

(
i

2
βτ3

)
q ≡ y11 + τ3

2

= exp

(
−iβ

2
y11− iβ τ

3

2
+ iβ

τ3

2

)
yQ =

1

3
yL = −1

= exp

(
−iβ

2
y11

)
(220)

The numbers yQ,L are the quark and lepton hypercharges of the U(1) symmetry in the Standard Model.
Properly combined with the isospin they give the correct electric charges qQ,L. From the manipulations above
we see that the combination of exp(−iβq) and V (x) written down in the beginning is proportional to exp(11) and
hence an abelian transformation. When combining the different exponentials a la Baker–Campbell–Hausdorff
we have to remember that 11 commutes with any matrix, as does exp (−iβyQ11/2). Left and right–handed quark
and lepton fields transform under the electric–charge U(1) as

LL → exp

(
−iβ

2
yL11

)
LL QL → exp

(
−iβ

2
yQ11

)
QL

LR → exp

(
−iβ

2
qL11

)
LR QR → exp

(
−iβ

2
qQ11

)
QR (221)

Similarly, we define the local (adjoint) weak SU(2) transformation

U(x) = exp

(
−iαa(x)

τa

2

)
a = 1, 2, 3 (222)

which only transforms the left–handed fermion fields and leaves the right–handed fields untouched

LL → ULL QL → UQL

LR → LR QR → QR (223)

It is obvious that left–right mass terms are not invariant under this left–handed SU(2) gauge transformation

QLMQQR →U QLU
−1MQQR 6= QLMQQR (224)

In other words, to write a gauge–invariant Lagrangian for massive fermions (and vector bosons) we have to
add something to our minimal Standard Model Lagrangian. Note that this addition does not have to be a
fundamental scalar Higgs field, dependent on how picky we are with the properties of our new Lagrangian
beyond its gauge invariance.

1. Sigma Model

One way of solving this problem which at this point almost looks like a cheap trick is to introduce an additional
field Σ(x). Properties like the quantum numbers of Σ will become obvious from it’s appearance in the La-
grangian. Obviously, the equation of motion for the Σ field will also have to follow from the way we introduce
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it in the Lagrangian. We first use it to modify the fermionic mass term and make it gauge invariant under the
weak SU(2) transformation

QLΣMQQR →U QLU
−1Σ(U)MQQR ≡ QLΣMQQR ⇐⇒ Σ→ Σ(U) = UΣ (225)

The first thing we notice about Σ is it mass dimensionm0 = 1. The same we can do for the SU(2) transformation
V which mixes later on with the hypercharge

QLΣMQQR →V QLV exp (iβq) Σ(V )MQ exp (−iβq)QR
=QLΣ(V )V exp (iβq)MQ exp (−iβq)QR assuming MQ diagonal

=QLΣ(V )VMQQR

≡QLΣVMQQR

Σ→ Σ(V ) = ΣV † ⇐⇒ Σ→ UΣV † (226)

This means for any Σ with this transformation property the L3 part of the Lagrangian has the required
U(1)× SU(2) symmetry. Note that from the way it transforms Σ is a 2× 2 matrix with mass dimension zero.
We have shown by construction that including a Σ field in the fermionic mass term indeed gives a U(1)Y and
SU(2)L-invariant Lagrangian, without saying much about possible representations of Σ for example in terms
of physical fields

L3 ∼ −QLΣMQQR − LLΣMLLR + h.c.+ ... (227)

To write down a gauge–invariant gauge–boson mass we start with the left–handed covariant derivative

DLµ = ∂µ + ig′
(
q − τ3

2

)
Bµ + igW a

µ

τa

2

= ∂µ + ig′
y

2
Bµ + igW a

µ

τa

2
(228)

We skip the reasoning for this, but whoever is interested can show that the covariant derivative acting on the
Σ field in the gauge–symmetric Lagrangian has to be

DµΣ = ∂µΣ− ig′ΣBµ
τ3

2
+ igW a

µ

τa

2
Σ (229)

Instead of showing how we would have to write a gauge–invariant mass terms for the W and Z bosons we start
with a promising ansatz. If we introduce Vµ ≡ Σ(DµΣ)† and T = Στ3Σ† we can write the boson mass term as

L2 = −v
2

4
Tr[VµV

µ]− β′ v
2

8
Tr[TVµ] Tr[TV µ] (230)

The trace acts on the 2×2 SU(2) matrices. We will show the specific form soon for the different gauge choices.

The problems in our Σ–field model are additional terms of mass dimension 4 we can write down using the
(dimensionless) field Σ and which are gauge invariant. For such terms we have to find a selection rule or
symmetry which only allows the Σ terms in the Lagrangian which we need to include massive fields. Without
the trace we can construct terms which are forbidden by gauge invariance

Σ†Σ→ (UΣV †)†(UΣV †) = V Σ†U†UΣV † = V Σ†ΣV † 6= Σ†Σ (231)

On the other hand, Tr(Σ†Σ) = Tr(V Σ†ΣV †) = Tr[Σ†Σ] is gauge invariant, which allows the additional potential
terms (terms with no derivatives)

LΣ = −µ
2v2

4
Tr(Σ†Σ) +

λv4

16

(
Tr(Σ†Σ)

)2
(232)
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with properly chosen prefactors µ, v, λ. The factors µ and v have mass dimension one while λ has mass
dimension zero. To give mass to the gauge bosons we have to assume that Tr(Σ†Σ) assumes a finite value after
we deal properly with the field Σ. The simplest way to achieve this is to generally assume

Σ(x) = 11 (233)

This assumption is called unitary gauge. In this gauge the covariant derivative again becomes

DµΣ = igW a
µ

τa

2
− ig′Bµ

τ3

2
(234)

Moreover, we can simply compute the auxiliary field Vµ in unitary gauge

Vµ = −igW a
µ

τa

2
+ ig′Bµ

τ3

2

= −igW+
µ

τ+

√
2
− igW−µ

τ−√
2
− igW 3

µ

τ3

2
+ ig′Bµ

τ3

2

= −i g√
2

(
W+
µ τ

+ −W−µ τ−
)
− igZZµ

τ3

2
with Zµ = cWW

3
µ − sWBµ and gZ =

g

cW
, g′ =

sW
cW

g (235)

This field gives for the first of the two terms in the gauge–boson mass Lagrangian

Tr[VµV
µ] = −2

g2

2
W+
µ W

−
µ Tr(τ+τ−)− g2

z

4
ZµZµTr(τ2

3 )

= −g2W+
µ W

−
µ −

g2
z

2
ZµZµ (236)

The second term proportional to β′ better is similarly simple in unitary gauge

T = Στ3Σ† = τ3

⇒ Tr(TVµ) = Tr

(
−igZZµ

τ2
3

2

)
= −igZZµ

Tr(11)

2
= −igZZµ

⇒ Tr(TVµ) Tr(TV µ) = −g2
ZZµZ

µ (237)

Combining both terms gives the gauge boson masses

L2 = −v
2

4

(
−g2W+

µ W
−µ − g2

Z

2
ZµZ

µ

)
− β′ v

2

8

(
−g2

ZZµZ
µ
)

=
v2g2

4
W+
µ W

−µ +
v2g2

Z

8
ZµZ

µ + β′
v2g2

z

8
ZµZ

µ

=
v2g2

4
W+
µ W

−µ +
v2g2

Z

8
(1 + β′)ZµZ

µ (238)

Identifying the masses and assuming the universality of neutral and charged current interactions (β′ = 0) we
find

MW =
gv

2
MZ =

gZv

2
. (239)

This scale choice for Σ(x) is not the only one possible. The weakest assumption to obtain finite gauge–boson
masses would be 〈Tr(Σ†(x)Σ(x))〉 6= 0 in the vacuum. In the canonical normalization we write

1

2
〈Tr(Σ†(x)Σ(x))〉 = 1 ∀x (240)
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which can also be fulfilled through

Σ†(x)Σ(x) = 11 ∀x (241)

This means Σ(x) is now a unitary matrix which like any 2× 2 unitary matrix can be expressed in terms of the
Pauli matrices

Σ(x) = exp

(
−i
v
~w(x)

)
with ~w(x) = wa(x)τa. (242)

Note that ~w(x) has mass dimension one, so it can be a physical scalar field. The normalization scale v is
given by the energy scale of our Lagrangian. For reason which will be obvious in a few seconds, ~w(x) is called
the non–linear representation of the symmetry related Σ field. Using the commutation properties of the Pauli
matrices We can expand Σ as

Σ = 11− i

v
~w +

1

2

(−1)

v2
waτawbτ b +

1

6

i

v3
waτawbτ bwcτ c

= 11− i

v
~w − 1

2v2
wawa11 +

i

6v3
wawa ~w

=

(
1− 1

2v2
wawa ± ...

)
11− i

v

(
1− 1

6v2
wawa ± ...

)
~w (243)

From this expression we can for example read off the Feynman rules.

Obviously, a third way of expressing a unitary field Σ in terms of the Pauli matrices is the properly normalized
linear representation

Σ(x) =
1√

1 + wawa

v2

(
1− i

v
~w(x)

)
(244)

The different ways of writing the Σ field in terms of the Pauli matrices cannot have any impact on the physics.
However, the three forms of Σ(x) we briefly discussed (unitary gauge Σ=1, exponential and linear represen-
tation) have different Feynman rules and Green’s functions, and for a given problem one or the other might
be the most efficient to use in computations or proofs. For example in electroweak calculations, the proof
of renormalizability was first formulated in unitary gauge. Loop calculations might be more efficient in the
Feynman gauge, because of the simplified propagator structure, while some QCD processes benefit from an
explicit projection on the physical external gluons. Modern tree–level helicity amplitudes are usually computed
in the unitary gauge, etc. Each of these techniques clearly have their strengths and weaknesses.

For example from the introductions to supersymmetry and extra dimensions in recent semesters we know that
if we do not introduce something new, the Standard Model with gauge-bosons masses violates unitarity, most
notably in WW → WW scattering. This argument can even be used to fix all the Higgs couplings, the only
remaining free parameter is the Higgs mass, because unitarity arguments always affect the high–energy (i.e.
massless) limit of the theory. In other words, our Σ model can only be viewed as an effective theory unless we
give the new field a physical meaning. To extend the simple Σ model we can allow for fluctuations of Tr(Σ†Σ)
around the vacuum value Σ†Σ = 1 and parameterize the new degrees of freedom as a physical field

Σ →
(

1 +
H

v

)
Σ (245)

which means for our usual trace

1

2
Tr(Σ†Σ) =

(
1 +

H

v

)2

(246)
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The non-dynamic limit is again Σ†Σ = 1 ⇐⇒ H = 0. Interpreting the fluctuations around the non-trivial
vacuum as a physical Higgs field is really nothing but the usual Higgs mechanism (named after one of the
University of Edinburgh’s most famous sons), except that the static limit has a proper definition as an effective
gauge–invariant theory, the Σ model. This way, the Higgs field does not have to be fundamental, but could
just be one step in a ladder built out of effective theories. The potential terms LΣ produce a potential for the
new Higgs field H

L2 = −µ
2v2

2

(
1 +

H

v

)2

+
λv4

2

(
1 +

H

v

)4

+ ... (247)

The dots stand for higher–dimensional terms which might or might not be there, just like in the Standard Model.
Some of them are not forbidden by any symmetry, but they are not realized at tree level in the Standard Model.
In the static limit we have to recover the vacuum condition Tr(Σ†(x)Σ(x))/2 = 1, so there H = 0 and hence
L2 = 0 means µ2 = λv2.

Just as for the Σ field alone we can move from the simple unitary gauge to a different (linear) representation
of the Σ field including a physical Higgs scalar

Σ→
(

1 +
H

v

)
11− i

v
~w = 11 +

1

v

(
H − iw3 −i

√
2w+

−i
√

2w− H + iw3

)
= 11 +

1

v
(Φ̃Φ) (248)

The last step is just another way to write the 2× 2 matrix in terms of the two doublets

Φ̃ =

(
H − iw3

−i
√

2w−

)
Φ =

(
−i
√

2w+

H + iw3

)
(249)

These two doublets give mass to up–type and down–type fermions.

Instead of deriving both relevant doublets from one physical Higgs doublet Φ and Φ̃ we can include
two sigma fields in the fermion–mass terms

L3 ∼ −QLMQuΣu
1 + τ3

2
QR −QLMQdΣd

1− τ3

2
QR + ... (250)

and in the gauge–boson mass terms

L2 =
v2
u

2
Tr
[
(DµΣu)†DµΣu

]
+
v2
d

2
Tr
[
(DµΣd)

†DµΣd
]

(251)

Each of the two Σ fields we can express in the usual linear representation

Σj = 11 +
1

vj
Φ0
j −

i

vj
~Φj i = u, d ~Φj = Φaj τ

a. (252)

From the gauge–boson masses we know that

v2
u + v2

d = v2 ⇐⇒ vu = v sinβ vd = v cosβ (253)

which means that the longitudinal vector bosons are

~w = cosβ ~Φu + sinβ ~Φd (254)

This two–Higgs doublet model is for example the minimal choice in supersymmetric extensions of the Standard
Model. But type-II two–Higgs doublet models where one Higgs doublet gives mass to up-type and another one
to down–type fermions are much more general than that.
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2. Custodial Symmetry

From the discussion in the last section we have seen that electroweak symmetry breaking with a simple sigma
field or Higgs doublet links the couplings of neutral and charged currents firmly to the masses of the W and
Z bosons. After the precision measurements at LEP this link has turned into a seriously strong constraint
on all kind of new–physics models. As a matter of fact, this constraint is responsible for the almost death of
(technicolor) models which describe the Higgs boson as a bound state under a new QCD-like interaction.

We remember that the Lagrangian for the gauge-boson masses involves two terms, both symmetric under
SU(2)× U(1) and hence allowed in the electroweak Standard Model

L2 = −v
2

4
Tr[VµV

µ]− β′ v
2

8
Tr[TVµ] Tr[TV µ] (255)

In unitary gauge we actually computed the mass terms coming from Tr[VµV
µ], which gave MW and MZ

proportional to g ≡ gW and gZ . Their relative size can be expressed in terms of the weak mixing angle θw,
together with the assumption that GF or g universally govern charged current (W±) and neutral-current (W 3)
interactions. This relations at tree level is simply

M2
W

M2
Z

= c2w. (256)

A free parameter ρ breaking this relation can be introduced as a shift

g2
Z → g2

Z · ρ mZ → mZ ·
√
ρ , (257)

which from measurements it is very strongly constrained to be unity. In L2 the Z-mass term proportional to
β′ precisely predicts the deviation ρ = 1 +β′ 6= 1. To bring our Lagrangian into agreement with measurements
we better find a reason to constrain β′ to zero, and the SU(2)× U(1) gauge symmetry unfortunately does not
do the job.

Looking ahead, we will find that ρ = 1 is violated in the Standard Model, for example by the difference in
up-type and down-type quark masses mb 6= mt. Which means we are looking for an approximate symmetry
of the entire Standard Model, but in particular a good symmetry in the SU(2) gauge sector. There is one
possibility...
We can replace the SU(2)L × U(1)Y symmetry with a larger symmetry SU(2)L × SU(2)R, which obviously
would have to act like

Σ→ UΣV † U ∈ SU(2)L V ∈ SU(2)R

Tr(Σ†Σ)→ Tr
[
V Σ†U†UΣV †

]
= Tr[Σ†Σ] (because of circular trace) (258)

From the definition of the covariant derivative DµΣ including a simple τ3 we can already guess that the complete

group SU(2)R will not allow B-field interactions which are proportional to sW ∼
√

1/4. It also does not allow
β′ 6= 0, but it does allow all terms in the Higgs potential LΣ. Giving the Σ field a finite vacuum expectation
value Σ field changes the picture: in the minimal (non–Higgs) version and in the unitary gauge the Σ field now
reduces to 11, which for the combined SU(2) transformations means

〈Σ〉 → 〈UΣV †〉 = 〈U11V †〉 = UV † ≡ 11 (259)

The last step, i.e. the symmetry requirement for the Lagrangian can only be satisfied if we require U = V .
In other words, the vacuum expectation value for Σ or for the Higgs field breaks SU(2)L × SU(2)R to the
diagonal subgroup SU(2)L+R. The technical term is precisely defined this way — the two SU(2) symmetries
reduce to one remaining symmetry which can be written as U = V . In the extended symmetry group the ρ
parameter is indeed protected to be ρ = 1, while under only the diagonal symmetry group we can accommodate
a general ρ.
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Leading corrections to the ρ parameter come from Higgs loops in the case g′ 6= 0

∆ρ ∼ −11GFM
2
Zs

2
W

24
√

2π2
log

m2
h

M2
Z

. (260)

Others come from virtual bottoms and tops in the W and Z self energies

∆ρ ∼ 3GF

8
√

2π2

(
m2
t +m2

b − 2
m2
tm

2
b

m2
t −m2

b

log
m2
t

m2
b

)
∼ 3GF

8
√

2π2

(
2m2

b + δ − 2
(m2

b + δ)m2
b

δ
log

(
1 +

δ

m2
b

))
m2
t = m2

b + δ

=
3GF

8
√

2π2

(
2m2

b + δ − 2

(
m4
b

δ
+m2

b

)(
δ

m2
b

− δ2

2m4
b

+O(δ3)

))
=

3GF

8
√

2π2

(
2m2

b + δ − 2m2
b + 2

δ

2
− 2δ +O(δ2)

)
=

3GF

8
√

2π2
O(δ2) (261)

and indeed vanish for mt = mb.

The obvious next question is: how do physical modes, which we introduce in the parameterization of the Σ
field Σ(x) = exp(−i ~w/v) and which we will describe in more detail in the next section transform under these
two different SU(2) symmetries?
Clearly, under the usual SU(2)L we still find Σ → U · Σ, the way we actually introduced U earlier. We can
write U in terms of the SU(2) generators as U = exp(−iα · τ/2). In general, we denote ~w = waτa = w · τ and
~α = α · τ in terms of the Pauli matrices. We can read off the transformation properties of ~w from

UΣ = e−i(α·τ)/2 e−i(w·τ)/v

= e−i(α·τ)/2−i(w·τ)/v e−
i
2 [α·τ)/2,(w·τ)/v]

= e−i(α·τ)v/2+(w·τ))/v

= e−i(w
′·τ)/v (262)

In the second line we have used the Baker-Campbell-Hausdorff formula eAeB = eA+Be[A,B]/2 which for the
Pauli matrices becomes

[τi, τj ] = 2iεijkτk ⇒ (~α · ~τ)(~w · ~τ) = ~α · ~w + i~τ (~α× ~w)

⇒ [(~α · ~τ), (~w · ~τ)] = 2i~τ (~α× ~w) (263)

From the symmetry requirement UΣ ≡ Σ we find the transformation property for the physical modes in Σ

wa → w′a = wa +
v

2
αa (264)

This is a non-linear transformation, in the sense that w′a is not proportional to wa. Note that we have derived
this shift–symmetry operation only for infinitesimal transformations, so for general transformations we might
end up with higher terms in α. The crucial conclusion is the same, though: these modes in Σ shift under
the SU(2) transformation, their transformation is not linear. When we construct a symmetric Lagrangian this
non–linear transformation forbids mass terms, gauge interactions, Yukawa couplings, and quadratic potential
terms for these modes in Σ. Only derivative terms like the kinetic term and derivative couplings are allowed
unter the SU(2) symmetry.

Similarly, we can evaluate the transformation of these physical modes under the custodial symmetry group
SU(2)L+R and find the linear transformation

wa → w′a = wa − εabcαbwc (265)
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In other words, when we transform the physical modes corresponding to the symmetry generators in Σ by the
good symmetry SU(2)L we find a non–linear transformation, while the approximate symmetry SU(2)L+R leads
to a linear transformation. A linear transformation for example of a scalar means that we can write a potential
for this particle which is symmetric under SU(2)L+R transformations.

This leads us to the definition of Goldstone modes: if we have a global symmetry group which is spontaneously
broken into a smaller symmetry group, the broken generators of the original group correspond to physical
Goldstone modes. These modes transform non–linearly under the larger group and linearly under the smaller
group. If our symmetry groups are gauge groups, Goldstone modes are absorbed into the broken gauge bosons
to make them massive. If this spontaneous symmetry breaking involves a vacuum expectation value f , the
mass of the heavy gauge bosons which eat the Goldstone modes is of the order f .

A little more tailored towards our later use, we see that because of their non–linear transformation property,
Goldstone bosons cannot form a potential symmetric under the original group, so they have to for example
be massless. This does not change if we break the original symmetry group spontaneously — potential terms
are still forbidden. However, if we also break the larger symmetry group explicitely, for example through a
coupling g, potential terms can now occur. They will be proportional to g and proportional to f and can be
induced for example through loop effects. In the presence of explicit symmetry breaking the Goldstone modes
are called pseudo–Goldstone modes.

B. Little–Higgs Mechanism

Until now we have not talked about any physics beyond the Standard Model. As a matter of fact, we have
mostly talked about a watered–down version of the electroweak Standard Model, namely the Σ model. However,
first of all it is good to know that we can actually write down a perfectly fine Lagrangian for the electroweak
gauge theory including finite W and Z boson masses without introducing a Higgs field, if we are happy with
an effective–theory approach. And secondly, the starting point of little–Higgs theories is the attempt to make
the Higgs boson a pseudo–Goldstone mode under some broken global symmetry to explain its small mass, and
it is a good idea to review this mechanism before diving into the exciting new physics.

1. Some Goldstone bosons

In the following, we will track the behavior of different degrees of freedom under SU(N) transformations. We
can start with a simple U(1) transformation of a complex scalar field, i.e. with two degrees of freedom. For
this scalar field φ(x) we assume a potential V = V (φ∗φ) and a global U(1) symmetry transformation φ→ eiαφ.
After expanding the scalar field around its (real) vacuum we find a massive radial mode r(x), with its mass
given by the form of the potential around the vacuum. The transformation of the scalar field in terms of these
two modes reads

φ→ eiαφ = eiα
v + r(x)

2
eiθ(x)/v =

v + r(x)

2
ei(θ(x)+v·α)/v (266)

Just as before, we find a non–linear shift of the massless mode in the scalar field: θ → θ + v · α. This means
θ(x) has to stay massless, protected by the U(1) symmetry. Only derivative couplings of θ are allowed in a
U(1)-symmetric Lagrangian.

Unfortunately, we now have to move to the non–abelian case, where we will have to write tons of matrices and
any lecturer is bound to get things wrong on the blackboard. First, we can break the global (ungauged) gauge
group SU(N)→ SU(N − 1) and look at the Goldstone modes associated with the reduced number of degrees
of freedom in the symmetry group. We expect

(N2 − 1)2 − ((N − 1)2 − 1) = 2N − 1 (267)

generators which are not anymore associated with the reduced symmetry group. Think for example of a basis
for SU(3) and SU(2), the Gell-Mann and the Pauli matrices. They are traceless hermitian (and unitary)
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matrices, and generators of the Lie groups SU(N) with N = 2, 3. For SU(2) the three Pauli matrices are

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
(268)

with strictly speaking: SU(2) = span{iσk}. The corresponding 8 Gell-Mann matrices can be written in terms
of the three Pauli matrices and the remaining degrees of freedom

λ1 =

 0 1 0

1 0 0

0 0 0

 =

 σ1 0

0

0 0 0

 λ2 =

 0 −i 0

i 0 0

0 0 0

 =

 σ2 0

0

0 0 0

 λ3 =

 1 0 0

0 −1 0

0 0 0

 =

 σ3 0

0

0 0 0



λ4 =

 0 0 1

0 0 0

1 0 0

 =

 0 1

0

1 0 0

 λ5 =

 0 0 −i
0 0 0

i 0 0

 =

 0 −i
0

i 0 0

 combined to complex

 0 w1

0

w∗
1 0 0



λ6 =

 0 0 0

0 0 1

0 1 0

 =

 0 0

1

0 1 0

 λ7 =

 0 0 0

0 0 −i
0 i 0

 =

 0 0

−i
0 i 0

 combined to complex

 0 0

w2

0 w∗
2 0



λ8 =
1
√
3

 1 0 0

0 1 0

0 0 −2

 =
1
√
3

 11 0

0

0 0 −2

 (269)

We can arrange all generators of SU(3) which are not generators of SU(2) in the outside column and row of
the 3× 3 matrix

UN ∼

 SU(2) w1

w2

w∗1 w∗2 w0

 (270)

The entry w0 is fixed by the requirement that UN has to be traceless when we add 11 to the SU(2) matrices in
the top–left corner. If, as they were introduced in the Σ model, the Goldstone modes describe modes of a system
around its broken ground state with a symmetry–breaking scale v, we can collect them in a vector–shaped field
φ for general SU(N)→ SU(N − 1) breaking as

φ = exp

−
i

v


SU(N − 1) w1

. . .

wN−1

w∗1 . . . w∗N−1 w0





0

. . .

0

v

 ≡ e−i ~w·~τ/vφ0 (271)

This notation has the advantage that we can write φ and φ0 as columns, i.e. as fields symmetric under SU(N)
or SU(N − 1) in the fundamental representation. The vector φ then is defined such that its upper N − 1
component are symmetric under the smaller symmetry group SU(N − 1). In the first–order term in the Taylor
series in 1/v the mass scale v drops out between the exponent and φ0.

Another example for a global symmetry group more similar to our old custodial SU(2)L+R would be
SU(N)× SU(N)→ SU(N). The number of Goldstone bosons associated with the broken generators is

2(N2 − 1)− (N2 − 1) = N2 − 1 (272)

Unfortunately, they are not as easily written in matrix form as those of the two gauge groups SU(N) →
SU(N − 1). The gauge transformations we know from before: φ → LφR†. The symmetry–breaking ground
state of the combined scalar field is 〈φ〉 ≡ φ0 ≡ v11N : it is invariant under the diagonal subgroup where we
identify the two SU(2) transformations to a simpler φ0 → Uφ0U

†. The remaining (axial) generators are broken
and turn into Goldstone bosons collected in φ = exp(−i(~w ·~τ)/v)φ0 = v exp(−i(~w ·~τ)/v)11. The matrices (~w ·~τ)
are traceless hermitian matrices with (N2 − 1) degrees of freedom, i.e. independent entries.
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From our simple examples SU(2)L, SU(2)L+R and U(1) we already have a good idea how to compute the
transformation of the Goldstone bosons under broken and unbroken symmetry transformations. We repeat the
argument for SU(N)→ SU(N−1), starting with the transformation properties of the scalar field φ. This scalar
field can be parameterized as φ ≡ exp(−i(~w · ~τ)/v)φ0 with the generators ~τ including the broken subgroup
SU(N)/SU(N − 1). Under the unbroken symmetry group SU(N − 1) represented as an (N ×N) matrix the
scalar field transform as

φ→ UN−1 φ = UN−1 e
−i ~w·~τ/v φ0

= UN−1 e
−i ~w·~τ/v U†N−1UN−1φ0

= UN−1 e
−i ~w·~τ/v U†N−1φ0 (φ0 invariant under UN−1, but not UN ) (273)

This relation will give us the transformation properties for the Goldstones. We can rewrite the (N ×N) matrix
acting on the leading term in φ

UN−1 =

(
ÛN−1 0

0 1

)

⇒ UN−1 e
−i ~w·~τ/v U†N−1 ∼ −

i

v

(
ÛN−1 0

0 1

)(
0 ~w

~w† 0

)(
ÛN−1 0

0 1

)
= − i

v

(
0 ÛN−1 ~w

(ÛN−1 ~w)† 0

)
(274)

This means the Goldstones transform as ~w → ÛN−1 ~w. However, this transformations with ÛN−1 from the left
is just the usual symmetry transformation for vectors in the fundamental representation of SU(N − 1). In the
SU(N − 1) symmetric Lagrangian we can write any terms for the Goldstones we can write for other states in
the fundamental representation.
To compute the more interesting transformation properties under SU(N) we need the fact, that a SU(N)
transformation can be written as a product of an SU(N)/SU(N − 1) transformation times a SU(N − 1)
transformation. This means

φ→ UNφ = UNU∗(~w)φ0 with the SU(N)/SU(N − 1) transformation U∗(~w), so UN = U∗UN−1

= U∗(~α)UN−1U∗(~w)φ0

= U∗(~α)UN−1U∗(~w)U†N−1UN−1φ0

= U∗(~α)UN−1U∗(~w)U†N−1φ0 (275)

The combination UN−1U∗(~w)U†N−1 is just what we found above, while the additional U∗(α) = exp(−i(~α ·
τ)/2) will produce the same behavior we saw in the SU(2) and U(1) cases: if we write out the infinitesimal
transformations we find ~w → ~w′ = ~w + ~α/2, which forbids Goldstone masses and other potential terms in the
Lagrangian and only allows derivative interactions. The Goldstone Lagrangian of mass dimension four with a
global SU(N) symmetry will therefore be of the general form

L = |∂µφ|2 +O(∂4) + const (276)

Any mass scale in this spontaneously broken Goldstone Lagrangian is given by the vacuum expectation value

f . Constants can for example arise from the gauge–invariant combination φ†φ = φ†0φ0 = f2. Note that here we
switch from v to f for the same thing, namely the scale responsible for breaking the larger symmetry group,
to be consistent with Martin’s review. Similarly, we will switch from −~w to ~π for the Goldstones in φ.

2. Protecting the Higgs mass

For example from the lecture on supersymmetry or the lecture on extra dimensions you might remember
that one of the puzzles of high–energy physics is the question why the Higgs is so light. From general field–
theoretical considerations any fundamental scalar should acquire a loop–induced mass of the order of the cutoff
of the theory. Clearly, the LEP precision measurements point too a Higgs mass much below the Planck or the
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unification scales. One way to explain a small Higgs mass would be to make the Higgs a pseudo–Goldstone of
a symmetry which is broken at a mass scale around the weak scale. Compared to this scale the Higgs mass has
to be small because of the larger symmetry group, which means the Higgs mass cannot diverge quadratically
at large energy scales.

This idea has been around for a long time, but for decades people did not know how to construct such a
symmetry. Before we solve this problem via the little–Higgs mechanism, let us unsuccessfully start constructing
a symmetry which protects the Higgs mass from quadratic divergences at one loop using a global SU(3) as the

broken symmetry including SU(2)L. Everything we need to know for this construction we can read off from
the general SU(N) → SU(N − 1) case. The SU(3) → SU(2) Goldstone modes written in the usual matrix
form are

~π =

(
SU(2) h

h† η

)
(277)

We of course assume that the SU(2)L doublet among the SU(3) Goldstones which can acquire a mass once we
break SU(3) is the Higgs doublet of the Standard Model. Again, note that to be in agreement with Martin
Schmaltz’s review we now denote the Goldstone fields as π instead of ~w. The additional field η is an SU(2)
singlet and can be ignored for now — we will discuss it briefly at the very end of the lecture. To translate the
degrees of freedom from the matrix ~π to the fields h we are interested in we write the usual matrix representation
of the Goldstones with a symmetry–breaking scale f

φ = exp

[
i

f

(
02×2 h

h† 0

)] (
02

f

)

=

(
11 +

i

f

(
0 h

h† 0

)
− 1

2f2

(
0 h

h† 0

) (
0 h

h† 0

)) (
0

f

)
h = (h1, h2)

=

(
0

f

)
+

(
ih

0

)
− 1

2f2

(
0

h†hf

)

=

(
0

f

)
+

(
ih

−h†h/(2f)

)
(278)

Note that only in the first line we indicate which of the zeros in the 3 × 3 matrix is a 2 × 2 sub-matrix. This
is easy to keep track of if we remember that the Higgs field h is a doublet, while h†h is a scalar number. This
transformation allows us to rewrite the kinetic term as a function of h

|∂µφ|2 = (∂µφ
∗)i(∂

µφ)i = (−i∂µh)i(i∂
µh∗)i +

1

4f2
(∂µh

†h)i(∂
µh†h)i

= |∂µh|2 +
1

4f2
(∂µ

∑
j

h∗jhj)i(∂
µ
∑
j

h∗jhj)i

= |∂µh|2 +
1

4f2

∑
j

(∂µh
∗
j )hj +

∑
j

h∗j (∂µhj)


i

∑
j

(∂µh∗j )hj +
∑
j

h∗j (∂
µhj)


i

= |∂µh|2 +
1

4f2
4 |∂µh|2 h†h

= |∂µh|2
(

1 +
h†h

f2

)
(279)

The second term in the parentheses looks like a kinetic term, so it is fine in the Goldstone Lagrangian. However,
it includes an additional factor h†h, which corresponds to an outgoing and an incoming Higgs field and which
we should have a close look at. These two fields can be linked, giving a one-loop graph which diverges as∫ Λ d4q

(2π)4

1

q2
∼ Λ2

(4π)2
(280)
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Comparing the two terms in the parentheses above there is an upper limit to the size of the h†h term, where
this term dominates our theory. This means that our effective theory should will only be valid as long as

Λ2

(4π)2f2
. 1 (281)

In other words, the massless Higgs boson has additional high-dimensional Lagrangian terms which become
strong for energy scales around Λ ∼ 4πf . Above this scale, our effective theory will not be useful.

After we now know how the kinetic term for the massless pseudo–Goldstone–Higgs doublet looks we next have
to generate a coupling to the SU(2) gauge bosons and see what happens with the Higgs mass. Of course, from
the discussion of Goldstones and pseudo–Goldstones we know that we will not be able to generate the mass or
a potential term we want, but it is constructive to see the problems which will arise.

First attempt: We can simply add g ( ~Wµ~τ) in the covariant derivative of the Goldstone. Or in other words,
we gauge the SU(2) subgroup of the global SU(3). This automatically creates a 4-point coupling of the kind

|g ~Wµh|2. Like before, the two W bosons coupling to the Higgs propagator can be linked to a loop and generate
a one–loop mass term of the kind

L ⊂ g2 Λ2

(4π)2
h†h (282)

This term is a quadratically divergent Higgs mass. Which means that our operator breaks the shift symmetry
SU(3) into SU(2) and at the same time introduces the same kind of mass for which spoils the Standard Model.

Second attempt: We can write the same interaction as in the first attempt in terms of the triplet φ, where we
simply leave the third entry in the gauge–boson matrix empty∣∣∣∣∣g

(
~Wµτ 0

0 0

)
φ

∣∣∣∣∣
2

(283)

We can again square this relevant interaction term contributing to the Higgs mass and find (in a suitable SU(2)
basis)

φ†

(
g 11 0

0 0

) (
g 11 0

0 0

)
φ = φ†

(
g2 112 0

0 0

)
φ = g2 h†h 11 (284)

which means that the mass terms now read

L ⊂ g2 Λ2

(4π)2
φ†

(
11 0

0 0

)
φ = g2 Λ2

(4π)2
h†h (285)

This is precisely what we had before. And it is not surprising, because we really only wrote the same thing in
a different notation, using φ†φ instead of h†h and adding zeros into the gauge–boson matrix which in turn acts
as a projector onto the h†h part.

Third attempt: Learning from the previous cases we can instead add a proper covariant derivative not only
including the W fields in SU(2), but also the degrees of freedom of the complete SU(3). Closing all of them
into loops we obtain again in a proper basis

L ⊂ g2 Λ2

(4π)2
φ†113φ = g2 Λ2

(4π)2
|φ0|2 = g2 Λ2

(4π)2
f2 (286)

There is indeed no Higgs–mass contribution, because our SU(3) gauge bosons ate the Goldstones altogether.
This is simple an effect of including a complete set of SU(3) gauge bosons of freedom, where there are no
Goldstone degrees of freedom left for the Higgs.
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a.)

iφ iφi φ

b.) 2 2

11φ φ

φ φ

φφi i

FIG. 1: Feynman diagrams contributing to the Higgs mass in little–Higgs models. This beautiful picture is stolen from
Martin Schmaltz’s review article.

On the other hand, so this attempt brings us closer to solving Higgs–Goldstone problem. The problem we are
stuck in is that either we include only the SU(2) covariant derivative and find quadratic divergences in the
Higgs mass or we include the SU(3) covariant derivative and turn the Higgs into a Goldstone mode which gives
a mass of scale f to these gauge bosons.

Correct attempt: We obviously have to come up with something better than the usual set of Goldstones from
SU(3) breaking. Digesting the unsuccessful attempts we can see a way out: we should use two independent sets
of SU(3) generators. These we break to our SU(2)L gauge group through a combination of spontaneous and
explicit breaking. Because of this mixing we will get pseudo–Goldstones which make the SU(3) gauge bosons
heavy while the uneaten Goldstones which can form our Higgs. Note that this requires us to only include one
set of SU(3) gauge bosons for two SU(3) symmetries, so in a way only one of them will be gauged. Naively, we
have 8 + 8 − 3 = 13 Goldstones degrees of freedom to distribute. However, we have have to be careful not to
double count three of them in the case where we identify both SU(2) fractions of the two original sets of SU(3)
generators, in which case we are down to ten Goldstone modes. The art will be to arrange the spontaneous
and hard symmetry breakings into a workable model.
First, we write each of the set of SU(3) generators into the usual matrices and identify the relevant degrees of
freedom in the Goldstone matrix which we hope will become the Higgs

φj = exp

(
i

f

(
02×2 hj
h†j 0

))(
0

f

)
j = 1, 2 (287)

For simplicity we here set the vevs equal f1 ≡ f2 ≡ f . At one loop, each of them couples to the set of SU(3)
gauge bosons with the usual SU(3) covariant derivative

L ⊂ |Dµφ1|2 + |Dµφ2|2 ⊂ g2
1 |Wµφ1|2 + g2

2 |Wµφ2|2 (288)

These terms can be linked to loop diagrams of the kind shown in Fig. 1(a). From our attempt number three
we we know that for universal couplings gj they read

1

(4π)2
Λ2

(
g2

1 φ
†
1φ1 + g2

2 φ
†
2φ2

)
=

g2

(4π)2
Λ2 2f2 (289)

However, these are not the only terms we can write down with two sets of Goldstones. For example, we can
write diagrams like the one in Fig. 1(b), coupling φ1 to φ2 directly through a gauge-boson loop. Counting the
powers in momentum we can guess its contribution to the Lagrangian to be of the kind

g2
1g

2
2

(4π)2
log

Λ2

µ2
|φ†1φ2|2 (290)

The combination φ†1φ2 is a scalar and not a matrix and is gauge invariant only under the diagonal SU(3)
subgroup of [SU(3)]2. And last but not least, it is not a simple mass term for the φj , nor is it quadratically
divergent, so we simply accept its existence.
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In the next step, we have to translate its form into a Lagrangian term in the Higgs fields hj and see if it gives
us a mass term. Its form suggests a reorganization of the hj , to treat them more symmetrically; if we shift
them such that hj → k ± h we find to leading order (neglecting commutators)

φ†1φ2 =

[
e
i
f
~k~τe+ i

f
~h~τ

(
0

f

)]† [
e
i
f
~k~τe−

i
f
~h~τ

(
0

f

)]

=
(

0 f
)
e−

i
f
~h~τe−

i
f
~k~τe+ i

f
~k~τe−

i
f
~h~τ

(
0

f

)

=
(

0 f
)
e−

2i
f
~h~τ

(
0

f

)

=
(

0 f
)[

11− 2i

f

(
0 h

h† 0

)
+

1

2

(
2i

f

)2
(
hh† 0

0 h†h

)
+ ...

](
0

f

)

= f211− 2

f2

(
0 f

)(
0

h†hf

)
+ ...

= f211− 2h†h+ ... ⇒ |φ†1φ2|2 ∼ f411− 4f2h†h+ ... (291)

The Goldstone modes k are SU(3) rotations common to φ1 and φ2 and lead to massive longitudinal SU(3)
gauge bosons when we break the SU(3) symmetry spontaneously.
Because of the combination of the spontaneous symmetry breaking of the two SU(3) symmetries and the
explicit breaking to the diagonal SU(3) the pseudo–Goldstone field h develops a mass and general potential

terms of the kind |φ†1φ2|. For example its mass term just combining the two above formulae reads

L ⊂ −g
2
1g

2
2f

2

(2π)2
log

Λ2

µ2
h†h (292)

To summarize, of the two Goldstones h1 = k + h and h2 = k − h we use k = (h1 + h2)/2 to make the gauge
bosons of the broken SU(3) heavy. The remaining Goldstones h = (h1 − h2)/2 are pseudo–Goldstone bosons
which can develop a mass and a potential with a mass scale f at which we break SU(3)→ SU(2). Comparing
this mass term to the Standard–Model mass scales, we expect or hope for f values which give us

Mweak ∼
g2f

2π
(293)

The mechanism described above is called collective symmetry breaking. It is a convoluted way of spontaneously
and explicitely breaking a global symmetry into a gauged subgroup (here SU(3)diag) and then down to our
SU(2)L. Part of the Goldstones from the original global symmetry group will make the additional gauge bosons
heavy, with a mass scale f . The remaining Goldstones turn into pseudo–Goldstones because of the explicit
breaking of the global symmetry. The reason why this symmetry breaking is called ‘collective’ is that we need to
break two symmetries explicitely to produce mass and potential terms for the pseudo–Goldstone. Only breaking
one of them leaves the respective other one as a global symmetry under which the Higgs fields transforms non–
linearly. This way we ensure that the Higgs mass and potential terms have a squared g2 suppression compared
to f . As a side remark we notice that while this gives us a suppression of g2 instead of g, we do not collect
additional factors 1/(4π), because we are still looking at one–loop diagrams.
Looking back, we now have a scale interval where our little–Higgs effective theory does exactly what it is
supposed to do: below g2 f/(2π) we have the Standard Model with it usual Higgs mass. Above 4πf we have
a strongly interacting UV completion which we are ignoring at this point, because it might be a mess. In
between, there is an energy range g2 f/(2π), ..., 4πf where we can compute effects of the new physics using the
little–Higgs theory.
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C. Little–Higgs Models

From the last chapters we now know how to generally build models which protect the SM Higgs mass from
quadratic divergences at one loop: we pick a global symmetry of which we gauge only a part. Then we
break it spontaneously to our SU(2)L at a scale f and at the same time break it explicitely via gauge or
Yukawa couplings. Part of the complete set of Goldstones will make the additional gauge bosons heavy and
the remaining pseudo–Goldstones include the SM Higgs sector and protect its low mass.
Because the original global symmetry group is explicitely broken via collective symmetry breaking, the Higgs
will develop mass and potential terms governed by the scale f , but doubly loop suppressed (via gauge–boson
or fermion loops). It will come as a surprise that this scheme can be realized in many different ways. In the
following, we will discuss two realizations, one starting from a global [SU(3)]2 and the other starting from a
global SU(5) symmetry.

1. The simplest little Higgs

The smallest useful extension of SU(2)L is SU(3) as discussed before and as Weinberg pointed out decades ago.
To protect the Higgs mass a single broken SU(3) symmetry is not sufficient. We instead need a more complex
setup, so we postulate a global [SU(3)]2 symmetry and break it in steps down to SU(2)L. We can then express
all mass scales in terms of the symmetry–breaking scale f . Starting from the UV the basic structure of our
model is

– for E > 4πf we know our effective theory in E/f breaks down, so our theory is strongly interacting
and/or needs a UV completion.

– below that, the effective Lagrangian obeys a [SU(3)]2 symmetry transformation Uj (j = 1, 2) with two
gauge couplings gj and two Yukawa couplings λj . They couple to one set of SU(3) gauge bosons, which
contains three SU(2) gauge bosons, plus complex W ′±,W

′
0 with hypercharge 1/2 and a singlet Z ′.

– through loop effects gauge and Yukawa couplings explicitely break [SU(3)]2 → SU(3)diag. The related
pseudo Goldstones give masses of the order g f to the heavy SU(3) gauge bosons.

– the other five broken generators of [SU(3)]2 become Goldstones h, η including the Higgs. Terms like φ†1φ2

give rise to Higgs masses around g4f2/(2π)2 ≡ M2
weak. Fermion loops also lead to a Higgs potential

through φ†1φ2 = f2 − 2h†h+ 2(h†h/(3f2) which breaks SU(3)diag → SU(2)L.

– to introduce hypercharge U(1)Y we have to postulate another U(1)X , which includes a heavy gauge boson
mixing with the SU(3)/SU(2) and the SU(2) gauge bosons, to produce γ, Z, Z ′. This will be a problem,
because this way we lose the custodial SU(2) which is experimentally so well confirmed.

Because we will definitely need it later, we first compute the one helpful SU(3)-invariant term in the Lagrangian
after rotating away the eaten Goldstones and to an order higher in 1/f than before

φ†1φ2 =
(

0 f
)

exp

(
0 h

h† 0

)(
0

f

)
= f2 − 2h†h+

2

3f2
(h†h)2 +O

(
1

f4

)
(294)

Note that we omit the 8th generators of SU(3), diag(−1,−1, 2), and its corresponding Goldstone η and will
dicuss it’s physics at the end of the lecture. Moreover, we assume f1 = f2 = f . We will see that such terms
can be loop–induced by gauge–boson or top loops, but we can always write them in terms of this combination

φ†1φ2.

The SU(3) gauge interactions sketched in the last sections now include terms like

L ⊃ |g1Aµφ1|2 + |g2Aµφ2|2 (295)
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FIG. 2: Top–quark contributions to the Higgs mass from top loops. Note that the two–point diagram (left) involves a
Standard–Model top quark, while the one–point diagram (right) exists only for the heavy top quark.

To study their behavior we can for example set g2 = 0, so that both terms are symmetric under both the two
SU(3) symmetries

φ1 → U1φ1 Aµ → U†1AµU1 φ2 → U2φ2 Aµ → U†2AµU2 (296)

Switching on g1 and g2 in parallel then breaks this [SU(3)]2 symmetry to a single diagonal symmetry SU(3)diag

φ2 → Uφ2 φ1 → Uφ1 Aµ → U†AµU (297)

As we showed in the last section, the SU(3)–gauge–boson loops contribute to the Higgs mass as

L ⊃ g2
1g

2
2

(4π)2
|φ†1φ2|2 log

Λ2

µ2
∼ − g2

1g
2
2

(2π)2
f2 log

Λ2

µ2
h†h+O

(
h4
)

(298)

For a weak-scale Higgs mH ∼ Mweak and SU(2)-type gauge couplings gj , this means f ∼ TeV, which in turn
means that our theory will break down around ∼ 10 TeV.

Next, we remember that until now we only dealt with the gauge sector leading to quadratic divergences in the
Higgs mass. We obviously need to extend the fermion sector, which otherwise creates quadratic divergences
for the Higgs mass proportional to the top Yukawa. So we enlarge the SU(2) heavy–quark doublet Q to an

SU(3) triplet Ψ = (t, b, T ) ≡ (Q,T ). The Yukawa couplings look like λjφ
†
jΨt

c
j , in analogy to the Standard

Model, but with two right–handed top singlets tcj which will combine to the Standard–Model and to the heavy
right–handed tops. We can compute

φ†jΨ = (0f) exp

[
∓ i
f

(
h

h†

)](
Q

T

)

= (0f)

[
11∓ i

f

(
h

h†

)
− 1

2f2

(
hh†

h†h

)
+ . . .

](
Q

T

)

= (0f)

[(
Q

T

)
∓ i

f

(
hT

h†Q

)
− 1

2f2

(
hh†Q

h†hT

)
+ . . .

]

= fT ∓ ih†Q− 1

2f
h†hT + . . . (299)

Combining them gives assuming the simplification λ1 = λ2 = λ

L ⊃ λf
(

1− 1

2f2
h†h

)
TT c + λ h†Qtc + . . . (300)

where we define the SM top quark as tc2−t21 = −i
√

2tc and where its orthogonal partner tc1 +tc2 =
√

2T c appears
in the T–mass term λf .

Both top quarks contribute to the Higgs mass as shown in Fig. 2. Note the factor 2 in the T T̄hh coupling from
the two permutations of the Higgs fields. The scalar integrals involved we know, generally omitting a factor
1/(4π)2: B(0;m,m)

∣∣
UV
∼ (Λ/m)2. Adding two fermion propagators with mass mt and two couplings alters

the behavior of the Standard–Model diagram to −i4 λ2 Λ2 = −λ2 Λ2. The second diagram starts from a scalar
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UV-divergent A(mT )
∣∣
UV
∼ Λ2. Adding one fermion line and the 4-point coupling −λ/f yields −i2λ/f mT Λ2 =

+λ2Λ2. From this hand–waving estimate we get an idea how these two top quarks cancel each other’s quadratic
divergence for the Higgs mass.
If we do this calculation more carefully, we find that indeed, for an SU(3)-invariant regulator, the two diagrams
cancel. Actually, just like in supersymmetry, only the quadratic divergences cancel, and terms proportional to
logmt/mT remain.

Note that again switching off λ2 = 0 the Yukawa couplings are symmetric under both φj → Ujφj , Ψ → UjΨ.
Just as for the gauge couplings, having λ1 6= 0 and λ2 6= 0 breaks [SU(3)]2 → SU(3)diag as the symmetry of
the Yukawa part of the Lagrangian.
Strictly speaking, we could keep the two λj separated and would find

mT =
√
λ2

1f
2
1 + λ2

2f
2
2 ∼ maxj(λjfj)

λt = λ1λ2
1

mT

√
f2

1 + f2
2 (301)

Writing down the SM with a protected light Higgs mass requires us to break both groups, λ1 6= 0 and λ2 6= 0,.
This makes the Higgs a pseudo–Goldstone and allows only contributions proportional to λ1λ2 in the Higgs
potential (and the Higgs mass). Strictly speaking, we could even show that only terms proportional to λ2

1λ
2
2

appear, and terms with four Yukawa couplings never lead to quadratic divergences.

The remaining big mystery in this model is the Higgs potential, and in particular the relation between mass
and quartic coupling. We can compare the relative sizes of the mass and self coupling which we get from the
fermion loops

|φ†1φ2|2 = f2 − 4f2(h†h) +
14

3
(h†h)2 + . . . ≡ −m2h†h+ λ(h†h)2

=⇒
∣∣∣∣m2

λ

∣∣∣∣ ∼ 12

14
f2 ∼ O

(
TeV2

)
while

∣∣∣∣m2

λ

∣∣∣∣
SM

= 2v2 (302)

In other words, compared to the Standard Model, the mass is too large in comparison to the quartic coupling.
There is no easy cure to this, so we resort to ad–hoc introducing a µ parameter with the proper sign

L ⊃ µ2φ†1φ2 = µ2

(
f2 − 2 h†h+O

(
1

f2

))
(303)

Roughly µ ∼ Mweak brings the Higgs mass to the correct value. Note that such a term also breaks the U(1)
symmetry linked to the 8th SU(3) generators and gives η a mass of the order Mweak.

To summarize, we have analyzed the particle spectrum in the µ-model or Schmaltz model or simple–group
model, which is necessary to avoid quadratic divergences in the Higgs mass at one loop. In this model we start
from a global symmetry group [SU(3)]2. These two symmetries we break spontaneously into a SU(2) each,
freeing up 10 Goldstone modes corresponding to the [SU(3)/SU(2)]2 degrees of freedom.
At the same time, gauge and Yukawa interactions break [SU(3)]2 to the diagonal, now gauged, subgroup
SU(3)diag which is the one which is really spontaneously broken by a vev f . This means that half of these
10 Goldstone modes are going to be absorbed into massive SU(3)/SU(2) gauge bosons. The other five now
pseudo–Goldstones can develop a mass and a potential, but each term has to be proportional to both of the
gauge (or Yukawa) couplings. As a check we can switch off one of the two gauge couplings: now we have two
exact SU(3) symmetries, one of which is gauged spontaneously broken, and acquires heavy gauge–boson masses
of the scale f , while the other one is exact, i.e. protecting its Goldstones from acquiring a mass at all.
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Apart from the Standard–Model particles and a light protected Higgs we find the particle spectrum

SU(3) gauge bosons W ′±,W ′0 with mW ′ =
g2f2

2

singlet Z ′ with mZ′ = g2f2 2

3− t2
(t = tan θw)

heavy top T with mT =
√

2λtf

Standard Model Z with mZ =
g2v2

4
(1 + t2) etc... (304)

To avoid extending this particle content and correcting for the mass–quartic ratio in the Higgs potential we in

addition need a tree–level parameter µ2φ†1φ2.

2. The littlest Higgs

Combining what we know about sigma models and collective symmetry breaking we can construct another
particularly economic little–Higgs model. In the µ model we write two sets of Goldstones in the fundamental
representations of SU(3), which are partly gauged and then broken to our SU(2)L via the high–scale vev f .
It is crucial to have two distinct SU(3) gauge groups (and gauge couplings) to forbid one–loop quadratically
divergent Higgs self energies. The same trick we can play with two Yukawas, so that a Higgs potential is
proportional to g2

1g
2
2 or to λ2

1λ
2
2.

This time, we want to embed two gauge symmetries which overlap by the Standard Model Higgs doublet into
one matrix field Σ: in other words, we write a matrix–valued Σ field which includes two copies of SU(2) which
are broken to the SU(2)L and which at the same time includes a pseudo–Goldstone–Higgs doublet. Two SU(2)
generators inside a 5× 5 matrix could look like

Qa1 =
1

2

(
−σa∗ 02x3

03x2 03x3

)
Qa2 =

1

2

(
03x3 02x3

03x2 σa

)
(305)

The Goldstone modes in the Σ field should include the Higgs doublet in a form which means that neither of the
sets of SU(2) generators include it. This means that when we break SU(5) into one of the SU(2) subgroups
the Higgs will always stay a (pseudo–) Goldstone, which is the idea of collective symmetry breaking

Σ = e2i(π·T̂ )/f 〈Σ〉 π · T̂ ∼ 1√
2

 h∗

h† h†

h

 (306)

If the global SU(5) symmetry is broken by 〈Σ〉, this will allow the h doublet to develop a potential, i.e. a

mass and a self coupling. Note that T̂ is indeed hermitian and traceless, so exp(2i(π · T̂ )/f) is a unitary
transformation. The Standard–Model SU(2)L generators Qa or the Higgs should of course not be affected by
〈Σ〉, because otherwise they would acquire masses of the order f . Therefore, we write

〈Σ〉 =

 112×2

1

112×2

 (307)

This vev obviously breaks our global SU(5) symmetry, written in the adjoint representation. SU(5) has
(N2 − 1) = 24 generators U = exp(iθ · T ) under which the Σ field transforms as Σ → UΣUT . What remains
after 〈Σ〉 is an SO(5) symmetry, generated by the antisymmetric tensor with (4 + 3 + 2 + 1) = 10 entries. We
can use the transformation of Σ to derive the commutation properties of the 10 unbroken generators T and the

14 broken generators T̂ . For the broken generators we find

Σ = ei(π·T̂ )/f 〈Σ〉 ei(π·T̂
T )/f = e2i(π·T̂ )/f 〈Σ〉 , (308)
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or in other words 〈Σ〉 T̂T = T̂ 〈Σ〉. For the remaining unbroken, good generators we require

Σ = ei(π·T )/f 〈Σ〉 ei(π·T
T

)/f = 〈Σ〉 (309)

which translates into 〈Σ〉 TT = −T 〈Σ〉. We can explicitely compute the commutators for the sum of hermitian
SU(2) generators Qa = Qa1 +Qa2 , to check that they are indeed not broken

Q 〈Σ〉 =
1

2

(
−σ∗

σ

)
〈Σ〉 Q =

1

2

(
σ∗

−σ

)
⇒ Q 〈Σ〉 = −〈Σ〉 QT (310)

So the generators Qa, which we plan to make the generators of our Standard–Model SU(2) gauge group are
indeed part of the unbroken set of SU(5) generators T . The corresponding U(1) generators are the diagonals
diag(−3,−3, 2, 2, 2)/10 and diag(−2,−2,−2, 3, 3)/10.

To compute the spectrum of the littlest Higgs model which breaks SU(5)→ SO(5), we start by writing down
the complete set of Goldstones associated with the broken generators in Σ, filling in the remaining 2×2 matrices
and the diagonal generator

π · T̂ =

 χ2×2 h∗/
√

2 φ†2×2

hT /
√

2 0 h†/
√

2

φ2×2 h/
√

2 χT2×2

+
η

2
√

5

 112×2

−4

112×2

 (311)

The form is given by requirement 〈Σ〉 T̂T = T̂ 〈Σ〉, which links opposite corners of π · T̂ . The SU(2) generators
in χ form a hermitian traceless 2× 2 matrix, but the combination of χ and χT in the opposite corners (instead

of −σ∗ and σ or equivalently −σT and σ) makes χ part of the broken subset T̂ . The remaining 2× 2 matrix of
generators φ is not traceless, but complex symmetric. The complex doublet h is hopefully the Standard–Model
Higgs doublet, and η is the usual real singlet. Together, these field indeed correspond to the 3 + 6 + 4 + 1 = 14
Goldstone degrees of freedom.

Unless something else happens (like collective symmetry breaking) the fields linked to the broken generators

(π · T̂ ) can either turn into gauge–boson mass terms of the order f or stay massless. In particular, χ will make

a set of SU(2) gauge bosons W
′±,W

′0 heavy, where η corresponds to the B′ field. We can mix the two SU(2)
groups described by χ (broken with mass scale f) and σ (unbroken with mass scale v) to the Standard–Model
SU(2)L.
For the littlest Higgs collective symmetry breaking occurs just the same way as in the µ model, namely through
gauge couplings. The two sets of SU(2) generators Qj are linked once we remember that the particular
combination Q1 +Q2 is part of the unbroken set of SU(5) generators.

DµΣ = ∂µΣ− i
∑
j=1,2

gj(WjµQj)Σ− i
∑
j

gjΣ(WjµQ
T
j )− i

∑
j

g′j(BjµYj)Σ− i
∑
j

g′jΣ(BjµYj) (312)

In other words, the vev 〈Σ〉 again breaks this symmetry [SU(2) × U(1)]2 to the diagonal SU(2)L × U(1)Y at

a scale f . Defining a set of SU(2) and U(1) mixing angles tan Ψ(′) = g
(′)
2 /g

(′)
1 we can write the set of gauge

bosons in terms of the Standard–Model and a heavy set of SU(2)× U(1) bosons(
W a
H

W a
SM

)
=

(
− cos Ψ sin Ψ

sin Ψ cos Ψ

)(
W a

1

W a
2

) (
BH
BSM

)
=

(
− cos Ψ′ sin Ψ′

sin Ψ′ cos Ψ′

)(
Ba1
Ba2

)
(313)

As mentioned above the heavy gauge bosons acquire masses though the Goldstones χ

MWH
=

gf

sin 2Ψ
MBH =

g′f√
5 sin 2Ψ′

(314)
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The littlest–Higgs model works for quadratic divergences just like the SU(3) model. Each of the two sets
of generators {Qaj , Yj} corresponds to a 3 × 3 matrix of Goldstones in the respective other corner in Σ after
breaking SU(5) to SU(2). So if we break the global symmetry down to one of the two SU(2) groups the Higgs
doublet will be a broken generator of the global SU(5) and therefore remain massless. If we remove one set

of gauge couplings g
(′)
j = 0, we indeed find a global SU(3) symmetry which protects the Higgs from quadratic

divergences proportional to the respective other g
(′)
k .

Protecting the Higgs mass from top loop works also similarly to the SU(3) model. We extend the SU(2)L quark
doublet to the triplet Ψ = (b,−t, T ) and add a right-handed singlet t′c. Because we expect mixing between the
two top singlets which will give us the Standard–Model and a heavy top quark we write two general Yukawa
couplings involving the Σ field (just like we write Yukawa couplings in the usual Σ model)

L ⊃ λ1 f εijkΨi Σj4Σk5 t
c
1 + λ2 f T t

c
2 (315)

The Σ-field triplets we take from the 2× 3 upper-right corner of the Goldstone matrix

σjm =

(
φ†

h†/
√

2

)
j = 1, 2, 3 m = 4, 5 (316)

If we set λ2 = 0 this Yukawa coupling is symmetric under this SU(3) symmetry, because it is the anti-symmetric
combination of three triplets. Again, contributions to the Higgs mass therefore have to be proportional to λ2

1λ
2
2

and quadratic divergences are forbidden at one loop.
The two heavy quarks mix to the SM top quark and an additional heavy top

tR =
λ2t1 − λ1t2√

λ2
1 + λ2

2

TR =
λ1t1 + λ2t2√

λ2
1 + λ2

2

mT =
√
λ2

1 + λ2
2f (317)

where we as before have assumed f = f1 = f2. The actual top–Higgs coupling are given in terms of λj

λttH ≡ λt =

√
2λ1λ2√
λ2

1 + λ2
2

λTTHH ≡ −
λT√
2f

=
−λ2

1

f
√
λ2

1 + λ2
2

(318)

and ensure that the leading divergences in the Standard–Model two–point diagram and the heavy–top one–point
diagram cancel.

An interesting question would be: can we distinguish little–Higgs models for example by relating the parameters
in the top sector. After all, the construction of the µ model and the littlest–Higgs model are quite different.
Using these expressions above we can write the heavy top mass in the littlest–Higgs model in term of the
Yukawas λt,T (modulo factor

√
2?)

mT = f
λ2
t + λ2

T√
2λT

(319)

In contrast, in the SU(3) model we saw (f = f1 = f2)

λT =
λt
2f

=
λ1λ2 f

mT
mT = f

√
λ2

1 + λ2
2 (320)

So the relation between mT and the HHTT coupling are indeed different.

The heavy spectrum of the littlest Higgs model is

SU(2)× U(1) gauge bosons B′,W ′±, Z ′ with mB′,W ′,Z′ = O(f)

Higgs triplet φ =

(
φ++ φ+

√
2

φ+
√

2 φ0

)
with mφ = O(f)

heavy top T with mT = O(f) (321)
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As described earlier in the lecture, from B′ and φ we expect serious violation of custodial SU(2). Electroweak
precision data forces us to choose f unusually large in the little–Higgs model. On the other hand, a Higgs
triplet with a doubly charged Higgs boson has a smoking–gun signature at the LHC, namely its production in
weak–boson fusion: uu→ ddW+W+ → ddH++.

In contrast to the µ model, we now do not need a µ term, though. One–loop effects lead to a
Coleman–Weinberg potential (which is nothing but a general quartic potential of a massive charged scalar
in a gauge theory) with the relative mass scales

m2
h

λ
∼
(
m

g

)2

∼ (2m)
2
< f2 (322)

after integrating out the heavy φ fields.

3. T parity

Looking at the tree–level violation of the custodial SU(2) symmetry (i.e. ρ 6= 1) and at the benefits of a weakly
interacting and stable dark–matter candidate it would be great to introduce a Z2 symmetry which allows only
two heavy little-Higgs particles per vertex. In other words, we would like to define a quantum number with
one value for all weak–scale Standard–Model particles and another value for all particles with masses around
f . Such a parity will be called T parity.

For the littlest Higgs, we would like to separate the additional heavy SU(2) doublet from our Standard–Model

gauge bosons. Assuming g
(′)
1 = g

(′)
2 the Lagrangian involving DµΣ is symmetric under the exchange of the two

[SU(2)× U(1)] groups. The eigenstates we can choose as

W± =
W1 ±W2√

2
B± =

B1 ±B2√
2

(323)

where W+, B+ are Standard–Model gauge bosons, while W−, B− are heavy. Exchanging the indices (1↔2)
is an even transformation for W+, while it is odd for W−, just as we want. Taking into account all broken
generators, we apply a factor (−) to each heavy field, while leaving h unchanged. In proper matrix notation
we postulate a symmetry Ω which acts on the broken generators for example in the littlest Higgs model

π · T̂ =

 χ h∗ φ†

hT 0 h†

φ h χT

+ η

 11

−4

11


→Ω −

 11

−1

11



 χ h∗ φ†

hT 0 h†

φ h χT

+ η

 11

−4

11



 11

−1

11


= −

 11

−1

11



 χ −h∗ φ†

hT 0 h†

φ −h χT

+ η

 11

4

11




= −

 χ −h∗ φ†

−hT 0 −h†

φ −h χT

− η
 11

−4

11


=

 −χ h∗ −φ†

hT 0 h†

−φ h −χT

+ (−η)

 11

−4

11

 (324)

This symmetry work perfectly for the additional gauge bosons, including the heavy scalars φ. A problem arises
when we assign such a quantum number to the heavy tops. Usually, we expand the SU(2)L doublet to a triplet
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under Ω and split the fermions into one set transforming under each [SU(2)× U(1)]j . At this point, we now
have to introduce additional fermions and all hell breaks loose, even though the model by definition agrees
better with current electroweak precision constraints.

One final remark concerning such a T parity. Recently (hep-ph/0701044) Chris and Richard Hill have shown
that such a discrete parity if naively implemented is broken by anomalies, i.e. it is not stable after quantum
corrections. Obviously, such considerations affect arguments over large time scales, like the formation of dark
matter. On the other hand, I am not sure if our model–building friends will get around this problem using a
fancier realization of the T parity. Let’s wait and see...

D. Pseudo–Axions

Remember that until now we have always neglected the additional diagonal generator of our global symmetry

group. In the µ model we saw that is acquires a mass through the µ term µ2φ†1φ2

mη =

(
f1

f2
+
f2

f1

)1/2

µ &
√

2µ ∼Mweak (325)

In the littlest Higgs model, in contrast, the same Goldstone mode is eaten by the additional U(1)Y gauge field,
the heavy photon with a mass mB′ ∼ f . Both of these cases are in a sense clever constructions, to avoid
the general problem that after breaking a global symmetry group to a lower–rank group, we will typically find
diagonal generators which correspond to massless singlet scalars in the low–energy effective theory. Such scalars
turn out to be similar to so-called axions.

Fermion coupling: Goldstones we know are protected from becoming massive by to their non–linear shift sym-
metry η → η + f ·α. This symmetry of course has to be respected by their scalar and pseudo–scalar couplings
to fermions, which are of the general form

L ⊃ gSΨ11Ψ η + gPΨγ5Ψ η γ0 =

(
0 11

11 0

)
γ5 =

(
11 0

0 −11

)
= gSΨ†γ0Ψ η + gPΨ†γ0γ5Ψ η

= gS
(
ΨLΨR + ΨRΨL

)
η + gP

(
ΨLΨR −ΨRΨL

)
η

→ gS
(
ΨLΨR + ΨRΨL

)
(η + f · α) + gP

(
ΨLΨR −ΨRΨL

)
(η + f · α) (326)

The first term is obviously not symmetric for α 6= 0, so the global symmetry requires gS = 0. The second term
we could compute and find that it is actually allowed... So our diagonal generators η or pseudo–axions couple
to fermions like pseudo-scalars. Note, however, that the η coupling to fermions does not include an f in the
numerator when we write it in terms of the Σ field, so the tt̄η coupling will be suppressed by v/f .

Gauge–boson coupling: We can write down operators like ηW+W−, but they are be forbidden at tree level if

η is a pseudo scalar. This is, by the way, the same for the heavy MSSM pseudo scalar A0. Just as in the

MSSM, η could couple to gauge bosons via ηWµνW̃
µν , but this CP–odd combination is of mass dimension 5

and therefore loop suppressed as v
f . If will for example be induced by heavy top loops.

Mixing with Higgs: Potential terms like η2h2 are allowed in the Lagrangian. However, they introduce a

quadratic divergence in mH when we link the two η fields to a loop. At one loop we find ∆m2
h ∼ (Λ/4π)2 ∼ f2,

which is precisely what we build little–Higgs models to avoid. As usually, ∆m2
h ∼ v2 ∼ m2

η is acceptable, which

simply corresponds to a mandatory factor O(v/f) in front of the η2h2 term.

Signatures for η are similar to the heavy pseudoscalar A0 in the MSSM; if it is really light, we can see h →
ηη decays, otherwise we rely on production cross sections suppressed by (v2/f2) with subsequent decays to
Standard–Model gauge bosons or fermions, similar to Higgs signatures. The CP properties of such scalars
we can determine either from jet correlations in weak–boson–fusion production or from lepton–correlations in
decays to ZZ → 4`.
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E. Literature

Little–Higgs models have the great advantage that at least I find the original papers very readable. Nevertheless,
there are also a few very good review articles on the market...

– for the basics there is Wolfgang Kilian’s great book on electroweak symmetry breaking, a very brief
and yet complete introduction into the sigma model and strongly interacting theories. It is ridiculously
expensive, though.

– there is the usual incredibly useful writeup which for example these lectures are based on. It is Martin
Schmaltz’ and David Tucker–Smith’s review article (hep-ph/0502182). Obviously, it focusses on the µ
model or so–called Schmaltz model.

– another equally useful review is Maxim Perelstein’s hep-ph/0512128, which starts from the littlest Higgs
instead.

– my chapter on T parity is unfortunately very brief. But don’t worry, there are very readable papers by
Ian Low and collaborators or more phenomenologically by the Cornell group.

– similarly, my chapter on pseudo–axions is too short. You can have a look for example at hep-ph/0411213,
in particular for a phenomenological analysis of this general feature of little–Higgs models.

– the collider phenomenology of little–Higgs models you can find in the standard reference hep-ph/0301040.
It also includes lots of Feynman rules for those of you who want to calculate for example LHC cross
sections.

Acknowledgments: I would like to thank all the people who have tried to explain little–Higgs models to me,
in particular Martin Schmaltz. You might have noticed that basically this entire set of note is based on his
review. And as usual I would like to thank Maria Ubiali who produced this writeup out of my of unreadable
collection of hand–written notes.



75

IV. MODELS WITHOUT A HIGGS

A. Electroweak symmetry breaking

The usual argument for the existence of a Higgs boson starts from a completely massless Lagrangian of a
gauge theory with matter fermions — and the fact that neither gauge–boson nor fermion masses can be simply
included without breaking gauge invariance. This is of course correct, but it does not automatically imply
the existence of a fundamental scalar Higgs boson. As an introduction to this topic, let us try to give masses
to a photon and to fermions and this way break electroweak gauge invariance, but avoiding to postulate a
fundamental Higgs boson.

1. Massive photon

As a starting point we choose electrodynamics, i.e. a (massless) photon in a locally U(1)–symmetric Lagrangian.
To its kinetic F · F term we add a photon mass and a real uncharged scalar field without a mass and without
a coupling to the photon, but with a scalar–photon mixing term:

L = −1

4
FµνF

µν +
1

2
(∂µφ)

2
+

1

2
e2f2A2

µ − efAµ∂µφ

= −1

4
FµνF

µν +
1

2
(∂µφ)

2
+

1

2
e2f2

(
Aµ −

1

ef
∂µφ

)2

− 1

2
(∂µφ)

2

= −1

4
FµνF

µν +
1

2
e2f2

(
Aµ −

1

ef
∂µφ

)2

(327)

e is the usual electric charge, i.e. just a c-number without any specific relevance in this interaction–less
Lagrangian, while f is a mass scale describing the photon mass as well as the mixing term. The Lagrangian
includes only terms with mass dimension four, if we remember that bosonic fields like Aµ and φ have mass
dimension one. We can define a simultaneous gauge transformation of both fields in the Lagrangian

Aµ −→ Aµ +
1

ef
∂χ φ −→ φ+ χ (328)

under which the Lagrangian is indeed invariant. Here, χ is a real number. If we now re-define the photon field
as Bµ = Aµ − ∂µφ/(ef) we can first compare the two kinetic terms

Fµν

∣∣∣
B

= ∂µBν − ∂nuBµ = ∂µ

(
Aν −

1

ef
∂νφ

)
− ∂ν

(
Aµ −

1

ef
∂µφ

)
= ∂µAν − ∂nuAµ = Fµν

∣∣∣
A

(329)

and then rewrite the Lagrangian as

L = −1

4
FµνF

µν +
1

2
e2f2B2

µ = −1

4
FµνF

µν +
1

2
m2
BB

2
µ (330)

This Lagrangian effectively describes a massive photon field Bµ, which has absorbed the real scalar φ as its
additional longitudinal component. Remember that a massless gauge boson Aµ has only two on-shell degrees
of freedom, namely left and right–handed polarization, while the massive Bµ has an additional longitudinal
polarization degree of freedom. Without any fundamental Higgs boson appearing, the photon has ‘eaten’ the
real scalar field φ.

The difference to the usual SU(2) Higgs mechanism is that we have chosen not to introduce a charged SU(2)
doublet, so there are no degrees of freedom left after the photon gets is mass. On the other hand, this little
trick means that our toy model is not going to well-suited to make SU(2) gauge bosons massive. What is
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illustrates is only how by introducing a neutral scalar particle without an interaction but with a mixing term
we make gauge bosons heavy. This mechanism we will use later again.
What kind of properties does this field φ need to have, so that we can use it to provide a photon mass? From the
combined gauge transformation we immediately see that any additional purely scalar terms in the Lagrangian
(like a scalar potential V (φ)) need to be symmetric under the linear shift φ → φ + χ, not to spoil gauge
invariance. This means that we cannot write down polynomial terms φn, like a mass or a self coupling of φ.
Similarly, a regular φAA interaction would not be possible, either. Only derivative interactions proportional to
∂φ to any conserved currents are fine. In that case we can absorb the shift by χ into a total derivative in the
Lagrangian.

2. Fermion masses and chiral symmetry

Giving a mass to a fermion without a Higgs boson is a little more involved. We start by splitting a Dirac
fermion, i.e. a 4-spinor, into its left-handed and right-handed projections

ψL =
11− γ5

2
ψ ≡ PLψ ψR =

11 + γ5

2
ψ ≡ PRψ (331)

where PL,R are projectors in the 4× 4 Dirac space. The kinetic term of the Dirac fermion can be rewritten as

L ⊃ ψ i 6∂ψ = ψ i 6∂ (PL + PR)ψ

= ψ i 6∂
(
P 2
L + P 2

R

)
ψ

= iψ (PR 6∂PL + PL 6∂PR)ψ with {γ5, γµ} = 0

= i(PLψ) 6∂(PLψ) + i(PRψ) 6∂(PRψ) with ψ = ψ†γ0

= ψL i 6∂ψL + ψR i 6∂ψR (332)

Under a global so-called chiral symmetry transformation U(1)L × U(1)R which independently transforms the
two chiralities φL,R

ψL −→ e−iθψL ψR −→ e−iωψR (333)

this Lagrangian is symmetric. Obviously, we can combine these two parts of the chiral transformation into
different basis elements, constructing a vector-type and an axial-vector-type combination:

ψL −→ e−iθψL ψL −→ e−iθψL

ψR −→ e−iθψR ψR −→ e+iθψR (334)

A gauge-invariant Lagrangian under one definition of the chiral symmetry will always be invariant under the
other.
The same way we can now rewrite a Dirac mass in terms of the two chiralities

L ⊃ m ψψ = m ψ
(
P 2
L + P 2

R

)
ψ

= m (PRψ)(PLψ) +m (PLψ)(PRψ)

= m
(
ψRψL + ψLψR

)
(335)

and immediately notice that the U(1)L × U(1)R symmetry is broken and only its vector combination θ = ω
remains. The question arises — can we write down a fermion mass while keeping the chiral symmetry intact,
and without introducing an additional fundamental Higgs boson.

Just like in the Standard Model we first introduce a complex scalar field Φ with a Yukawa coupling to the
fermions:

L ⊃ ψ i 6∂ψ − g
(
ψLψRΦ + ψRψLΦ∗

)
+ |∂µΦ|2 − V (|Φ|) (336)
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If the scalar field transforms under the U(1)L × U(1)R chiral symmetry as

Φ −→ e−i(θ−ω) Φ (337)

the Yukawa couplings as well as the kinetic and the potential terms for Φ are gauge invariant. As usual, we
now spontaneously break the chiral symmetry by introducing a potential for Φ with a nontrivial (i.e. Φ 6= 0)
minimum:

V = −M2|Φ|2 +
λ

2
|Φ|4 = −λ

2
v2|Φ|2 +

λ

2
|Φ|4 =

λ

2

(
|Φ|2 − v2

2

)2

+ const with 〈Φ〉 ≡ v√
2

=
M√
λ

(338)
Note that there are definitions with a factor λ and those with λ/2 around. I am here sticking to the conventions
in the technicolor review. We can define the two on-shell degrees of freedom of a complex scalar (c-number)

as
√

2Φ = (v+ h(x)) exp(iφ(x)/f), again with a dimensionful constant f compensating the mass dimension of
the scalar field in the exponent. The Φ-dependent part of the Lagrangian becomes

L ⊃ 1

2
(∂h)2 +

M2

2
(v + h)2 − λ

8
(v + h)4 +

1

2
(v + h)2

∣∣∣∣∂φf
∣∣∣∣2

=
1

2
(∂h)2 +

M2

2

(
h+

√
2M√
λ

)2

− λ

8

(
h+

√
2M√
λ

)4

+
1

2
(v + h)2

∣∣∣∣∂φf
∣∣∣∣2

=
1

2
(∂h)2 +

M2

2
h2 +M2h

√
2M√
λ
− λ

8
h4 − λ

2
h3

√
2M√
λ
− 3λ

4
h2 2M2

λ
− λ

2
h

2M2

λ

√
2M√
λ

+
1

2
(v + h)2

∣∣∣∣∂φf
∣∣∣∣2 + const.

=
1

2
(∂h)2 − M2

2
h2 −

√
λ

2
Mh3 − λ

8
h4 +

1

2
(v + h)2

∣∣∣∣∂φf
∣∣∣∣2 + const. (339)

Again, the field φ has no mass or coupling and only appears as (∂φ).
The Higgs field h has a mass M and a self coupling λ. However, in our calculation we have only made use of the
finite combination v =

√
2M/

√
λ. As long as v stays finite we can take the combined limit M →∞ and λ→∞.

This way, all terms proportional to hn(n = 2, 3, 4) become very large. In contrast, after Fourier-transforming
we know that the kinetic term (∂h)2 will give contributions o f the order of the typical momentum or energy

scale E we are probing in a given process. If we make M and with it
√
λ much larger than that, M � E, we

can neglect the kinetic term for the Higgs field in the Lagrangian (∂h)2LLM
2h2. Note that this inequality is

not really mathematically correct, because for the kinetic term it refers to its size when evaluated for a given
process. In that case, our Lagrangian becomes

L ⊃ −M
2

2
h2 −

√
λ

2
Mh3 − λ

8
h4 +

1

2
(v + h)2

∣∣∣∣∂φf
∣∣∣∣2 (340)

Because the Higgs field h does not propagate, we can use its Euler–Lagrange equation ∂L/∂h = 0 to compute its
(constant) field value. If we neglect its appearance in the kinetic term of φ (with a prefactor of order vE2/fLLM)
we see that there is no linear term in h in the Lagrangian, which means that ∂L/∂h is proportional to h, so one
solution is h(x) = 0. Our weak–scale Lagrangian becomes simply the kinetic term for a massless scalar field φ.
To obtain the correct normalization of this kinetic term for h = 0 we need to fix f2 = v2:

L ⊃ 1

2

v2

f2
(∂φ)2 =

1

2
(∂φ)2 (341)

Going into the limit M → ∞ has one profound consequence for our theory. Usually we attempt to construct
renormalizable Lagrangians, i.e. Lagrangians which describe physics to arbitrarily high scales. Such a con-
struction ensures for example that any transition amplitude is bounded from above at all energy scales, so that
our theory is unitary at all energy scales. Now, in the large-M limit we have explicitely required E/MLL1,
which means that we can still apply our theory to larger and larger energies, but not for a fixed value of M .
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We have to make sure that E/MLL1 always applies. This is the typical condition for an effective field theory
— it only produces sensible predictions at energy scales below a given cut–off scale M . Or in other words, our
theory is not anymore renormalizable or unitary.
Such a model breaking a gauge symmetry like the chiral symmetry is called a non-linear σ model, because of
the non-linear dependence of Φ on the one remaining physical field φ. The σ field is our Higgs field, which can
be decoupled, while the remaining massless field φ is usually referred to as the π field.

Let us now study the Yukawa terms in this limit and see if they still give rise to fermion masses. The original
field Φ simply becomes

√
2Φ = f exp(iφ/f) with one fixed energy scale f = v. The complete Lagrangian

modulo the potential term becomes

L ⊃ ψ i 6∂ψ +
1

2
(∂φ)2 − gf√

2

[
ψLψRe

+iφ/f + ψRψLe
−iφ/f

]
= ψ i 6∂ψ +

1

2
(∂φ)2 − gf√

2

[
ψLψR

(
1 + i

φ

f

)
+ ψRψL

(
1− iφ

f

)]
+O

(
1

f2

)
= ψ i 6∂ψ +

1

2
(∂φ)2 − gf√

2
ψψ − ig√

2
ψ
(
P 2
R − P 2

L

)
ψ φ+O

(
1

f2

)
= ψ i 6∂ψ +

1

2
(∂φ)2 − gf√

2
ψψ − ig√

2
ψγ5ψ φ+O

(
1

f2

)
with PR − PL = γ5 (342)

In this form we can read off that φ is a massless pseudoscalar with a coupling strength ig/
√

2 which in terms of

the fermion mass m = fg/
√

2 can be written as im/f . This relation between mass and pseudoscalar coupling
is called Goldberger–Treiman relation. It can for example be verified in the case of the QCD pion’s interaction
in comparison to the nucleon masses.
This example of a non-linear sigma model illustrates how using a SU(2) doublet scalar field we can give masses
to fermions via Yukawa couplings. The chiral SU(2)L×SU(2)R symmetry is broken by the vacuum expectation
value of the scalar field. Its radial excitations around the minimum we can decouple, while the massless scalar
becomes a physical mode in our theory. On the other hand, we could of course use such a mode to give masses
to gauge bosons, as seen before.

3. Goldstone’s theorem

Those who know more about spontaneous symmetry breaking have noticed that using these two examples
we have illustrated a few vital properties of Nambu–Goldstone bosons (NGB). Such massless physical states
appear in many areas of physics and are described by Goldstone’s theorem:
If a global symmetry group is spontaneously broken into a group of lower rank, its broken generators correspond
to physical Goldstone modes. These fields transform non-linearly under the larger and linearly under the
smaller group. They have to be massless, as the non-linear transformation only allows derivative terms in the
Lagrangian.
If the spontaneous symmetry breaking induces gauge–boson masses, these massive degrees of freedom are ‘eaten’
Goldstone modes, and the mass is given by the vev breaking the larger symmetry. If the smaller symmetry is
also broken, the NGBs become pseudo-NGB and acquire a mass of the size of this hard-breaking term.

For an alternative introduction into non–linear σ models and into Goldstone modes, you can have a look into
the introduction of my little–Higgs lecture notes.

B. Technicolor

Technicolor is a way to break our electroweak symmetry and create masses for gauge bosons essentially using a
non-linear sigma model, as we have seen it in the last section. In this example we have given the scalar field Φ
a vacuum expectation value v through a potential, which is basically the Higgs mechanism. However, we know



79

another way to break (chiral) symmetries through condensates — QCD. So let us review very few aspects of
QCD which we will need later.

First, we should illustrate why an asymptotically free theory like QCD is a good model to explain electroweak
symmetry breaking. For this we recall the main theoretical problem with the Higgs mechanism, i.e. spontaneous
symmetry breaking with a fundamental scalar Higgs boson: If we think of our gauge theories as a stack of
fundamental renormalizable field theories with some kind of cutoff scale (like for example the Planck scale)
we can compute the quantum corrections to the Higgs mass with this cutoff. We find that the Higgs mass,
and only the Higgs mass, corrections are quadratically divergent with the cutoff. This behavior is called the
hierarchy problem between the electroweak scale v and for example the Planck mass. In other words, we
introduce the Higgs boson to construct a renormalizable truly fundamental field theory perturbatively valid to
all energies, and the Higgs mass itself spoils the high–energy behavior. The only easy way out is to tune the
Higgs–mass counter term to cancel this cutoff dependence order by order, but this way we betray our original
idea that small parameters in the Lagrangian cannot just occur, but need to be protected by some kind of
symmetry. The alternative would be to postulate a UV completion of the Standard Model which cures this
behavior and makes the complete theory consistent again. The most famous such completion is TeV–scale
supersymmetry.

How can an interaction which becomes strong at small energies solve this problem — or why have we never
heard of the hierarchy problem ΛQCDLLMPlanck? The inherent mass scale of QCD is ΛQCD ∼ 200 MeV. It
describes the scale at which the running QCD coupling constant αs = g2

s/(4π) becomes strong, i.e. perturbation
theory in αs breaks down, and quarks and gluons stop being QCD’s physical degrees of freedom. At the leading
one-loop level we can easily see where ΛQCD comes from. Summing all gluon self–energy bubbles for example
in the s–channel of the process qq̄ → q′q̄′ corresponds to the definition of an effective coupling

αs → αs

(
1− αs

4π
β log

p2

µ2
R

)
→ αs

(
1 +

αs
4π
β log

p2

µ2
R

)−1

≡ αeff
s (p2) (343)

where p2 is the momentum flowing through the gluon propagator and µR is the (artifical) renormalization scale
we are forced to introduce because we cannot write down a logarithm of a mass dimension. The form of the β
function depends on the particle content of QCD, but not on the particle masses:

β =
11

3
Nc −

2

3
nf > 0 with Nc = 3, nf = 5 (below the top threshold) (344)

This way, at large values of p2 the denominator in parentheses becomes large and the effective running αs
becomes small, i.e. QCD is asymptotically free at large energies. We can relate the αs values at two scales via

1

αs(p2)
=

1

αs(p2
0)

(
1 +

αs(p
2
0)β

4π
log

p2

p2
0

)
=

1

αs(p2
0)

+
β

4π
log

p2

p2
0

!
=

β

4π
log

p2

Λ2
QCD

(345)

and parameterize its energy behavior using one dimensionful parameter ΛQCD. The functional form including
ΛQCD only reflects the general polynomial form of the one-loop running α−1

s (p2) = C0 +C1 log p2. Practically,
the value of ΛQCD is extracted for example in a combined with with the parton densities. At leading order we
can solve the above definition for ΛQCD:

1

αs(p2
0)

=
β

4π
log

p2
0

Λ2
QCD

⇔ log
Λ2

QCD

p2
0

= −4π

β

1

αs(p2
0)

⇔
Λ2

QCD

p2
0

= exp

[
−4π

β

1

αs(p2
0)

]
(346)

This means that because QCD is not scale invariant, i.e. we have to introduce a renormalization scale in our
perturbative expansion, the running of a dimensionless coupling constant can be translated into an inherent
mass scale. This mass scale characterizes the theory, e.g. QCD, in the sense that αs(p

2 = Λ2
QCD) ∼ 1 and for

scales below ΛQCD the theory will become strongly interacting. Note that first of all this scale could not appear
if for some reason β ' 0 and that it secondly does not depend on any mass scale in the theory. This phenomenon
of a logarithmically running coupling introducing a mass scale in the theory is called dimensional transmutation.
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It is the reason why there is no hierarchy problem between ΛQCD and MPlanck: if at a high scale we start from
a strong coupling in the 10−2 · · · 10−1 range the QCD scale will arrive at its known value without any need for
fine tuning.

Just including the quark doublets and the covariant derivative describing the qqg interaction the QCD La-
grangian reads

LQCD ⊃ ΨL i 6DΨL + ΨR i 6DΨR (347)

We immediately see that it is symmetric under a chiral-type SU(2)L × SU(2)R symmetry. This symmetry
forbids quark masses, i.e. it acts as a custodial symmetry for the tiny quark masses we measure for example for
the valence quarks u, d. Because QCD is asymptotically free, at energies below roughly ΛQCD the essentially

massless quarks form condensates, i.e. two–quark operators will develop a vacuum expectation value
〈
ΨΨ
〉
.

This operator spontaneously breaks the SU(2)L×SU(2)R symmetry into the (diagonal) SU(2) of isospin. The
valence quarks at low energies develop masses of the order of mnucleon/3 ∼ ΛQCD, and the different composite
color–singlet mesons and baryons become the relevant physical degrees of freedom. Their masses are of the
order of the nucleon masses mnucleon ∼ 1 GeV.
The only remaining massless particles are the NGBs from the breaking of SU(2)L × SU(2)R, the pions. Their
masses are not strictly zero, because the valence quarks do have a small mass of a few MeV. Their coupling
strength (or decay rate) is governed by fπ. It is defined by

〈
0|j5

µ|π
〉

= ifπpµ, i.e. it parameterizes the
breaking of the chiral symmetry via breaking the axial-vector-like U(1)A. The axial current can be computed
as j5

µ = δL/δ(∂µπ) and in the SU(2) basis reads j5
µ = ψγµτψ/2. From the measured decays of the light

color–singlet QCD pion into two leptons we know that fπ ∼ 100 MeV.

There are two QCD parameters which we need to adjust when building the simplest technicolor model: the
size of the new gauge group and the scale at which the asymptotically free theory becomes strongly interacting.
In terms of the two parameters Nc and ΛQCD there are scaling rules in QCD which are based on for example
β ∝ Nc (and which strictly speaking do not hold arbitrarily well):

fπ ∼
√
Nc ΛQCD

〈
QQ
〉
∼ Nc Λ3

QCD mfermion ∼ ΛQCD (348)

The ΛQCD dependence simply follows from the mass dimension. The dimension of the vev is given by the mass
dimension 3/2 of each fermion field.
The Nc dependence of fπ can be easily guessed: the pion decay rate is by definition proportional to f2

π . The
Feynman diagrams for this decay are (apart from the strongly interacting complications, parameterized by the
appearance of fπ) the same as for the Drell–Yan process qq̄ → γ, Z. The color structure of this process leads to
an explicit factor of δabδab = Nc and an averaging factor of 1/Nc for each of the quarks. Together, this gives a
factor 1/Nc for a color singlet decaying to a non-colored photon, the pion decay rate is proportional to f2

π/Nc.
This means the pion decay constant scales like fπ ∼

√
Nc. The vev–operator represents two quarks exchanging

a gluon at energy scales small enough for αs to become large. The color factor (without any averaging over
initial states) simply sums over all colors states for the color-singlet condensate, i.e. it is proportional to Nc.
The fermion masses have nothing to do with color states and hence should not depend on the number of colors.
For details you should ask a lattice gauge theorist, but we already get the idea how would should construct our
high–scale version of QCD, dubbed technicolor.

1. Scaling up QCD

Let us work out the idea that a mechanism just like QCD condensates could be the underlying theory of
the non-linear σ model described in the introduction. in contrast to QCD we now have a gauged custodial
symmetry of the gauge–boson masses. The longitudinal modes of the massive W and Z bosons are then the
NGBs (techni-pions) of the symmetry breaking induced by a condensate. The corresponding mass scale would
have to be ΛT ∼ f ∼ v = 246 GeV. Fermion masses we postpone to the next section — in the 70s, when
technicolor was developed, all known fermions had masses of the order of GeV or much less, so they were to a
good approximation massless compared to the gauge bosons.
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To induce W and Z masses we write down the non–linear sigma model in its SU(2) version, at this point
without talking about the source of the vacuum expectation value fT appearing in

Φ =
1√
2
ei(π·τ)/fT

(
fT

0

)
=

1√
2

(
fT + i(π · τ) +O(f−1

T )

0

)
(349)

As basis vectors we use the three Pauli matrices {τj , τk} = 2δjk. We will in a second need their property∑
j

τj

 (∑
k

τk

)
=
∑
j<k

(τjτk + τkτj) +
∑
j

τ2
j = 3 11 ⇒ (τ · π1) (τ · π2) =

∑
j

π1,jπ2,j = (π1 · π2)

(350)
The SU(2)-covariant derivative in the charge basis of the Pauli matrices

(τ · π) ≡
∑

(+,−,3)

τjπj =
τ1 + iτ2

√
2

π1 − iπ2

√
2

+
τ1 − iτ2

√
2

π1 + iπ2

√
2

+ τ3π3 =
∑

(1,2,3)

τjπj (351)

gives, when to simplify the formulas we for a moment forget about the U(1)Y contribution and only keep the
non-zero upper entry:

iDµΦ =
[
i∂µ − g2

2
(τ ·Wµ)

] 1√
2

[
fT + i(τ · π) +O(f−1

T )
]

=
1√
2

[
−∂µ(τπ)− fTg2

2
(τ ·Wµ)

]
(DµΦ)†DµΦ =

1

2

[
−∂µ(τπ)− fTg2

2
(τ ·Wµ)

] [
−∂µ(τπ)− fTg2

2
(τ ·Wµ)

]
⊃ 1

2
(∂π)2 +

fTg2

2
(Wµ · (∂µπ)) (352)

If we also include the generator of the hypercharge U(1) we find a mixing term between the techni-pions and
the SU(2) gauge bosons

L ⊃ g2fT

2
W+
µ ∂

µπ− +
g2fT

2
W−µ ∂

µπ+ + fT

(g2

2
W 0
µ +

g1

2
Bµ

)
∂µπ0 (353)

This is precisely the mixing term from the massive–photon example which we need to absorb the NGBs into
the massive vector bosons, with fT = v from the known W and Z masses. We have strictly speaking not shown
that the fT appearing in the scalar field Φ is really the correctly normalized fT, defined as the decay constant
of the techni-pions (and there is a lot of confusion about factors

√
2 in the literature which I will ignore in this

sketchy argument). But if we assume this correct normalization then fT ≡ v is the scaled-up version of fπ we
see that technicolor is something like a scaled-up version of QCD by a factor v/ΛQCD ∼ 2000.

This scaling factor we better compute in the more general case, where technicolor involves a gauge group
SU(NT ) instead of SU(Nc) and ND left-handed fermion doublets in the fundamental representation of SU(NT ).
To be able to write down Dirac masses for the fermions at the end of the day we also need (2ND) right-handed
fermion singlets. If instead of one set of techni-pions we have ND of them, we remember that the W,Z masses
arise from the quadratic term associated with the techni-pion mixing above, proportional to g2v2. In the sum,
the ND techni-pions need to reproduce the measured mass squares, which means that the vacuum expectation
value scales like v ∼

√
NDfT. The known scaling rules then give:

fT ∼
√
NT
Nc

ΛT

ΛQCD
fπ v =

√
NDfT ∼

√
NDNT
Nc

fπ (354)

We can solve these scaling rules for the unknown technicolor parameters and obtain:

fT ∼
v√
ND

ΛT ∼ ΛQCD
fT

fπ

√
Nc
NT
∼ v ΛQCD

fπ

√
Nc

NDNT
with v = 246 GeV (355)
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One simple example for such a technicolor model is the Susskind–Weinberg model. Its gauge group is SU(NT )×
SU(3)c × SU(2)L × U(1)Y . The matter fields forming the condensate which in turn breaks the electroweak
symmetry we include one doublet (ND = 1) of charged color-singlet techni-fermions (uT , dT )L,R. In some ways
this doublet and the two singlets look like a fourth generation of chiral fermions, but with different charges
under all Standard–Model gauge groups: for example, their hypercharges Y need to be chosen such that gauge
anomalies do not occur and we do not have to worry about non-perturbatively breaking any symmetries, namely
Y = 0 for the left–handed doublet and Y = 1/2,−1/2 for uTR and dTR. The formula Q = I3 + Y/2 then gives
charges of ±1/2 to the heavy states uT and dT .
The additional SU(NT ) gauge group gives us a running gauge coupling which becomes large at the scale ΛT.
As a high-scale boundary condition we can for example choose αs(MGUT) = αT (MGUT). The beta function is
modelled after the QCD case

βQCD =
11

3
Nc −

2

3
nf βT =

11

3
NT −

4

3
ND (356)

keeping in mind that ND counts the doublets, while nf = 6 counts the number of flavors at the GUT scale.
This relation holds for a simple model, where quarks are only charged under SU(3)c and techniquarks are only
charged under SU(NT ). Of course, both of them can carry weak charges. Using the one-loop formula for ΛQCD

we can compute

Λ2
T

Λ2
QCD

= exp

[
− 4π

βQCD

1

αs(mGUT)

]
exp

[
+

4π

βT

1

αT (mGUT)

]
= exp

[
4π

αs(mGUT)

(
1

βT
− 1

βQCD

)]
= exp

[
4π

αs(mGUT)

βQCD − βT

βTβQCD

]
(357)

For NT = ND = 4 and αs(MGUT) ∼ 1/30 we find ΛT ∼ 800 ΛQCD ∼ 165 GeV. This gives a reasonable
v = 270 GeV and generates the required hierarchy between v and MGUT via dimensional transmutation.

At this stage, our fermion construction has two global chiral symmetries SU(2) × SU(2) and U(1) × U(1)
protecting the techni-fermions from getting massive, which we will of course break together with the local weak
SU(2)L × U(1)Y symmetry. Details about fermion masses we postpone to the next sections. Let us instead
briefly look at the spectrum of our minimal model:
techniquarks — From the scaling rules we know that the techniquark masses will be of the order ΛT as give
above. Numerically, the factor ΛT/ΛQCD ∼ 800 pushes the usual quark constituent mass to around 700 GeV
for the minimal model with NT = 4 and ND = 1. Because of the SU(NT ) gauge symmetry there should exist
four–techniquark bound states (technibaryons) which are stable due to the asymptotic freedom of the SU(NT )
symmetry. Those are not preferred by standard cosmology, so we should find ways to let them decay.
NGBs — Of course, from the breaking of the global chiral SU(2)×SU(2) and the U(1)×U(1) we will have four
Goldstone modes. The three SU(2) Goldstones are massless technipions, following our QCD analogy. Because
we gauge the remaining Standard–Model subgroup SU(2)L, they become the longitudinal polarizations of the
W and Z boson, after all this is the entire idea behind this construction. The remaining U(1) NGB also has
an equivalent (η′) in QCD, and its technicolor counter part acquires a mass though non–perturbative instanton
breaking. Its mass can be estimates to ∼ 2 TeV, so we are out of trouble.
more stuff — Just like in QCD we will have a whole zoo of additional technicolor vector mesons and heavy
resonances, but all we need to know about them is that they are heavy (and therefore not a problem for example
for cosmology) and that at this stage we should really move on and think about fermion masses...

2. Fermion masses: ETC

Before we move on, let us put ourselves into the shoes of the technicolor proponents in the 70s. They knew how
QCD gives masses to protons, and the Higgs mechanism had nothing to do with it. Just copying this appealing
idea of dimensional transmutation (without any hierarchy problem) once more they explained the measured
W and Z masses. And just like in QCD, the masses of the four light quarks and the leptons are well below a
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GeV and could be anything, but not linked to weak–scale physics. And then people found the massive bottom
quark and the even more massive top quark and it became clear that at least the top mass was very relevant to
the weak scale. In this section we will very briefly discuss how this challenge to technicolor basically removed
it from the list of models people take seriously — until extra dimensions came and brought it back...

Extended technicolor is a version of the original idea of technicolor which attempts to solve two problems:
create fermion masses for three generations of quarks and leptons and let the heavy techniquarks decay, to
avoid stable technibaryons. From the introduction we in principle know how to obtain a fermion mass from
Yukawa couplings, but to write down the Yukawa coupling to the sigma field or to the TC condensate we need
to write down some Standard–Model and technifermion operators. This is what ETC offers a framework for.

First, we need to introduce some kind of multiplets of matter fermions. Just as before, the techniquarks, like
all matter particles have SU(2)L and U(1)Y or even SU(2)R quantum numbers. However, there is no reason
for them all to have a SU(3)c charge, because we would prefer not to change βQCD too much. Similarly, the
Standard–Model particles do not have a SU(NT ) charge. This means we should write matter multiplets with
explicitely assigned color and technicolor charges. This means:(

QTa=1..NT , Q
(1)
j=1,...,Nc

, Q
(2)
j=1,...,Nc

, Q
(3)
j=1,...,Nc

, L(1), L(2), L(3)
)

(358)

These multiplets replace the usual SU(2)L and SU(2)R singlets and doublets in the Standard Model. The
upper indices denote the generation, the lower indices count the NT and Nc fundamental representations.
In the minimal model NT = 4 this multiplet has 4 + 3 + 3 + 3 + 1 + 1 + 1 = 16 entries. In other words,
we have embedded SU(NT ) and SU(Nc) in a local gauge group SU(16). If without further discussion we
also extend the Standard–Model group by a SU(2)R gauge group, the complete ETC symmetry group is
SU(16)× SU(2)L × SU(2)R, where we omit the additional U(1)B−L throughout the discussion.
A technicolor condensate will now break SU(2)L × SU(2)R, while leaving SU(3)c untouched. If we think of
the generators of the ETC gauge group as (16 × 16) matrices we can put a (4 × 4) block of SU(NT ) in the
upper left corner and then three (3 × 3) copies of SU(Nc) on the diagonal. The last three rows/columns can
be the unit matrix. Once we break SU(16)ETC to SU(NT ) and the Standard–Model gauge groups, the NGBs
corresponding to the broken generators obtain masses of the order of ΛETC. This breaking should on the way
produce the correct fermion masses. The remaining SU(NT )×SU(2)L×U(1)Y will then break the electroweak
symmetry through a SU(NT ) condensate and create the measured W and Z masses as described in the last
section.

In this construction we will have ETC gauge bosons which for example in the quark sector couple

(QT γµ TETCQ
T ), (QT γµ TETCQ) and (Qγµ TETCQ) currents. Here, TETC stands for the SU(16)ETC gen-

erators. The multiplets QT and Q replace the SU(2)L,R singlet and doublets, which means the TETC include
for example the chiral projectors. Below the the ETC breaking scale ΛETC these currents become four–fermion
interactions, just like a Fermi interaction in the electroweak theory:

(QT γµ T
a
ETCQ

T ) (QT γµ T bETCQ
T )

Λ2
ETC

(QT γµ T
a
ETCQ) (Qγµ T bETCQ

T )

Λ2
ETC

(Qγµ T
a
ETCQ) (Qγµ T bETCQ)

Λ2
ETC

(359)
The mass scale in this effective theory can be linked to the mass of the ETC gauge bosons and their gauge
coupling and should be of the order 1/ΛETC ∼ gETC/METC. Let us see what these kind of interactions predict
at energy scales below ΛETC, which means somewhere around the weak scale, where we have data. Because
currents are much harder to interpret, we first Fierz–rearrange these operators and then pick out three relevant
classes of scalar operators.

Maybe at this stage I should very briefly repeat without proof what a Fierz transformation is. We start from
scalar operators based on spinors in a Lagrangian. The complete set is defined schematically written as:

L ⊃
(
ψAjψ

) (
ψAjψ

)
with Aj = 11, γ5, γµ, γ5γµ, σµν (360)

The multi-index j implies summing over all open indices in the diagonal combination AjA
j . These five types

of (4× 4) matrices form a basis of all real (4× 4) matrices which can occur in the Lagrangian. Note that in the
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equation above we have not specified anything about the spinors. If they carry charges, the ψ and the ψ have
to cancel in the entire term, but of course not inside each current, i.e. there is more than one scalar operator
of this type with a given set of spinors.
If we now specify the spinors and exchange them in one of the terms in the Lagrangian, we should be able to
write the new (1,4,3,2) scalar term (or any new scalar term, for that matter) as a linear combination of the
scalar basis elements (1,2,3,4):(

ψ1Aiψ4

) (
ψ3Aiψ2

)
=
∑
j

Cij
(
ψ1Ajψ2

) (
ψ3Ajψ4

)
(361)

Note that in this notation we have ignored the normal-ordering of the spinors in the Lagrangian. It is easy
to show C · C = 11. All we need to know is the value of the coefficients Cij , which I will list for completeness
reasons, but without using them at all in the technicolor context:

11 γ5 γµ γ5γµ σµν
11 −1/4 −1/4 −1/4 1/4 −1/8

γ5 −1/4 −1/4 1/4 −1/4 −1/8

γµ −1 1 1/2 1/2 0

γ5γµ 1 −1 1/2 1/2 0

σµν −3 −3 1/2 0 1/2

(362)

Applying this transformation to the three quark–techniquark four–fermion operators listed above we certainly
obtain scalar (A = 11) operators by Fierz–transforming the three current (A = γµ) operators listed above.
Because we are model builders, these are the only operators we will discuss in this context, and which will give
us all the information we need:

(QT T aETCQ
T ) (QT T bETCQ

T )

Λ2
ETC

(QTL T
a
ETCQ

T
R) (QR T

b
ETCQL)

Λ2
ETC

(QL T
a
ETCQR) (QR T

b
ETCQL)

Λ2
ETC

(363)
Note that we have now picked certain chiralities of the Standard Model fields and the technifermions. Let us
go through these operators once after the other in the following section.

3. Killing technicolor

From the title of this part it is fairly obvious that not all of the operators listed above will be our friends. On
the other hand, we need them to give masses to the Standard–Model fermions, which means we have to live
with their additional constraints:

(1) Once technicolor becomes strongly interacting and forms condensates of the kind
〈
QTQT

〉
∝ Λ3

T the first

operator will lead to masses for all TC generators which do not commute with the (broken) ETC generators.
Without going into the details we know from the scalar operators that these masses have to be proportional to
1/ΛETC. The TC condensate will be proportional to NT , which means that by dimensional analysis these masses
will be m ∼ NTΛ2

T/ΛETC. This mechanism will be very useful once we go beyond the minimal NT = 4, ND = 1
structure of technicolor, which predicts massless pseudoscalar NGBs which do not get eaten by the weak gauge
bosons, so-called techni-axions. ETC has a mechanism to give these particles a mass of the order ΛT. So the
first scalar operator is our friend.

(2) Condensating the techniquarks in the second operator will according to the QCD scaling rules give us
fermion mass terms of the kind

L ⊃ NTΛ3
T

Λ2
ETC

QLqR ≡ mQ QLqR ⇔ ΛETC ∼

√
NTΛ3

T

mQ
∼

{
2 TeV mQ = 1 GeV

200 GeV mQ = 100 GeV
(364)
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for NT = 4 and ΛT = 100 GeV. Remember that Dirac mass terms involve a left–right mixing, which means
that they form an SU(2) doublet, which in turn means that gauge invariance forces us to couple them to a
techniquark doublet as well. From the numbers above we see that this operator appears to be our friend for
light quarks, but it becomes problematic for the top quark, where ΛETC needs to be probably too low for
current constraints.
Moreover, the operator responsible for the top mass can be fierzed into a fermion–technifermion current which
can occur for either chirality(

QTLQ
T
R

) (
QRQL

)
→

(
QTLγµQL

) (
QRγ

µQTR
)

and
(
QTLγµQL

) (
QLγ

µQTL
)

(365)

where we omitted the prefactor g2
ETC/M

2
ETC. Of course, until now we have identified the right–handed Standard

Model field with the right-handed top singlet. But because of the SU(2)R symmetry which as we will see later
it necessary to avoid electroweak precision data as a custodial symmetry, we can rotate this tL,R into a bL,R.
So the operator we are looking at it of the kind

g2
ETC

M2
ETC

(
QTLγµbL

) (
QLγ

µQTL
)

(366)

where the techniquarks carry the index T . This operator induces a coupling of a charged ETC gauge boson
to TLbL. Such a diagram contributes to the decay Z → bb̄, where the two outgoing b quarks exchange a heavy
charged ETC gauge boson and this propagator is pinched after integrating out the ETC gauge bosons. It
contributes to the effective bbZ coupling

gL =
e

swcw

(
−1

2
+
s2
w

3

)
→ gL −

ξ2

4

Λ2
T

Λ2
ETC

e

swcw
= gL −

ξ2

4

mt

NTΛT

e

swcw
(367)

The angle ξ describes a possible mixing between the W and the ETC gauge boson. Unless we find a good
argument why the different gauge boson cannot mix at all, this contribution will be considerably too big for
the LEP measurement of Rb = ΓZ(bb̄)/ΓZ(hadrons). Note that this constraint from B decay will affect any
theory which induces a top mass through a partner of the top quark and allows for a general set of (fierzed)
operators corresponding to this mass term, not just extended technicolor.
The way out of these problem with 1/METC operators we can read off the formula: we need to increase ΛETC

while at the same time still getting the correct mt. This can be achieved by so-called walking technicolor, which
we will not discuss here, though.

(3) The third operator on the list does not include any techniquarks, but all combinations of four–fermion
couplings of light quarks. In the Standard Model such operators are very strongly limited, in particular when
they involve different flavors of quarks. Typical operators of this form which are strongly constrained are

1

Λ2
ETC

(s̄γµd) (s̄γµd)
1

Λ2
ETC

(µ̄γµe) (ēγµµ) (368)

They are examples for flavor–changing neutral currents, i.e. couplings of a neutral gauge boson to two different
fermion generations. Note that if we only allow two different generations in any of the operators, Fierz trans-
formations will distribute them into all other operators. The currently strongest constraints come from kaon

physics, for example the mass splitting between the K0 and the K
0
. Its limit ∆MK . 3.5 · 10−12 MeV implies

METC/(gETCθsd) & 600 TeV in terms of the Cabibbo angle θsd. We can translate such a lower bounds on
ΛETC into an upper bound on fermion masses we can construct in our minimal model. ΛETC > 103 TeV simply
translates in a maximum fermion mass which we can explain in this model: m . 4 MeV for ΛT . 1 TeV. This
is obviously not good news.

The last problem ETC runs into has to do with electroweak precision data, namely the two parameters S and
T . While I will probably not be able to cover this in the lecture, let met briefly sketch a really nice introduction
into electroweak precision observables from Csaba Csaki’s lecture which I believe he found in an article by Cliff
Burgess.
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If we allow for deviations from the Standard–Model gauge sector, but limit ourselves to only dimension–four
operators in the Lagrangian we can write down the additional terms

L ⊃ −
Π′γγ

4
F̂µν F̂

µν − Π′WW

2
ŴµνŴ

µν − Π′ZZ
4

ẐµνẐ
µν −

Π′γZ
4
F̂µνẐ

µν −ΠWW m̂2
W Ŵ

+
µ Ŵ

−µ− ΠZZ

2
m̂2
ZẐ

+
µ Ẑ
−µ

(369)

The field strengths F̂µν , Ŵµν , Ẑµν correspond to the photon and the W and Z gauge bosons, i.e. the fields

Âµ, Ŵµ, Ẑµ. The hats on the field are necessary, because these kinetic terms and therefore the fields do not
(yet) have the canonical normalization. If we assume that the parameters Π′γγ ,Π

′
WW ,Π

′
ZZ and Π′γZ are small,

we can express the hatted gauge–boson fields in terms of the properly normalized fields as

Âµ =

(
1−

Π′γγ
2

)
Aµ + Π′γZZµ Ŵµ =

(
1− Π′WW

2

)
Wµ Ẑµ =

(
1− Π′ZZ

2

)
Zµ (370)

which means for example for the terms proportional to Π′γZ :

−1

4
F̂µν F̂

µν
∣∣∣
γZ

= −1

4

(
∂µÂν − ∂νÂµ

) (
∂µÂν − ∂νÂµ

) ∣∣∣
γZ

= −1

4

(
∂µ(A+ Π′γZZ)ν − ∂ν(A+ Π′γZZ)µ

) (
∂µ(A+ Π′γZZ)ν − ∂ν(A+ Π′γZZ)µ

) ∣∣∣
γZ

= −
Π′γZ

4
(∂µAν − ∂νAµ) (∂µZν − ∂νZµ)−

Π′γZ
4

(∂µZν − ∂νZµ) (∂µAν − ∂νAµ) +O(Π′2)

= −
Π′γZ

2
(∂µZν − ∂νZµ) (∂µAν − ∂νAµ) +O(Π′2)

= −
Π′γZ

2
ZµνF

µν +O(Π′x2) = −
Π′γZ

2
Ẑµν F̂

µν +O(Π′2) (371)

So the two contributions to Z − γ mixing indeed cancel each other. This brings the kinetic terms in the
Lagrangian given above into the canonical form

L ⊃ −1

4
FµνF

µν − 1

2
WµνW

µν − 1

4
ZµνZ

µν − (1+ΠWW −Π′WW ) m̂2
WW

+
µ W

−µ− 1

2
(1+ΠZZ +Π′ZZ) m̂2

ZZ
+
µ Z
−µ

(372)
The Z mass is given in terms of the additional small parameters m2

Z = (1+ΠZZ+Π′ZZ) m̂2
Z . Just as in the usual

Lagrangian we can link the two gauge–boson masses through the (hatted) weak mixing angle m̂W = ĉwm̂Z ,
and in terms of this mixing angle we can compute the muon decay constant. The relation we obtain is:

ŝ2
w = s2

w

[
1 +

c2w
c2w − s2

w

(
Π′γγ −Π′ZZ −ΠWW + ΠZZ

)]
(373)

With all these corrections the W–mass term in the Lagrangian reads

L ⊃ −(1 + ΠWW −Π′WW ) m̂2
W W+

µ W
−µ = −(1 + ΠWW −Π′WW ) ĉ2w m̂

2
Z W

+
µ W

−µ

= −(1 + ΠWW −Π′WW )

[
1− s2

w

c2w − s2
w

(
Π′γγ −Π′ZZ −ΠWW + ΠZZ

)]
c2w (1−ΠZZ + Π′ZZ) m2

Z W
+
µ W

−µ

=

[
1−Π′WW + Π′ZZ + ΠWW −ΠZZ −

s2
w

c2w − s2
w

(
Π′γγ −Π′ZZ −ΠWW + ΠZZ

)]
m2
Z W

+
µ W

−µ

=

[
1− αS

2(c2w − s2
w)

+
c2wαT

c2w − s2
w

+
αU

4s2
w

]
m2
Z W

+
µ W

−µ (374)

In the last step we have defined three typical combinations of the different correction factors as

αS = 4s2
wc

2
w

(
−Π′γγ + Π′ZZ −Π′γZ

c2w − s2
w

cwsw

)
αT = ΠWW −ΠZZ

αU = 4s4
w

(
Π′γγ −

Π′WW

s2
w

+ Π′ZZ
c2w
s2
w

− 2Π′γZ
2cw
sw

)
(375)
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These three so-called Peskin–Takeuchi can be understood fairly easily: the S parameter corresponds to a shift
of the Z mass. This is not quite as obvious because it seems to also involve anomalous terms involving the
photon’s kinetic term, but we have to remember that the weak mixing angle is defined such that the photon
is massless (i.e. corresponds to the unbroken U(1)Q), while all mass terms are absorbed in the Z boson. The
T parameter obviously compares contributions to the W and Z masses. Since the custodial SU(2) symmetry
precisely protects this mass ration, usually referred to as ρ = 1, the T parameter measures the amount of
custodial symmetry violation. To get an idea how additional fermions contribute to S and T I just quote the
contributions from the heavy fermion doublet:

∆S =
Nc
6π

(
1− 2Y log

m2
t

m2
b

)
∆T =

Nc
4πs2

wc
2
wm

2
Z

(
m2
t +m2

b −
2m2

tm
2
b

m2
t −m2

b

log
m2
t

m2
b

)
∆ρ =

NcGF

8
√

2π2

(
m2
t +m2

b −
2m2

tm
2
b

m2
t −m2

b

log
m2
t

m2
b

)
=

Nc

8
√

2π2

√
2e2

8s2
wc

2
wm

2
Z

(
2m2

b + δ − 2(m2
b + δ)m2

b

δ
log

(
1 +

δ

m2
b

))
m2
t = m2

b + δ

=
Nc

4πs2
wc

2
wm

2
Z

e2

16π

(
1 +O(δ2)

)
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Where Y = 1/6 for Standard–Model quarks and Y = −1/2 for Standard–Model leptons. The ρ parameter is
defined in terms of the W and Z masses and is one at tree level

ρ =
m2
W

c2wm
2
Z

= 1 (377)

One of the main differences between ρ and T is the reference point, where ρ = 1 refers to its tree-level value
and T = 0 is often chosen for some kind of light Higgs mass and including the Standard–Model top-bottom
corrections. For a slightly longer discussion of such contributions to the ρ parameter or ∆T , just have a look
into my little–Higgs notes.

Let us now get to the constraints on technicolor models from the very strongly constrained S, T plane. The
central point in this plane S = T = 0 is somewhat conventional, because the Standard Model predicts for
example two sources for finite T : the Higgs boson itself as well as the mass splitting between up-type and
down-type quarks (like the bottom and top quarks). Moreover, the electroweak precision constraints typically
form a diagonal ellipse in the S − T plane. But unless we can rely on a clear correlations, we can assume that
models which to not predict −0.15 < ∆S < 0.25 and −0.1 < ∆T < 0.3 on the diagonal are ruled out with 95%
C.L. For S = 0 or T = 0 the range of the respective other parameter is typically out to ±0.1.
From the formulas we know that all we need to compute for S and T are the photon and W,Z self energies. Self
energies from a field theoretical point of view can be considered part of the renormalization of a field, because
whatever we do we need to reproduce the canonically normalized kinetic terms. If we introduce new particles
with SU(2)L ×U(1)Y quantum numbers, all of these particles will contribute to these self–energy loops. From
the appearance of Nc in the formulas above we see that all these contributions simply add, unless the up-type
and down-type contributions cancel. This is for example the case for a chiral fourth generation, just as a side
remark.
In technicolor models, the singlet techniquarks will contribute to the S parameter each with a factor NT /(6π) ∼
NT /20 ∼ 0.2, assuming the minimal model with ND = 1. This number can barely be tolerated if it is
accompanied with ∆T ∼ 0.2, due to the diagonal ellipse structure of the current constraints. Constructing an
appropriate model with an up-type and down-type is a challenge to technicolor model building in the minimal
models. More complex models easily get to ∆S ∼ O(1), which is firmly ruled out, no matter what kind of
∆T we manage to obtain. These electroweak constraints are typically considered the last blow to technicolor
models, even though we should mention that good model builders will find ways to construct models around
almost any constraint, even the deadly list of technicolor constraints listed above. Only once we see (or do not
see) a fundamental light Higgs at the LHC will we know...
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C. Symmetry breaking by boundary conditions

A much more recent idea of electroweak symmetry breaking which will, however, have to deal with the same
kind of experimental constraints, is electroweak symmetry breaking from a fifth dimension. In other words,
we extend our usual picture of space-time by an additional spacial coordinate, i.e. µ = 0, 1, 2, 3 becomes
M = 0, 1, 2, 3, 5. Giving the additional fifth dimension the index ‘5’ instead of ‘4’ is meant to avoid confusion.
Of course, we have to construct our model such that for example gravitational measurements cannot detect
the fact that there is this additional dimension. This will be one of the requirements on the extra dimension,
which at this stage we will not discuss. For a very simple introduction into extra–dimensional theories and their
benefits in solving the hierarchy problem you could have a look into my lecture notes. In the following three
lectures we will limit ourselves to a new mechanism of breaking electroweak symmetry without introducing a
Higgs field. In a way, this concept is more revolutionary than technicolor, because as we have seen in the very
beginning, we can always think of a non-linear sigma model as the special case of a decoupled fundamental
Higgs boson. Using extra–dimensional boundary condition really does not resemble the usual Higgs mechanism
anymore.

Before we break electroweak symmetry, we need to get a general feel for a field theory which involves a higher–
dimensional space (called bulk) and four–dimensional boundaries. Therefore, let us look at the action of a
simple scalar field in five dimensions. Naively, we just write down a Lagrangian which we integrate over five
dimensions of space-time:

Sbulk =

∫
d4x

∫
dy L5 =

∫
d4x L4 (378)

Already from this formula we know that our counting of powers of mass will be different - if the action still has
mass dimension zero, then the Lagrangian L5 now has to have mass dimension five instead of four.
Gravitational constraints suggest that the extra dimension cannot be arbitrarily large, because it would modify
Newton’s gravity at very large distances (or very low energies), and such modifications are ruled out by every-
thing we know about how our solar system or our galaxy works. Moreover, to get any mileage out of boundary
conditions we need to give our extra dimension such boundaries, which means a finite size. A finite–size ad-
ditional dimension we can obtain from an infinite dimensions two ways: either we think of it as a repeated
interval, or we think of it as running around a circle, where the ends are simply identified. The latter leads us to
the concept of an orbifold compactification which defines a brane. However, in comparison to the most general
boundaries, such an orbifold compactification limits the set of possible boundary conditions, so we will instead
stick to a general boundary setup. In both cases we can write the size of the fifth dimension as y = 0...πR.
The simplest field we can write down is a scalar field with a kinetic term and a potential, so our action reads:

Sbulk =

∫
d4x

∫ πR

0

dy

(
1

2
(∂Mφ)2 − V (φ)

)
=

∫
d4x

∫ πR

0

dy

(
1

2
(∂µφ)2 − 1

2
(∂5φ)2 − V (φ)

)
(379)

Because the additional dimensions is a space dimension the metric tensor gMN is (+,−,−,−,−). The trouble
with this Lagrangian is that the kinetic term means that this scalar field has a mass dimension 3/2, but on the
other hand it is not clear what we could do instead.

1. Fields on the boundary

Trying to derive the equations of motion from this action will bring in the boundaries. The variation of the
action is

0
!
= δSbulk =

∫
d4x

∫ πR

0

dy

(
(∂µφ)(∂µδφ)− ∂

∂φ
V (φ) δφ− (∂5φ)(∂5δφ)

)
=

∫
d4x

[∫ πR

0

dy

(
−∂µ∂µφ−

∂

∂φ
V (φ) + ∂5∂5φ

)
δφ− (∂5φ)δφ

∣∣∣πR
0

]

=

∫
d4x

[∫ πR

0

dy

(
−∂M∂Mφ−

∂

∂φ
V (φ)

)
δφ− (∂5φ)δφ

∣∣∣πR
0

]
(380)
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We have simply integrated by parts in all five dimensions. In contrast to the four usual dimension where our
Hilbert space is defined such that all fields vanish at the infinite boundary we cannot require such a thing for the
fifth dimension. Instead, we need to keep the surface term in the variation of the action, which will generically
give us boundary terms from the originally five–dimensional Lagrangian. The first condition we read off this
variation is the five–dimensional bulk equation of motion ∂M∂

Mφ = −∂V/∂φ.

In addition, the boundary term if the variation of the action has to vanish, which gives us the choice of two
boundary conditions:

∂5φ
∣∣∣0,πR = 0 (Neumann) or φ

∣∣∣0,πR = 0 (Dirichlet) (381)

There is in principle be a third possibility, namely that the contributions from both boundaries cancel, but this
would force is to treat the two boundaries equal, which as we will see later is not what we want.

From this short argument we see that it would be useful to study the behavior of additional Lagrangian
terms only on the boundary, to modify such boundary conditions. For example, what happens, if we add a
boundary mass term?

S = Sbulk −
∫
d4x

1

2
Mφ2

∣∣∣0 − ∫ d4x
1

2
Mφ2

∣∣∣πR (382)

The masses on the two boundaries can of course be different. Looking at the formula above we have gotten
ourselves into trouble, because the usual four–dimensional mass terms would be M2. However, this M2 would
need to have mass dimension one to arrive at the usual dimension–four Lagrangian in four dimensions. The
variational principle gives us

δS = δSbulk −
∫
d4x Mφ δφ

∣∣∣0 − ∫ d4x Mφ δφ
∣∣∣πR

=

∫
d4x

[∫ πR

0

dy (· · · ) δφ− ∂5φ δφ
∣∣∣πR
0
−Mφ δφ

∣∣∣0 −Mφ δφ
∣∣∣πR]

⇔ ∂5φ−Mφ
∣∣∣0 = 0 and ∂5φ+Mφ

∣∣∣πR = 0 (383)

This form is interesting, because it interpolates between the two possible boundary conditions in the absence
of the mass term: for M = 0 we recover the Neumann BC, while for M → ∞ we are left with the Dirichlet
BC. Note again that these conditions really do not look like equations of motion on the boundary because of
mass dimension of the scalar field. In fact, they look much more like a Dirac equation, which makes no sense
for scalars, but then they are not equations of motion either.

Moving on, let us try a boundary kinetic term on one of the boundaries:

S = Sbulk +

∫
d4x

1

2M
(∂µφ)(∂µφ)

∣∣∣πR (384)

Note that on the four–dimensional boundary we are using the four–dimensional derivative of course. The
variational principle now gives us — as usually integrating by parts and keeping the factor two from the
symmetric squared kinetic term:

δS = δSbulk +

∫
d4x

1

M
(∂µφ)(∂µδφ)

∣∣∣πR
=

∫
d4x

[∫ πR

0

dy (· · · ) δφ− ∂5φ δφ
∣∣∣πR
0
− 1

M
(∂µ∂

µφ) δφ
∣∣∣πR] ⇔ ∂5φ = − 1

M
∂µ∂

µφ
∣∣∣πR = 0 (385)

Remembering the bulk equation of motion ∂M∂
Mφ = 0 we can re-write this boundary conditions as ∂5φ =

−(∂5)2φ/M . On the other boundary, the relative sign would simply change. This form has an interesting
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consequence: if we want the second-derivative operator φ′′ ≡ (∂5)2φ to be hermitian (f, g′′) = (f ′′, g) we have
to redefine the scalar product on the space of five–dimensional wave functions including a boundary term.
Csaba nicely derives this in his lecture.

As the final step we will move away from the scalar toy model and introduce a five–dimensional photon field
into our theory:

S =

∫
d5x

(
−1

4
FMNF

MN

)
=

∫
d5x

(
−1

4
FµνF

µν − 1

2
Fµ5F

µ5

)
(386)

There would be the additional F55 term, but it vanishes due to the antisymmetric nature of FMN = ∂MAN −
∂NAM . The additional term including the fifth component of the gauge field becomes

S = −1

2

∫
d4x

∫ πR

0

dy Fµ5F
µ5

= −1

2

∫
d4x

∫ πR

0

dy (∂µA5 − ∂5Aµ)
(
∂µA5 − ∂5Aµ

)
= −1

2

∫
d4x

∫ πR

0

dy
[
+∂µA5 ∂

µA5 + ∂5Aµ ∂
5Aµ − 2∂µA5 ∂

5Aµ
]

= −1

2

∫
d4x

∫ πR

0

dy
[
−A5 ∂µ∂

µA5 + ∂5Aµ ∂
5Aµ + 2A5 ∂µ∂

5Aµ
]

= −1

2

∫
d4x

∫ πR

0

dy
[
−A5 ∂µ∂

µA5 −Aµ ∂5∂
5Aµ − 2∂5A5 ∂µA

µ
]
− 1

2

∫
d4x

[
Aµ ∂

5Aµ + 2A5(∂µA
µ)
]πR
0

(387)

again after integrating by parts first in the four–dimensional space (with vanishing boundary terms) and then in
the fifth dimension . The first term in the last line is obviously a kinetic terms for the scalar field A5. The second
term will after a Kaluza–Klein decomposition (i.e. a discrete Fourier transform in the periodic fifth dimension)
become a mass term for our photon in five dimensions. We can schematically write the five–dimensional wave
functions by separating variables

Aµ(x, y) = Āµ(x)f(y) ∼
∑
n

Â(n)
µ (x) einy/R ⇒ ∂2

5Aµ(x, y) =
∑
n

∂2
5Â

(n)
µ (x) einy/R = −

∑
n

m2

R2
Â(n)
µ (x) einy/R

(388)
Which means that if we write our five–dimensional photon field as an effective theory in four dimensions we
obtain towers of massive photons whose mass is given by the inverse size of our fifth dimension. Note, however,
that we have to clearly distinguish between two kinds of photon masses. The KK excitations will be massive,
but this does not mean that we break the symmetry of our Lagrangian. In particular, there will be a zero
mode n = 0 with vanishing mass. Which means we still have to find a mechanism for electroweak symmetry
breaking. The role of the KK excitations will become obvious later, when we discuss unitarity in these models.

From the formula above it also becomes clear what role boundary conditions play: Dirichlet boundary conditions
(A = 0) mean sine-type behavior, while Neumann boundary conditions (∂5A = 0) mean cosine at the respective
boundaries. This implies that if we want to write down a zero mode, i.e. a constant wave function in the y
dimensions which corresponds to exp(ny/R) for n = 0, we need a Neumann-Neumann setup on the two
boundaries.

For the third term in eq.(387) we have to briefly remember something about gauge theories which I also had
to read again for example in the book by Peskin and Schroeder. It obviously mixes the scalar field and the
photon. The same thing happens if we write down the usual Higgs mechanism: the NGB will mix with the
transverse degrees of freedom of the gauge boson which will then eat it as its longitudinal component. Such a
term we do not want in the Lagrangian — the definition of the gauge boson should instead absorb this term
into the massive gauge boson. This we can achieve in a general (R − ξ) gauge: gauge fixing means including
a gauge–fixing term with including the Lagrangian multiplier 1/ξ. You can find a discussion of this gauge
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for the Standard–Model Higgs mechanism in Peskin & Schroeder section 21.1. For example, for an abelian
massive photon we introduce a gauge–fixing term (∂µA

µ − ξevφ)2/(2
√
ξ) to cancel the photon–NGB mixing

and fix the photon gauge at the same time. The third term from the gauge fixing gives us a mass for the
NGB m2

φ = ξ(ev)2 = ξm2
A (in terms of the photon mass). Since this mass is gauge dependent the NGB it

not a well-defined physical degree of freedom, and it can be decoupled by choosing ξ → ∞, which is called
unitary gauge. In that gauge the NGB survives only as the longitudinal component of the massive photon, but
does not appear in the Lagrangian anymore.
Precisely the same way we now introduce a gauge–fixing term in the five dimensional space (bulk):

SGF,bulk =
1

2ξ

∫
d4x

∫ πR

0

dy
(
∂µA

µ − ξ ∂5A
5
)2

=

∫
d4x

∫ πR

0

dy

[
1

2ξ
(∂µA

µ)2 − ∂µAµ ∂5A
5 +

ξ2

2
(∂5A

5)2

]
=

∫
d4x

∫ πR

0

dy

[
1

2ξ
(∂µA

µ)2 − ∂µAµ ∂5A
5 − ξ2

2
A5∂5∂

5A5

]
+
ξ2

2

∫
d4x A5 ∂5A

5
∣∣∣πR
0

(389)

The usual gauge fixing term (∂µA
µ)2 appears for the transverse degrees of freedom of the massless photon.

The second term cancels the mixing term between Aµ and A5. What is interesting is the last term in SGF,bulk:
there is no need to fix the gauge for the scalar field A5, and if we compute the equation of motion for A5 using
the variational principle for the contributions to δS proportional to δA5 it includes a term ξ2∂5A

5 ∂5(δA5).
After integrating by parts this leads to ξ2(∂5)2A5 appearing in the equation of motion for A5, which is nothing
but a massive KK tower. The KK masses will become infinitely large in unitary gauge ξ → ∞, so that the
entire A5 tower as a physical mode decouples from the theory. Instead, its degrees of freedom now give KK
masses to the excitation of the four–dimensional gauge field Aµ. Note that a possible zero mode in the A5

tower would be linked to a finite mass for the lowest (i.e. Standard Model) gauge boson. Dependent on the
boundary conditions such a zero might or might not appear. We will discuss the role of such a A5 zero term
when we discuss ways to break electroweak symmetry.

We know that we are not living in five but in four dimensions. Which means that we should have a careful
look at the action on the boundaries in eq.(387). After fixing the gauge in the bulk, there is also a dangerous
boundary mixing term of the type A5(∂µA

µ). Again, we have to introduce a gauge fixing term, now on the
boundary

SGF,bound =
1

2ξ̂

∫
d4x

(
∂µA

µ ± ξ̂A5

)2 ∣∣∣0,πR
=

∫
d4x

[
1

2ξ̂
(∂µA

µ)2
∣∣∣0,πR +

ξ̂

2
A2

5

∣∣∣0,πR − (∂µA
µ)A5

∣∣∣0 + (∂µA
µ)A5

∣∣∣πR]

=

∫
d4x

[
1

2ξ̂
(∂µA

µ)2
∣∣∣0,πR +

ξ̂

2
A2

5

∣∣∣0,πR + (∂µA
µ)A5

∣∣∣πR
0

]
(390)

Note the difference between the upper and lower notation of the boundary terms. The last term precisely
cancels the boundary mixing term. We can now combine Sbound from the original Lagrangian and from the
two gauge fixing terms:

Sbound = −1

2

∫
d4x

[
Aµ ∂

5Aµ + 2A5(∂µA
µ)
]πR
0

+
ξ2

2

∫
d4x A5 ∂5A

5
∣∣∣πR
0

+

∫
d4x

[
1

2ξ̂
(∂µA

µ)2
∣∣∣0,πR +

ξ̂

2
A2

5

∣∣∣0,πR + (∂µA
µ)A5

∣∣∣πR
0

]

= −1

2

∫
d4x Aµ ∂

5Aµ
∣∣∣πR
0

+
ξ2

2

∫
d4x A5 ∂5A

5
∣∣∣πR
0

+

∫
d4x

[
1

2ξ̂
(∂µA

µ)2
∣∣∣0,πR +

ξ̂

2
A2

5

∣∣∣0,πR] (391)
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For this action we can compute the variation, which needs to be zero. The two gauge parameters ξ in the bulk

and ξ̂ on the boundary do not have to be identical. To simplify the results we can use the unitary gauge on

the boundary ξ̂ →∞ and find for the terms proportional to the variation of A5

0
!
= δSbound

∣∣∣
A5

=

∫
d4x

[
ξ

2
∂5A

5 δA5

∣∣∣πR
0

+
ξ

2
A5 ∂5(δA5)

∣∣∣πR
0

+ ξ̂A5 δA5

∣∣∣0,πR]
∼ ξ̂

∫
d4x A5 δA5

∣∣∣0,πR ⇔ A5
∣∣∣0,πR = 0 (392)

while the condition on ∂5A
5 we would have gotten from the gauge fixing in the bulk does not contribute

anymore. The second term proportional to ∂5δA5 looks funny at first, but it is taken care of by the boundary
condition A5 = 0. Secondly, the variational contributions proportional to the regular photon field Aµ are:

0
!
= δSbound

∣∣∣
Aµ

=

∫
d4x

[
−1

2
δAµ ∂5A

µ
∣∣∣πR
0
− 1

2
Aµ ∂5δA

µ
∣∣∣πR
0

+
1

ξ̂
(∂νA

ν) (∂µδA
µ)
∣∣∣0,πR]

=

∫
d4x

[
−1

2
δAµ ∂5A

µ
∣∣∣πR
0
− 1

2
Aµ ∂5δA

µ
∣∣∣πR
0
− 1

ξ̂
(∂µ∂νA

ν) δAµ
∣∣∣0,πR]

∼
∫
d4x

[
−1

2
∂5A

µ δAµ

∣∣∣πR
0
− 1

2
Aµ ∂5δA

µ
∣∣∣πR
0

]
⇔ ∂5A

µ
∣∣∣0,πR = 0 (393)

Because we fix ∂5A
µ on the boundaries, it does not contribute in the second term of δSbound, like any other

constant would not contribute. According to our very brief look at zero modes this set of boundary conditions
means that after Fourier–transforming the fifth dimension there will be a zero mode for the photon Aµ, while
due to the Dirichlet boundary conditions the scalar mode A5 will not have a zero mode. It will only occur
with finite KK masses, which are eaten by the massive KK gauge bosons. In other words, we expect a massless
Standard–Model photon with a massive KK tower, but no additional A5 fields.
Looking back at Sbound we see that the two sets of boundary conditions and in addition the boundary unitary

gauge ξ̂ → ∞ implies Sbound = 0. All we have to consider for our five–dimensional QED is the bulk action in
eq.(387).

S =

∫
d5x

[
−1

4
FµνF

µν − 1

2

(
∂µA5 ∂

µA5 + ∂5Aµ ∂
5Aµ − 2∂µA5 ∂

5Aµ
)]

(394)

2. Breaking the gauge symmetry on the boundaries

Since we now know how the basics of a five–dimensional version of QED, let us see what happens if we break
the gauge symmetry — in this case the U(1) — on the boundaries. From the introduction we know how to do
this; let us add a non-linear sigma model on the two boundaries.

S =

∫
d4x L4 L4 ⊃

∫ πR

0

dy

[
|DµΦ|2 − λ

2

(
|Φ|2 − v2

2

)2
]

Φ ∼ v√
2
eiπ/v (395)

Again, in these notes am using the technicolor version of the Higgs potential with a prefactor λ/2, instead
simply λ as I use it in my Higgs notes or Csaba uses it as well... In the last step we have already decoupled
the physical Higgs field and chosen λ → ∞, with finite v. The two Higgs fields on the two boundaries should
of course be labelled differently, and the parameters λ and v will not be the same for both of them. To keep
things short I will only spell out the action for y = πR. This gives us the bulk contributions we computed
before, remembering that in unitary gauge and with given boundary conditions Lbound = 0:

L4 = L4,bulk + L4,σ

=

∫ πR

0

dy

[
−1

4
FµνF

µν − 1

2
(∂µA5)2 − 1

2
(∂5Aµ)2 + ∂µA5∂

5Aµ
]

+
1

2
(∂µπ − vAµ)

2
∣∣∣πR (396)
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The sigma-field contribution we simply copy from eq.(327) with ef → v. Note that writing down the boundary
terms we can see that if Aµ now has mass dimension 3/2, we need to assign mass dimension [v] = M1/2 and
[π] = M1. In contrast to our earlier discussion we now use a general (R − ξ) gauge, which means we need to
introduce gauge–fixing terms to cancel the (A5 −Aµ) and (π −Aµ) mixing terms

L4,GF = − 1

2ξ

∫ πR

0

dy
(
∂µA

µ − ξ∂5A
5
)2 − 1

2ξ̂

(
∂µA

µ + ξ̂(vπ +A5)
)2 ∣∣∣πR

= − 1

2ξ

∫ πR

0

dy
[
(∂µA

µ)2 − ξ ∂µAµ ∂5A
5 + ξ2(∂5A

5)
]
− 1

2ξ̂

(
∂µA

µ + ξ̂(vπ +A5)
)2 ∣∣∣πR

= − 1

2ξ

∫ πR

0

dy
[
(∂µA

µ)2 − ξ ∂µAµ ∂5A
5 − ξ2A5∂

2
5A

5)
]
− ξ

2
A5∂5A

5
∣∣∣πR
0
− 1

2ξ̂

(
∂µA

µ + ξ̂(vπ +A5)
)2 ∣∣∣πR
(397)

Again, we have copied the bulk contribution from eq.(389) and added the appropriate term needed for the NGB
contributions. After adding these gauge–fixing terms the bulk action involving only the gauge field Aµ is

LAµ =

∫ πR

0

dy

[
−1

4

(
(∂µAν)2 + (∂νAµ)2 − 2(∂µAν) (∂νAµ)

)
− 1

2
(∂5Aµ)2 − 1

2ξ
(∂µA

µ)2

]
=

1

2

∫ πR

0

dy

[
−(∂µAν)2 + (∂µAν) (∂νAµ)− (∂5Aµ)2 − 1

ξ
(∂µA

µ)2

]
=

1

2

∫ πR

0

dy

[
Aν∂

µ∂µA
ν −Aν∂µ∂νAµ +Aµ∂5∂

5Aµ +
1

ξ
Aν∂

ν∂µA
µ

]
− 1

2
Aµ∂5A

µ
∣∣∣πR
0

=
1

2

∫ πR

0

dy Aν

[
gµν(∂ρ∂ρ − ∂µ∂ν + gµν∂5∂

5 +
1

ξ
∂ν∂µ

]
Aµ − 1

2
Aµ∂5A

µ
∣∣∣πR
0

=
1

2

∫ πR

0

dy Aν

[
gµν(∂ρ∂ρ + ∂5∂

5)−
(

1− 1

ξ

)
∂µ∂ν

]
Aµ − 1

2
Aµ∂5A

µ
∣∣∣πR
0

(398)

What we see in the last line it simply the gauge–boson propagator in (R − ξ) gauge, now including the KK
term. tp: for some reason this ∂2

5 has a weird sign...? The corresponding bulk equation of motion for the
scalar component in the absence of any additional mass terms arises from gauge fixing: L5 ⊃ −ξ/2 (∂5A

5)2.

To compute the boundary conditions for Aµ, we can for example collect all boundary contributions at y = πR
after removing the (A5 −Aµ) mixing:

LAµ = −(∂µπ)(vAµ) +
1

2
(vAµ)2 − 1

2ξ̂
(∂µA

µ)2 − 1

ξ̂
(∂µA

µ) ξ̂ (vπ) − 1

2
Aµ∂5A

µ

= −(∂µπ)(vAµ) +
1

2
(vAµ)2 − 1

2ξ̂
(∂µA

µ)2 +Aµ∂µ(vπ)− 1

2
Aµ∂5A

µ

=
1

2
v2AµA

µ − 1

2ξ̂
(∂µA

µ)2 − 1

2
Aµ∂5A

µ

∼ 1

2
Aµ
(
v2 − ∂5

)
Aµ (399)

In unitary gauge, this determines the boundary condition at πR and correspondingly at y = 0 to be

(∂5 ∓ v2)Aµ

∣∣∣0,πR = 0 (400)

Remember that now [v] = M1/2. From the general scalar boundary–mass case we expect that adding a
boundary–mass for the photon indeed means that the new boundary conditions will become an interpolation
of Dirichlet and Neumann conditions. What is new in this formula is that the mass scale is given by v, the
vacuum expectation value breaking electroweak symmetry on the boundaries. In other words, in the unbroken
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phase v = 0 the photon field has to obey Neumann boundary conditions ∂5Aµ = 0, while in the broken phase
v 6= 0 it will follow Dirichlet boundary conditions Aµ = 0. We know that this means that only in the unbroken
phase it will have a zero mode. We can turn this argument around: a physical photon field with a Dirichlet
boundary condition Aµ = 0 and hence without a zero mode is indeed a sign for a broken symmetry on the
respective boundary.

If a Dirichlet boundary condition for the physical gauge–boson field is indeed a sign for a broken symmetry,
some combination of A5 and the NGB π has to provide the degrees of freedom to make the photon (including
its zero mode) massive. The boundary terms for A5 and π after removing all mixing terms and including a
boundary mass m with [m] = M1 for π are

LA5,π =
1

2
(∂µπ)2 − ξ

2
A5∂5A

5 − ξ̂

2
(vπ +A5)

2 − m2

2
π2

∼ −ξ
2
A5∂5A

5 − ξ̂

2

[(
v2 +

m2

ξ̂

)
π2 + 2vπA5 +A2

5

]
(401)

We then find for the π’s boundary conditions in combination with A5

0
!
=

∂

∂π

[
· · ·
]

= 2

(
v2 +

m2

ξ̂

)
π + 2vA5 ⇔

(
v2 +

m2

ξ̂

)
π + vA5

∣∣∣0,πR = 0 (402)

The same way we can compute the boundary conditions for A5 in terms of both scalar fields:

0
!
= −ξ

2
∂5A5 −

ξ̂

2
[2vπ + 2A5]

= −ξ
2
∂5A5 − ξ̂A5 + ξ̂v

vA5

v2 +m2/ξ̂

= −

[
ξ

2
∂5 + ξ̂

m2/ξ̂

v2 +m2/ξ̂

]
A5 (403)

From there we can read off the boundary condition for the scalar component A5(
∂5 ∓

ξ̂

ξ

m2/ξ̂

v2 +m2/ξ̂

)
A5

∣∣∣0,πR = 0 (404)

For unitary gauge on the boundaries ξ̂ → ∞ we know from the last example without boundary scalars that
indeed we should find Dirichlet boundary conditions A5 = 0. In that limit the NGB mass terms become
suppressed, because these degrees of freedom are not physical and should be eaten by the gauge bosons.

If we want to study the behavior of the NGB in the bulk we can go into unitary gauge in the bulk ξ →∞. We
see that breaking the symmetry on the boundaries shifts the A5 boundary conditions from originally Dirichlet
(A5 = 0) in eq.(393) to Neumann (∂5A5 = 0). This means that A5 now can develop a zero mode, which
provides the necessary degree of freedom for the photon which in the presence of v cannot include a zero mode
any longer!
In general we see a pattern for the boundary conditions of the gauge boson and of the scalar A5 when we break
the symmetry on the boundaries. In the unbroken symmetry the gauge boson will have a zero mode, which
corresponds to Neumann BC, while we have seen that the scalar mode’s Dirichlet BC do not allow for a zero
mode. After symmetry breaking, the Dirichlet BC for the gauge boson forbids their zero mode, but the scalar
A5 can include a zero mode, provided the symmetry is broken on both boundaries. The necessary degree of
freedom for this zero mode comes from the boundary scalar π. This implies that the boundary conditions for the
scalar component have to be the opposite of the vector’s conditions, simply exchanging Neumann and Dirichlet
BCs. It also means, that in the absence of massless scalars we should concentrate on Neumann–Neumann and
Dirichlet–Neumann boundary conditions on our two boundaries y = 0, πR.



95

SU(2) x U(1)      U(1)
R B−L Y
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L R D
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z=   Rπz=0

custodial SU(2) obeyed

custodial SU(2)
   broken

FIG. 3: Symmetry–breaking pattern of the Higgsless toy model, Figure stolen from Csaba’s notes.

This mechanism now allows us to write down a very simple toy model for breaking a gauge symmetry by
boundary conditions. We start with three gauge bosons, corresponding to a SU(2) gauge group in the bulk.
We will try to make two of them (W,Z) heavy while leaving the third (γ) massless. The massless photon is
simple, because we know that we need Neumann–Neumann boundary conditions:

∂5A
3
µ

∣∣∣0,πR = 0 ⇒ Â3
µ ∼ cos

ny

R
⇒ m

(n)
A3 =

n

R
= 0,

1

R
,

2

R
· · · (405)

For the other two gauge bosons it is sufficient to require a Dirichlet boundary condition at at least one of the
boundaries. The choice of the second boundary condition will then affect the mass of the first KK excitation
and the mass ratios of the higher excitations:

∂5A
1,2
µ

∣∣∣0 = 0 A1,2
µ

∣∣∣πR = 0 ⇒ Â1,2
µ ∼ cos

(2n+ 1)y

2R
⇒ m

(n)
A1,2 =

n+ 1/2

R
=

1

2R
,

3

2R
· · ·

(406)
As discussed above, the boundary conditions for the scalar components are exactly the opposite of those for
the vectors derived here. We have deliberately not chosen any pure Dirichlet–Dirichlet boundary setup for the
gauge fields, because the corresponding scalar would then have purely Neumann boundary conditions, which
would imply an unwanted massless scalar zero mode in the model.
This means, we indeed built a model with a massless photon and a W and Z with the same mass terms. Because
of the factors of two between the ZZ and the W+W− mass terms in the Lagrangian we predict mZ/mW = 2
and for their first KK modes mZ′/mZ = 2 and mW ′/mW = 3.
Nothing of that is anywhere close to reality, but we also have many aspect of the model to play with, so
let us see what we can do better. At this point we can for the first time see why knowing technicolor and its
problems helps us building models which break electroweak symmetry through boundary conditions: if we want
to survive the electroweak precision constraints we need to protect the relevant observables using symmetries
in our model.

3. A toy model with custodial symmetry

From the section on electroweak precision data we know that the S and T parameters in the gauge sector are
very small. We also remember that the parameter T measures the different contributions to the W and Z
masses from quantum corrections to their propagators. In the Standard Model there are two sources of this
global SU(2) symmetry breaking: in the Feynman diagrams contributing to mZ we either find pure bottom
or pure top loops, while mW corrections include mixed bottom–top contributions. Modulo prefactors we can
either say ∆T ∼ 0 or ρ ∼ 1 defined as ρ = m2

W /(c
2
wm

2
Z). For mb 6= mt we find the contributions shown in

eq.(376). In addition, electroweak symmetry breaking giving the Higgs doublet a vev in one doublet component
also breaks the SU(2) symmetry protecting T = 0.
We can think of the complete symmetry of the Lagrangian with a protected value of T = 0 as SU(2)L×SU(2)R.
At this stage, none of them needs to be gauged, even though we know that SU(2)L at some point will be gauged.
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If both global SU(2)LR are unbroken, the left-right mixing Dirac masses of quark doublets will be degenerate
mb = mt. If following the example of the chiral U(1)L × U(1)R symmetry we are now willing to re-align the
two SU(2) symmetries such that Dirac masses only break one of the combinations, there will be a remaining
(diagonal) SU(2)D to protect T . To construct a realistic model of electroweak symmetry breaking we need to
combine the electroweak symmetry and the custodial SU(2)D symmetry.

Let us first collect the maximal symmetry structure of the Standard Model. We start from the SU(2)L symmetry
of the unbroken Lagrangian and expand it to SU(2)L × SU(2)R which protects the ρ parameter. In contrast
to SU(2)L we do not need to gauge the global SU(2)R, since we know there are no SU(2)R gauge bosons. But
there is an additional gauged U(1)Y which we need for the abelian electromagnetic symmetry, under which
left-handed and right-handed fermions are charged. So our unbroken electroweak symmetry can be viewed as a
subset of the left-right symmetry SU(2)L×SU(2)R ⊃ SU(2)L×U(1)Y , where SU(2)R now needs to be gauged.
In the presence of fermions we finally need to add another global symmetry which gives us the fermions’
hypercharges. They need to be protected by a global symmetry to avoid anomalies, i.e. quantum effects violating
the (B−L) number conservation. Again, this U(1)B−L does not need to be gauged, unless we embed U(1)Y ⊂
SU(2)R × U(1)B−L. In our model we will start from this complete unbroken SU(2)L × SU(2)R × U(1)B−L
gauge symmetry in the bulk. The five–dimensional gauge bosons we denote as A

(L)
M , A

(R)
M , BM . On the two

boundaries we will break this maximal symmetry group into the electroweak SU(2)L × U(1)Y and into the
custodial SU(2)D subgroups.

We know how to break symmetries on the boundaries from the last section. For the massless B gauge boson
we require Neumann BCs while for the massive SU(2)L gauge bosons we assume a mixed set:

∂5Bµ

∣∣∣0,πR = 0 ∂5A
(L)
µ

∣∣∣0 = 0 A(L)
µ

∣∣∣πR = 0 (407)

This is the same model as before, which means it will wrongly give us mZ/mW = 2, so we have to modify this
setup.
What we would hope to achieve is implementing the custodial SU(2)D on the boundary which describes our
TeV-scale physics. For y = πR we therefore replace A(L,R) by (cA(R) + sA(L)) and (−sA(R) + cA(L)) where
the ‘+′ combination corresponds to the unbroken SU(2)D. The mixing angle we write in terms of c ≡ g5,R and
s ≡ g5,L. For the boundary conditions at y = πR this implies:

∂5Bµ

∣∣∣πR = 0 ∂5

(
g5,LA

(L) + g5,RA
(R)
) ∣∣∣πR = 0

(
g5,LA

(L) − g5,RA
(R)
) ∣∣∣πR = 0

(408)
The still unbroken electroweak symmetry SU(2)L × SU(2)R × U(1)B−L → SU(2)L × U(1)Y we realize on the
other boundary. Note that we will not discuss in detail how the large symmetry in the bulk will be broken on
the two boundaries, but we do know how to write a non-linear sigma model on the boundaries. Also note that
the electroweak symmetry SU(2)L × U(1)Y is not broken anywhere directly to U(1)Y , this will happen by the
boundary conditions automatically.

Our setup of the two U(1) symmetries implies a mixing between Bµ and A
(R)
µ . Again, we define the unbroken

U(1)Y gauge boson as one of the linear combinations (cA(R,3) + sB) and break the other linear combination
(−sA(R,3) + cB). The mixing angles are now c ≡ g′5 and s ≡ g5,R. This gives us for y = 0:

∂5A
(L)
µ

∣∣∣0 = 0 ∂5

(
g5,RB + g′5A

(R,3)
) ∣∣∣0 = 0

(
g′5B − g5,RA

(R,3)
) ∣∣∣0 = 0 A(R,12)

µ

∣∣∣0 = 0

(409)
The one remaining question is what to do with the two remaining fields A(R) at y = 0. We do not want a zero
mode for the corresponding gauge fields, so we give them a Dirichlet BC there. This setup produces precisely
the symmetries in Csaba’s Fig. 3. Notice that we do not have to specify the boundary conditions for the scalar
fifth components, because they are as usually fixed by exchanging Neumann and Dirichlet conditions.

We first see that each five–dimensional field combines different types of boundary conditions and that by

construction the zero-mode photon will be built out of components of Bµ and A
(R,3)
µ mixed at y = 0 and

A
(L,3)
µ and A

(R,3)
µ mixed at y = πR. This linear combination is the only field with purely Neumann boundary
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conditions. The physical Z boson will come from the ‘−′ combination of A
(L,3)
µ and A

(R,3)
µ at y = πR, which

has mixed boundary conditions. Its mass we can in principle compute:

m
(n)
Z = m0 +

n

R
= m0,

(
m0 +

1

R

)
· · · m0 =

1

πR
arctan

√
1 +

g′2

g2
(410)

The mass scale lifting the first Z mode off the zero mode is given in terms of the gauge couplings, which acted
as the mixing angles in the rotation to a massless photon. This is really the same thing we know as the weak
mixing angle in the Standard Model. Similarly, we can compute the W boson masses. To make the analysis
of the KK states easier we can identify g5,L ≡ g5,R = g. This allows us to combine A(L) and A(R) into A(±),
which should describe the W± gauge bosons.

m
(n)
W =

2n+ 1

4R
=

1

4R
,

3

4R
· · · ⇒

m
(0)
W

m
(0)
Z

=
π2

16

[
arctan

√
1 +

g′2

g2

]−2

∼ 0.85 ⇒ ρ =
m

(0)
W

c2wm
(0)
Z

∼ 1.10

(411)

This is really not bad a result. At this stage we will have to believe that we can adjust the result by for example
bending our flat space and incorporating our setup in a Randall–Sundrum model. Such a model is built as
a five–dimensional theory with two branes, usually referred to as a Planck brane at y = 0 and a TeV brane
at y = πR. The difference will be that we cannot simply write sine and cosine Fourier series for the wave
functions in the warped fifth dimension, but that we have to solve a differential equation which will give us
Bessel functions (except for zero modes like the photon). In the usual RS language we can then play around
with the location y = b of the TeV brane and the warp factor k, to adjust the gauge boson masses. In Csaba’s
lecture he replaces the warp factor in the metric exp(−A(z)) = 1/(1 + kz)2 by (R/z)2 with R ∼ 1/MPlanck.
The TeV-scale in the RS models arises as MPlanck exp(−kb) which can be written as R′ ∼ 1/TeV. In that case
the KK mass scale is given in terms of 1/R′, but including logarithms of the type logR/R′ from the Bessel
functions, so we have parameters to play with. Instead of discussing in detail how such a Randall–Sundrum
embedding works we will move on and see how the KK towers of massive electroweak gauge bosons behave in
the usual unitarity argument for a light fundamental Higgs boson.

4. Unitarity and KK excitations

One of the ways to introduce a Higgs boson is the complete unitarization of a theory with massive gauge
bosons, e.g. from a non-linear sigma model. The classical example is the scattering process of longitudinal
WLWL →WLWL, where we can express the W polarization vector in terms of the energy and momentum as

εµ =

(
|~p|
M
,
E

M

~p

|~p|

)
∝ E p(in)

µ =
(
E, 0, 0,±

√
E2 −M2

)
∝ E

p(out)
µ =

(
E,±

√
E2 −M2 sin θ, 0,±

√
E2 −M2 cos θ,

)
∝ E (412)

We have indicated the energy behavior of the longitudinal components. If we now compute the scattering
amplitude at high energies we find that for example the contact interaction contributes proportional to the
maximum power A ∝ E4. However, with the s, t, u-channel gauge-boson exchange diagrams this E4 term
cancels due to gauge invariance. What we are left with is A ∝ E2, which still means that the transition
amplitude diverges at high energies and will at some point violate perturbative unitarity. The old argument for
the existence of a Higgs boson with a mass smaller than the scale at which unitarity is violated (the TeV scale)
is that such a Higgs boson with all the proper couplings will unitarize the WLWL →WLWL scattering process.
In my notes on Higgs searches you can see for example how to compute this behavior using the equivalence
theorem between gauge bosons and Goldstone bosons. The obvious question is: how will our theory without
any fundamental Higgs boson cure this fundamental problem with massive gauge bosons?
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Csaba explicitly writes the form for the leading E4 term in the amplitude of four Standard–Model gauge boson
with index n and the exchanged KK tower k:

A(4) = i

(
g2
nnnn −

∑
k

g2
nnk

) [
fabef cde

(
3 + 6 cos θ − cos2 θ

)
+ 2facef bde

(
3− cos2 θ

)]
(413)

No masses appear in this form, only coupling constants. This dangerous contribution vanishes only if the
couplings fulfill the appropriate sum rule. The coupling between different KK modes is given by the overlap of
their wave functions in the fifth dimension

gmnk = g5

∫
dy fm(y)fn(y)fk(y) gmnkl = g2

5

∫
dy fm(y)fn(y)fk(y)fl(y) (414)

The Fourier transforms of the wave functions have a completeness relation∑
k

fk(y)fk(z) = δ(y − z) (415)

which we can use to show the couplings sum rule starting from the left-hand side

∑
k

g2
nnk = g2

5

∑
k

(∫ πR

0

dy f2
n(y)fk(y)

) (∫ πR

0

dz f2
n(z)fk(z)

)

= g2
5

∫ πR

0

dy

∫ πR

0

dz f2
n(y)f2

n(z)

(∑
k

fk(y)fk(z)

)

= g2
5

∫ πR

0

dy

∫ πR

0

dz f2
n(y)f2

n(z)δ(y − z)

= g2
5

∫ πR

0

dy f4
n(y) ⇒

∑
k

g2
nnk = gnnnn (416)

Assuming that this sum rule — which really does not have anything to do with a Higgs boson, only with gauge
invariance between 3-point and 4-point couplings — we can write a compact form of the second diverging term
in the amplitude:

A(2) =
i

m2
n

(
4gnnnnm

2
n − 3

∑
k

g2
nnkm

2
k

) [
−fabef cde sin2 θ

2
+ facef bde

]
!
= 0 (417)

Again, there is a mass–couplings sum rule given by the first parentheses. It involves KK masses as well as the
gauge couplings, which is different from the Higgs mechanism. In other words, the KK tower with all couplings
fixed properly plays the role of the Higgs boson in the Standard Model. The problem is that while the Higgs
mass can be chosen such that its effects come in beyond the scale of unitarity violation, the KK tower involves
an infinite sum over states with arbitrarily high masses. This implies a cutoff scale of our effective theory,
but then we always knew there would be such a cutoff, namely the fundamental Planck scale, above which we
cannot use the KK effective theory to compute scattering effects.

If we had more time we would at this point need to talk about fermion masses in this model. The problem starts
long before writing down Yukawa terms in five dimensions, namely with the extension of chiral fermions into
more than four dimensions. In four dimensions spinors are another representation of the Lorentz group. We
can express the 4× 4 matrices γµ in terms of the 2× 2 Pauli matrices σj and −11 and define the transformation

xµ → [x] = x0 − xjσj =

[
x0 − x3 −x1 + ix2

−x2 − ix2 x0 + x3

]
(418)

which is nothing but a Lorentz transformation. When we write fermions in five dimensions we need to extend
the corresponding Dirac gamma–matrix basis γµ → γM . There is even a candidate for the fifth gamma matrix,
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namely γ5. The problem is that this γ5 appears in the chiral projectors (11± γ5)/2, which means that it mixes
chiralities. This means that Lorentz transformations to not respect chirality. If we write the Dirac equation in
five dimensions, the derivative ∂5 will just like the mass term mix left-handed and right-handed Weyl fermions.
Once we Fourier-transform the fifth dimensions into a KK tower this is not surprising — after all ∂5 is nothing
but a mass term. But to learn more about writing down Yukawa couplings and making them into fermion
masses you will need to read Csaba’s review or some of the original papers for example by Tim Tait and
friends...

One last word concerning these fermions. From extended technicolor we remember that giving the top quark a
mass using a dimension–six operator leads to problems with the effective Zbb̄ coupling. This happens because
of the SU(2)L symmetry in combination with a chiral or custodial SU(2)R symmetry. In extra–dimensional
models we will define a mass for all fermions via their position in the fifth dimension and a wave–function
overlap with something playing the role of a sigma field. By construction, we incorporate the SU(2)L and the
SU(2)D symmetries, which means we will run into precisely the same problem as extended technicolor did.
Unless our really bright model–building colleagues manage to solve this problem at some stage.

D. Literature

In particular on the first part of the course there are many lectures available by all the experts on the field. As
usual, I find the TASI lecture notes the most useful, but not the only good source

– A very extensive introduction into technicolor and its successors can be found in hep-ph/0203079. Note
that this writeup is almost 200 pages long, but at least the first half of them are really instructive. Most
of my notes on technicolor are based on this review.

– A shorter and also very modern introduction into technicolor is Sekhar Chivucula’s hep-ph/0011264.
If you have already understood something and would like to refresh your memory on the ideas behind
technicolor, it is great.

– The short introduction on electroweak symmetry breaking from boundary conditions is based on Csaba
Csaki’s, Jay Hubisz’s and Patrick Meade’s TASI lecture hep-ph/0510275. I have no idea how Csaba man-
aged to teach all this material in four lectures, but I always had the suspicion that he is an extraordinarily
good teacher.

– And finally, for an introduction to electroweak precision data there is the usually nicely written TASI
lecture, in that case by James Wells: hep-ph/0512342. James even teaches how to compute loops leading
to S and T contributions, so go and have a look.
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