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Abstract

Depending on the point of view, modern machine learning is either providing an unprecedented boost to the numerical
methods of particle physics, or it is transforming the way we do science with vast amounts of complex data. In any case,
it is crucial for young researchers to stay on top of this development and apply cutting-edge methods and tools to all LHC
physics tasks. These lecture notes lead students with basic knowledge of particle physics and significant enthusiasm for
machine learning to relevant applications. They start with an LHC-specific motivation and a non-standard introduction to
neural networks and then cover classification, unsupervised classification, generative networks, data representations, and
inverse problems. Three themes defining much of the discussion are statistically defined loss functions, uncertainties, and
accuracy. To understand the applications, the notes include some aspects of theoretical LHC physics. All examples are
chosen from particle physics publications of the last few years, and many of them come with corresponding tutorials. 1

*plehn@uni-heidelberg.de
1Given that these notes are by definition always outdated, they will be updated frequently

https://github.com/heidelberg-hepml/ml-tutorials
https://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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Welcome

These notes are based on lectures in the 2022 Summer term and the 2023 Winter term, both held at Heidelberg University.
The lectures were held on the black board, corresponding to the formula-heavy style, but supplemented with tutorials.
The notes start with a very brief motivation why LHC physicists are naturally driven towards modern machine learning.
Many people are pointing out that the LHC Run 3 and especially the HL-LHC are going to be a new experiment rather
than a continuation of the earlier LHC runs. One reason for this is the vastly increased amount of data and the
opportunities for analysis and inference, inspired and triggered by data science as a new common language of particle
experiment and theory.

The introduction to neural networks is meant for future particle physicists, who know basic numerical methods like fits or
Monte Carlo simulations. We tell our ML-story through a series of original publications. We start with supervised
classification, which is how everyone in particle physics is coming into contact with modern neural networks. We then
move on to non-supervised classification, since no ML-application at the LHC is properly supervised, and the big goal of
the LHC is to find physics that we do not yet know about. A major part of the lecture notes is then devoted to generative
networks, because one of the defining aspects of LHC physics is the combination of first-principle simulations and
high-statistics datasets. Finally, we present some ideas how LHC inference can benefit from ML-approaches to inverse
problems. The last chapter on symbolic regression is meant to remind us that numerical methods are driving much of
physics research, but that the language of physics remains formulas, not computer code.

As the majority of authors are German, we would like to add two apologies before we start. First, many of the papers
presented in the different sections come from the Heidelberg group. This does not mean that we consider them more
important than other papers, but for those we know what we are talking about and the corresponding tutorials are based on
the codes used in our papers. Second, we apologize that these lecture notes do not provide a comprehensive list of
references beyond the papers presented in the individual chapters. Aside from copyright issues, the idea of these
references that it should be easy so switch from a lecture-note mode to a paper-reading mode. For a comprehensive list of
references we recommend the Living Review of Machine Learning for Particle Physics [1].

Obviously, these lecture notes are outdated before a given version appears on the arXiv. Our plan is to update them
regularly, which will also allow us to remove typos, correct wrong arguments and formulas, and improve discussions.
Especially young readers who go through these notes from the front to the back, please mark your questions and criticism
in a file and send it to us. We will be grateful to learn where we need to improve these notes.

Talking about — we are already extremely grateful to the people who triggered the machine learning activities in our
Heidelberg group: Kyle Cranmer, Gregor Kasieczka, Ullrich Köthe, and Manuel Haußmann. We are also extremely
grateful to our machine learning collaborators, including David Shih, Ben Nachman, Daniel Whiteson, Michael Krämer,
Jesse Thaler, Stefano Forte, Martin Erdmann, Sven Krippendorf, Jernej Kamenik, Peter Loch, Aishik Ghosh, Eilam
Gross, Tobias Golling, Michael Spannowsky, and many others. The same holds for all current and former group members
in Heidelberg, by now just too many to name.

Most importantly, we want to thank the great ML4Jets community, because without those meetings machine learning at
the LHC would be as uninspiring as so many other fields, and nothing the unique science endeavor it now is.

We hope that you will enjoy reading these notes, that you will discover interesting aspects, and that you can turn your new
ideas into cool papers!

Tilman, Anja, Barry, Theo, Claudius, and Ramon

https://github.com/heidelberg-hepml/ml-tutorials
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1 Basics

1.1 Particle physics

Four key ingredients define modern particle physics in general and modern LHC physics in particular,

• fundamental physics questions;
• huge datasets;
• full uncertainty control;
• precision simulations from first principles.

For the last aspect it is important that we distinguish between some kind modelling and a proper first-principle simulation.
Only the latter leads to scientific insights.

What has changed after the first two LHC runs is that we are less and less interested in testing pre-defined models for
physics beyond the Standard Model (BSM). The last discovery that followed this kind of analysis strategy was the Higgs
boson in 2012. We are also not that interested in measuring parameters of the Standard Model Lagrangian, with very few
notable exceptions linked to our fundamental physics questions. What we care about is the particle content and the
fundamental symmetry structure, all encoded in the Lagrangian that describes LHC data in its entirety.

The multi-purpose experiments ATLAS and CMS, as well as the more dedicated LHCb experiment are trying to get to
this fundamental physics goal. During the LHC Runs 3 and 4, or HL-LHC, they will record as many interesting scattering
events as possible and understand them in terms of quantum field theory predictions at maximum precision. With the
expected dataset, concepts and tools from data science have the potential to transform LHC research. Given that the future
LHC runs will collect 25 times the amount of Run 1 and Run 2 data over the next 10-15 years, such a new approach is not
only an attractive option, it is the only way to properly analyze these new datasets. With this perspective, the starting
point of this lecture is to understand LHC physics as field-specific data science, unifying theory and experiment.

Before we see how modern machine learning can help us with many aspects of LHC physics, we briefly review the main
questions behind an LHC analysis from an ML-perspective.

1.1.1 Data recording

The first LHC challenge is the sheer amount of data produced by ATLAS and CMS. The two proton beams cross each
other every 25 ns or at 40 MHz, and a typical event consists of millions of detector channels, requiring 1.6 MB of memory.
This data output of an LHC experiments corresponds to 1 PB per second. Triggering is another word for accepting that
we cannot write all this information on tape and analyze is later, and we are also not interested in doing that. Most of the
proton-proton interactions do not include any interesting fundamental physics information, so in the past we have just
selected certain classes of events to write to tape. For model-driven searches this strategy was appropriate, but for our
modern approach to LHC physics it is not. Instead, we should view triggering as some kind of data compression of the
incoming LHC data, including compressing events, compressing event samples, or selecting events.

In Fig. 1 we see that between the inelastic proton-proton scattering cross section, or rate, of around 600 mb and hard jet
production at a rate around 1 µb we can afford almost a factor 10−6 in data reduction, loss-less when it comes to the
fundamental physics questions we care about. This is why a first, level-one (L1) trigger can reduce the rate from an input
rate of 40 MHz to an output rate around 100 kHz, without losing interesting physics, provided we make the right trigger
decisions. To illustrate this challenge, the time a particle or a signal takes to cross a detector at the speed of light is

10 m
3 · 108 m/s

≈ 3 · 10−8 s = 30 ns (1.1)

or around one bunch-crossing time. As a starting point, the L1-trigger uses very simple and mostly local information from
the calorimeters and the muon system, because at this level it is already hard to combine different regions of the detector
in the L1 trigger decision. From a physics point of view this is a problem because events with two forward jets are very
different depending on the question if they come with central jets as well. If yes, the event is likely QCD multi-jet
production and not that interesting, if no, the event might be electroweak vector boson fusion and very relevant for many
Higgs and electroweak gauge boson analyses.
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Figure 1: Production rates for the LHC. Figure from Ref. [2].

After the L1 hardware trigger there is a second, software-based high-level (HL) or L2 trigger. It takes the L1 trigger
output at 100 kHz and reduces the rate to 3 kHz, running on a farm with more than 10.000 CPU cores already now. After
that, for instance ATLAS runs an additional software-based L3 trigger, reducing the data rate from 3 kHz to 200 Hz. For
1.6 MB per event, this means that the experiment records 320 MB per second for the actual physics analyses. Following
Fig. 1 a rate of 200 Hz starts to cut into Standard Model jet production, but covers the interesting SM processes as well as
typical high-rate BSM signals (not that we believe that they describe nature).

This trigger chain defines the standard data acquisition by the LHC experiments and its main challenges related to the
amount of information which needs to be analyzed. The big problem with triggering by selection is that it really is data
compression with large losses, based on theoretical inspiration on interesting or irrelevant physics. Or in other words, if
theorists are right, triggering by selection is lossless, but the track record of theorists in guessing BSM physics at the LHC
is not a success story.

Even for Run 2 there were ways to circumvent the usual triggers and analyze data either by randomly choosing data to be
written on tape (prescale trigger) or by performing analyses at the trigger level and without access to the full detector
information (data scouting). One aspect that is, for instance, not covered by standard ATLAS and LHC triggers are
low-mass di-jet resonances and BSM physics appearing inside jets. The prize we pay for this kind of event-level
compression is that again it is not lossless, for instance when we need additional information to improve a trigger-level
analysis later. Still, for instance LHCb is running a big program of encoding even analysis steps on programmable chips,
FPGAs, to compress their data flow.

Before we apply concepts from modern data science to triggering we should once again think about what we really want
to achieve. Reminding ourselves of the idea behind triggering, we can translate the trigger task into deep-learning
language as one of two objectives,

• fast identification of events corresponding to a known, interesting class;
• fast identification of events which are different from our Standard Model expectations;
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• compress data such that it can be used best.

The first of these datasets can be used to measure, for example, Higgs properties, while the second dataset is where we
search for physics beyond the Standard Model. As mentioned above, we can use compression strategies based on event
selection, sample-wise compression, and event-level compression to deal with the increasingly large datasets of the
coming LHC runs. Conceptually, it is more interesting to think about the anomaly-detection logic behind the second
approach. While it is, essentially, a literal translation of the fundamental goal of the LHC to explore the limitations of the
Standard Model and find BSM physics, is hardly explored in the classic approaches. We will see that modern data science
provides us with concepts and tools to also implement this new trigger strategy.

1.1.2 Jet and event reconstruction

After recording an event, ATLAS and CMS translate the detector output into information on the particles which leave the
interaction points, hadrons of all kind, muons, and electrons. Neutrinos can be reconstructed as missing transverse
momentum, because in the azimuthal plane we know the momenta of both incoming partons.

To further complicate things, every bunch crossing at the HL-LHC consists of 150-200 overlapping proton-proton
interactions. If we assume that one of them might correspond to an interesting production channel, like a pair of top
quarks, a Higgs boson accompanied by a hard jet or gauge boson, or a dark matter particle, the remaining 149-199
interactions are refereed to as pileup and need to be removed. For this purpose we rely on tracking information for
charged particles, which allow us to extrapolate particles back to the primary interaction point of the proton-proton
collision we are interested in. Because the additional interaction of protons and of partons inside a proton, as well as soft
jet radiation, do not have distinctive patterns, we can also get rid of them by subtracting unwanted noise for instance in the
calorimeter. Denoising is a standard methodology used in data science for image analyses.

After reconstructing the relevant particles, the hadrons are clustered into jets, corresponding to hard quarks or gluons
leaving the interaction points. These jets are traditionally defined by recursive algorithms, which cluster constituents into
a jet using a pre-defined order and compute the 4-momentum of the jet which we use as a proxy for the 4-momentum of
the quark of gluon produced in the hard interaction. The geometric separation of two LHC objects is defined in terms of
the azimuthal angle φij ∈ [0, π] and the difference in rapidity, ∆ηij = |ηi − ηj |. In the most optimistic scenario the LHC
rapidity coverage is |ηi| . 4.5, for a decent jet reconstruction or b-jet identification is around |ηi| . 2.5. This
2-dimensional plane is what we would see if we unfolded the detector as viewed from the interaction point. We define the
geometric separation in this η − φ plane as

Rij =
√

(∆φij)2 + (∆ηij)2 . (1.2)

Jets can also be formed by hadronically decaying tau leptons or b-quarks, or even by strongly boosted, hadronically
decaying W , Z, and Higgs bosons or top quarks. The top quark is the only quark that decays before it hadronizes. In all
of these cases we need to construct the energy and momentum of the initial particle and its particle properties from the jet
constituents, including the possibility that BSM physics might appear inside jets. Identifying the partonic nature of a jet is
called jet tagging. The main information on jets comes from the hadronic and electromagnetic calorimeters, with limited
resolution in the η − φ plane. The tracker adds more information at a much better angular resolution, but only for the
charged particles in the jet. The combination of calorimeter and tracking information is often referred to as particle flow.

When relating jets of constituents we need to keep in mind a fundamental property of QFT: radiating a soft photon or
gluon from a hard electron or quark can, in the limit Eγ,g → 0, have no impact on any kinematic observable. Similarly, it
cannot make a difference if we replace a single parton by a pair of partons arising from a collinear splitting. In both, the
soft and collinear limits, the corresponding splitting probabilities described by QCD are formally divergent, and we have
to resum these splittings to define a hard parton beyond leading order in perturbation theory. Because any detector has a
finite resolution, and the calorimeter resolution is not even that good, these divergences are not a big problem for many
standard LHC analyses, but when we define high-level kinematic observables to compare to QFT predictions, these
observables should ideally be infrared and collinearly safe. An example for an unsafe observable is the number of
particle-flow objects inside a jet.

Finally, details on jets only help us understand the underlying hard scattering through their correlations with other
particles forming an event. This means we need to combine the subjet physics information inside a jet with correlations
describing all particles in an event. This combination allows us, for instance to reconstructs a Higgs decaying to a pair of
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Figure 2: Illustrated forward and inverse simulation chain for LHC physics.

bottom quarks or a top decaying hadronically, t→W+b→ jjb, or leptonically t→W+b→ `+νb. However,
fundamentally interesting information requires us to understand complete events like for instance

pp→ tt̄H + jets→ (jjb) (`−ν̄b̄) (bb̄) + jets . (1.3)

Again applying a deep-learning perspective, the reconstruction of LHC jets and events includes tasks like

• fast identification of particles through their detector signatures;
• data denoising to extract features of the relevant scattering;
• jet tagging and reconstruction using calorimeter and tracker;
• combination of low-level high-resolution with high-level low-resolution observables.

Event reconstruction and kinematic analyses have been using multivariate analysis methods for a very long time, with
great success for example in b-tagging. Jet tagging is also the field of LHC physics where we are making the most rapid
and transformative progress using modern machine learning, specifically classification networks. The switch to
event-level tagging, on the other hand, is an unsolved problem.

1.1.3 Simulations

Simulations are the way we provide theory predictions for the LHC experiments. A Lagrangian encodes the structures of
the underlying quantum field theory. For the Standard Model this includes a SU(3)× SU(2)× U(1) gauge group with
the known fundamental particles, including one Higgs scalar. This theory describes all collider experiments until now, but
leaves open cosmological questions like dark matter or the baryon asymmetry of the Universe, which at some point need
to be included in our Lagrangian. It also ignores any kind of quantum gravity or cosmological constant. Because we use
our LHC simulations not only for background processes, but also for potential signals, the input to an LHC simulation is
the Lagrangian. This means we can simulate LHC events in any virtual world, provided we can describe it with a
Lagrangian. From this Lagrangian we then extract known and new particles with their masses and all couplings. The
universal simulation tools used by ATLAS and CMS are Pythia as the standard tool, Sherpa with its excellent QCD
description, MadGraph with its unique flexibility for BSM searches, and Herwig with its excellent hadronization
description.

The basic elements of the LHC simulation chain are illustrated in Fig. 2, and many more details can be found in Ref. [3].
Once we define our underlying theory Lagrangian, meaning the Standard Model without or with hypothetical new
particles and interactions, we can compute the hard scattering amplitude. Following our tt̄H example in Eq.(1.3) the hard
scattering can be defined in terms of top and Higgs, but if we want to include angular correlations in the top decays, the
hard process will include the decays and include four b-quarks, a lepton, a neutrino, and two light-flavor quarks. If
decaying particles contribute to such a phase space signature, we need to regularize the divergent on-shell propagators
through a resummation which leads to a Breit-Wigner propagator and introduces a physical particle width to remove the
on-shell divergence. Breit-Wigner propagators are one example for localized and strongly peaked feature in the matrix
element as a function of phase space. In our tt̄H example process two top resonances, one Higgs resonance, and two
W -resonances lead to numerical challenges in the phase space description, sampling, and integration. Finally, the
transition amplitudes are computed in perturbative QCD. To leading order or at tree level, these amplitudes can be
generated extremely fast by our standard generators. Nobody calculates those cross sections by hand anymore, and the
techniques used by the automatic generators have little to do with the methods we tend to teach in our QFT courses. At
the one-loop or 2-loop level things can still be automized, but the calculation of amplitudes including virtual QCD
corrections and additional jet radiation can be time-consuming.
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Moving on in Fig. 2, strongly interacting partons can radiate gluons and split off quarks into a collinear phase space. For
instance looking at incoming gluons, they are described by parton densities beyond leading order in QCD only once we
include this collinear radiation into the definition of the incoming gluons. The same happens for strongly interacting
particles in the final state, referred to as fragmentation. For our reference process in Eq.(1.3) we are lucky in that heavy
top quarks do not radiate many gluons. The universal initial and final state radiation, described by QCD beyond strict
leading order gives rise to the additional jets indicated in Eq.(1.3). If we go beyond leading order in αs, we need to
include hard jet radiation, which appears at the same order in perturbation theory as the virtual corrections. From a
QFT-perspective virtual and real corrections lead to infrared-divergent predictions individually and therefore cannot be
treated separately. More precise simulations in perturbation theory also lead to higher-multiplicity final states. From a
machine learning perspective this means that LHC simulations cannot be defined in terms of a fixed phase-space
dimensionality. In addition, it illustrates how for LHC simulation we can often exchange complexity and precision, which
in return means that faster simulation tools are almost automatically more precise.

Hard initial-state and final-state radiation is only one effect of collinear and soft QCD splittings. The splitting of quarks
and gluons into each other can be described fairly well by the 2-body splitting kernels, and these kernels describe the
leading physics aspects of parton densities. In addition, successive QCD splittings define the so-called parton shower,
which means they describes how a single parton with an energy of 100 GeV or more turns into a spray of partons with
individual energies down to 1 GeV. There are several approaches to describing the parton shower, which share the simple
set of QCD splitting kernels, but differ in the way the collinear radiation is spread out to fill the full phase space and in
which order partons split. Improving the precision of parton showers to match the experimental requirements is one of the
big challenges in theoretical LHC physics.

Next, the transition from quarks and gluons to mesons and baryons, and the successive hadron decays are treated by
hadronization of fragmentation tools. From a QCD perspective those models are the weak spot of LHC simulations,
because we are only slowly moving from ad-hoc models to first-principle QCD predictions. A precise theoretical
description of many hadronization processes and hadron decays is challenging, so many features of hadron decays are
extracted from data. Here we typically rely on the kinematic features of Breit-Wigner resonances combined with
continuum spectra and form factors computed in low-energy QCD. The LHC simulation chain up to this point is
developed and maintained by theorists.

The finally step in Fig. 2 is where the particles produced in LHC collisions enter the detectors and are analyzed by
combining many aspects and channels of ATLAS, CMS, or LHCb. From a physics perspective detectors are described by
the interaction of relativistic particles with the more or less massive different detector components. This interaction leads
to electromagnetic and hadronic showers, which we need to describe properly if we want to simulate events based on a
hypothetical Lagrangian. Because we do not expect to learn fundamental physics from the detector effects, and because
detector effects depend on many details of the detector materials and structures, these simulations are in the hands of the
experimental collaborations. The standard full simulations are based on the detailed construction plans of the detectors
and use the complex and quite slow Geant4 tool for the full simulations. Fast simulations are based on these full
simulations, ignore the input of the geometric detector information, and just reproduce the observed signals and
measurements for a given particle entering the detector. Historically, they have relied on Gaussian smearing, but modern
fast simulations are much more complex and precise.

If we are looking for deep-learning applications, first-principle simulations include challenges like

• optimal phase space coverage and mapping of amplitude features;
• fast and precise surrogate models for expensive loop amplitudes;
• variable-dimensional and high-dimensional phase spaces;
• improved data- and theory-driven hadron physics, like heavy-flavor fragmentation;

Once we can simulate LHC events all the way to the detector output, based on an assumed fundamental Lagrangian, and
with high and controlled precision, we can use these simulated events to extract fundamental physics from LHC data.
While not all LHC predictions can be included in this forward simulation, the multi-purpose event generators and the
corresponding detector simulations are the work horses behind every single LHC analysis. They define LHC physics as
much as the fact that the LHC collides two protons (or more), and there are infinitely many ways they can benefit from
modern machine learning [4].
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1.1.4 Inference

LHC analyses are almost exclusively based on frequentist or likelihood methods, and we are currently observing a slow
transition from classic Tevatron-inherited analysis strategies to modern LHC analysis ideas. In an ideal LHC world, we
would just compare observed events with simulated events based on a given theory hypothesis. From the
Neyman-Pearson lemma we know that the likelihood ratio is the optimal way to compare two hypotheses and decide if a
background-only model or a combined signal plus background model describes the observed LHC data better. This
means we can assign any LHC dataset a confidence level for the agreement between observations and first-principle
predictions and either discover or rule out BSM models with new particles and interactions. The theory-related
assumption behind such analyses is that we can provide precise, flexible, and fast event generation for SM-backgrounds
and for all signals we are interested in.

If we compare observed and predicted datasets, a key question is how we can set up the analysis such that it provides the
best possible measurement. For two hypotheses we know that an observable encoding the likelihood ratio combines all
available information into a sufficient statistics. The question is how we can first define and then experimentally
reconstruct this optimal observable. Going back to our tt̄H example, we can for instance try to measure the top-Higgs
Yukawa coupling. This coupling affects the signal rate simply as σtot(tt̄H) ∝ y2

t and does not change the kinematics of
the signal process, so we can start with a simple t̄H rate measurement. Things get more interesting when we search for a
modification of the top-Higgs couplings through a higher-dimensional operator, which changes the Lorentz structure of
the coupling and introduces a momentum dependence. In that case the effect of a shifted coupling depends on the phase
space position. Because the signal-to-background ratio also changes as a function of phase space, we need to find out
which phase space regions work best to extract such an operator-induced coupling shift. The answer will depend on the
luminosity, and we need an optimal observable framework to optimize such a full phase-space analysis. Finally, we can
try to test fundamental symmetries in an LHC process, for instance the CP-symmetry of the top-Higgs Yukawa coupling.
For this coupling, CP-violation would appear as a phase in the modified Yukawa coupling and affect the interference
between different Feynman diagrams over phase space. Again, we can define an optimal observable for CP-violation,
usually an angular correlation.

From a simulation point of view, illustrated in Fig. 2, the question of how to measure an optimal observable points to a
structural problem. While we can assume that such an optimal observable is naturally defined at the parton or hard
scattering level, the measurement has to work with events measured by the detector. The challenge becomes how to best
link these different levels of the event generation and simulation to define the measurement of a Lagrangian parameter?

If we want to interpret measurements as model-independently as possible and in the long term, we need to report
experimental measurements without detector effects. We can assume that the detector effects are independent on the
fundamental nature of an event, so we translate a sample of detector-level events into a corresponding sample of events
before detector effects and therefore entirely described by fundamental physics. From a formal perspective, we want to
use a forward detector simulation to define a detector unfolding as an incompletely defined inverse problem.

Going back to Fig. 2 the possibility of detector unfolding leads to the next question, namely why we do not also unfold
other layers of the simulation chain based on the assumption that they will not be affected by the kind of physics beyond
the Standard Model we aim for. It is safe to assume that testing fragmentation models will not lead to a discovery of new
particles, and the same can be argued (or not) for the parton shower. This is why it is standard to unfold or invert the
shower and fragmentation steps of the forward simulations through recursive jet algorithms.

Next, it is reasonable to assume that BSM features like heavy new particles of momentum-dependent effective operators
affect heavy particle production in specific phase space regions much more than the well-measured decays of gauge
bosons or top quarks. For the tt̄H signal we would then not be interested in the top and Higgs decays, because they are
affected with limited momentum transfer, and we can unfold these decays. This method is applied very successfully in the
top groups of ATLAS and CMS, while other working groups are less technically advanced.

Finally, we can remind ourselves that what we really want to compute for any LHC process is a likelihood ratio. Modulo
prefactors, the likelihood for a given process is just the transition amplitude for the hard process. This means that for
example for two model or model-parameter hypotheses based on the same hard process, the likelihood ratio can be
extracted easily by inverting the entire LHC simulation chain and extracting the parton-level matrix elements squared for
a given observed events. This analysis strategy is called the matrix element method and has in the past been applied to
especially challenging signals with small rates.

Altogether, simulation-based inference methods immediately bear the question how we want to compare simulation and
data most precisely. If our simulation chain only works in the forward direction, we have no choice but to compare
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predictions and data at the event level. However, if our simulation chain can be inverted, we generate much more
freedom. A very practical consideration might then also be that we are able to provide precision-QCD predictions for
certain kinematic observables at the parton level, but not as part of a fast multi-purpose Monte Carlo. In this situation we
can choose the point of optimal analysis along the simulation chain shown in Fig. 2.

In a data-oriented language some of the open questions related to modern LHC inference concern

• precision simulations of backgrounds and signals in optimized phase space regions;
• fast and precise event generation for flexible signal hypotheses;
• definition of optimal analysis strategies and optimal observables;
• unfolding or inverted forward simulation using a consistent statistical procedure;
• single-event likelihoods to be used in the matrix element method;

Many of these questions have a long history, starting from LEP and the Tevatron, but for the vast datasets of the LHC
experiment we finally need to find conceptual solutions for a systematic inversion of our established and successful
simulation chain.

1.1.5 Uncertainties

Uncertainties are extremely serious business in particle physics, because if we ever declare a major discovery we need to
be sure that this statement lasts2. We define, most generally, two kinds of uncertainties, statistical uncertainties and
systematic uncertainties. The first kind is defined by the fact that they vanish for large statistics and are described by
Poisson and eventually Gaussian distributions in any rate measurement. The second kind do not vanish with large
statistics, because they come from some kind of reference measurement or calibration, because they describe detector
effects, or they arise from theory predictions which do not offer a statistical interpretation. Some systematic uncertainties
are Gaussian, for example when they describe a high-statistics measurement in a control region. Others just give a range
and no preference for a single central value, for instance in the case of theory predictions based on perturbative QCD.
Again, the distribution of the corresponding nuisance parameter reflects the nature of the systematic or theory
uncertainties.

The machine learning community also distinguishes between two kinds of uncertainties, aleatoric uncertainties related to
the (training) data and epistemic uncertainties related to the model we use to describe the data. This separation is similar
to statistical and systematic uncertainties: first, epistemic uncertainties vanish when we train a network on more, assumed
perfect, data — in physics we would call them statistical uncertainties; aleatoric uncertainties arise from imperfect data,
such that more of the same data will not help — in physics this defines systematic uncertainties. One of the issues is that
we typically work towards the the limit of a perfectly trained network which reproduce all features of the data. Deviations
from this limit are reproduced by the epistemic uncertainty, but the same limit requires increasingly large networks which
we need to train on correspondingly large datasets.

Technically, we include uncertainties in a likelihood analysis using hundreds or thousands of nuisance parameters. Any
statistical model for a dataset x then depends on nuisance parameters ν and parameters of interest g, to define a likelihood
p(x|ν, g). Instead of using Bayes’ theorem to extract a probability distribution p(g|x, ν), we use profile likelihood
techniques to constrain g. These techniques do not foresee priors, unless we can describe them reliably as nuisance
parameters reflecting measurements or theory predictions with a well-defined likelihood distribution. Whenever nuisance
parameters come from a measurement, we expect their distribution to allow for a frequentist interpretations.

If we start with the assumption that the definition of an observable does not induce an uncertainty on the measurement,
any observable will first be analyzed using simulations. Here we can ensure its resilience to detector effects, or, if needed,
its appropriate QFT definition. In the current LHC strategy, any numerically defined observable, like a kinematic
reconstruction, a boosted decision tree, or a neural network will actually be defined on simulated data. In the next step,
this observable needs to be calibrated by combining data and simulations. A standard, nightmare task in ATLAS and
CMS is the precise calibration of QCD jets. As a function of the many parameters of the jet algorithm this calibration will
for instance determine the jet energy scale from controlled reference data like on-shell Z-production. Calibration can
remove systematic biases, and it always comes with a range of uncertainties in the reference data, which include statistical
limitations as well as theory uncertainties from the way the reference data is described by Monte Carlo simulations. We
will see that for ML-based observables this second step can and should be considered part of the training, in which case
the training has to account for uncertainties.

2This rule has traditionally not applied to the CDF experiment at the Tevatron.
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In the inference, we need to consider all kinds of uncertainties, together with the best choice of observables, to provide the
optimal measurement. Because theory predictions are based on perturbative QFT, they always come with an uncertainty
which we can sometimes quantify well, and which we sometimes know very little about. What we do know is that this
theory uncertainty cannot be defined by a frequentist argument. Similarly, some systematic uncertainties are hard to
estimate, for example when they correspond to detector effects which are not Gaussian or when we simply do not know
the source of a bias for example in a calibration. Quantifying, controlling, and reducing all uncertainties is the challenge
of any LHC analysis.

Finally, the uncertainty in defining an observable might not be part of the uncertainty treatment at the analysis level, but it
will affect its optimality. This means that especially for numerically defined observable we need to control underlying
uncertainty like the statistics of the training data, systematic affects related to the training, or theoretical aspects related to
the definition of an observable. Historically, these uncertainties mattered less, but with the rapidly growing complexity of
LHC data and analyses, they should be controlled.

This means that again in the language closer to machine learning we have to work on

• controlled definitions and resilience of observables;
• calibration leading to nuisance parameters for the uncertainty;
• control of the features learned by a neural network;
• uncertainties on all network outputs from classification to generation;
• balance optimal observables with uncertainties.

These requirements are, arguably, the biggest challenge in applying ML-methods to particle physics and the reason for
conservative reservations especially in the ATLAS experiment. Given that we have no alternative to thinking of LHC
physics as a field-specific application of data science, we have to work on the treatment of uncertainties in modern
ML-techniques.

1.2 Machine learning basics

After setting the physics stage, we will briefly review some fundamental concepts which we need to then talk about
machine learning at the LHC. We will not follow the usual line of many introductions to neural networks, but choose a
particle physics path. This means we will introduce many concepts and technical terms using multivariate analyses and
decision trees, then review numerical fits, and with that basis introduce neural networks with likelihood-based training.
We will end this section with a state-of-the-art application of learning transition amplitudes over phase space.

1.2.1 Multivariate classification

Because LHC detector have a very large number of components, and because the relevant analysis questions involve many
aspects of a recorded proton-proton collision, experimental analyses rely on a large number of individual measurements.
We can illustrate this multi-observable strategy with a standard classification task, the identification of invisible Higgs
decays as a dark matter signature. The most promising production process to look for this Higgs decay is weak boson
fusion, so our signature consists of two forward tagging jets and missing transverse momentum from the decaying Higgs,

qq′ → (H → inv) qq′ or pp→ (H → inv) jj + jets . (1.4)

Following Fig. 2 we start with a 2→ 3 hard scattering, where the Higgs decay products cannot be observed, two forward
tagging jets with high energy and transverse momenta around pT ∼ 30 ... 150 GeV, and the key feature that the additional
jets in the signal process are not central because of fundamental QCD considerations [3]. The main background is Z+jets
production, where the Z decays to two neutrinos. A typical set of basic kinematic cuts at the event level is

pT,j1,2 > 40 GeV |ηj1,2 | < 4.5 /ET > 140 GeV
ηj1 ηj2 < 0 |∆ηjj | > 3.5 mjj > 600 GeV
pT,j3 > 20 GeV |ηj3 | < 4.5 (if 3rd jet there) . (1.5)
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On the sub-jet level we can exploit the fact that the electroweak signal only includes quark jets, whereas the background
often features one gluon in the final state. Kinematic subjet variables which allow us to distinguish quarks from gluons
based on particle-flow (PF) objects are

nPF =
∑
iPF

1 wPF =

∑
iPF

pT,i ∆Ri,jet∑
iPF

pT,i

pTD =

√∑
iPF

p2
T,i∑

iPF
pT,i

C =

∑
iPF,jPF

pT,ipT,j (∆Rij)
0.2(∑

iPF
pT,i

)2 . (1.6)

Altogether, there is a sizeable number of kinematic observables which help us extract the signal. They are shown in
Fig. 3, and the main message is that none of them has enough impact to separate signal and background on its own.
Instead, we need to look at correlations between these observables, including correlations between event-level and subjet
observables. Examples for such correlations would be the rapidity of the third jet, ηj3 as a function of the separation of
the tagging jets, ∆ηjj , and combined with the quark or gluon nature of the tagging jets. More formally, what we need is a
method to classify events based on a combination of many observables.

As a side remark we can ask why we should limit ourselves to the set of theory-defined observables in Eq.(1.5) and
Eq.(1.6). When looking at classification with neural networks in Sec. 2 we will see that modern machine learning allows
us to instead use preprocessed calorimeter output, but for now we will stick to the standard, high-level observables in
Eqs.(1.5) and (1.6).

To target correlated observables, multivariate classification is an established problem in particle physics. The classical
solution for it are or used to be a decision tree. Imagine we want to classify an event xi into the signal or background
category based on a set of observables Oj . As a basis for this decision we study a sample of training events {xi},
histogram them for each observable Oj , and find the values Oj,split which give the most successful split between signal
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Figure 3: Sample distributions for the WBF kinematics (upper) and quark vs gluon discrimination (lower). Figures from
Ref. [5].
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and background for each distribution. To define such an optimal split we start with the signal and background
probabilities or so-called impurities as a function of the signal event count s and the background event count b,

pS =
s

s+ b
≡ p and pB =

b

s+ b
≡ 1− p . (1.7)

These probabilities will allow us to define optimal cuts. If we look at a histogrammed normalized observable O ∈ [0 ... 1]
we can compute p and 1− p from number of expected signal and background events following Eq.(1.7). For instance, we
can look at a signal which prefers large O-values two background distributions and first compute the signal and
background probabilities p(O). We can then decide that a single event is signal-like when its (signal) probability is
p(O) > 1/2, otherwise the event is background,

s(O) = AO b(O) = A(1−O) ⇒ p(O) =
s(O)

s(O) + b(O)
= O

s(O) = AO b(O) = B ⇒ p(O) =
O

O +
B

A

. (1.8)

We then declare a single event signal-like when its (signal) probability is p(O) > 1/2, otherwise the event is
background-like. This defines the splitting point

Oj,split = Oj
∣∣∣
p=1/2

=


1

2

B

A

. (1.9)

To organize our multivariate analysis we then need to evaluate the performance of each optimized cut Oj,split, for example
to apply the most efficient cut first or at the top of a decision tree.

Next, we formalize this condition in terms of statistics — we want to construct the Oj,split such that they maximize the the
gain in information. This gain can be calculated in terms of the information entropy. We remind ourselves that for a
system with 2N states with equal probabilities pj the most efficient way to determine its state is to step-wise split the
possible states into groups of equal size and then ask in which of the two halves the system lives. This way we avoid any
element of luck, and we need

N = − log2 pj =
ln pj
ln 2

(1.10)

answers. For a system with different probabilities pj the branches of the decision tree correspond to different
probabilities, there will be an element of luck. The number of necessary questions is only defined as an expectation value,

〈− log2 pj〉 = − 1

ln 2

∑
j

pj ln pj ≡
H

ln 2

H = −
∑
j

pj ln pj (1.11)

The information entropy H > 0 measures the (logarithmic) uncertainty in units of ln 2, so-called bits. Uncertainty is the
amount of expected information needed to correctly identify the state of the system. For two outcomes with p1 = p and
p2 = 1− p we can compute the maximum information entropy,

H = − [p ln p+ (1− p) ln(1− p)]
dH

dp
= −

[
ln p+

p

p
− ln(1− p)− 1− p

1− p

]
= − ln p+ ln(1− p) = 0 ⇔ p = 1− p =

1

2
. (1.12)

The information entropy vanishes for p = 0 and p = 1 and is symmetric around its maximum at p = 1/2. In general, the
entropy is maximal for equal probabilities,

H ≤ −
∑
j

p ln p = − ln p . (1.13)
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If we split our system in two not independent systems, we can compute the entropies in terms of the individual and joint
probability pi,j ,

H1 = −
∑
i

pi ln pi H2 = −
∑
j

pj ln pj H12 = −
∑
i,j

pi,j ln pi,j . (1.14)

Because equally distributed systems maximize the entropy, this combined entropy should be smaller than the sum of the
independent individual entropies. The difference is the mutual information I12

I12 = H1 +H2 −H12

= −
∑
i

pi

∑
j

pj|i

 ln pi −
∑
j

(∑
i

pi|j

)
pj ln pj +

∑
i,j

pi,j ln pi,j

= −
∑
i,j

[
pipj|i ln pi + pjpi|j ln pj − pi,j ln pi,j

]
= −

∑
i,j

pi,j ln
pipj
pi,j

. (1.15)

In terms of the information entropy, we can write our construction of split values in Eq.(1.9) as

Oj,split = argmaxsplitsH[p(Oj)] . (1.16)

To build a decision tree out of our observables we first compute the best splitting for each observable individually and
then choose the observable with the most successful split. More precisely, we want to maximize the difference of the
information entropy before the split and the sum of the information entropies after the split, the so-called information
gain. We choose the first observable of our decision tree though

max
j

[
Hbefore split[p(Oj)]−Hafter split,1[p(Oj)]−Hafter split,2[p(Oj)]

]
. (1.17)

A historic illustration for a decision tree used in particle physics is shown in the left panel of Fig. 4. It comes from the
first high-visibility application of (boosted) decision trees in particle physics, to identify electron-neutrinos from a beam
of muon-neutrinos using the MiniBooNE Cerenkov detector. Each observable defines a so-called node, and the two
branches below each node are defined as ‘yes’ vs ‘no’ or as ‘signal-like’ vs ‘background-like’. The first node is defined by
the observable with the highest information gain among all the optimal splits. The two branches are based on this optimal
split value, found by maximizing the cross entropy. Every outgoing branch defines the next node again through the
maximum information gain, and its outgoing branches again reflect the optimal split, etc. Finally, the algorithm needs a
condition when we stop splitting a branch by defining a node and instead define a so-called leaf, for instance calling all
events ‘signal’ after a certain number of splittings selecting it as ‘signal-like’. Such conditions could be that all collected
training events are either signal or background, that a branch has too few events to continue, or simply by enforcing a
maximum number of branches.

No matter how we define the stopping criterion for constructing a decision tree, there will always be signal events in
background leaves and vice versa. We can only guarantee that a tree is completely right for the training sample, if each
leaf includes one training event. This perfect discrimination obviously does not carry over to an independent test sample,
which means our decision tree is overtrained. In general, overtraining means that the performance for instance of a
classifier on the training data is so finely tuned that it follows the statistical fluctuations of the training data and does not
generalize to the same performance on independent sample of test data.

If we want to further enhance the performance of the decision tree we can focus on the events which are wrongly
classified after we define the leaves. For instance, we can add an event weight w > 1 to every mis-identified event (we
care about) and carry this weight through the calculation of the splitting condition. This is the simple idea behind a
boosted decision tree (BDT). Usually, the weights are chosen such that the sum of all events is one. If we construct
several independent decision trees, we can also combine their output for the final classifier. It is not obvious that this
procedure will improve the tree for a finite number of leaves, and it is not obvious that such a reweighting will converge to
a unique or event improved boosted decision tree, but in practice this method has been shown to be extremely powerful.

Finally, we need to measure the performance of a BDT classification using some kind of success metric. Obviously, a
large signal efficiency alone is not sufficient, because the signal-to-background ratio S/B or the Gaussian significance
S/
√
B depend on the signal and background rates. For a simple classification task we can compute four numbers
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Figure 4: Left: illustration of a decision tree from an early application in particle physics, selecting electron neutrinos
to prove neutrino oscillations. Figure from Ref. [6]. Right: signal efficiency vs background rejection for WBF Higgs
production and invisible Higgs decays, based on jet-level and additional subjet-level information shown in Tab. 1. Figure
from Ref. [5].

1. signal efficiency, or true positive rate εS ≡ s(S-tagged)/s(truth);
2. background efficiency, or true negative rate b(B-tagged)/b(truth);
3. background mis-identification rate, or false positive rate εB ≡ b(S-tagged)/b(truth);
4. signal mis-identification rate, or false negative rate s(B-tagged)/s(truth).

If we tag all events we know the normalization conditions s(truth) = s(S-tagged) + s(B-tagged) and correspondingly for b(truth).
The signal efficiency is also called recall or sensitivity in other fields of research. The background mis-identification rate
can be re-phrased as background rejection 1− εB , also referred to as specificity.

Once we have tagged a signal sample we can ask how many of those tagged events are actually signal, defining the

purity = precision =
s(S-tagged)

s(S-tagged) + b(S-tagged) . (1.18)

Finally, we can ask how many of our decisions are correct and compute the

accuracy =
s(S-tagged) + b(B-tagged)

s(truth) + b(truth) , (1.19)

reflecting the fraction of correct decisions.

In particle physics we usually measure the success of a classifier in the plane εS vs εB , where for the latter we either write
1− εB of 1/εB . In the right panel of Fig. 4 we show such a plane for our invisible Higgs decay example. It is called

Set Variables

jet-level j1, j2 pT,j1 pT,j2 ∆ηjj ∆φjj mjj /ET ∆φ
j1, /ET ∆φ

j2, /ET
subjet-level j1, j2 nPF,j1 nPF,j2 pTDj1 pTDj2 Cj1 Cj2

j3 angular information ∆ηj1,j3 ∆ηj2,j3 ∆φj1,j3 ∆φj2,j3
jet-level j1-j3 jet-level j1, j2 + j3 angular information + pT,j3
subjet-level j1-j3 subjet-level j1, j2 + nPF,j3 Cj3 pTDj3

Table 1: Sets of variables used in a BDT study for a WBF Higgs search with invisible Higgs decays. The subscript jj
refers to the two tagging jets, not all events have a third jet. Example from Ref. [5].
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receiver–operator characteristics (ROC) curve. The different sets of observables are shown in Tab. 1. The lowest ROC
curve corresponds to a BDT analysis of the kinematic observables of the two tagging jets and the missing transverse
energy vector. For a signal efficiency εS = 40% it gives a background rejection around 1/εB = 1/10. If we expect a
relatively large signal rate and at the same time need to reject the background more efficiently, we can choose a different
working point of the classifier, for instance εS = 20% and 1/εB = 1/35.
If a classifier gives us, for example, a continuous measure of signal-ness of an event being signal we can choose different
working points by defining a cut on the classifier output. The problem with such any such cut is that we lose information
from all those signal events which almost made it to the signal-tagged sample. If we can construct our classifier such that
its output is a probability, we can also weight all events by their signal vs background probability score and keep all
events in our analysis.
Going back to LHC physics, in Fig. 4 we see that adding information on the potential third jet and subjet observables for
all three jets with the additional requirement of pT,j > 10 GeV improves the background rejection for εS = 40% to
almost 1/εB = 1/20. Adding information from softer jets only has a small effect. Such ROC curves are the standard tool
for benchmarking LHC analyses, reducing them to single performance values like the integral under the ROC curve
(AUC) or the background rejection for a given signal efficiency is usually an oversimplification.
To summarize, data analysis without multivariate classification is hard to imagine for particle physicists. Independent of
the question if we want to call boosted decision trees machine learning or not, we have shown how they can be
constructed or trained for multivariate classification tasks, and we have taken the opportunity to define many technical
terms we will need later in these notes. The great advantage of decision trees, in addition to the great performance of
BDTs, is that we can follow their definition of signal and background regions fairly easily. We can always look at
graphics like the one in the left panel of Fig. 4, at least before boosting, and standard tools like TMVA provide a list of the
most powerful observables. The biggest disadvantage of decision trees is that by construction they do not account for
correlations properly, they only break up the observable space into many rectangular leaves.

1.2.2 Fits and interpolations

From a practical perspective, we start with the assumption or observation that neural network are nothing but
numerically defined functions. As alluded to in the last section, some kind of minimization algorithm on a loss function
will allow us to define determine its underlying parameters θ. The simplest case, regression networks are scalar or vector
fields defined on some space, approximated by fθ(x). Assuming that we have indirect or implicit access to the truth f(x)
in form of a training dataset (x, f)j , we want to construct the approximation

fθ(x) ≈ f(x) . (1.20)

Usually, approximating a set of functional values for a given set of points can be done two ways. First, in a fit we start
with a functional form in terms of a small set of parameters which we also refer to as θ. To determine these network
parameters, we maximize the probability for the fit output f(xj) to correspond to the training points fj , with uncertainties
σj . Formally, we can write this as an estimation of the best-suited fit parameters

θ = argmax p(θ|x) . (1.21)

The problem with this posterior in model space is that we typically canot evaluate it, i.e. it is intractable. However, we
can use Bayes’ theorem to re-write it in terms of the corresponding likelihood and then assume that the prior on θ does
not affect our maximization,

θ = argmax
p(x|θ)p(θ)
p(x)

= argmax [p(x|θ)p(θ)] ≈ argmax p(x|θ) . (1.22)

To maximize the likelihood we need to assume a functional form. An obvious choice for statistical problems, backed up
by the central limit theorem, is to maximize the Gaussian likelihood

p(x|θ) =
∏
j

1√
2πσj

exp

(
−|fj − fθ(xj)|

2

2σ2
j

)

⇒ log p(x|θ) = −
∑
j

|fj − fθ(xj)|2
2σ2

j

+ const(θ) . (1.23)
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In the Gaussian limit this log-likelihood is often referred to as χ2. In this form the individual Gaussians have mean fj , a
variance σ2

j , a standard deviation σj , and a width of the bell curve of 2σj . For the definition of the best parameters θ we
can again ignore the θ-independent normalization. The loss function for our fit, i.e. the function we minimize to
determine the fit’s model parameters is

Lfit =
∑
j

Lj =
∑
j

|fj − fθ(xj)|2
2σ2

j

. (1.24)

The fit function is not optimized to go though all or even some of the training data points, fθ(xj) 6= fj . Instead, the
log-likelihood loss is a compromise to agree with all training data points within their uncertainties. We can plot the values
Lj for the training data and should find a Gaussian distribution of mean zero and standard deviation one,
N (µ = 0, σ = 1).

An interesting question arises in cases where we do not know an uncertainty σj for each training point, or where such an
uncertainty does not make any sense, because we know all training data points to the same precision σj = σ. In that case
we can still define a fit function, but the loss function becomes a simple mean squared error,

Lfit =
1

2σ2

∑
j

|fj − fθ(xj)|2 ≡
1

2σ2
MSE . (1.25)

Again, the prefactor is θ-independent and does not contribute to the definition of the best fit. This simplification means
that our MSE fit puts much more weight on deviations for large functional values fj . This is often not what we want, so
alternatively we could also define the loss in terms of relative uncertainties. In practical applications of machine learning
we will instead apply preprocessings of the data,

fj → log fj or fj → fj − 〈fj〉 or fi →
fi
〈fi〉
· · · (1.26)

In cases where we expect something like a Gaussian distribution a standard scaling would preprocess the data to a mean
of zero and a standard deviation of one. In an ideal world, such preprocessings should not affect our results, but in reality
they almost always do. The only way to avoid preprocessings is to add information like the scale of expected and allowed
deviations for the likelihood loss in Eq.(1.24).

The second way of approximating a set of functional values is interpolation, which ensures fθ(xj) = fj and is the method
of choice for datasets without noise. Between these training data points we choose a linear or polynomial form, the latter
defining a so-called spline approximation. It provides an interpolation which is differentiable a certain number of times
by matching not only the functional values fθ(xj) = fj , but also the nth derivatives f (n)

θ (x ↑ xj) = f
(n)
θ (x ↓ xj). In the

machine learning language we can say that the order of our spline defines an implicit bias for our interpolation, because it
defines a resolution in x-space where the interpolation works. A linear interpolation is not expected to do well for widely
spaced training points and rapidly changing functional values, while a spline-interpolation should require fewer training
points because the spline itself can express a non-trivial functional form.

The main difference between a fit and an interpolation is their respective behavior on unknown dataset. For both, a fit and
an interpolation we expect our fit model fθ(x) to describe the training data. To measure the quality of a fit beyond the
training data we can compute the loss function L or the point-wise contributions to the loss Lj on an independent
test dataset. If a fit does not generalize from a training to a test dataset, it is usually because it has learned not only the
smooth underlying function, but also the statistical fluctuation of the training data. While a test dataset of the same size
will have statistical fluctuations of the same size, they will not be in the same place, which means the loss function
evaluated on the training data will be much smaller than the loss function evaluated on the test data. This failure mode is
called over-fitting or, more generally, overtraining. For interpolation this overtraining is a feature, because we want to
reproduce the training data perfectly. The generalization property is left to choice of the interpolation function. As a side
remark, manipulating the training dataset while performing one fit after the other is an efficient way to search for outliers
in a dataset, or a new particle in an otherwise smooth distribution of invariant masses at the LHC.

More systematically, we can define a set of errors which we make when targeting a problem by constructing a fit function
through minimizing a loss on a training dataset. First, an approximation error is introduced when we define a fit function,
which limits the expressiveness of the network in describing the true function we want to learn. Second, an estimation or
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generalization error appears when we approximate the true training objective by a combination of loss function and
training dataset. In practice, these errors are related. A justified limit to the expressiveness of a fit function, or implicit
bias, defines useful fits for a given task. In many physics applications we want our fit to be smooth at a given resolution.
When defining a good fit, increasing the class of functions the fit represents leads to a smaller approximation error, but
increases the estimation error. This is called the bias-variance trade off, and we can control it by limiting or regularizing
the expressiveness of the fit function and by ensuring that the loss of an independent test dataset does not increase while
training on the training dataset. Finally, any numerical optimization comes with a training error, representing the fact that
a fitted function might just live, for instance, in a sufficiently good local minimum of the loss landscape. This error is a
numerical problem, which we can solve though more efficient loss minimization. While we can introduce these errors for
fits, they will become more relevant for neural networks.

1.2.3 Neural networks

One way to think about a neural network is as a numerically defined fit function, often with a huge number of model
parameters θ, and written just like the fit of Eq.(1.20),

fθ(x) ≈ f(x) . (1.27)

As mentioned before, we minimize a loss function numerically to determine the neural network parameters θ. This
procedure us called network training and requires a training dataset (x, f)j representing the target function f(x). To
control and avoid overtraining, we can compare the values of the loss function between the training dataset and an
independent test dataset.

We will skip the usual inspiration from biological neurons and instead ask our first question, which is how to describe an
unknown function in terms of a large number of model parameters θ without making more assumptions than some kind of
smoothness on the relevant scales. For a simple regression task We can write the mapping as

x→ fθ(x) with x ∈ RD and fθ ∈ R . (1.28)

The key is to think of this problem in terms of building blocks which we can put together such that simple functions
require a small number of modules or building blocks, and model parameters, and complex functions require larger and
larger numbers of those building blocks. We start by defining so-called layers, which in a fully connected or dense
network transfer information from all D entries of the vector x defining one layer to all vector entries of the layer to its
left,

x→ x(1) → x(2) · · · → x(N) ≡ fθ(x) (1.29)

Counting the input x this means our network consist of N layers, including one input layer, one output layer, and N − 2

hidden layers. If a vector entry x(n+1)
j collects information from all x(n)

j , we can try to write each step of this chain as

x(n−1) → x(n) := W (n)x(n−1) + b(n) , (1.30)

where the D ×D matrix W is referred to as the network weights and the D-dimensional vector b as the bias. In general,
neighboring layers do not need to have the same dimension, which means W does not have to be a diagonal matrix. In
our simple regression case we already know that over the layers we need to reduce the width of the network from the
input vector dimension D to the output scalar x(N) = fθ(x).

Splitting the vector x(n) into its D entries defines the nodes which form our network layer

x
(n)
i = W

(n)
ij x

(n−1)
j + b

(n)
i . (1.31)

For a fully connected network a node takes D components x(n−1)
j and transforms them into a single output x(n)

i . For each
node the D + 1 network parameters are D matrix entries Wij and one bias bi. If we want to compute the loss function for
a given data point (xj , fj), we follow the arrows in Eq.(1.29), use each data point as the input layer, x = xj , go through
the following layers one by one, compute the network output fθ(xj), and compare it to fj though a loss function.

The transformation shown in Eq.(1.30) is an affine transformation. Just like linear transformations, affine transformations
form a group. This is equivalent to saying that combining affine layers still gives us an affine transformation, just encoded
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in a slightly more complicated manner. This means our network defined by Eq.(1.30) can only describe linear functions,
albeit in high-dimensional spaces.

To describe non-linear functions we need to introduce some kind of non-linear structure in our neural network. The
simplest implementation of the required nonlinearity is to apply a so-called activation function to each node. Probably the
simplest 1-dimensional choice is the so-called rectified linear unit

ReLU(xj) := max(0, xj) =

{
0 xj ≤ 0

xj xj > 0
, (1.32)

giving us instead of Eq.(1.31)

x(n−1) → x(n) := ReLU
[
W (n)x(n−1) + b(n)

]
, (1.33)

Here we write the ReLU transformation of a vector as the vector of ReLU-transformed elements. This non-linear
transformation is the same for each node, so all our network parameters are still given by the affine transformations. But
now a sufficiently deep network can describe general, non-linear functions, and combining layers adds complexity, new
parameters, and expressivity to our network function fθ(x). There are many alternatives to ReLU as the source of
non-linearity in the network setup, and depending on our problem they might be helpful, for example by providing a finite
gradient over the x-range. However, throughout this lecture we always refer to a standard activation function as ReLU.

This brings us to the second question, namely, how to determine a correct or at least good set of network parameters θ to
describe a training dataset (x, f)j . From our fit discussion we know that one way to determine the network parameters is
by minimizing a loss function. For simplicity, we can think of the MSE loss defined in Eq.(1.25) and ignore the
normalization 1/(2σ2). To minimize the loss we have to compute its derivative with respect to the network parameters. If
we ignore the bias for now, for a given weight in the last network layer we need to compute

dL
dW

(N)
1j

=
∂
∣∣∣f − ReLU[W

(N)
1k x

(N−1)
k ]

∣∣∣2
∂W

(N)
1j

=
∂
∣∣∣f − ReLU[W

(N)
1k x

(N−1)
k ]

∣∣∣2
∂ReLU[W

(N)
1k x

(N−1)
k ]

∂ReLU[W
(N)
1k x

(N−1)
k ]

∂[W
(N)
1k x

(N−1)
k ]

∂[W
(N)
1k x

(N−1)
k ]

∂W
(N)
1j

= −2
∣∣∣f − ReLU[W

(N)
1k x

(N−1)
k ]

∣∣∣× 1× δjkx(N−1)
k

≡ −2
√
L x(N−1)

j , (1.34)

provided W (N)
ij xj > 0, otherwise the partial derivative vanishes. This form implies that the derivative of the loss with

respect to the weights in the N th layer is a function of the loss itself and of the previous layer x(N−1). If we ignore the
ReLU derivative in Eq.(1.34) and still limit ourselves to the weight matrix in Eq.(1.33) we can follow the chain of layers
and find

dL
dW

(n)
ij

=
∂
∣∣∣f − ReLU[W

(N)
1k x

(N−1)
k ]

∣∣∣2
∂[W

(N)
1k x

(N−1)
k ]

∂[(W (N) · · ·W (n+1))1kW
(n)
k` x

(n−1)
` ]

∂W
(n)
ij

= −2
√
L
(
W (N) · · ·W (n+1)

)
1i
x

(n−1)
j . (1.35)

This means we compute the derivative of the loss with respect to the weights in the reverse direction as the network
evaluation shown in Eq.(1.29). We have shown this only for the network weights, but it works for the biases the same
way. This back-propagation is the crucial step in defining appropriate network parameters by numerically minimizing a
loss function. The simple back-propagation might also give a hint to why the chain-like network structure of Eq.(1.29)
combined with the affine layers of Eq.(1.30) have turned out so successful as a high-dimensional representation of
arbitrary functions.

The output of the back-propagation in the network training is the expectation value of the derivative of the loss function
with respect to a network parameter. We could evaluate this expectation value over the full training dataset. However,
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especially for large datasets, it becomes impossible to compute this expectation value, so instead we evaluate the same
expectation value over a small, randomly chosen subset of the training data. This method is called stochastic gradient
descent, and the subsets of the training data are called minibatches or batches〈

∂L
∂θj

〉
minibatch

with θj ∈ {b,W} . (1.36)

Even through the training data is split into batches and the network training works on these batches, we still follow the
progress of the training and the numerical value of the loss as a function of epochs, defined as the number of batch
trainings required for the network to evaluate the full training sample.

After showing how to compute the loss function and its derivative with respect to the network parameters, the final
question is how we actually do the minimization. For a given network parameter θj , we first need to scan over possible
values widely, and then tune it precisely to its optimal value. In other words, we first scan the parameter landscape
globally, identify the global minimum or at least a local minimum close enough in loss value to the global minimum, and
then descend into this minimum. This is a standard task in physics, including particle physics, and compared to many
applications of Markov Chains Monte Carlos the standard ML-minimization is not very complicated. We start with the
naive iterative optimization in time steps

θt+1
j = θtj − α

〈
∂Lt
∂θj

〉
. (1.37)

The minus sign means that our optimization walks against the direction of the gradient, and α is the learning rate. From
our description above it is clear that the learning rate should not be constant, but should follow a decreasing schedule.

One of the problems with the high-dimensional loss optimization is that far away from the minimum the gradients are
small and not reliable. Nevertheless, we know that we need large steps to scan the global landscape. Once we approach a
minimum, the gradients will become larger, and we want to stay within the range of the minimum. An efficient adaptive
strategy is given by

θt+1
j = θtj − α

〈∂Lt
∂θj

〉
ε+

√〈∂Lt
∂θj

〉2
. (1.38)

Away from the minimum, this form allows us to enhance the step size even for small gradients by choosing a sizeable
value α. However, whenever the gradient grows too fast, the step size remains below the cutoff α/ε. Finally, we can
stabilize the walk through the loss landscape by mixing the loss gradient at the most recent step with gradients from the
updates before, 〈

∂Lt
∂θj

〉
→ β

〈
∂Lt
∂θj

〉
+ (1− β)

〈
∂Lt−1

∂θj

〉
(1.39)

This strategy is called momentum, and now the complicated form of the denominator in Eq.(1.38) makes sense, and
serves as a smoothing of the denominator for rapidly varying gradients. A slightly more sophisticated version of this
adaptive scan of the loss landscape is encoded in the widely used Adam optimizer.

Note that for any definition of the step size we still need to schedule the learning rate α. A standard choice for such a
learning rate scheduling is an exponential decay of α with the batch or epoch number. An interesting alternative is a
one-cycle learning rate where we first increase α batch after batch, with a dropping loss, until the loss rapidly explodes.
This point defines the size of the minimum structure in the loss landscape. Now we can choose the step size at the
minimum loss value to define a suitable constant learning rate for our problem, potentially leading to much faster training.
Finally, we need to mention that the minimization of the loss function for a neural network only ever uses first derivatives,
differently from the optimization of a fit function. The simple reason is that for the large number of network parameters θ
the simple scaling of the computational effort rules out computing second derivatives like we would normally do.

Going back to the three errors or uncertainties introduced in the last section, they can be translated directly to neural
networks. The approximation uncertainty is less obvious than for the choice of fit function, but also the expressiveness of
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neural network is limited through the network architecture and the set of hyperparameters. The training uncertainty
becomes more relevant because we now minimize the loss over an extremely high-dimensional parameter space, where
we cannot expect to find the global minimum and will always have to settle for a sufficiently good local minimum. To
define a compromise between the approximation and generalization uncertainties we usually divide a ML-related dataset
into three parts. The main part is the training data, anything between 60% and 80% of the data. The above-mentioned test
data is then 10% to 20% of the complete dataset, and we use it to check how the network generalizes to unseen data, test
for overtraining, or measure the network performance. The validation data can be used to re-train the network, optimize
the architecture or the different settings of the network. The crucial aspect is that the test data is completely independent
of the network training.

1.2.4 Likelihood loss

There are (at least) two ways to derive loss functions for neural networks: maximizing a probability or likelihood, as
described in Sec. 1.2.2, or variational inference, which we will introduce in Sec. 1.2.6

For the likelihood maximization we start with the conditional probability p(θ|xtrain), which we do not have access to
during the training. Instead, we can use Bayes’ theorem to relate it to the corresponding likelihood

p(θ|xtrain) =
p(xtrain|θ) p(θ)

p(xtrain)
, (1.40)

which we can compute by forward simulation using the network. Because the evidence p(xtrain) does not depend on the
network parameters, we can define the loss in analogy to Eq.(1.22) as

L = − log p(xtrain|θ) . (1.41)

As before we assume that the prior is independent of the training data, and it allows us to implement requirements on the
weights improving the numerics, for example a Gaussian weight regularization. This means that in most cases
maximizing a probability or a likelihood loss are equivalent.

The big difference between typical fits and network training is that for the latter we do not have access to the uncertainty
σ of the data. However, it is included in the Gaussian likelihood, so we will try to learn it as together with fθ(x) from the
same data and using the same network,

σθ(x) ≈ σ(x) . (1.42)

Unlike f(x), the reference function σ(x) is not known explicitly, but only implicitly through the data structure and our
assumed Gaussian likelihood from Eq.(1.23)

p(x|θ) =
∏
xtrain

1√
2πσθ(x)

exp

(
−|f − fθ(x)|2

2σθ(x)2

)
. (1.43)

Unlike in Eq.(1.24) we now have to include the normalization prefactor of the Gaussian, giving us the so-called
heteroskedastic loss,

Lheteroskedastic =
|f(x)− fθ(x)|2

2σθ(x)2
+ log σθ(x) + · · · (1.44)

In this loss the minimization of the Gaussian exponent will drive σθ(x) towards large values, while its explicit appearance
from the normalization will prefer a small width. Learning both, we can then use fθ(x) and σθ(x), point by point, for a
downstream task. Additional loss terms can include, for instance, the prior turned weight regularization. As a side
remark, adding an uncertainty can stabilize the network training even if we are not interested in the uncertainty, because it
allows the network to ignore data it cannot describe and focus on aspects it can improve, and because it comes with a
well-defined regularization.

From the way the uncertainty is learned it is clear that it will perfectly capture statistical limitations and noise in the data.
However, it will also reflect a limited expressivity of the model, which does not allow the training to minimize the
numerator of the exponent beyond a certain cutoff, which will then turn into the learned value for σ. In cases where the
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uncertainty is not symmetric and therefore poorly described by the Gaussian likelihood, we can replace p(x|θ) in the loss
by a Gaussian mixture.

The one shortcoming of the heteroskedastic loss is that it assumes a perfect training in the loss landscape, which means it
does not capture effects from a broad minimum in θ-space or a set of similar local minima rather than one well-defined
global minimum.

1.2.5 Repulsive ensembles

An alternative, and we will we see orthogonal approach to learned uncertainties, is based on ensembles of networks
trained on the same data. Usually, the networks forming an ensemble are trained independently. However, if we assume
that all these trainings lead to the same global minimum of the loss function, all members of perfectly trained networks
will be equivalent. This suggests that we have to train ensembles of networks together, if we hope for them to describe a
posterior distribution p(θ|xtrain) of the network output.

From Eq.(1.37) we know that neural networks are trained using gradient descent, where an update rule minimizes a loss
function. From Eq.(1.41) we remember that the network training should maximize the probability of the network weights
given a training dataset xtrain,

θt+1 = θt + α∇θt log p(θt|xtrain) . (1.45)

We can extend the update rule to an ensemble of networks by applying the update step to all networks in the ensemble.

For our case of a single global minimum of the loss landscape the coverage by the ensemble can be improved by a
repulsive interaction in the update rule. Such an interaction should take into account the proximity of the ensemble
member θ to all other members. We introduce a kernel k(θ, θj), typically chosen as Gaussian, and sum the interactions
with all other weight configurations

θt+1 = θt + α∇θt

log p(θt|xtrain)− 1

n

n∑
j=1

k(θt, θtj)

 . (1.46)

The question is if this update rule, for a given kernel, leads to ensemble members sampling the weight probability,

θ ∼ p(θ|xtrain) . (1.47)

To answer this question we need to relate the update rule, or the discretized t-dependence of a weight vector θ(t), to a
time-dependent probability density ρ(θ, t). We use a mathematical structure that we will encounter again when deriving
conditional flow matching networks in Sec. 4.4.2: there are two equivalent ways to describe the time evolution of a
system, an ODE or a continuity equation,

dθ

dt
= v(θ, t) or

∂ρ(θ, t)

∂t
= −∇θ [v(θ, t)ρ(θ, t)] . (1.48)

For a given velocity field v(θ, t) the individual paths θ(t) describe the evolving density ρ(θ, t) and the two conditions are
equivalent. If we choose the velocity field as

v(θ, t) = −∇θ log
ρ(θ, t)

π(θ)
, (1.49)

these two equivalent conditions read

dθ

dt
= −∇θ log

ρ(θ, t)

π(θ)

∂ρ(θ, t)

∂t
= ∇θ

[
ρ(θ, t)∇θ log

ρ(θ, t)

π(θ)

]
= ∇θ

[
ρ(θ, t)

∇θρ(θ, t)

ρ(θ, t)

]
−∇θ [ρ(θ, t)∇θ log π(θ)]

= ∇2
θρ(θ, t)−∇θ [ρ(θ, t)∇θ log π(θ)] . (1.50)
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This continuity equation is the Fokker-Planck equation, for which ρ(θ, t) = π(θ) is a stationary probability distribution,

∇θ [π(θ)∇ log π(θ)] = ∇θ
[
π(θ)

1

π(θ)
∇θπ(θ)

]
= ∇2

θ log π(θ) ⇒ ∂ρ(θ, t)

∂t

∣∣∣∣∣
ρ=π

= 0 . (1.51)

This stationary solution of the Fokker-Planck equation is even unique, so we know that the evolution given by the first
line of Eq.(1.50) is guaranteed to converge to ρ(θ, t)→ π(θ).

Next, we relate the ODE in Eq.(1.50) to the update rule for repulsive ensembles, Eq.(1.46). The discretized version of the
ODE is

θt+1 − θt
α

= −∇θt log
ρ(θt)

π(θt)
. (1.52)

If we do not know the density ρ(θt) explicitly, we again approximate it as a superposition of kernels with the correct
normalization,

ρ(θt) ≈ 1

n

n∑
j=1

k(θt, θtj) with
∫
dθtρ(θt) =

1

n

n∑
j=1

∫
dθtk(θt, θtj) =

1

n

n∑
j=1

1 = 1 . (1.53)

We can insert this kernel approximation into the discretized ODE,

θt+1 − θt
α

= −∇θt
[
log ρ(θt)− log π(θt)

]
= ∇θt log π(θt)−∇θt log

 1

n

∑
j

k(θt, θtj)


= ∇θt log π(θt)−∇θt log

∑
j

k(θt, θtj)

= ∇θt log π(θt)−
∇θt

∑
j k(θt, θtj)∑

i k(θt, θti)
(1.54)

This form can be compared to the update rule in Eq.(1.46). To make them identical, we first identify

π(θ) ≡ p(θ|xtrain) . (1.55)

This means that our target weight density is the probability of the weights given the training data. Second, we add the
normalization term of Eq.(1.54) to our original kernel in Eq.(1.46),

∇θt
∑
j

k(θt, θtj) →
∇θt

∑
j k(θt, θtj)∑

i k(θt, θti)
. (1.56)

Note that we cannot remove the normalization by ansatz, because it collides with Eq.(1.53).

So far, we consider ensembles with a repulsive force in weight space. However, we are interested in the function the
network encodes and not the latent or weight representation. For contemporary network architectures we know that many
points in θ-space provides us with equivalent learned functions. This is the reason why during training we do not have to
find the global loss minimum and instead work with a good enough local minimum. For instance, two networks encoding
the same function could be constructed by permuting the weights of the hidden layers, unaffected by a repulsive force in
weight space. This is why we prefer a repulsive force in the space of network outputs fθ(x).

Symbolically, we can then write the update rule from Eq.(1.46) with the normalization of Eq.(1.56) as

f t+1 − f t
α

= ∇ft log p(f |xtrain)−
∑
j ∇ftk(f, fj)∑
j k(f, fj)

. (1.57)
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A typical choice for the kernel in function space is still a Gaussian in the multi-dimensional function space, evaluated
over a sample,

k(fθ(x), fθj (x)) ∝ exp

(
−|fθ(x)− fθj (x)|2

h

)
. (1.58)

The width h should be chosen such that the width of the distribution is not overestimated while still ensuring that it is
sufficiently smooth.

No matter how we define the update step, the network training is always in weight space, so we have to translate the
function-space update rule into weight space using the appropriate Jacobian

θt+1 − θt
α

=
∂f t

∂θt

[
∇ft log p(fθt |xtrain)−

∑
j ∇fk(fθt , fθtj )∑
j k(fθt , fθtj )

]

= ∇θt log p(θt|xtrain)−
∑
j ∇θtk(fθt , fθtj )∑
j k(fθt , fθtj )

. (1.59)

Furthermore, we cannot evaluate the repulsive kernel in function space, so we have to evaluate the function for a finite
batch of points x,

θt+1 − θt
α

≈ ∇θt log p(θt|xtrain)−
∑
j ∇θtk(fθt(x), fθtj (x))∑
j k(fθt(x), fθtj (x))

. (1.60)

Finally, we turn the update rule in Eq.(1.60) into a loss function for the repulsive ensemble training. We want to use a
tractable likelihood loss, which we get from Bayes’ theorem. In the loss function we neglect the evidence p(xdata), but
have to include the prior p(θ), which we assume to be Gaussian,

log p(θ|xtrain) = log p(xtrain|θ) −
θ2

2σ2
+ const . (1.61)

Given a training dataset of size N , we evaluate the likelihood on batches of size B, so Eq.(1.60) becomes

θt+1 − θt
α

≈ ∇θt
N

B

B∑
b=1

log p(xb|θ)−
∑
j ∇θtk(fθt(x), fθtj (x))∑
j k(fθt(x), fθtj (x))

−∇θt
θ2

2σ2
. (1.62)

Here, fθt(x) is to be understood as evaluating the function for all samples x1, . . . , xB in the batch.

To turn the update rule into a loss function, we flip the sign of term in the gradient, divide it by N to remove the scaling
with the size of the training dataset, and sum over all members of the ensemble. Since the gradients of the loss function
are computed with respect to the parameters of all networks in the ensemble, we need to ensure the correct gradients of
the repulsive term using a stop-gradient operation, denoted with an overline fθj (x). The loss function for repulsive
ensembles then reads

L =

n∑
i=1

[
− 1

B

B∑
b=1

log p(xb|θi) +
1

N

∑n
j=1 k(fθi(x), fθj (x))∑n
j=1 k(fθi(x), fθj (x))

+
θ2
i

2Nσ2

]
. (1.63)

The prior has just become an L2-regularization with prefactor 1/(2Nσ2).

Looking at the learned uncertainty from the heteroskedastic loss in Eq.(1.44) and the uncertainty in model space from the
repulsive ensembles, it is not clear how the two are related and what kind of uncertainties they really cover. We will look
at this aspect in the following sections in more detail.

1.2.6 Bayesian networks

Another way to include uncertainties on the network parameters θ systematically are so-called Bayesian neural networks.
They are a naming disaster in that there is nothing exclusively Bayesian about them [7], while in particle physics
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Bayesian has a clear negative connotation. The difference between a deterministic and a Bayesian network is that the
latter allow for distributions of network parameters, which then define distributions of the network output and provide
central values f(x) as well as uncertainties on f(x) by sampling over θ-space.

The Bayesian loss follows from a statistics argument. Let us start with a simple amplitude regression over phase space,

fθ(x) ≈ f(x) ≡ A(x) with x ∈ RD . (1.64)

The training data consists of pairs (x,A)j . We define p(A) ≡ p(A|x) as the probability distribution for possible
amplitudes at a given phase space point x and omit the argument x from now on. The mean value for the amplitude at the
point x is

〈A 〉 =

∫
dA A p(A) with p(A) =

∫
dθ p(A|θ) p(θ|xtrain) . (1.65)

Here, we can think of p(A|θ) as a single model describing an amplitude through a set of network parameters, while
p(θ|xtrain) weights this model by its level of agreement with the training data xtrain. We do not know the closed form of
p(θ|xtrain), because it is encoded in the training data. Training the network means that we approximate it as a distribution
using variational approximation for the integrand in the sense of a distribution and test function

p(A) =

∫
dθ p(A|θ) p(θ|xtrain) ≈

∫
dθ p(A|θ) q(θ|x) ≡

∫
dθ p(A|θ) q(θ) . (1.66)

As for p(A) we omit the x-dependence of q(θ|x). This approximation leads us directly to the BNN loss function.

There are many ways we can compare two distributions, defining a problem called optimal transport. We will come back
to alternative ways of combining probability densities over high-dimension spaces in Sec. 4. For now we just introduce
the Kullback–Leibler divergence, which compares two probability distributions, evaluated on a dataset corresponding to
the first distribution,

DKL[pa, pb] =
∑

pa ln
pa
pb
6= DKL[pb, pa] . (1.67)

For continuous distributions it reads

DKL[pa, pb] =

〈
log

pa
pb

〉
pa

≡
∫
dx pa(x) log

pa(x)

pb(x)
. (1.68)

It vanishes if two distributions agree everywhere. Because the KL-divergence is not symmetric in its two arguments we
can evaluate a forward and a reverse KL-divergence,

DKL[pa, pb] =

〈
log

pa
pb

〉
pa

or DKL[pb, pa] =

〈
log

pb
pa

〉
pb

. (1.69)

The difference between them is which of the two distributions we choose to sample the logarithm from, and we will
always choose the version that suits the problem better.

There is a nice way to show that otherwise the KL-divergence is always positive. The numerator of the logarithm gives the
negative information entropy for pa, which means the contribution from the numerator is negative and has a well-defined
minimum given in Eq.(1.13). The contribution of the denominator is the information entropy for a distribution pb, which
does not match pa, which is called cross entropy of pa and pb. If the two distributions are different, their respective
encoding is not optimal, which means the cross entropy is larger than the information entropy, so the KL-divergence is
positive. Mathematically, we can use the relation log p ≤ p− 1, where the equal sign is true for p = 1 to compute

−DKL[pa, pb] =

∫
pa>0

dx pa(x) log
pb(x)

pa(x)

≤
∫
pa>0

dx pa(x)

(
pb(x)

pa(x)
− 1

)
=

∫
pa>0

dx pb(x)− 1 ≤ 0 , (1.70)



1.2 Machine learning basics 23

using the fact that pa(x) and pb(x) are normalized probability distributions.

We now define the variational approximation using the KL-divergence introduced in Eq.(1.68),

DKL[q(θ), p(θ|xtrain)] =

〈
log

q(θ)

p(θ|xtrain)

〉
q

=

∫
dθ q(θ) log

q(θ)

p(θ|xtrain)
. (1.71)

Using Bayes’ theorem we can write the KL-divergence as

DKL[q(θ), p(θ|xtrain)] =

∫
dθ q(θ) log

q(θ)p(xtrain)

p(θ)p(xtrain|θ)

= DKL[q(θ), p(θ)]−
∫
dθ q(θ) log p(xtrain|θ) + log p(xtrain)

∫
dθ q(θ) . (1.72)

The prior p(θ) describes the network parameters before training; since it does not really include prior physics or training
information we will still refer to it as a prior, but we think about it as a hyperparameter which can be chosen to optimize
performance and stability. From a practical perspective, a good prior will help the network converge more efficiently, but
any prior should give the correct results, and we always need to test the effect of different priors.

The evidence p(xtrain) guarantees the correct normalization of p(θ|xtrain) and is usually intractable. If we implement the
normalization condition for q(θ) by construction, we find

DKL[q(θ), p(θ|xtrain)] = DKL[q(θ), p(θ)]−
∫
dθ q(θ) log p(xtrain|θ) + log p(xtrain) . (1.73)

The log-evidence in the last term does not depend on θ, which means that it will not be adjusted during training and we
can ignore when constructing the loss. However, it ensures that DKL[q(θ), p(θ|xtrain)] can reach its minimum at zero.
Alternatively, we can solve the equation for the evidence and find

log p(xtrain) = DKL[q(θ), p(θ|xtrain)]−DKL[q(θ), p(θ)] +

∫
dθ q(θ) log p(xtrain|θ)

>

∫
dθ q(θ) log p(xtrain|θ)−DKL[q(θ), p(θ)] (1.74)

This condition is called the evidence lower bound (ELBO), and the evidence reaches this lower bound exactly when our
training condition in Eq.(1.68) is minimal. Combining all of this, we turn Eq.(1.73) or, equivalently, the ELBO into the
loss function for a Bayesian network,

LBNN = −
∫
dθ q(θ) log p(xtrain|θ) +DKL[q(θ), p(θ)] . (1.75)

The first term of the BNN loss is a likelihood sampled according to q(θ), the second enforces a (Gaussian) prior. This
Gaussian prior acts on the distribution of network weights. Using an ELBO loss means nothing but minimizing the
KL-divergence between the probability p(θ|xtrain) and its network approximation q(θ) and neglecting all terms which do
not depend on θ. It results in two terms, a likelihood and a KL-divergence, which we will study in more detail next.

The Bayesian network output is constructed in a non-linear way with a large number of layers, to we can assume that
Gaussian weight distributions do not limit us in terms of the uncertainty on the network output. The log-likelihood
log p(xtrain|θ) implicitly includes the sum over all training points.

Before we discuss how we evaluate the Bayesian network in the next section, we want to understand more about the BNN
setup and loss. First, let us look at the deterministic limit of our Bayesian network loss. This means we want to look at the
loss function of the BNN in the limit

q(θ) = δ(θ − θ0) . (1.76)

The easiest way to look at this limit is to first assume a Gaussian form of the network parameter distributions, as given in
Eq.(1.23)

qµ,σ(θ) =
1√

2πσq
e−(θ−µq)2/(2σ2

q) , (1.77)
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and correspondingly for p(θ). The KL-divergence has a closed form,

DKL[qµ,σ(θ), pµ,σ(θ)] =
σ2
q − σ2

p + (µq − µp)2

2σ2
p

+ log
σp
σq

. (1.78)

We can now evaluate this KL-divergence in the limit of σq → 0 and finite µq(θ)→ θ0 as the one remaining θ-dependent
parameter,

DKL[qµ,σ(θ), pµ,σ(θ)]→ (θ0 − µp)2

2σ2
p

+ const . (1.79)

We can write down the deterministic limit of Eq.(1.75),

LBNN → − log p(xtrain|θ0) +
(θ0 − µp)2

2σ2
p

. (1.80)

The first term is again the likelihood defining the correct network parameters, the second ensures that the network
parameters do not become too large. Because it include the squares of the network parameters, it is referred to as an
L2-regularization. Going back to Eq.(1.75), an ELBO loss is a combination of a likelihood loss and a regularization. For
the Bayesian network the prefactor of this regularization term is fixed.

We generalize this idea, choose µp = 0, and apply the L2-regularization with a freely chosen pre-factor instead of σp. In
that case the deterministic and L2-regularized likelihood loss reads

LL2 = − log p(xtrain|θ0) + λθ2
0 , (1.81)

with a free hyperparameter λ.

Sampling the likelihood following a distribution of the network parameters, as it happens in the first term of the Bayesian
loss in Eq.(1.75), is something we can also generalize to deterministic networks. Let us start with a toy model where we
sample over network parameters by either including them in the loss computation or not. When we include an event, the
network weight is set to θ0, otherwise q(θ) = 0. Such a random sampling between two discrete possible outcomes is
described by a Bernoulli distribution. If the two possible outcomes are zero and one, we can write the distribution in
terms of the expectation value ρ ∈ [0, 1],

pBernoulli(x) =

{
ρx(1− ρ)1−x x = 0, 1

0 else .
(1.82)

When we include an event, the network weight is set to θ0, otherwise it is set to zero, or θ = xθ0. We can use the
Bernoulli probability as a test function for our integral over the log-likelihood log p(xtrain|θ) and find

LBNN = −
∫
dx
[
ρx(1− ρ)1−x] log p(xtrain|xθ0)

= −ρ log p(xtrain|θ0) + const. (1.83)

Such an especially simple sampling of weights by removing nodes is called dropout and is commonly used to avoid
overfitting of networks. For deterministic networks ρ is a free hyperparameter of the network training, while for Bayesian
networks this kind of sampling is a key result from the construction of the loss function.

1.3 Regression

Following our brief introduction to deep networks we can directly look at specific application. Using a neural network for
regression means that we learn a function fθ(x) over some kind of phase space x. We will look at three applications
relevant to particle physics. In Sec. 1.3.1 we use the Bayesian network introduced in Sec. 1.2.6 to learn transition
amplitudes over phase space with high precision, as suggested by our notation in the BNN introduction. In Sec. 1.3.2 we
will briefly introduce the most influential introduction of machine learning to particle physics, namely the NNPDF
regression of parton density. It defines the target in accuracy, uncertainty, and control that LHC applications of machine
learning need to follow. Finally, in Sec. 1.3.3 we discuss a creative new method to numerically integrate functions using
surrogate integrands.
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1.3.1 Amplitudes with uncertainties

After introducing BNNs using the notation of transition amplitude learning, we still have to extract the mean and the
uncertainty for the amplitude A over phase space. To evaluate the network we first exchange the two integrals in
Eq.(1.65) and use the variational approximation to write the mean prediction A(θ) for a given phase space point as

〈A〉 =

∫
dAdθ A p(A|θ) p(θ|xtrain)

=

∫
dAdθ A p(A|θ) q(θ)

≡
∫
dθ q(θ) A(θ) with θ-dependent mean A(θ) =

∫
dA A p(A|θ) . (1.84)

We can interpret this formula as a sampling over network parameters, provided we assume uncorrelated variations of the
individual network parameters. Strictly speaking, this is an assumption we make. We reproduce a standard, deterministic
network in the limit

q(θ)→ δ(θ − θ0) . (1.85)

In this case p(A|θ0) returns the one correct value for the amplitude. For imperfect training the probability distribution
p(A|θ) describes a spectrum of amplitude labels for each phase space point. Corresponding to the definition of the
θ-dependent mean A(θ), the variance of A is

σ2
tot =

∫
dAdθ (A− 〈A〉)2

p(A|θ) q(θ)

=

∫
dAdθ

(
A2 − 2A〈A〉+ 〈A〉2

)
p(A|θ) q(θ)

=

∫
dθ q(θ)

[∫
dA A2 p(A|θ)− 2〈A〉

∫
dA A p(A|θ) + 〈A〉2

∫
dA p(A|θ)

]
(1.86)

For the three integrals we can generalize the notation for the θ-dependent mean as in Eq.(1.84) and write

σ2
tot =

∫
dθ q(θ)

[
A2(θ)− 2〈A〉A(θ) + 〈A〉2

]
=

∫
dθ q(θ)

[
A2(θ)−A(θ)2 +A(θ)2 − 2〈A〉A(θ) + 〈A〉2

]
=

∫
dθ q(θ)

[
A2(θ)−A(θ)2 +

(
A(θ)− 〈A〉

)2] ≡ σ2
syst + σ2

stat . (1.87)
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Figure 5: Illustration of a Bayesian network. Figure from Ref. [8].
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For this transformation we keep in mind that 〈A〉 is already integrated over θ and A and can be pulled out of the integrals.

Equation (1.87) defines two contributions to the variance or uncertainty. First, σstat is the θ-integrated expectation value

σ2
stat =

∫
dθ q(θ)

[
A(θ)− 〈A〉

]2
. (1.88)

Following the definition in Eq.(1.84), it vanishes in the limit of perfectly trained network weights, q(θ)→ δ(θ − θ0),
where 〈A〉 = A(θ0). That limit requires perfect training, which means that σstat decreases with more training data. In
physics this defines a statistical uncertainty.

In contrast, σsyst is defined without sampling the network parameters,

σ2
syst ≡ 〈σsyst(θ)

2〉 =

∫
dθ q(θ) σsyst(θ)

2

=

∫
dθ q(θ)

[
A2(θ)−A(θ)2

]
, (1.89)

so it does not vanish for q(θ)→ δ(θ − θ0). However, from Eq.(1.84) we see that it vanishes if the amplitude is arbitrarily
well known in terms of a sharp likelihood p(A|θ)→ δ(A−A0). As the variance, for a Gaussian likelihood it is just the
σθ in the heteroskedastic loss of Eq.(1.44).

While this systematic uncertainty might also be affected by too little training data, it approaches a plateau for perfect
training. This plateau value can reflect a stochastic training sample, limited expressivity of the network, not-so-smart
choices of hyperparameters etc, in the sense of a systematic uncertainty. In practice, the systematic uncertainty can
extractred as

σsyst(x) = lim
large xtrain

σtot(x) . (1.90)

For LHC applications, where networks are usually trained on simulations, this limit often represents reality.

Because σsyst is θ-dependent, we can read Eq.(1.84) and (1.89) as sampling A(θ) and σsyst(θ)
2 over a network parameter

distribution q(θ) for each phase space point x

BNN : x, θ →
(
A(θ)

σsyst(θ)

)
. (1.91)

If we follow Eq.(1.75) and assume q(θ) to be Gaussian, we now have a network with twice as many parameters as a
standard network to describe two outputs. For a given phase space point x we can then compute the three global network
predictions 〈A〉, σsyst, and eventually σstat. Unlike the distribution of the individual network weights q(θ), the amplitude
output is not Gaussian.

The evaluation of a BNN is illustrated in Fig. 5. From that graphics we see that a BNN works very much like an ensemble
of networks trained on the same data and producing a spread of outputs. The first advantage over an ensemble is that the
BNN is only twice as expensive as a regular network, and less if we assume that the likelihood loss leads to an especially
efficient training. The second advantage of the BNN is that it learns a function and its uncertainty together, which will
give us some insight into how advanced networks learn such densities in Sec. 4.3.2. The disadvantage of Bayesian
networks over ensembles is that the Bayesian network only cover local structures in the loss landscape. Their advantage is
that they cover this local structure in a well-defined manner.

While we usually do not assume a Gaussian uncertainty on the Bayesian network output, this might be a good
approximation for σsyst(θ). Using this approximation we can write the likelihood p(xtrain|θ) in Eq.(1.75) as a Gaussian
and use the closed form for the KL-divergence in Eq.(1.78), so the BNN loss function turns into

LBNN =

∫
dθ qµ,σ(θ)

∑
points j

[∣∣Aj(θ)−Atruth
j

∣∣2
2σsyst,j(θ)2

+ log σsyst,j(θ)

]

+
σ2
q − σ2

p + (µq − µp)2

2σ2
p

+ log
σp
σq

. (1.92)
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Figure 6: Performance of different neural networks learning the gg → γγg amplitude. We show the relative accuracy (left)
and the systematic pull (right). Figures modified from Ref. [10].

As always, the amplitudes and σsyst are functions of phase space x. The loss is minimized with respect to the means and
standard deviations of the network weights describing q(θ). This interesting aspect of this loss function is that, while the
training data just consists of amplitudes at phase space points and does not include the uncertainty estimate, the network
constructs a point-wise uncertainty from the variation of the network parameters. This means we can rely on a
well-defined likelihood loss rather than some kind of MSE loss even for our regression network training, this is
fudging genius!

As shown in Eq.(1.44) we might, for some applications, want to use this advantage of the BNN loss in Eq.(1.92), but
without sampling the network parameters θ. In complete analogy to a fit we use a deterministic network like in Eq.(1.78),
described by q(θ) = δ(θ − θ0), with µp = 0. We then assume a Gaussian likelihood loss including the proper
normalization and learn the uncertainty using

Lheteroskedastic =
∑

points j

[∣∣Aj(θ0)−Atruth
j

∣∣2
2σsyst,j(θ0)2

+ log σsyst,j(θ0)

]
+

θ2
0

2σ2
p

. (1.93)

The interplay between the first two terms works in a way that the first term can be minimized either by reproducing the
data and minimizing the numerator, or by maximizing the denominator. The second term penalizes the second strategy,
defining a correlated limit of A and σsyst over phase space. Compared to the full Bayesian network this simplified
approach has the disadvantages that it only includes the systematic uncertainties. Given what we have learned about
repulsive ensembles and Bayesian networks, this kind of network cannot be interpreted as something like efficient
ensembling.

For a specific task, let us look at LHC amplitudes for the production of two photons and a jet [9],

gg → γγg(g) (1.94)

The corresponding transition amplitude A is a real function over phase space, with the detector-inspired kinematic cuts

pT,j > 20 GeV |ηj | < 5 Rjj,jγ,γγ > 0.4

pT,γ > 40, 30 GeV |ηγ | < 2.37 . (1.95)

The jet 4-momenta are identified with the gluon 4-momenta through a jet algorithm. The standard computer program for
this calculation is called NJet, and the same amplitudes can also be computed with the event generator Sherpa at one loop.
This amplitude has to be calculated at one loop for every phase space point, so we want to train a network once to
reproduce its output much faster. Because these amplitude calculations are a key ingredient to the LHC simulation chain,
the amplitude network needs to reproduce the correct amplitude distributions including all relevant features and with a
reliable uncertainty estimate.

For one gluon in the final state, the most general phase space has 5× 4 = 20 dimensions, but we can simplify this phase
space by requiring momentum conservation, on-shell particles, and Lorentz invariants. To estimate the performance of
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amplitude networks we can use the fact that regression is a supervised task, which means we know the true amplitudes.
For the training or test data we can compute the relative accuracy

∆j =
〈A〉j −Aj

Aj
(1.96)

In the left panel of Fig. 6 we show the performance of different deterministic and BNN amplitude networks. The naive
approach of learning amplitudes as a function of input and output 4-vectors limit the accuracy to the per-cent level. In
Sec. 5 we will discuss in detail how we can improve the power of neural networks by choosing better-suited data
representations. For the amplitude we see that a standard network learning the amplitude as a function of Lorentz
invariants (Det-I) improves the accuracy. In Sec. 5.1 we will introduce a general Lorentz-equivariant data representation
(L-GATr), which improves the amplitude accuracy to the 10−4 level. The best-performing DSI network combines
invariants with a deep sets representation which we will introduce in Sec. 2.2.4. For this architecture the deterministic
heteroskedastik network and the BNN give relative accuracies around 10−5, with suppressed tails extending to the
per-cent level, which should be sufficient for many LHC applications.

Once we are convinced that a network can learn a transition amplitude precisely, the question is if the learned
uncertainties, specifically the dominant systematic uncertainties are calibrated correctly. For this purpose we look at the
pull distribution

tsyst,j =
〈A〉j −Aj
σsyst,j

. (1.97)

If the learned σ captured the absolute value of the deviation of the learned amplitude from the truth exactly and for any
phase space point, the pull would be

〈A〉j = Aj ± σj ⇔ tj = ±1 . (1.98)

Realistically, an uncertainty estimate will only capture the maximum deviation, so the per-amplitude deviation from the
truth will be smaller. For a stochastic source of uncertainties, the learned values 〈A〉j will follow a Gaussian distribution
around the truth, where the width of this Gaussian should be given by the learned uncertainty. This means the pull will
follow a unit Gaussian,

tj ∼ N (0, 1) . (1.99)

In the right panel of Fig. 6 we show the systematic pull distributions for the different amplitude networks and confirm that
they follow a standard Gaussian for all accuracies. This means that the heteroskedastic loss and the BNN learn calibrated
systematic uncertainties.

While the average relative accuracy of learned amplitudes, for LHC applications we also have to ensure that there are no
tails of poorly learned amplitudes over phase space. This means we need to understand the failure modes of the amplitude
learning, and it turns out that a problem often occurs for the phase space points with the largest amplitudes. The reason is
that there exist small phase space regions where the transition amplitude increase rapidly, by several orders of magnitude.
The network fails to learn this behavior in spite of a log-scaling following Eq.(1.26), because the training data in these
regions is sparse. For an LHC simulation this kind of bias is a serious limitation, because exactly these phase space
regions need to be controlled for a reliable rate prediction. This means we need to improved amplitude network training,
by identifying and controlling outliers in the ∆-distribution of Eq.(1.96).

The likelihood loss in Eq.(1.92) with its σsyst(θ) has a great advantage, because we can test the required Gaussian shape of
the corresponding θ-dependent pull variable,

Aj(θ)−Atruth
j

σsyst,j(θ)
, (1.100)

as part of the training. If the source of the systematic uncertainty is stochastic, the pull itself should form a standard, unit
Gaussian. For other systematic limitations, the Gaussian likelihood might not be appropriate and the pull can have other
shapes.

For the initial BNN run it turns out that the pull distribution indeed looks like a Gaussian around the peak, but with too
large and not exponentially suppressed tails. We can improve this behavior using an inspiration from the boosting of a
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Figure 7: Performance of the process-boosted BNN, in terms of the precision of the generated amplitudes, defined in
Eq.(1.96) and evaluated on the training (upper) and test datasets. Figures from Ref. [11].

decision tree. We enhance the impact of critical phase space points through an increased event weight, leading us to a
boosted version of the BNN loss,

LBBNN =

∫
dθ qµ,σ(θ)

∑
points j

nj ×
[∣∣Aj(θ)−Atruth

j

∣∣2
2σsyst,j(θ)2

+ log σsyst,j(θ)

]

+
σ2
q − σ2

p + (µq − µp)2

2σ2
p

+ log
σp
σq

. (1.101)

This boosted or feedback training will improve the network performance both, in the accuracy of the amplitude prediction
and in the learned uncertainty on the network amplitudes. If we limit ourselves to self-consistency arguments, we can
select the amplitudes with nj > 1 through large pull values, as defined in Eq.(1.100). It turns out that this
loss-based boosting significantly improves the uncertainty estimate. Unfortunately, for our amplitude applications we find
that the effect on the large amplitudes is modest. They still lead to too many outliers in the network accuracy, and we also
tend to systematically underestimate those large amplitudes.

To further improve the performance of our network we can target the problematic phase space points directly, by
increasing nj based on the size of the amplitudes. This process-specific boosting goes beyond the self-consistency of the
network and directly improves a specific task beyond just learning the distribution of amplitudes over phase space. In
Fig. 6 we see that at least for the training data the ∆-distribution looks the same for small and large amplitudes.

Going back to Eq.(1.2.2), we can interpret the boosted loss for large values of nj as a step towards interpolating the
corresponding amplitudes. While for small amplitudes the network still corresponds to a fit, we are forcing the network to
reproduce the amplitudes at some phase space points very precisely. Obviously, this boosting will lead to issues of
overtraining. We can see it in the right panel of Fig. 6, where the improvement through process boosting for the test
dataset does not match the improvement for the training dataset. However, as long as the performance of the test dataset
improves, even if it is less than for the training dataset, we improve the network in spite of the overtraining. The issue
with this overtraining is that it becomes harder to control the uncertainties, which might require some kind of alternating
application of loss-based and process boosting.

This example illustrates three aspects of advanced regression networks. First, we have seen that a Bayesian network
allows us to construct a likelihood loss even if the training data does not include an uncertainty estimate. From the pull
distribution we know that the learned uncertainties are calibrated. Second, we can improve the consistency of the network
training by boosting events selected from the pull distribution. Third, we can further improve the network through
process-specific boosting, where we force the network from a fit to an interpolation mode based on a specific selection of
the input data. For the latter the benefits do not fully generalize from the training to the test dataset, but the network
performance does improve on the test dataset, which is all we really require.
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1.3.2 Parton density regression

A peculiar and challenging feature of hadron collider physics is that we can compute scattering rates for quarks and
gluons, but not relate them to protons based on first principles. Lattice simulations might eventually change this, but for
now we instead postulate that all LHC observables are of the form

σ(s) =
∑

partons k,l

∫ 1

0

dx1

∫ 1

0

dx2 fk(x1)fl(x2) σ̂kl(x1x2s) , (1.102)

where s is the squared energy of the hadronic scattering, and the two partons carry the longitudinal momentum fractions
x1,2 of the incoming proton. The partonic cross section σ̂ij is what we calculate in perturbative QCD. In our brief
discussion we omit the additional dependence on the unphysical renormalization scale and instead treat the parton
densities fi(x) as mathematical distributions which we need to compute hadronic cross sections. There are a few
constraints we have, for example the condition that the momenta of all partons in the proton have to add to the proton
momentum, ∫ 1

0

dx x

fg(x) +
∑

quarks

fq(x)

 = 1 . (1.103)

We can also relate the fact that the proton consists of three valence quarks, (uud), to the relativistic parton densities
through the sum rules ∫ 1

0

dx [fu(x)− fū(x)] = 2 and
∫ 1

0

dx [fd(x)− fd̄(x)] = 1 . (1.104)

Beyond this, the key assumption in extracting and using these parton densities is that they are universal, which means that
in the absence of a first-principle prediction we can extract them from a sufficiently large set of measurements, covering
different colliders, final states, and energy ranges.

To extract an expression for the parton densities, for instance the gluon density, the traditional approach would be a fit to a
functional form. Parton densities have been described by an increasingly complex set of functions, for example for the
gluon in the so-called CTEQ parametrization, defined at a given reference scale,

xfg(x) = xa1 (1− x)a2

→ a0 x
a1(1− x)a2 (1 + a3x

a4)

→ xa1(1− x)a2
[
a3(1−√x)3 + a4

√
x(1−√x)2 + (5 + 2a1)x(1−√x) + x3/2

]
. (1.105)

We know such fits from Sec. 1.2.2, including the loss function we use to extract the model parameters aj from data,
including an uncertainty. The problem with fits is that any ansatz serves as an implicit bias, and such an implicit bias
limits the expressivity of the network and leads to an underestimate of the uncertainties. For instance, when we describe a
gluon density with the first form of Eq.(1.105) and extract the parameters a1,2 with their respective uncertainty bands,
these uncertainty bands define a set of functions fg(x). However, it turns out that if we instead describe the gluon density
with the more complex bottom formula in Eq.(1.105), this function will not be covered by the range of allowed versions
of the first ansatz. Even for the common parameters a1,2 the uncertainty bands for the more complex form are likely to
increase, because the better parametrization is more expressive and describes the data with higher resolution and more
potential features.

Because uncertainty estimates are key to all LHC measurements, parton densities are an example where some implicit
bias might be useful, but too much of it is dangerous. In 2002, neural network parton densities (NNPDF) were introduced
as a non-parametric fit, to allow for a maximum flexibility and conservative uncertainty estimates. It replaces the explicit
parametrization of Eq.(1.105) with

xfg(x) = a0 x
a1(1− x)a2 fθ(x) , (1.106)

and similarly for the other partons. NNPDF was and is the first and leading AI-application to LHC physics [12].

While parton densities are, technically, just another regression problem, two aspects set it apart from the amplitudes
discussed in Sec. 1.3.1. First, the sum in Eq.(1.102) indicates that densities for different partons are strongly correlated,
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Figure 8: Structure of the NNPDF architecture. Figure slightly modified from Ref. [13].

which means that any set of parton densities comes with a full correlation or covariance matrix. Going back to the
definition of the χ2 or Gaussian likelihood loss function in Eq.(1.24) we modify it to include correlations between data
points,

LNNPDF =
1

2

∑
i,j

(O −Oθ)i Σ−1
ij (O −Oθ)j . (1.107)

The form of the covariance matrix Σ is given as part of the dataset. Because the inverse of a diagonal matrix is again
diagonal, we see how the diagonal form Σ = diag(σ2

j ) reproduces the sum of independent logarithmic Gaussians given in
Eq.(1.24). With the correlated loss function we should be able to train networks describing the set of parton densities. The
minimization algorithm used for the earlier NNPDF version is genetic annealing. It has the advantage that it does can
cover different local minima in the loss landscape and is less prone to implicit bias from the choice of local minima. For
the new NNPDF4 approach it has been changed to standard gradient descent.

It is common to supplement a loss function like the NNPDF loss in Eq.(1.107) with additional conditions. First, it can be
shown that using dimensional regularization and the corresponding MS factorization scheme the parton densities are
positive, a condition that can be added to Eq.(1.107) by penalizing negative values of the parton densities,

LNNPDF → LNNPDF +
∑

parton k

∑
data i

λk ELu (−fk(xi)) with ELu(x) =

{
ε(e−|x| − 1) ≈ −ε|x| x < 0

x x > 0 ,
(1.108)

with ε� 1. For fk(xi) < 0 this additional term increases the loss linearly. Just like a Lagrangian multiplier, finite values
of λi force the network training to minimize each term in the combined loss function. A balance between different loss
terms is not foreseen, we will discuss such adversarial loss functions in Sec. 4.2, for now we assume λi > 0. The ELu
function can also be used as an activation function, similar to ReLU defined in Eq.(1.32).

Another condition arises from the momentum sum rule in Eq.(1.103), which requires all densities, especially the gluon
density, to scale like x2f(x)→ 0 for soft partons, x→ 0. Similarly, the valence sum rules in Eq.(1.104) require
xf(x)→ 0 in the same limit. The condition on the valence sum rule is again included an additional loss term

LNNPDF → LNNPDF +
∑

parton k

∑
soft data i

λk [xfk(xi)]
2
. (1.109)

Constructing loss functions with different, independent terms is standard in machine learning. Whenever possible, we try
to avoid this approach, because the individual coefficients need to be tuned. This is why we prefer an L2 regularization as
given by the Bayesian network, Eq.(1.81), based on a likelihood loss. Parton densities and the super-resolution networks
discussed in Sec. 4.2.6 are examples where a combined loss function is necessary and successful.

The architecture of the NNPDF network is illustrated in Fig. 8. All parton densities are described by the same, single
network. The quark or gluon nature of the parton is given to the network as an additional condition, a structural element
we will systematically explore for generative networks in Sec.4.2.6 and then starting with Sec. 4.3.2. The parametrization
describing the parton densities follows Eq.(1.106), where the prefactors a0 are determined through sum rules like the
momentum sum rule and the valence sum rules. Usually, this parametrization would be considered preprocessing, with
the goal of making it easier for the network to learn all patterns. In the NNPDF training, the parameters a1,2 are varied
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Figure 9: Hyperparameter scan for a test of the NNPDF stability, based on data from photon–proton and electron–proton
scattering only. The y-axis shows the average of the test and validations losses. Figure from Ref. [14].

from instance to instance in the toy dataset, to ensure that there is no common implicit bias affecting all toy densities in a
correlated manner. Uniquely to the NNPDF structure, the input is given to the network through two channels x and log x.
The data is split into bins i for a given kinematic observable n, which has to be computed using the parton densities
encoded in the network, before we can compute the loss functions for the training and validation data. FK indicates the
tabulated kinematic data.

However, the network architecture is not what makes the NNPDF approach unique in modern machine learning. The
second aspects that makes network parton densities special is that they are distributions, similar to but not quite
probability distributions, which means they are only defined stochastically. Even for arbitrarily precise data σ and
predictions σ̂ij , the best-fit parton densities will fluctuate the same way that solutions of incomplete inverse problems will
fluctuate. The NNPDF approach distinguishes between three sources of uncertainty in this situation:

1. even ignoring uncertainties on the data, we cannot expect that the unique minimum in data space translates into a
unique minimum in the space of of parton densities. This means the extracted parton densities will fluctuate between
equally good descriptions the training data;

2. once we introduce an uncertainty on the data, we can fix the mean values in the data distribution to the truth and
introduce an uncertainty through the toy datasets. Now the the minimum in data space is smeared around the true
value above, adding to the uncertainty in PDF space;

3. finally, the data is not actually distributed around the truth, but it is stochastic. This again adds to the uncertainties and
it adds noise to the set of extracted parton densities.

In the categorization of uncertainties in Sec. 1.3.1 we can think of the first uncertainty as an extreme case of model
uncertainty, in the sense that the network is so expressive that the available training data does not provide a unique
solution. This problem might be alleviated when adding more precise training data, but it does not have to. This is a
standard problem in defining and solving inverse problems, as we will discuss in Sec. 6. The second uncertainty is
statistical in the sense that it would vanish in the limit of an infinitely large training dataset. The third uncertainty is the
stochastic uncertainty introduced before, again not vanishing for larger training datasets.

Another problem of how to account for all these uncertainties in the extracted parton densities is that they require a
forward simulation, followed by a comparison of generated kinematic distributions to data. The solution applied by
NNPDF is to replace the dataset and its uncertainties by a sample of data replicas, with a distribution which reproduces
the actual data, in the Gaussian limit the mean and the standard deviation for each data point. Each of these toy datasets is
then used to train a NNPDF parton density, and the analysis of the parton densities, for instance their correlations and
uncertainties, can be performed based on this set of non-parametric NNPDFs. The same method is applied to other global
analyses at the LHC, typically when uncertainties or measurements are correlated and likelihood distributions are not
Gaussian. A way to check the uncertainty treatment is to validate it starting from a known set of pseudo-data and apply
closure tests.
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As the final step of accounting for uncertainties, NNPDF systematically tests for unwanted systematic biases through the
choice of network architecture and hyperparameters. For a precision non-parametric fit, where the implicit bias or the
smooth interpolation properties of a network play the key role, it is crucial that the network parameters do induce an
uncontrolled bias. For instance, a generic x-resolution determined by the network hyper-parameters could allow the
network to ignore certain features and overtrain on others. In Fig. 9 we see the dependence of the network performance
on some network parameters tested in the NNPDF scan. Each panel shows the loss as a function of the respective network
parameter for 2000 toy densities, specifically the average of the test and validation losses. These figures are based on a fit
only to data from single-proton interactions with electrons or (virtual) photons. The violin shape is a visualization of the
density of points as a function of the loss. The different shapes show how the network details have a sizeable effect on the
network performance.

The final NNPDF network architecture and parameters are determined through an automatic hyperoptimization. Because
the training and validation datasets are already used in the network training shown in Fig. 8, the hyperoptimization
requires another dataset. At the same time, we do not want to exclude relevant data from the final determination of the
parton densities, and the result of the hyperoptimization will also depend on the dataset used. The best way out is to use
k-folding to generate these datasets. Here we divide the dataset into nfold partitions, and for each training we remove one
of the folds. The final loss for each hyperparameter value is then given by the combination of the losses of the nfold
individual trainings,

Lhyperopt =
1

nfold

∑
k

Lk , (1.110)

where the individual losses are given above. Using the sum of the individual losses turns out to be equivalent to using the
maximum of the individual losses.

An especially interesting question to ask is what progress we have made in understanding parton densities over the last
decade, both from a data perspective and based on the generalized fit methodology. The density to use for this study is the
gluon density, because its growth at small x-values is poorly controlled by theory arguments and assumed fit functions,
which means our description of fg(x� 1) is driven by data and an unbiased interpretation of the data. In Fig. 10 we
show this gluon density for three different datasets: (i) pre-HERA data consists or fixed-target or beam-on-target
measurements of two kinds, photon–proton or electron–proton, and proton-proton interactions; (ii) Pre-LHC data adds
HERA measurements of electron–proton scattering at small x-values and Tevatron measurements of weak boson
production in proton–antiproton scattering; (iii) NNPDF data then adds a large range of LHC measurements. The
difference between the NNPDF3.1 and NNPDF4.0 datasets is largely the precision on similar kinematic distributions.

In the two panels of Fig. 10 we first see that the NNPDF3.1 and NNPDF4.0 descriptions of pre-HERA data give an
unstable gluon density for x < 10−2, where this dataset is simply lacking information. The gluon density in this regime is
largely an extrapolation, and we already know that neural networks are interpolation tools and not particularly good at
magic or extrapolation. From an LHC physics perspective, very small x-values are not very relevant, because we can
estimate the minimum typical x-range for interesting central processes as

x1x2 ∼
m2
W,Z,H

(14 TeV)2
∼ 1

1402
⇔ x1 ∼ x2 ∼ 7 · 10−3 . (1.111)

Adding HERA data constrains this phase space region down to x ∼ 10−3 and pushes the central value of the gluon
density to a reasonable description. Finally, adding LHC data only has mild effects on the low-x regime, but makes a big
difference around x > 0.05, where we measure the top Yukawa coupling in tt̄H production or test higher-dimensional
operators in boosted tt̄ production. Comparing the left and right panels of Fig. 10 shows that the new NNPDF
methodology leads to extremely small uncertainties for the gluon density for the entire range x = 10−2 ... 1, where a
large number of LHC processes with their complex correlations make the biggest difference. The quoted uncertainties
account for the historic increase of the dataset faithfully, except for the pre-HERA guess work.

As an afterthought, let us briefly think about the difference between interpolation and extrapolation. If we want to encode
fθ(x) ≈ f(x) as a neutral network over x ∈ RD, as defined in Eq.(1.28), we rely on the fact that our training data consists
of a sufficiently dense set of training data point in the space RD. Compared to a functional fit, the implicit bias or the
assumptions about the functional form of f(x) are minimal, which means that the network training works best if for a
given point x0 the network can rely on x-values in all directions. This is an assumption, but fairly obvious. Now we can
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Figure 10: Historic pre-HERA and pre-LHC gluon densities with the NNPDF3.1 (left) and the NNPDF4.0 methodologies,
compared with the full respective datasets of the two methodologies. Ref. [13].

ask the question how likely it is that we indeed cover the neighborhood of x0 in D dimensions, and the probability of
finding points in the this neighborhood scales like the volume of the D-dimensional sphere with radius r,

VD(r) =
πD/2

Γ
(
D
2 + 1

) rD with Γ(n) = (n− 1)! . (1.112)

It grows rapidly with D, which means that with increasing dimensionality we are less and less likely to cover the
neighborhood of a given x0. This is a version of the so-called curse of dimensionality. It is especially true because the
relevant dimensionality is that of the data representation, not of the underlying physics. The only problem with the
general statement that network training always turns from an interpolation to an extrapolation problem is that in our
language we do not consider a network an interpolation, but a fit-like approximation.

1.3.3 Numerical integration

The last application of a regression network is the numerical calculation of a D-dimensional phase space integral

I(s) =

∫ 1

0

dx1· · ·
∫ 1

0

dxD f(s;x) , (1.113)

where xi are the integration variables and s is a vector of additional parameters, not integrated over. Because the values of
the integrand can span a wide numerical range is useful to normalize the integrand, for example by its value at the center
of the x-hypercube,

f(x; s)→ f(s;x)

f(s; 1
2 ,

1
2 , , ...,

1
2 )

⇔ I(s)→ I(s)

f(s; 1
2 ,

1
2 , ...,

1
2 )

. (1.114)

Without going into details, it is also useful to transform the integrand into a form which vanishes at the integration
boundaries. Analytically, we would compute the primitive or indefinite integral F ,

dDF (s;x)

dx1 . . . dxD
= f(s;x) , (1.115)
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Figure 11: Number of digits accuracy for two integrals, using two different activation functions, one of them defined in
Eq.(1.123). Figure from Ref. [15].

and then the integral by evaluating the integration boundaries

I(s) =

∫ 1

0

dx1· · ·
∫ 1

0

dxD f(s;x)

=

∫ 1

0

dx1· · ·
∫ 1

0

dxD
dDF (s;x)

dx1 . . . dxD

=

∫ 1

0

dx1· · ·
∫ 1

0

dxD
d

dxD

dD−1F (s;x)

dx1 . . . dxD−1

=

∫ 1

0

dx1· · ·
∫ 1

0

dxD−1
dD−1F (s;x)

dx1 . . . dxD−1

∣∣∣∣∣
xD=1

xD=0

=
∑

x1,...,xD=0,1

(−1)D−
∑
xiF (s;x) . (1.116)

In particle physics we really never know the primitive of a phase space integrand, but we can try to construct it and
encode it in a neural network,

Fθ(s;x) ≈ F (s;x) . (1.117)

On the other hand, we do not have data to train a surrogate network for F directly. The idea is to instead train an
integrand surrogate, such that its D-th derivative matches f ,

LMSE

(
f(s;x),

dFθ(s;x)

dx1...dxD

)
. (1.118)

If the training on the integrand fixes the network weights such that the integrand as well as F are determined by the same
network, and Fθ fulfills Eq.(1.117), we have directly learned the integral.

To construct a surrogate which can be differentiated multiple times with respect to some of its inputs, we need a
differentiable activation function, for example the sigmoid function,

Sigmoid(x) =
1

1 + e−x
⇒ Sigmoid′(x) = log(ex + 1) ⇒ Sigmoid(n) = −Lin(−ex) . (1.119)
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There exists a fast sum representation of the di-logarithm Li2 for numerical evaluation. The same set of derivative can be
computed for the tanh activation function.

Next, we need to compute the derivative of this fully connected neural network. Following the conventions of Eq.(1.29),
the input layer for the two input vectors is

x
(0)
i =

{
xi i ≤ D
si−D i > D

. (1.120)

For the hidden layers we just replace the ReLU activation function in Eq.(1.33) with the sigmoid,

x
(n)
i = Sigmoid

[
W

(n)
ij x

(n−1)
j + b

(n)
i

]
. (1.121)

The scalar output of the network with N layers can be differentiated, for instance, with respect to x1,

Fθ ≡ x(N) = W
(N)
j x

(N−1)
j + b(N−1)

⇒ dFθ
dx1

= W
(N)
j

dx
(N−1)
j

dx1

=
∑
j

W
(N)
j Sigmoid′

[
W

(N)
jk x

(N−1)
k + b

(N)
j

] [
W

(N−1)
j`

dx
(N−2)
`

dx1

]
, (1.122)

where we write the sum over j explicitly, while for the other indices we use the usual summing convention. Next, we
differentiate this expression with respect to x2, altogether D times, to compute the MSE loss in Eq.(1.118). The loss can
be minimized with respect to the network parameters θ using the usual backpropagation. Because the integrand is known
exactly, there is no need to regularize the network, but it would also not hurt. Also, the numerical generation of integrand
values is numerically cheap, which means Fθ an be trained using very large numbers of training data points.

In the original paper, the method is showcased for two integrals, one of them is

I1L(s12, s14,m
2
H ,m

2
t ) =

∫ 1

0

dx1

∫ 1
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dx2
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2
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3m
2
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2
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2
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2
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2
t + 2x1x3m

2
t − x1x3s12 + 2x1x2m

2
t − x1x2m

2
H + x2

1m
2
t . (1.123)

It is needed to compute the LHC rate for Higgs pair production.

The accuracy of the estimated integral can be measured in analogy to Eq.(1.96),

p = log10

∣∣∣∣INN − Itruth

Itruth

∣∣∣∣ , (1.124)

giving the effective number of digits the estimates gets right. The results for this accuracy are shown in Fig. 11. It is based
on training an ensemble of eight replicas of the same network, use their average as the central prediction of the integral,
and the standard deviation as an uncertainty estimate. The entries in the histogram have different initialisations and are
trained on different training data. The results for the two different activation functions are similar. The two-loop integral,
which we skip in this summary, has a lower accuracy than the one-loop integral, which is to be expected given the larger
number of integrations.
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2 Classification

After the short introduction to the simpler regression networks, we come back to classification as the standard problem in
LHC physics. Whenever we look at a jet or an event, the first question will be what kind of particles gave us that final
state configuration. This is not trivial, given that jets are complex objects which can come from a light quark or a gluon,
but also from quarks that decay through the electroweak interaction at the hadron level, like charm or bottom quarks.
They can also come from a tau lepton, decaying to quarks and a neutrino, or from boosted gauge bosons or Higgs bosons
or top quarks. Even when we are looking for apparently simple electrons, we need to be sure that they are not one of the
many charged pions which can look like electrons especially in the forward detector. Similarly, photons are not trivial to
separate from neutral pions when looking at the electromagnetic calorimeter. Really, the only particle which we can
identify fairly reliably at the LHC are muons.

At the event level we ask the same question again, usually in the simple form signal vs background. As an example, we
want to extract tt̄H events with an assumed decay H → bb̄, as mentioned in Eq.(1.3), from a sample which is dominated
by the tt̄bb̄ continuum background and tt̄jj events where we mis-tagged a light-flavor quark or gluon jet as a b-quark.
Once we have identified tt̄H events we can use them to measure for example the value of the top Yukawa coupling or see
if this coupling respects the CP-symmetry or comes with a complex phase. All of this is classification, and from our
experience with BDTs for jet and event classification, it is clear that modern neural networks can improve their
performance. Of course, the really interesting part is where we turn our expertize in these standard classification task into
new ideas, methods, or tools. So the first ML-chapter of these lecture notes will be on classification with modern neural
networks.

We have already introduced many of the underlying concepts and technical terms for classification tasks for BDTs in
Sec. 1.2.1. Let us look at the optimization behind a classification in a slightly different way. We start with one event
sample {x}, distributed according to the true or data distribution pdata(x). This can be the signal or background sample.
We then construct a model approximating the true distribution in terms of the network parameters θ, called

pmodel(x) ≡ pmodel(x|θ) , (2.1)

where we omit the conditional argument θ. As a function of θ, the probability distribution pmodel(x) defines a likelihood,
and it should agree with pdata(x). To define the training goal we use the variational approximation from in Sec. 1.2.6 and
compare the two probability distributions using the KL-divergence defined in Eq.(1.68),

DKL[pdata, pmodel] =

〈
log

pdata

pmodel

〉
pdata

≡
∫
dx pdata(x) log

pdata(x)

pmodel(x)
. (2.2)

Following Eq.(1.69) we can either evaluate DKL[pdata, pmodel] or DKL[pmodel, pdata]. The first samples from the data
distribution and is called forward KL-divergence; the second samples from the model and is called reverse
KL-divergence. Since we are working on a well-defined training dataset we use the first definition to find the best values
of θ and make sure our trained network approximates the training data well,

DKL[pdata, pmodel] =

〈
log

pdata(x)

pmodel(x)

〉
pdata

=
〈

log pdata(x)
〉
pdata
−
〈

log pmodel(x)
〉
pdata

= −
〈

log pmodel(x)
〉
pdata

+ const(θ) . (2.3)

We combine the KL-divergences of the signal and a background distributions to a likelihood-ratio loss

Lclass =
∑
j=S,B

DKL[pdata,j , pmodel,j ]

=
〈

log pdata,S − log pmodel,S

〉
pdata,S

+
〈

log pdata,B − log pmodel,B

〉
pdata,B

= −
〈

log pmodel,S

〉
pdata,S

−
〈

log pmodel,B

〉
pdata,B

+ const(θ)

⇒ Lclass = −
∑
{x}

[
pdata,S log pmodel,S + pdata,B log pmodel,B

]
. (2.4)
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We consistently omit the arguments x and θ which we included in Sec. 1.2.1. Comparing this loss to the definition of the
information entropy in Eq.(1.11) motivates the alternative name cross entropy for this loss. It becomes even simpler when
we take into account that every jet or event has to either signal or background, pS + pB = 1. Looking back at Eq.(1.69)
this simple form of the classification loss tells us that we made the right choice of KL-divergence.

To mimic the training procedure, we can do variation calculus to describe the minimization of the loss with respect to θ,

θtrained = argminθLclass = argminθ
∑
j=S,B

DKL[pdata,j(x), pmodel,j(x|θ)] . (2.5)

We then replace pB = 1− pS and do a variation with respect to the θ-dependent model distribution

0
!
= − δ

δpmodel,S

∑
{x}

[
pdata,S log pmodel,S + (1− pdata,S) log(1− pmodel,S)

]

= −
∑
{x}

[
pdata,S

pmodel,S
− 1− pdata,S

1− pmodel,S

]
⇔ pdata,S = pmodel,S (2.6)

If we work under the assumption that a loss function should be some kind of log-probability or log-likelihood, we can ask
if our minimized loss function corresponds to some kind of statistical distribution. Again using pB = 1− pS as the only
input in addition to the definition of Eq.(2.4) we find

Lclass = −
∑
{x}

[
pdata,S log pmodel,S + (1− pdata,S) log(1− pmodel,S)

]
= −

∑
{x}

log
[
p
pdata,S
model,S (1− pmodel,S)1−pdata,S

]
. (2.7)

We can compare the term in the brackets with the Bernoulli distribution in Eq.(1.82), which gives the probability
distributions for two discrete outcomes. We find that an interpretation in terms of the Bernoulli distribution requires for
the outcomes and the expectation value

pdata,S = x ∈ {0, 1} and pmodel,S = ρ (2.8)

This means that our learned probability distribution has a Bernoulli form and works on signal or background jets and
events, encoding the signal vs background expectation value encoded in the trained network.

If we follow this line of argument, our classification network should encode and return a signal probability for a given jet
or event, which means the final network layer has to ensure that the network output is fθ(x) ∈ [0, 1]. For usual networks
this is not the case, but we can easily enforce this by replacing the ReLU activation function in the network output layer
with a sigmoid function,

Sigmoid(x) =
1

1 + e−x
⇔ Sigmoid−1(x) ≡ Logit(x) = log

x

1− x . (2.9)

The activation function(s) inside the network only work as a source of non-linearity and can be considered just another
hyper-parameter of the network. The sigmoid guarantees that the output of the classification network is automatically
constrained to a closed interval, so it can be interpreted as a probability without the network having to learn this property.
With the loss function of Eq.(2.4) and the sigmoid activation of Eq.(2.9) we are ready to tackle classification tasks.

This derivaton of the classification loss based on learning likelihoods will eventually lead us to an interpretation of
classifiers which is very specific to particle physics. In Sec. 4.2.1 we will introduce the Neyman-Pearson lemma which
says that the optimal classifier is the likelihood ratio of the two hypotheses. Based on this mathematical insight we do not
consider classifiers ways to separate two modes in an appropriate representation, but as a learned ratio of two likelihoods
over phase space.

The final set of naming conventions we need to introduce is the structure of the training data, for example for
classification. If we train a network to distinguish, for instance, light-flavor QCD jets from boosted top quarks, the best
training data should be jets for which we know the truth labels. In LHC physics we can produce such datasets using
precision simulations, including full detector simulations. We call network training on fully labeled data (fully)
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supervised learning. The problem with supervised learning at the LHC is that it has to involve Monte Carlo simulations.
We will discuss below how we can define dominantly top jet samples. However, no sample is ever 100% pure. This
means that training on LHC data will at best start from a relatively pure signal and background samples, for which we
also know the composition from simulations and a corresponding analysis. Training a classifier on samples with known
signal and background fractions is called weakly supervised learning, and whenever we talk about supervised learning on
LHC data we probably mean weakly supervised learning with almost pure samples. An interesting question is how we
would optimize a network training between purity and statistics of the training data. Of course, we can find compromises,
for instance training a network on a combination of labeled and unlabeled data. This trick is called
semi-supervised learning and can increase the training statistics, but there seems to be no good example where this helps
at the LHC. One of the reasons might be that training statistics is usually not a problem in LHC applications. Finally, we
can train a network without any knowledge about the labels, as we will see towards the end of this section. Here the
questions we can ask are different from the usual classification, and we refer to this as unsupervised learning. This
category is exciting, because it goes beyond the usual LHC analyses. Playing with unsupervised learning is the ultimate
test of how well we understand a dataset, and we will discuss some promising methods in Sec. 3.

2.1 Convolutional networks

Modern machine learning, or deep learning, has become a standard numerical method in essentially all aspects of life and
research. Two applications dominate the applications of modern networks, image recognition and natural language
recognition. It turns out that particle physics benefits mostly from image recognition research. The most active field
applying such image-based methods is subjet physics. It has, for a while, been a driving field for creative physics and
analysis ideas at the LHC. An established subjet physics task like identifying the parton leading to an observed jet, is ideal
to develop ML-methods to beat standard methods. The classic, multivariate approach has two weaknesses. First, it only
uses information preprocessed into theory-inspired and high-level observables. This can be cured in part by using the
more low-level observables shown in Eq.(1.6). However, when we just pile up observables we need to ask how well a
BDT can capture the correlations. Altogether we need to ask the question is we cannot systematically exploit
low-level information about a jet to identify its partonic nature.

2.1.1 Jet images and top tagging

A standard benchmark for jet classification is to separate boosted, hadronically decaying top quarks from QCD jets. Tops
are the only quarks which decay through their electroweak interactions before can form hadrons,

t→ bW+ → b`+ν` or t→ bW+ → bud̄ . (2.10)

Most top quarks are produced in pairs and at low transverse momentum. However, even in the Standard Model a fraction
of top quarks will be produced at large energies. For heavy resonances, like a new Z ′ gauge boson decaying to top quarks,
the tops will receive transverse momenta around

pT,t ∼ pT,t̄ ∼
mZ′

2
−mt . (2.11)

For a 2-prong jet we can compute the typical angular separation between the two decay jets as a function of the mass and
the transverse momentum, for example in case of a hadronic Higgs decay

Rbb̄ ≈
1√

z(1− z)
mH

pT,H
>

2mH

pT,H
. (2.12)

The parameter z describes how the energy is divided between the two decay subjets. Because R is a purely angular
separation, it can become large if one of the two decay products becomes soft. A single decay jet is most collimated if the
energy is split evenly between the two decay products, which is also the most likely outcome for most decays. For a
3-prong decay like the top quark we leave it at an order-of-magnitude estimate of a fat top jet,

Rbjj &
mt

pT,t
. (2.13)
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The inverse dependence can easily be seen when we simulate top decays. For a standard jet size of R ∼ 0.8 this relation
means we can tag top jets for pT,t & 300 GeV, corresponding to decaying resonances with mZ′ > 1 TeV. Given the
typical reach of the LHC in resonance searches, this value of mZ′ as introduced in Eq.(2.11) is actually small, which
means that many resonance searches with hadronic decays nowadays rely on boosted final states and fat jets from heavy
particle decays.

Before we go into the details of ML-based jet tagging we need to briefly introduce the standard method to define and
analyze jets. Acting on calorimeter output in the usual ∆η vs ∆φ plane, we usually employ QCD-based algorithms to
determine the partonic origin of a given configuration. Such jet algorithms link physical objects, for instance calorimeter
towers or particle flow objects, to more or less physical objects, namely partons from the hard process. In that sense, jet
algorithms invert the statistical forward processes of QCD splittings, hadronization, and hadron decays, shown in Fig. 2.
Recombination algorithms try to identify soft or collinear partners amongst the jet constituents, because we know from
QCD that parton splitting are dominantly soft or collinear. We postpone a more detailed discussion to Secs. 3.1 and 6.3.1
and instead just mention that in the collinear limit we can describe QCD splittings again in terms of the energy fraction z
of the outgoing hard parton. For example, a quark radiates a gluon following the splitting pattern

P̂q←q(z) ∝
1 + z2

1− z . (2.14)

To decide if two subjets come from one parton leaving the hard process we have to define a geometric measure capturing
the collinear and soft splitting patterns. Such a measure should include the distance Rij defined in Eq.(1.2) and the
transverse momentum of one subjet with respect to another or to the beam axis. The three standard measures are

kT yij =
Rij
R

min (pT,i, pT,j) yiB = pT,i

C/A yij =
Rij
R

yiB = 1

anti-kT yij =
Rij
R

min
(
p−1
T,i, p

−1
T,j

)
yiB = p−1

T,i . (2.15)

The parameter R only balances competing jet–jet and jet–beam distances. In an exclusive jet algorithm we define two
subjets as coming from one jet if yij < ycut, where ycut is an input resolution parameter. The jet algorithm then consists of
the steps

(1) for all combinations of two subjets find ymin = minij(yij , yiB)

(2a) if ymin = yij < ycut merge subjets i and j and their momenta, keep only the new subjet i, go back to (1)
(2b) if ymin = yiB < ycut remove subjet i, call it beam radiation, go back to (1)
(2c) if ymin > ycut keep all subjets, call them jets, done

Alternatively, we can give the algorithm the minimum number of physical jets and stop there. As determined by their
power dependence on the transverse momenta in Eq.(2.15), three standard algorithms start with soft constituents (kT ),
purely geometric (Cambridge–Aachen), or hard constituents (anti-kT ) to form a jet. While for the kT and the C/A
algorithms the clustering history has a physical interpretation and can be associated with some kind of time, it is not clear
what the clustering for the anti-kT algorithm means.

Once we understand the clustering history of a jet, we can try to determine its partonic content. At this point we are most
interested in finding out if we are looking at the decay jet of a massive particle or at a regular QCD jets. For this purpose
we start with the observables given in Eq.(1.6). For massive decays we can supplement this set by dedicated tagging
observables. For instance, we construct a proper measure for the number of prongs in a jet in terms of the N -subjettiness
variables

τN =
1

R
∑
k pT,k

∑
k

pT,k min (R1,k, R2,k, · · · , RN,k)
β
. (2.16)

It starts with N so-called kT -axes, and a reference distance R combined with a typical power β = 1, and matches the jet
constituents to a given number of axes. A small value τN indicates consistency with N or less substructure axes, so an
N -prong decay returns a small ratio τN/τN−1, like τ2/τ1 for W -boson or Higgs tagging, or τ3/τ2 for top tagging. To
identify boosted heavy particles decaying hadronically we we can also use a mass drop in the jet clustering history,

max(m1,m2) < 0.8 m1+2 . (2.17)
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Figure 12: Averaged and preprocessed jet images for a QCD jet (left) and a boosted top decay (right) in the rapidity vs
azimuthal plane plane. The preprocessing steps are introduced in the next section. Figures from Ref. [17].

If we approximate the full kinematics in the transverse plane, we can replace the mass drop with a drop in transverse
momentum, such that we search for electroweak decays by requiring min(pT1, pT2) > pT1+2. We can improve the
tagging by correlating the two conditions, on the one hand an enhanced pT -drop and on the other hand two decay subjets
boosted together. This defines the SoftDrop criterion,

min(pT1, pT2)

pT1 + pT2
> 0.2

(
R12

R

)β
, (2.18)

for instance with β = 1. It allows us to identify decays through the correlation given in Eq.(2.12). All of these
theory-inspired observables, and more, can be applied to jets and define multivariate subjet analysis tools. Here we
typically use the boosted decision trees introduced in Sec. 1.2.1. The question is how modern neutral networks, like
CNNs, working on jet representations like the jet images of Fig. 12, will perform on such an established jet tagging task.

There are a few reasons why top tagging has become the Hello World of classic or ML-based subjet physics. First, as
discussed above, the distinguishing features or top jets are theoretically well defined. Top decays are described by
perturbative QCD, and the corresponding mass drop and 3-prong structure can be defined in a theoretically consistent
manner without issues with a soft and collinear QCD description. Second, top tagging is a comparably easy task, given
that we can search two mass drops, three prongs, and an additional b-tag within the top jet. Third, in Sec. 2 we mentioned
that it is possible to define fairly pure top-jet samples using the boosted production process

pp→ tt̄→ (bud̄) (b̄`−ν̄) with pT,t ∼ pT,t̄ & 500 GeV . (2.19)

We trigger on the hard and isolated lepton, reconstruct the leptonically decaying top using the W -mass constraint to
replace the unknown longitudinal momentum of the neutrino, and then work with the hadronic recoil jet to, for instance,
train or calibrate a classification network on essentially pure samples.

The idea of an image-based top tagger is simple — if we look at the ATLAS or CMS calorimeters from the interaction
point, they look like the shell of a barrel, which can be unwrapped into a 2-dimensional plane with the coordinates
rapidity η ≈ −4.5 ... 4.5 and azimuthal angle φ = 0 ... 2π, with the distance measure R defined in Eq.(1.2). If we encode
the transverse energy deposition in the calorimeter cells as color or grey-scale images, we can use standard
image-recognition techniques to study jets or events. The network architecture behind the success of ML-image analyses
are convolutional networks, and their application to LHC jet images started with Ref. [16]. We show a set of average jet
images for QCD jets and boosted top decays in Fig. 12. The image resolution of, in this case 40× 40 pixels is given by
the calorimeter resolution of 0.04× 2.25◦ in rapidity vs azimuthal angle. A single jet image looks nothing like these
average images. For a single jet image, only 20 to 50 of the 1600 pixels have sizeable pT -entries, making even jet images
sparse at the 1% or 2% level, not even talking about full event images. Nevertheless, we will see that standard network
architectures outperform all established methods used in subjet physics.
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2.1.2 Architecture

The basic idea of convolutional networks is to provide correlations between neighboring pixels, rather than asking the
network to learn that pixels 1 and 41 of a jet image lie next to each other. In addition, learning every image pixel
independently would require a vast number of network parameters, which typically do not correspond to the actual
content of an image. Alternatively, we can try to learn structures and patterns in an image under the assumption that a
relatively small number of such patterns encode the information in the image. In the simplest case we assume that image
features are translation-invariant and define a learnable matrix-like filter which applies a convolution and replaces every
image pixel with a modified pixel which encodes information about the 2-dimensional neighborhood. This filter is trained
on the entire image, which means that it will extract the nature and typical distance of 2-dimensional features. To allow
for some self-similarity we can then reduce the resolution of the image pixels and run filters with a different length scale.
A sizeable number of network parameters is then generated through so-called feature maps, where we run several filters
over the same image. Of course, this works best if the image is not sparse and translation-invariant. For example, an
image with diagonal features will lead to a filter which reflects the diagonal structure.

In Fig. 13 we illustrate a simple architecture of a convolutional network (CNN) applied to classify calorimeter images of
LHC jets. The network input is the 2-dimensional jet image, (n× n)-dimensional matrix-valued inputs x just like in
Eq.(1.29), and illustrated in Fig. 12. It then uses a set of standard operations:

– Zero padding (n× n)→ (n+ 1× n+ 1): It artificially increases the image size by adding zeros to be able to use a
filter for the pixels on the boundaries

xij →


0 · · · 0
... xij

...
0 · · · 0

 . (2.20)

– Convolution (n× n)→ (n× n): To account for locality of the images in more than one dimension and to limit the
number of network parameters, we convolute an input image with a learnable filter of size nc-size · nc-size. These filters
play the role of the nodes in Eq.(1.31),

x′ij =
∑
r,s

Wrs xi+r,j+s + b→ ReLU(x′ij) . (2.21)

As for any network we also apply a non-linear element, for example the ReLU activation function defined in Eq.(1.32).
– Feature maps nf-maps × (n× n)→ nf-maps × (n× n): Because a single learned filter for each convolutional layer

defines a small number of network parameters and may also be unreliable in capturing the features correctly, we
introduce a set of filters which turn an image into nf-maps feature maps. The convolutional layer now returns a feature
map x′(k) which mixes information from all input maps

x
′(k)
ij =

nf-maps−1∑
l=0

∑
r,s

W (kl)
rs x

(l)
i+r,j+s + b(k) for k = 0, ..., nf-maps − 1 . (2.22)

Zero padding and convolutions of a number of feature maps define a convolutional layer. We stack nc-layer of them.
Each nc-block block keeps the size of the feature maps, unless we use the convolutional layer to slowly reduce their size.

– Pooling (n× n)→ (n/p× n/p): We can reduce the size of the feature map through a downsampling algorithm. For
pooling we divide the input into patches of fixed size p× p and assign a single value to each patch, for example a
maximum or an average value of the pixels. A set of pooling steps reduces the dimension of the 2-dimensional image
representation towards a compact network output. An alternative to pooling are stride convolutions, where the center of
the moving convolutional filter skips pixels. In Sec. 4.2.6 we will also study the inverse, upsampling direction.

– Flattening (n× n)→ (n2 × 1): Because the classification task requires, two distinct outputs, we have to assume that
the 2-dimensional correlations are learned and transform the pixel matrix into a 1-dimensional vector,

x = (x11, . . . , x1n, . . . , xn1, . . . , xnn) . (2.23)

This vector can then be transformed into the usual output of the classification network.
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Figure 13: Simple CNN architecture for the analysis of jet images. Figure from Ref. [17], for a more competitive version
see Ref. [18].

– Fully connected layers n2 → nd-node: On the pixel vectors we can use a standard fully connected network as introduced
in Eq.(1.29) with weights, biases, and ReLU activation,

x′i = ReLU

n2−1∑
j=0

Wijxj + bi

 . (2.24)

The deep network part of our classifier comes as a number of fully connected layers with a decreasing number of nodes
per layer. Finally, we use the classification-specific sigmoid activation of Eq.(2.9) in the last layer, providing a
2-dimensional output returning the signal and background probability for a given jet image.

In this CNN structure it is important to remember that the filters are learned globally, so they do not depend on the
position of the central pixel. This means the size of the CNN does not scale with the number of pixels in the input image.
Second, a CNN with downsampling automatically encodes different resolutions or fields of vision of the filters, so we do
not have to tune the filter size to the features we want to extract. One way to increase the expressivity of the network is a
larger number of feature maps, where each feature map has access to all feature maps in the previous layer. The number
of network parameters then scales like

#CNN-parameters ∼ n2
c-size × nf-maps × nc-layer � n2 . (2.25)

Of course, CNNs can be defined in any number of dimensions, including a 1-dimensional time series where the features
are symmetric under time shifts. For a larger number of dimensions the scaling of Eq.(2.25) becomes more and more
favorable.

As always, we can speed up the network training through preprocessing steps. They are based on symmetry properties of
the jet images, as we will discuss them in more detail in Sec. 2.2.3. For jet images the preprocessing has already happened
in Fig. 12. First, we define a central reference point, for instance the dominant energy deposition or some kind of main
axis or center of gravity. Second, we can shift the image such that the main axis is in its center. Third, we use the
rotational symmetry of a single jet by rotating the image such that the second prong is at 12 o’clock. Finally, we flip the
image to ensure the third maximum is in the right half-plane. This is the preprocessing applied to the averaged jet images
shown in Fig. 12. In addition, we can apply the usual preprocessing steps for the pixel entries from Eq.(1.26), plus a unit
normalization of the sum of all pixels in an image.

To these jet images we can apply a standard CNN, as illustrated in Fig. 13. Before we show the performance of a
CNN-based top tagger we can gain some intuition for what is happening inside the trained CNN by looking at the output
of the different layers in the case of fully preprocessed images. In Fig. 14 we show the difference of the averaged output
for 100 signal-like and 100 background-like images. Each row illustrates the output of a convolutional layer. Signal-like
red areas are typical for top decays, while blue areas are typical for QCD jets. The feature maps in the first layer
consistently capture a well-separated second subjet, and some filters of the later layers also capture a third signal subjet in
the right half-plane. While there is no one-to-one correspondence between the location in feature maps of later layers and
the pixels in the input image, these feature maps still show that it is possible to see what a CNN learns. One can try a
similar analysis for the fully connected network layers, but it turns out that we learn nothing.

To measure the impact of the pixels of the preprocessed jet image impact on the extracted signal vs background label, we
can correlate the deviation of a pixel xij from its mean value x̄ij with the deviation of the signal probability y from its
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Figure 14: Averaged signal minus background for a simple CNN top tagger. The rows correspond to CNN layers, max-
pooling reduces the number of pixels by roughly a factor four. The columns show different feature maps Red areas indicate
signal-like regions, blue areas indicate background-like regions. Figure from Ref. [17].

mean value ȳ. The correlation for a given set of combined signal and background images is given by the
Pearson correlation coefficient

rij =

∑
images (xij − x̄ij) (y − ȳ)√∑

images (xij − x̄ij)2
√∑

images (y − ȳ)
2
. (2.26)

Positive values of rij indicate signal-like pixels. In Fig. 15 we show this correlation coefficient for a simple CNN. A large
energy deposition in the center leads to classification as background. A secondary energy deposition at 12 o’clock
combined with additional energy in the right half-plane means top signal, consistent with Fig. 12.

Both, for the CNN and for a traditional BDT tagger we can study signal-like learned patterns in actual signal events by
cutting on the output label y. Similarly, we can use background-like events to test if the background patterns are learned
as expected. In addition, we can compare the kinematic distributions in both cases to the Monte Carlo truth. In Fig. 16 we
show the distributions for the fat jet mass mfat and τ3/τ2 defined in Eq.(2.16). The CNN and the classic BDT learn
essentially the same structures. Their results are even more signal-like than the Monte Carlo truth, because of the stiff cut
on y. For the CNN and BDT tagger cases this cut removes events where the signal kinematic features is less pronounced.
The BDT curves for the signal are more peaked than the CNN curves because these two high-level observables are BDT
inputs, while for the neural network they are derived quantities.

Going back to the CNN motivation, it turns our that preprocessed jet images are not translation-invariant, and they are
extremely sparse. This means they are completely different from the kind of images CNNs were developed to analyze.
While the CNNs work very well for image-based jet classification this raises the question if there are other, better-suited
network architectures for jet taggers.

2.1.3 Top tagging benchmark

As common in machine learning, standard datasets are extremely helpful to benchmark the state of the art and develop
new ideas. For top tagging, the standard dataset consists of 1M top signal and 1M mixed quark-gluon background jets,
produced with the Pythia8 event generator and the simplified detector simulation Delphes. The are divided into 60%
training, 20% validation, and 20% test data. The fat jet is defined through the anti-kT algorithm with size R = 0.8, which
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Figure 15: Pearson correlation coefficient for 10,000 signal and background images each. The corresponding jet image is
illustrated in figure 12. Red areas indicate signal-like regions, blue areas indicate background-like regions. Figure from
Ref. [17].

means its boundaries in the jet plane are smooth. The dataset only uses the leading jet in each tt̄ or di-jet event and
requires

pT,j = 550 .... 650 GeV and |ηj | < 2 . (2.27)

From Eq.(2.13) we know that we can require a parton-level top and all its decay partons to be within ∆R = 0.8 of the jet
axis for the signal jets. The jet constituents are extracted through the Delphes energy-flow algorithm, which combines
calorimeter objects with tracking output. The dataset includes the 4-momenta of the leading 200 constituents, which can
then be represented as images for the CNN application. Particle information is not included, so b-tagging cannot be added
as part of the top tagging, and any quoted performance should not be considered realistic. The dataset is easily accessible
as part of a broader physics-related reference datasets [20].

Two competitive versions of the image-base taggers were benchmarked on this dataset, an updated CNN tagger and the
standard ResNeXt network. While the toy CNN shown in Fig. 13 is built out of four successive convolutional layers, with
eight feature maps each, and its competitive counterpart comes with four convolutions layers and 64 feature maps,
professional CNNs include 50 or 100 convolutional layers. For networks with this depth a stable training becomes
increasingly hard with the standard convolutions defined in Eq.(2.22). This issue can be targeted with a residual network,
which is built out of convolutional layers combined with skip connections. In the conventions of Eq.(1.30) these skip
connections come with the additional term

x(n−1) → x(n) = W (n)x(n−1) + b(n) + x(earlier layer) , (2.28)

where the last term can point to any previous layer. Obviously, we can apply the same structure to the convolutional layer
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DeepTop CNN and the MotherOfTaggers BDT, as well as Monte Carlo truth. Figure from Ref. [17].



46 2 CLASSIFICATION

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Signal efficiency S

101

102

103

104

Ba
ck

gr
ou

nd
 re

je
ct

io
n 

1 B

ParticleNet
TreeNiN
ResNeXt
PFN
CNN
NSub(8)
LBN
NSub(6)
P-CNN
LoLa
EFN
nsub+m
EFP
TopoDNN
LDA

Figure 17: ROC curves for all top-tagging algorithms evaluated on the standard test sample. Figure from Ref. [19].

of Eq.(2.21)

x
(n)
ij =

nc-size−1∑
r,s=0

W (n)
rs x

(n−1)
i+r,j+s + b(n) + x(earlier layer)

ij . (2.29)

Again, we suppress the sum over the feature maps. These skip connections are a standard method to improve the training
and stability of very deep networks, and we will come across them again.

In Fig. 17 we see that the deep ResNeXt is slightly more powerful than the competitive version of the CNN introduced in
Sec. 2.1.2. First, in this study it uses slightly higher resolution with 64× 64 pixels. In addition, it is much more complex
with 50 layers translating into almost 1.5M parameters, as compared to the 610k parameters of the CNN. Finally, it uses
skip connections to train this large number of layers. The sizes of the ResNeXt and the CNN illustrate where some of the
power of neural networks are coming from. They can use up to 1.5M network parameters to describe a training dataset
consisting of 1M signal and background images each. Each of these sparse calorimeter images includes anything between
20 and 50 interesting active pixels. Depending on the physics question we are asking, the leading 10 pixels might encode
most of the information, which translates into 20M training pixels to train 1.5M network parameters. That is quite a
complexity, for instance compared to standard fits or boosted decision trees. This complexity also motivates an efficient
training, including the back propagation idea, an appropriately chosen loss function, and numerical GPU power. Finally, it
explains why some people might be sceptical about the black box nature of neural networks, bringing us back to the
question how we can control what networks learn and assign uncertainty bands to their output.

2.1.4 Bayesian CNN

Since we know from Sec. 1.2.6 how to train a network to not only encode some kind of function fθ(x) but also an
uncertainty σθ(x). We can apply this method to our jet classification task, because it makes a difference if a jet comes
with (60± 20)% or (60± 1)% signal probability. Bayesian classification networks provide this information jet by jet. For
jet classification this uncertainty could for example come from (i) finite, but perfectly labeled training samples; (ii)
uncertainties in the labelling of the training data; and (iii) systematic differences between the training and test samples.
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Figure 18: Effect of the sigmoid transformation on Gaussians with the same but different means. Figure from Ref. [21].

The main difference between a regression network and a classification network is that the probability outputs requires us
to map unbounded network outputs to the closed interval [0, 1] through the final, sigmoid layer given in Eq.(2.9). Such a
sigmoid layer will change the assumed Gaussian distribution of the Bayesian network weights. We illustrate this behavior
in Fig. 18, where we start from three Gaussians with the same width but different means and apply a sigmoid
transformation. The results is that the distributions on the closed interval become asymmetric, to accommodate the fact
that even in the tails of the distributions the functional value can never exceed one. The Jacobian of the sigmoid
transformation is given by

d Sigmoid(x)

dx
=

d

dx

[
1 + e−x

]−1
= − 1[

1 + e−x
]2 d

dx

[
1 + e−x

]
=

e−x[
1 + e−x

]2
=

1

1 + e−x
1 + e−x − 1

1 + e−x

= Sigmoid(x)
[
1− Sigmoid(x)

]
. (2.30)

We can approximate the standard deviation for example of a Gaussian after the sigmoid transformation assuming a simple
linearized form

σ(sigmoid)
stat

σstat
≈ dσ(sigmoid)

stat

dσstat
≈ dµ(sigmoid)

stat

dµstat
= µ(sigmoid)

stat
[
1− µ(sigmoid)

stat
]
. (2.31)

After the sigmoid transformation the uncorrelated parameters µ and σ turn into a correlated mean and standard deviation;
for a transformed mean µ(sigmoid)

stat going to zero or one, the corresponding width σ(sigmoid)
stat will vanish. This correlation of

the two Bayesian network output is specific to a classification task. This kind of behavior is not new, if we remember how
we need to replace the Gaussian by a Poisson distribution, which has the same cutoff feature towards zero count rates.

To see these correlations we can look at a simple source of statistical uncertainties, a limited number of training jets. In
the upper left panel of Fig. 19 we show the correlation between the predictive mean and the predictive standard deviation
from the Bayesian CNN. For a single correlation curve we evaluate the network on 10k jets, half signal and half
background, and show the mean values of the 10k jets in slices of µstat, after confirming that their distributions have the
expected Gaussian-like shape. The leading feature is the inverse parabola shape, induced by the sigmoid transform,
Eq.(2.31). This is combined with a physics feature, namely that probability outputs around 0.1 or 0.9 correspond to clear
cases of signal and background jets, where we expect the predictive standard deviation to be small. In the upper right
panel we illustrate the improvement of the network output with an increasing amount of training data for the slice
µstat = 0.45 ... 0.55. The improvement is significant compared to the uncertainty bands, which correspond to different
training and testing samples. The corresponding spread of these 10k signal and background jets is illustrated in the four
lower panels, with a matching color code.

One of the great advantages of LHC physics is that we can study the behavior of neural networks on Monte Carlo, before
we train or at least use them on data. This also means that we can extend the uncertainty treatment of BNNs to also
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Figure 19: Correlation between predictive mean and standard deviation. The right panel shows the predictive standard
deviation for µstat = 0.45 ... 0.55 as a function of the size of the training sample with the same uncertainty bands from
different trainings. The lower panels instead show the statistical spread for 10k jets, signal and background combined.
Figure from Ref. [21].

include systematic uncertainties, as long as we can describe them using data augmentation. An example is the jet or
calorimeter energy scale, which is determined through reference measurements and then included in all jet measurements
as a function of the detector geometry. Because hard and soft pixels encode different physics information and the
calibration of soft pixels is strongly correlated with pile-up removal, we can see what happens for a top tagger when we
change the pixel calibration. As a side remark, for this study we do not use the standard CNN, because here the pixel
entries are usually normalized. To see an effect on the classification output we shift the energy of the leading jet
constituent by up to 10%. In the left panel of Fig. 20 we see that this shift has hardly any effect on the network output

Figure 20: Effect of a shifted energy scale for the hardest constituent on the top tagging, showing the network output before
the sigmoid transformation (left) and the classification output (right). Figure from Ref. [21].
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before we apply the sigmoid activation. In the right panel we see what happens after the sigmoid activation: depending on
the sign of the systematic shift the network is systematically less or more sure that a top jets corresponds to a signal. From
a physics perspective this is expected, because top jets are more hierarchical, owed to the weak decays and the mass drop.
Changing the calibration of the hard constituent(s) then acts like an adversarial attack on the classification network — a
change exactly in the feature that dominates the classification output.

Finally, as mentioned above, using neural networks beyond black-box mode requires to control if the network has
captured the underling feature(s) correctly and then assign an uncertainty band to the network output. These two aspects
have to be separated, because networks fall into the same trap as people — not knowing anything they tend to
underestimate their uncertainty by ignoring unknown unknowns. For Bayesian classification we can tackle this problem:
first, we use the correlation of the two outputs (µstat, σstat) of the Bayesian classification network for control. A poorly
trained network will not reproduce the quadratic correlation of Eq.(2.31) and reveal its fundamental ignorance. Once we
have convinced ourselves that the network behaves as expected, we can use the predictive jet-wise uncertainty as an input
to the actual analysis.

2.1.5 Capsules

As we have seen, CNNs are great tools to analyze jet images at the LHC, even though jet images do not look at all like the
kind of images these networks were developed for. However, at the LHC we are only interested in jets as an, admittedly
extremely interesting, part of a collision event. This leads to the general question is how we can combine information at
the event level with the subjet information encoded in each jet. For images this means we move from already sparse jet
images to extremely sparse events. For this task, a natural extension of CNNs are capsule networks or CapsNets. They
allow us to analyze structures of objects and their geometric layout simultaneously. At the LHC we would like them to
combine subjet information with the event-level kinematics of jets and other particles.

The idea of capsules as a generalization of CNNs follows from the observation that CNNs rely on a 1-dimensional scalar
representation of images. The idea behind capsules is to represent the entries of the feature maps as vectors in signal or
background feature space, depending on which a given capsule describes. Only the absolute value of the capsule encodes
the signal vs background classification. The direction of the vectors can track the actual geometric position and
orientation of objects, which is useful for images containing multiple different objects. In particle physics, an event image
is a perfect example of such a problem, so let us see what we can do when we replaces this single number with vectors
extracted from the feature maps.

Just like a scalar CNN, a CapsNet starts with a pixelized image, for instance the calorimeter image of a complete event
with 180× 180 pixels. It is analyzed with a convolutional filter, combined with pooling or stride convolutions to reduce
the size of the feature maps. The CapsNet’s convolutional layers are identical to a scalar CNN. The new idea is to
transform the feature maps after the convolution into pixel-wise vectors. Each layer then consists of a number of capsule
vectors, for example 24 feature maps with 40× 40 entries each can be represented as 1600 capsule-vectors of dimension
24, or 3200 capsules of dimension 12, or 4800 capsules of dimension 8, etc.

The capsules have to transfer information matching their vector property. In Fig. 21 we illustrate a small, 2-layer CapsNet
with three initial 2-dimensional capsules ~x(j) linked through routing by agreement to four 2-dimensional capsules ~v(j′).

Figure 21: Sketch of a CapsNet module with two simple capsule layers. Figure from Ref. [22].
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For deeper networks the dimensionality of the resulting capsule vector can, and should, be larger than the incoming
capsule vector. We can write the complete matrix transformation from the input x to the output v as

v
(j′)
i′ =

∑
j=1,2,3

∑
i=1,2

(C W )
(j′j)
i′i x

(j)
i . (2.32)

The connecting matrix has two sets of indices and size,2× 2 in i and 3× 4 in j. We can reduce the number of parameters
by factorizing the two steps. To get from three to four capsules we first define four combinations of the three initial
capsules with the entries u(j,j′)

i′ , related to the initial capsule vectors ~x(j) through trainable weight matrices,

u
(j,j′)
i′ =

∑
i=1,2

W
(j,j′)
i′i x

(j)
i for j = 1, 2, 3 and j′ = 1, 2, 3, 4 . (2.33)

Next, we contract the original index j to define the four outgoing capsules using another set of trainable weights,

v
(j′)
i′ =

∑
j=1,2,3

C(j′,j) u
(j,j′)
i′ with

∑
j′=1,2,3,4

C(j,j′) = 1 ∀j . (2.34)

The normalization ensures that the contributions from one capsule in the former to each capsule in the current layer add
up to one. Furthermore, a squashing step after each capsule layer ensures that the length of every capsule vector remains
between 0 and 1,

~v → ~v′ =
|~v|√

1 + |~v|2
v̂ , (2.35)

with v̂ defined as the unit vector in ~v-direction.

Up to now we have constructed a set of four capsules from a set of three capsules through a number of trainable weights,
but not enforced any kind of connection between the two sets of capsule vectors. We can extend the transformation in
j-space, Eq.(2.34), to consecutively align the vectors ~u(j,j′) and ~v(j′) through a re-definition of the weights C(j,j′). This
means we compute the scalar product between the vector ~u(j,j′) and the squashed vector ~v(j′) and replace in Eq.(2.34)

C(j,j′) −→ C(j,j′) + ~u(j,j′) · ~v(j′) . (2.36)

We can iterate this additional condition and construct a series of vectors v(j′), which has converged once ~u(j,j′) and ~v(j′)

are parallel. It is called routing by agreement and is illustrated in Fig. 22, where the blue vectors represent the three ~u(j,j′)

in each set and the red vector is the output ~v(j′). With each routing iteration the vectors parallel to ~v(j′) become longer
while the others get shorter.

Unlike the CNN, the CapsNet can now encode information in the length and the direction of the output vectors. We
typically train the network such that the length of the output vectors provide the classification. Just like for the scalar
CNN we differentiate between signal and background images using two output capsules. The more likely the image is to
be signal or background, the longer the corresponding capsule vector will be. For simple classification the
capsule-specific part of the loss function consists of a 2-terms margin loss

LCapsNet = max
(

0,m+ − |~v(1)|
)2

+ λmax
(

0, |~v(2)| −m−
)2

. (2.37)

Figure 22: Effects of the routing/squashing combination. In blue we show the intermediate vectors, in red we show the
output vector after squashing. Figure from Ref. [22].
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Figure 23: Correlation between capsule outputs rS − rB and the leading jet mass, the di-jet mjj , and ∆ηjj for true signal
and background events. Finally we show the correlation of the signal ϕ vs the the mean ηj for true signal events. Figure
from Ref. [22].

The first term vanishes if the length of the signal vectors ~v(1) exceeds m+. The second term vanishes for background
vectors ~v(2) shorter than m−. Typical target numbers m+ = 0.9 and m− = 0.1 can sum up to one, nothing forces the
actual length of all capsules in a prediction to do the same.

If we want to use CapsNets to analyze full events including subjet information, we can apply them to extract the signal
process

pp→ Z ′ → tt̄→ (bjj) (b̄jj) (2.38)

with mZ′ = 1 TeV from two backgrounds

pp→ tt̄ and pp→ jj , (2.39)

all with pT,j > 350 GeV and |ηj | < 2.0. As usual, we transform the calorimeter hits into a 2-dimensional image, now
including with 180× 180 pixels to covering the entire detector with |η| < 2.5 and φ = 0 ... 2π.

If we want to extract a signal from two backgrounds we can train the classifier network either on two or on three classes.
It often depends on the details of the network architecture and performance what the best choice is. In the case of capsules
it turns out that the QCD background rejection benefits from the 3-class setup, because a first capsule can focus on
separating the signal from the tt̄ continuum background while a dedicated QCD capsule extracts the subjet features. On
the other hand, we need to remember is that training multi-class networks require more data to learn all relevant features
reliably.

As one advantage of capsules we will see that they can combine jet tagging with event kinematics, a problem for regular
CNNs. To simplify our study we train the CapsNet to only separate the Z ′(→ tt̄) signal from QCD di-jet events, so the
signal and background differs in event-level kinematics and in jet substructure. We then define a signal-background
discriminator

rS − rB ≡ |~v(S)| − |~v(B)| =
{

+1 signal events
−1 background events

(2.40)

Confronting this value with two key observables in Fig. 23, we first confirm that the network associates a large jet mass
with the top signal, where the secondary peak in the leading jet mass arises from cases where the jet image only includes
two of the three top decay jets and learns either mW or the leading mjb ≈ mW . We also see that the capsules learn to
identify the peak in the di-jet invariant mass at approximately 1 TeV as a signal feature, different from the falling
spectrum for background-like events.

The second advantage of capsules is that they organize features in their vector structure, so we can understand what the
CapsNet has learned. Only a certain combination of the vector entries is required to separate signal and background, the
rest of them is free to learn a convenient representation space. This representation can cover patterns which affect the
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Figure 24: Distribution of the two entries in the 2-dimensional signal capsule for signal events. Right: average event
images in the η − φ plane. Figure from Ref. [22].

classification output, or not. Again, the two output capsules correspond to the Z ′ signal and the light-flavor QCD
background, with two dimensions each, making it easy to visualize the output capsules. The classification output is then
mapped back into the image space for visualization purposes.

In Fig. 24 we show the density of the two output entries in the 2-dimensional signal capsule for true signal events. Each
event corresponds to a point in the 2-dimensional plane. Because the classification output is proportional to the length of
the capsule vector, it corresponds to the distance of each point from the origin. Correctly identified signal events sit on the
boundary of the circle segment. The rotation of the circle segment is not fixed a priori, and nothing forces the network to
fill the full circle In this 2-dimensional capsule plane we select five representative regions indicated by semi-transparent
squares. For each region we identify the contributing events and super-impose their detector images in the η − φ plane in
the right panels of Fig. 24. For our signal events we observe bands in rapidity, smeared out in the azimuthal angle. This
indicates that the network learns an event-level correlation in the two ηj as an identifying feature of the signal.

As we can see, the CapsNet architecture is a logical and interesting extension of the CNN, especially when we are
interested in combining event-level and jet-level information and in understanding the classification outcome. Capsules
define a representation or latent space, which we will study systematically in Sec. 5. All of this means that CapsNets are
extremely interesting conceptually. The problem in particle physics applications is still, that extremely sparse jet or
calorimeter images are not the ideal representation, and in Fig. 17 we have seen that other architectures are more
promising. So we will leave CapsNets behind, but keep in mind their structural advantages.

2.2 Representing point clouds

In the last section we have argued the case to move from jet images to full event information. Event images work for this
purpose, but their increasingly sparse structure cuts into their original motivation. The actual data format behind LHC jets
and events are not images, but a set of 4-vectors with additional information on the particle content. These 4-vectors
include energy measurements from the calorimeter and momentum measurements from the tracker. The difference
between the two is that calorimeters observe neutral and charges particles, while tracking provides information on the
charged particles with extremely high angular resolution. Calorimeter and tracking information are combined through
dedicated particle flow algorithms, which is probably the better option than combining sparse jet images of vastly
different resolution. Now, we could switch all the way from image recognition to natural language recognition networks,
but those do not reflect the main symmetry of 4-vectors or other objects describing LHC collisions, the permutation
symmetry. Instead, we will see there are image-based concepts which work extremely well with the LHC data format.
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Figure from Ref. [23].

2.2.1 4-Vectors

The basic constituents entering any LHC analysis are a set of C measured 4-vectors sorted by pT , for example organized
as the matrix

(kµ,i) =


k0,1 k0,2 · · ·
k1,1 k1,2 · · ·
k2,1 k2,2 · · ·
k3,1 k3,2 · · ·

 , (2.41)

where for now we ignore additional information on the particle identification. Such a high-dimensional data
representation in a general and often unknown space is called a point cloud. If we assume that all constituents are
approximately massless, a typical jet image would encode the relative phase space position to the jet axis and the
transverse momentum of the constituent,

kµ,i →

∆ηi

∆φi

pT,i

 . (2.42)

For the generative networks we will introduce in Sec. 4 we implement this transformation as preprocessing, but for the
simpler classification network it turns out that we can just work with the 4-vectors given in Eq.(2.41).

To illustrate the difference between the image representation and the 4-vector representation we replace our standard top
tagging dataset of Eq.(2.27) with two distinct samples, corresponding to moderately boosted tops from Standard Model
processes and highly boosted tops from resonance searches,

pT,j = 350 ... 450 GeV and pT,j = 1300 ... 1400 GeV . (2.43)

In the left panel of Fig. 25 we show the number of calorimeter-based and particle-flow 4-vectors kµ,i available for our
analysis, Nconst. We see that including tracking information roughly doubles the number of available 4-vectors and
reduces the degradation towards higher boost. In the right panel we show the mean transverse momentum of the
pT -ordered 4-vectors, indicating that the momentum fraction carried by the charged constituents is sizeable. The fact that
the calorimeter-based constituents do not get harder for higher boost indicates a serious limitation from their resolution.
In practice, we know that the hardest 40 constituents tend to saturate tagging performances, while the remaining entries
will typically be much softer than the top decay products and hence carry little signal or background information from the
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hard process. Comparing this number to the calorimeter-based on particle flow distributions motivates us to go beyond
calorimeter images.

As a starting point, we introduce a simple constituent-based tagger which incorporates some basic physics structure. First,
we mimic a jet algorithm and multiply the 4-vectors from Eq.(2.41) with a matrix Cij and return a set of combined
4-vectors k̃j as linear combinations of the input 4-vectors,

kµ,i
CoLa−→ k̃µ,j = kµ,i Cij . (2.44)

The explicit form of the matrix C defining this combination layer (CoLa) ensures that the k̃j include each original
momentum ki as well as a trainable set of M − C linear combinations. These k̃j could be analyzed by a standard, fully
connected or dense network.

However, we already known that the relevant distance measure between two substructure objects, or any two 4-vectors
sufficiently far from the closest black hole, is the Minkowski metric. This motivates a Lorentz layer, which transforms the
k̃j into the same number of measurement-motivated invariants k̂j ,

k̃j
LoLa−→ k̂j =


m2(k̃j)

pT (k̃j)

�mw
(E)
jm E(k̃m)

�mw
(d)
jm d

2
jm

 . (2.45)

The first two k̂j map individual k̃j onto their invariant mass and transverse momentum, using the Minkowski distance
between two four-momenta,

d2
jm = (k̃j − k̃m)µ g

µν (k̃j − k̃m)ν . (2.46)

In case the invariant masses and transverse momenta are not sufficient to optimize the classification network, the
additional weights wjm are trainable. The third entry in Eq.(2.45) constructs a linear combination of all energies,
evaluated with one of several possible aggregation functions

� ∈ {max, sum,mean, · · · } . (2.47)

Similarly, the fourth entry combines all Minkowski distances of k̃m with a fixed k̃j . Again, we can sum over or minimize
over the internal index m while keeping the external index j fixed.

A technical challenge related to the Minkowski metric for example in a graph convolutional network (GCN) language is
that it combines two different features: two subjets are Minkowski-close if they are collinear or when one of them is soft
(ki,0 → 0). Because these two scenarios correspond to different, but possibly overlapping phase space regions, they are
hard to learn for the network. To see how the network does and what kind of structures drive the network output, we turn
the problem around and ask the question if the Minkowski metric is really the feature distinguishing top decays and QCD
jets. This means we define the invariant mass m(k̃j) and the distance d2

jm in Eq.(2.45) with a trainable diagonal metric
and find

g = diag( 0.99± 0.02,

− 1.01± 0.01,−1.01± 0.02,−0.99± 0.02) , (2.48)

where the uncertainties are given by five independently trained copies. This means that for top tagging the appropriate
space to relate the 4-vector data of Eq.(2.44) is defined by the Minkowski metric. Obviously, this is not going to be true
for all analysis aspects. For instance, at the event level the rapidities or the scattering angles include valuable information
on decay products from heavy resonance compared to the continuum background induced by the form of the parton
densities. Still, the LoLa tagger motivates the question how we can combine a data representation as 4-vectors with an
appropriate metric for these objects.

In Fig. 17 we see that the CoLa-LoLa network does not provide the leading performance. One might speculate that its
weakness is that it is a little over-constructed with too much physics bias, with the positive side effect that the network
only needs 127k parameters.
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Figure 26: Example for a simple graph.

The fact that we can extract the Minkowski metric as the relevant metric for top-tagging based on 4-vectors leads us to the
concept of graphs. Here we assume that our point-cloud data populates a space for which we can extract some kind of
metric or geometry. The optimal metric in this space depends on the task we are training the network to solve. This
becomes obvious when we extend the 4-vectors of jet constituents or event objects with entries encoding details from the
tracker, like displaced vertices, or particle identification. The question is how we can transform such a point cloud into a
structure which allows us to perform the kind of operations we have seen for the CoLa-LoLa tagger, but in an abstract
space.

2.2.2 Graph convolutional network

The first problem with the input 4-vectors given in Eq.(2.41) is that we do not know which space they live in. The
structure that generalizes our CoLa-LoLa approach to an abstract space is, first of all, based on defining nodes, in our case
the vectors describing a jet constituent. These nodes have to be connected in some way, defining an edge between each
pair of nodes. The LoLa ansatz in Eq.(2.45) already assumes that these edges have to go beyond the naive Minkowski
metric. The object defined by a set of nodes and their edges is called a graph.

The basic object for analyzing a graph with C nodes is the C × C adjacency matrix. It encodes the C2 edges, where we
allow for self-interactions of nodes. In the simplest case where we are just interested in the question if two nodes actually
define a relevant edge, the adjacency matrix includes zeros and ones. In the graph language such an adjacency matrix
defines an undirected — edges do not depend on their direction between two nodes — and unweighted. Even for this
simple case this matrix can be useful. Let us look at an example of C = 5 nodes with the six edges

A =


2 1 0 0 1

1 0 1 0 1

0 1 0 1 0

0 0 1 0 1

1 1 0 1 0

 . (2.49)

This graph is illustrated in Fig. 26, skipping the 6th node in the image. Because the graph is undirected, the adjacency
matrix is symmetric. Only the first node has a self-interaction, which we count twice because it can be used in two
directions. Now we can compute powers of the adjacency matrix, like

A2 =


6 3 1 1 3

3 3 0 2 1

1 0 2 0 2

1 2 0 2 0

3 1 2 0 3

 and A3 =


18 10 4 4 10

10 4 5 1 8

4 5 0 4 1

4 1 4 0 5

10 8 1 5 4

 . (2.50)

The matrix An encodes the number of different paths of length n which we can take between the two nodes given by the
matrix entry. For instance, we can define four length-3 connections between the node and and itself, two different loops
each with two directions. Once we have defined a set of edges we can use the existence of an edge, or a non-zero entry in
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A, to define neighboring nodes, and neighboring nodes is what we need for operations like filter convolutions, the basis of
a graph-convolutional network.

Once we have defined our set of nodes and their adjacency matrix, the simplest way to use a filter is to go over all nodes
and train a universal filter for their respective neighbors. We already know that our nodes are not just a simple number,
but a collection of different features. In that case we can define each node with a feature vector x(k)

i for the nodes
i = 1 ... C. In analogy to the feature maps of Eq.(2.22) we can then define a filter W (kl)

j where j goes through the
neighboring nodes of i and matrix entries match the size of the central and neighboring feature vectors. This means
neighboring pixels of Eq.(2.22) become nodes with edges, and feature maps turn into feature vectors. A convolutional
network working on one node now returns

x
′(k)
i =

∑
features l

∑
neighbors j

W
(kl)
ij x

(l)
j ≡

∑
features l

∑
nodes j

W
(kl)
ij Aij x

(l)
j , (2.51)

where in the second form we have used the adjacency matrix to define the neighbors. When using such graph
convolutions we can add a normalization factor to this adjacency matrix. Obviously, we also need to apply the usual
non-linear activation unction, so the network will for instance return ReLU(x′i). Finally, for the definition of the universal
filter it will matter how we order the neighbors of each node.

Instead of following the convolution explicitly, as in Eq.(2.51), we can define a more general transformation than in
Eq.(2.22), namely a vector-valued function of two feature vectors xi,j , and with the same number of dimensions as the
feature vector xi,

x′i =
∑

neighbors j

Wθ(xi, xj) (2.52)

The sum runs over the neighboring nodes, and we omit the explicit sum in feature space. If we consider the strict form of
Eq.(2.51) a convolutional prescription, and its extension to W (kl)

ij →W
(kl)
ij (xi, xj) as an attention-inspired

generalization, the form in Eq.(2.52) is often referred as the most general message passing. Looking at this prescription
and comparing it for instance with Eq.(2.45), it is not clear why we should sum over the neighboring nodes, so we can
define more generally

x′i = �j Wθ(xi, xj) , (2.53)

with the aggregation functions �j defined in Eq.(2.47). The corresponding convolutional layer is called an
edge convolution. Just like a convolutional filter, the function W is independent of the node position i, which means it
will scale as economically as the CNN. The form of W allows us to implement symmetries like

Wθ(xi, xj) = Wθ(xi − xj) translation symmetry
Wθ(xi, xj) = Wθ(|xi − xj |) rotation symmetry
Wθ(xi, xj) = Wθ(xi, xi − xj) translation symmetry conditional on center. (2.54)

The most important symmetry for applications in particle physics is the permutation symmetry of the constituents in a jet
or the jets in an event. The edge convolution is symmetric as long as Wθ does not spoil such a symmetry and the
aggregation function is chosen like in Eq.(2.53).

Going back to the point clouds describing LHC jets or events, we first need to transform the set of possibly extended
4-vectors into a graph with nodes and edges. Obviously, each extended 4-vector of an input jet can become a node
described by a feature vector. Edges are defined in terms of an adjacency matrix. We already know that we will modify
the adjacency matrix as the initial form of the edges through edge convolutions, so we can just define a reasonably first set
of neighbors for each node. We can do that using standard nearest-neighbor algorithms, defining the input to the first
edge-convolution layer. When stacking edge convolutions, each layer produces a new set of feature vectors or nodes. This
leads to a re-definition of the adjacency matrix after each edge convolution, removing the dependence on the ad-hoc first
choice. This architecture is referred to as a Dynamic Graph Convolutional Neural Network (DGCNN). The structure of
the edge convolution is shown in the left panel of Fig. 27. It combines the nearest-neighbor definition for the graph input
with a series of linear edge convolutions and a skip connection as introduced in Eq.(2.28).
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Figure 27: Architectures of an edge convolution block (left) and the ParticleNet implementation for jet tagging. In the right
panel, k is the number of nearest neighbors considered and C the number of channels per edge convolution layer. Figure
from Ref. [24].

One reason to introduce the dynamic GCN is that it provides the best jet tagging results in Fig. 17. The ParticleNet tagger
is based on the third ansatz for the filter function in Eq.(2.54) with the simple linear combination

�j Wθ(xi, xj) = meanj
[
θdiff · (xi − xj) + θlocal · xi

]
(2.55)

This is the form of the linear convolution referred to in the left panel of Fig. 27. Batch normalization is a way to improve
the training of deep networks in practice. It evaluates the inputs to a given network layer for a minibatch defined in
Eq.(1.36) and changes their normalization to mean zero and standard deviation one. It is known to improve the network
training, even though there seems to be no good physics or other reason for that improvement.

In the right panel of Fig. 27 we show the architecture of the network. After the edge convolutions we need to collect all
information in a single vector, which in this case is constructed by average-pooling over all nodes for each of the
channels. The softmax activation function of the last layer is the multi-dimensional version of the sigmoid defined in
Eq.(2.9), required for a classification network. It defines a vector of the same size as its input, but such that all entries are
positive and sum to one,

Softmaxi(x) =
exi∑
j e
xj
. (2.56)

If we only look at our standard classification setup with two network outputs, where the first gives a signal probability, the
softmax function becomes a scalar sigmoid

Softmax1(x) =
ex1

ex1 + ex2
=

1

1 + ex2−x1
≡ Sigmoid(x2 − x1) , (2.57)

for the difference of the inputs, as defined in Eq.(2.9). Just as we can use the cross entropy combined with a sigmoid layer
to train a network to give us the probability of a binary classification, we can use the multi-class cross entropy combined
with the softmax function to train a network for a multi-label classification. Maybe I will show this in an updated version
of these notes, but not in the first run.

The fact that for top tagging the GCN outperforms all its competitors indicates that graphs with their permutation
invariance are a better representation of jet than images. The number of network parameters is 500k, similar in size to the
CNN used for the top-tagging challenge, but leading to the best tagging performance of all architectures.
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2.2.3 Transformer

Now that the graph network can construct an appropriate task-dependent space for neighboring nodes, we can tackle the
second problem with the input 4-vectors given in Eq.(2.41), namely that we do not know how to order
permutation-invariant nodes. We can use graphs to solve this problem by removing the adjacency matrix and instead
relating all nodes to all nodes, constructing a fully connected graph. A modern alternative, which ensures permutation
invariance and can be applied to point clouds, are transformers. Their origin is language analysis, where they provide a
structure to analyze how words compose sentences in different languages, where the notion of neighboring works does
not really mean anything. Their defining building block is attention, or more specifically, self-attention. It is the natural
extension of an adjacency matrix, as shown in Eq.(2.49), where a zero means that no information from that node will
enter the graph analysis. Self-attention allows an element to assign learned weights to other elements, or, mathematically,
a square matrix with an appropriate normalization. These weights define how much ‘attention’ is placed on those
elements whenever our ML-task requires us to define a relation between them.

We motivate the construction of self-attention using a toy model in representation space. The goal of our construction is
to describe and then learn some kind of relation between two entries of an input vector or sequence x, and then construct
a representation of xi using these relations.

First, we define an input entry xi and represent it by a normalized query entry

xi −→ q =
xi
|x| . (2.58)

It represents the input xi as a unit vector in a compact latent space. Next, we need a set of vectors for which we analyse
the relations to q, the so-called value vectors v. If they form an orthonormal basis, we can write our input vector as

q =
∑
j

(q · vj) vj ≡
∑
j

ajvj with aj = (q · vj) . (2.59)

The scalar product aj represents the strength of the connection between the query vector and a given value vector vj .
However, when implementing this method as a trained network we should not require a normalized basis. Instead, we
replace the value basis by another basis of so-called key vectors,

q =
∑
j

(q · kj) vj or aj = (q · kj) . (2.60)

As an example, the keys for an orthogonal, but not normalized basis are

kj =
vj
v2

. (2.61)

Using our freedom in choosing the keys, we then transform the input xi into a representation zi, defined as as

xi −→ zi =
∑
j

(q · kj) vj . (2.62)

This representation takes into account the relation to all other entries of our input vector or sequence. Because of the sum
over the value basis, it is explicitly permutation invariant. The transformer-encoder is only trained together with the
respective network, but we can assume that the network training will construct an orthogonal basis of key and value
vectors to make optimal use of the information encoded in the data.

Let us move on to the proper single-headed self-attention illustrated in Fig. 28. Let us assume that we are again analyzing
C jet constituents, so the vector x1 describes the phase space position for the first constituent in an unordered list. If we
stick to an image-like representation, the complete vector x will be C copies of the 3-dimensional phase space vector
given in Eq.(2.42). First, we generalize Eq.(2.58) and define a proper query representation of x1 in a general latent space
through a learned weight matrix WQ,

q1 = WQx1 . (2.63)
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Figure 28: Illustration of single-headed self-attention. Figure from Ref. [25].

If we cover all constituents, WQ becomes a block-diagonal matrix of size 3C. To relate all constituents x1 ... xC to x1 we
define a learned key matrix 

k1

...
kC

 = WK


x1

...
xC

 (2.64)

We use a scalar product to project all keys k1 ... kC onto q1. Modulo some details this defines a set of 3-dimensional
vectors in analogy to Eq.(2.59),

a
(1)
1
...

a
(1)
C

 = Softmax


(q1 · k1)

...
(q1 · kC)

 with a
(1)
j ∈ [0, 1]

∑
j

a
(1)
j = 1 , (2.65)

all in reference to x1. It gives us a quadratic attention matrix, similar to the adjacency matrix Eq.(2.49) of a graph,

Softmax(qi · kj) ≡ a(i)
j 6= a

(j)
i ≡ Softmax(qj · ki) . (2.66)

Finally, we transform the complete set of inputs x1 ... xC into a latent value representation, in analogy to the constrained
query form of Eq.(2.63), but allowing for full correlations,

v1

...
vC

 = WV


x1

...
xC

 , (2.67)

through the learned matrix WV . Generalizing from x1 to xj gives us the output vector for the transformer-encoder layer
in analogy to Eq.(2.62)

zi =

3C∑
j=1

a
(i)
j vj =

∑
j

Softmaxj

[
(WQxi) · (WKxj)

]
(WV x)j . (2.68)

In this formula that the matrices WQ and WK do not have to be quadratic and can define internal representations Wx
with any number of dimensions. The size of WV defines the dimension of the output vector z.

A practical problem with the self-attention described above is that each element tends to attend dominantly to itself,
which means that in Eq.(2.65) the diagonal entries a(j)

j dominate. This numerical problem can be cured by extending the
network to multiple heads, which means we perform several self-attention operations in parallel, each with separate
learned weight matrices, and concatenate the outputs before applying a final linear layer. This might seem not efficient in
computing time, but in practice we can do the full calculation for all constituents, all attention heads, and an entire batch
in parallel with tensor operations, so it pays off.
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Figure 29: Network architecture and feature extractors for the top tagging application of the point cloud transformer.
Figure from Ref. [26].

Because a transformer can be viewed as a preprocessor for the jet constituents, enforcing permutation invariance before
any kind of NN application, we can combine with it any other preprocessing step. For instance, we know that constituents
with small pT just represent noise, either from QCD or from pileup, and they should have no effect on the physics of the
subjet constituents. We can implement this constraint in a IR-safe transformer, where we add a correction factor to
Eq.(2.65),

a
(i)
j = Softmax[(qi · kj) + β log pT ] . (2.69)

For small pT the second contribution ensures that constituents with pT → 0 do not contribute to the attention weights aj .
In addition, we replace zj → pT,jzj in the transformer output.

The transformer-encoder layer can then be used as part of different network architectures, for example to analyze jets.
The output z of a stack of transformer layers can be fed into a classification network directly, or it can be combined with
the input features x, in the spirit of the skip connections discussed in Sec. 2.1.3, to define an offset-attention. In Fig. 29
we illustrate the combination of the transformer with two different feature extractors, a set of 1-dimensional convolutional
layers running over the features x of each constituent (SPCT), and an edge convolution as introduced in Sec. 2.2.2 (PCT).
The edge convolution uses a large number of k = 20 nearest neighbors and is followed by 2-dimensional convolutions.
The output of the transformer layers is then concatenated to an expanded feature dimension and fed through a fully
connected network to provide the usual classification output. This way the SPCT is an transformer-enhanced fully
connected network and the PCT combines a simplified GCN structure with a transformer-encoder. The performance of
the simple SCPT network matches roughly the standard CNN or LoLa results shown in Fig. 17, but with only 7k network
parameters. The PCT performs almost as well as the leading ParticleNet architecture, but with only 200k instead of
almost 500k network parameters. So while transformers with their different learned matrices appear parameter-intensive,
they are actually efficient in reducing the size of the standard networks while ensuring permutation invariance as the key
ingredient to successful jet tagging. The challenge of the transformer preprocessing is their long training time.

2.2.4 Deep sets

Motivated by the same argument of permutation invariance as the transformers, another approach to analyzing LHC jets
and events is based on the mathematical observation that we can approximate any observable of 4-vectors using a
combination of per-particle mappings and a continuous pooling function,

{kµ,i} → Fθ

[∑
i

φθ(kµ,i)

]
(2.70)

where φ ∈ R` is a latent space representation of each input 4-vector or extended particle information. Latent spaces are
abstract, intermediate spaces constructed by neural networks. By some kind of dedicated requirement, they organize the
relevant information and form the basis for example of all generative networks discussed in Sec. 4. As a side remark, the
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φ F

mass m pµ F (xµ) =
√
xµxµ

multiplicity nPF 1 F (x) = x

momentum dispersion pTD (pT , p
2
T ) F (x, y) =

√
y/x

Table 2: Example for observables decomposed into per-particle maps φ and functions F according to Eq.(2.70). In the last
column, the arguments of F are placeholders for the summed output of φ. Table from Ref. [27].

observable F can be turned infrared and collinear safe by replacing φ(kµ,i)→ pT,iφ, where φ now only depends on the
angular information of the kµ. This is the same strategy as the IR-safe transformer in Eq.(2.69). Such an IR-safe
energy flow network (EFN) representation is an additional restriction, which means it will weaken the distinguishing
power of the discriminative observable, but it will also make it consistent with perturbative QFT. In Tab. 2 we show a few
such representations, including subjet observables from Eq.(1.6).

A particle flow network (PFN) implementation of the deep sets architecture is, arguably, the simplest way to analyze point
clouds by using two networks. The first network constructs the latent representations respecting the permutation
symmetry of the inputs. It is a simple, fully connected network relating the 4-vectors and the particle-ID, for the PFN-ID
version, to a per-vector `-dimensional latent representation φθ(kµ) ∈ R`. The second, also fully connected network, sums
the φθ for all 4-vectors just like the graph aggregation function in Eq.(2.53), and feeds them through a fully connected
classification network with a softmax or sigmoid activation function as its last layer. The entire classification network is
trained though a cross-entropy loss.

For the competitive top tagging results shown in Fig. 17 the energy flow network (EFN) and the particle flow network
(PFN) only require 82k parameters in the two fully connected networks, with a 256-dimensional latent space. The
suppression of QCD jets for a given top tagging efficiency is roughly 20% smaller when we require soft-collinear safety
from the EFN rather than using the full information in the PFN.

Just like for the graph network in Sec. 2.2.2 it is also clear how one would add information on the identified particles in a
jet or an event. The question is how to best add additional entries to the kµ introduced in Eq.(2.41). In analogy to the
preprocessing of jet images, described in Sec. 2.1.2, we would likely use the η and φ coordinates relative to the jet axis,
combined with the (normalized) transverse momentum pT . A fourth entry could then be the mass of the observed particle,
if non-zero. The charge could simply be a fifth entry added to kµ. Particle identification would then tell us if a jet
constituent is a

γ, e±, µ±, π0, π±,KL,K
±, n, p · · · (2.71)

One way to encode such categorical data would be to assign a number between zero and one for each of these particles
and add a sixth entry to the 4-momentum. This is equivalent to assigning the particle code an integer number and then
normalizing this entry of the feature vector. To learn the particle-ID the network then learns the ordering in the
corresponding direction.

The problem with this encoding becomes obvious when we remind ourselves that a loss function forms a scalar number
out of the feature vector, so the network needs to learn some kind of filter function to extract this information. This means
combining different categories into one number is not helping the network. Another problem is a possible bias from the
network architecture or loss function, leading to an enhanced sensitivity of the network to larger values of the particle-ID
vector. Some ranges in the ID-directions might be preferred by the network, bringing us back to permutation invariance,
the theme of this section. Instead, we can encode the particle-ID in a permutation-invariant manner, such that a simple unit
vector in all directions can extract the information. Using one-hot encoding the phase space vector of Eq.(2.42) becomes

kµ →



∆η

∆φ

pT

m

δID=γ

δID=e

...


. (2.72)
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The additional dimensions can only have entries zero and one. This method looks like a waste of dimensions, until we
remind ourselves that a high-dimensional feature space is actually a strength of neural networks and that this kind of
information is particularly easy to extract and de-correlate from the feature space.

2.2.5 CNNs to transformers and more

After introducing a whole set of network architectures, developed for image or language applications, we can illustrate
their differences slightly more systematically. By now, we know to consider our input data as elements of a point cloud
xi,j , which can be represented as nodes of a graph or similar construction. It is convenient to divide their properties into
node features and edge features eij . A neural network is a trainable function Fθ or φθ. The symmetry properties of a
network are determined by an aggregation function � as introduced in Eq.(2.47), typically a sum or a modification of a
sum. Note that a product is just a sum in logarithmic space. Finally, we denote a generic activation function as ReLU.

Convolutional networks, including graph-convolutional networks, are defined by Eq.(2.21). We can write this
transformation as

x′i = ReLU Fθ [xi,�j∈Ncijφθ(xj)] , (2.73)

where constant values cij imply the crucial weight sharing. The aggregation combines the central node with a
neighborhood N . In physics application we often choose this neighborhood small, because physics effects are usually
local in an appropriate space.

For self-attention, the basis of transformers defined in Sec. 2.2.3, we replace the cij by as a general link function of xi and
xj , with access to the feature structure

x′i = ReLU Fθ [xi,�j∈Na(xi, xj , eij)φθ(xj)] . (2.74)

Many transformers cover all nodes instead of a local neighborhood, but this approach is expensive to train and not always
required. We refer to them as masked transformers.

Even more generally, we can avoid the factorization into linking relation and the node features and replace it with a
general learned function. This defines message passing networks, introduced in Eq.(2.52),

x′i = ReLU Fθ [xi,�j∈Nφθ(xi, xj , eij)] . (2.75)

Finally, we can also understand the efficiency gain of the deep sets architecture in Eq.(2.70) in this form,

x′i = ReLU Fθ [�jφθ(xj)] , (2.76)

Here they are not edges, which means nodes have to be encoded without any notion of an underlying space or metric, and
the function Fθ operates on the aggregation of the latent representations of the nodes.
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3 Non-supervised classification

Searches for BSM physics at the LHC traditionally start with a theory hypothesis, such that we can compare the expected
signature with the Standard Model background prediction for a given phase space region using likelihood methods. The
background hypothesis might be defined through simulation or through an extrapolation from a background into a signal
region. This traditional approach has two fundamental problems which we will talk about in this section and which will
take us towards a more modern interpretation of LHC searches.
First, we can generalize classification, for example of LHC events, to the situation where our training data is measured
data and therefore does not come with event-wise labels. However, a standard assumption of essentially any experimental
analysis is that signal features are localized in phase space, which means we can define background regions, where we
assume that there is no signal, and signal regions, where there still are background, but accompanied by a sizeable signal
fraction. This leads us to classification based on weakly supervised learning.
Second, any searches based on hypothesis testing does not generalize well in model space, because we can never be sure
that our model searches actually cover an existing anomaly or sign of physics beyond the Standard Model. We can of
course argue that we are performing such a large number of analyses that it is very unlikely that we will miss an anomaly,
but this approach is at the very least extremely inefficient. We also need to remind ourselves that ruling out some
parameter space in a pre-defined model is not really a lasting result. This means we should find ways to identify for
example anomalous jets or events in the most model-independent way. Such a method can be purely data-driven or rely
on simulations, but in either case we only work with background data to extract an unknown signal, a method refereed to
as unsupervised learning.

3.1 Classification without labels

Until now we have trained classification networks on labelled, pure datasets. Following the example of top tagging in
Sec. 2.1.1, such training data can be simulations or actual data which we understand particularly well. The problem is that
in most cases we do not understand a LHC dataset well enough to consider it fully labelled. What is much easier is to
determine the relative composition of such a dataset with the help of simulations, for instance 80% top jets combined with
20% QCD jets on the one hand and 10% top jets combined with 90% QCD jets on the other.
Let us go back to Sec. 1.2.1 where we looked at phase space distributions of signal and background jets or events
pS,B(x). What we observe are not labelled signal and background samples, but two mixed samples with global
signal fractions f1,2 and background fractions 1− f1,2 in our two training datasets. The mixed phase space densities p1,2

are related to the pure densities as (
p1(x)

p2(x)

)
=

(
f1 1− f1

f2 1− f2

)(
pS(x)

pB(x)

)

⇔
(
pS(x)

pB(x)

)
=

1

f1 − f2

(
1− f2 f1 − 1

−f2 f1

)(
p1(x)

p2(x)

)

⇒ pS(x)

pB(x)
=

(1− f2)p1(x) + (f1 − 1)p2(x)

−f2p1(x) + f1p2(x)
. (3.1)

The last line implies that, if we know f1,2 and can also extract the mixed densities p1,2(x) of the two training datasets, we
can compute the signal and background distributions and with them the likelihood ratio as the optimal test statistics.
Next, we can ask the question how the likelihood ratios for signal vs background classification, pS/pB , and the separation
of the two mixed samples, p1/p2, are related. This will lead us to a shortcut in our classification task,

p1(x)

p2(x)
=
f1pS(x) + (1− f1)pB(x)

f2pS(x) + (1− f2)pB(x)
=

f1
pS(x)

pB(x)
+ 1− f1

f2
pS(x)

pB(x)
+ 1− f2

d

d(pS/pB)

p1(x)

p2(x)
=

f1

[
f2
pS(x)

pB(x)
+ 1− f2

]
− f2

[
f1
pS(x)

pB(x)
+ 1− f1

]
[
f2
pS(x)

pB(x)
+ 1− f2

]2 =
f1 − f2[

f2
pS(x)

pB(x)
+ 1− f2

]2 . (3.2)
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Figure 30: Performance of the CWoLa method for the double-Gaussian toy example as a function of the signal fraction in
one of the training datasets for 100 (left) and 10000 (right) training points. Figure from Ref. [28].

The sign of this derivative is a global sign(f1 − f2) and does not change if we vary the likelihood ratios. This means the
two likelihood ratios are linked through a monotonous function, which means that we can exchange them as a test
statistics at no cost. In other words, if we are interested in an optimal classifier we can skip the translation into pS/pB and
just use the classifier between the two mixed samples, p1/p2, instead. This is an attractive option, because it means that
we do not need to know f1,2 if we are just interested in the likelihood ratio.

While this classification without labels (CWoLa) does not require use to know the signal and background fractions and is
therefore, strictly speaking, an unsupervised method, we always work under the assumption that we have a
background-dominated and a signal-dominated dataset. Moreover, any such analysis tool needs to be calibrated. If the
classification outcome is not a signal or background probability, as discussed in Sec. 2, we need to define a working point
for our classifier and determine its signal and background efficiencies. From Eq.(3.1) we see that we only need two
samples with known signal and background fractions to extract pS(x) and pB(x) for any given working point.

We illustrate the unsupervised method using the original toy model of a 1-dimensional, binned observable x and Gaussian
signal and background distributions pS,B(x) = N (x). We have three options to train a classifier on this dataset, which
means we can

1. compute the full supervised likelihood ratio pS/pB(x) from the truth distributions;
2. use Eq.(3.1) to compute the likelihood ratio from p1,2(x) and known label proportions f1,2 (LLP);
3. follow the CWoLa method and use p1/p2(x) to separate signal and background instead of the two samples.

The AUC values for the three methods are shown in Fig. 30 as a function of the signal fraction of one of the two samples,
chosen the same as the background fraction for the second sample. The horizontal dashed line indicates the
fully-supervised AUC with infinite training statistics. By construction, the AUC for full supervision is independent of f1.
The weakly supervised and unsupervised methods start coinciding with the fully supervised method as long as we stay
away from

f1 ≈ f2 ≈
1

2
. (3.3)

We can see the problem with this parameter point in Eq.(3.1), where a matrix inversion is not possible. Similarly, in
Eq.(3.2) the linear dependence of the two likelihood ratios vanishes in the same parameter point.

For jet tagging the CWoLa method becomes relevant when we cannot construct pure training samples for either
experimental or theoretical reasons. As discussed above, the standard top tagging benchmark is chosen to be well defined
theoretically and experimentally. This is different for quark vs gluon tagging. However, quark–gluon tagging is
experimentally extremely attractive, because it would for instance allow us to suppress backgrounds to the
weak-boson-fusion processes discussed in Sec. 1.2.1. On the theory side, we know that partons split into pairs of collinear
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Figure 31: Performance of the CWoLa method for quark-gluon tagging as a function of the signal fraction (left), and the
corresponding ROC curve (right). Figure from Ref. [28].

daughter partons with a probability described by the unregularized splitting kernels

P̂g←g(z) = Nc

[
z

1− z +
1− z
z

+ z(1− z)
]

P̂q←g(z) =
1

2

[
z2 + (1− z)2

]
P̂g←q(z) =

N2
c − 1

2Nc

1 + (1− z)2

z
P̂q←q(z) =

N2
c − 1

2Nc

1 + z2

1− z (3.4)

where z is the energy fraction carried by the harder of the two daughter partons which also describes the splitting P̂j←i.
The off-diagonal splitting probabilities imply that partonic quarks and gluons are only defined probabilistically, which
means any kind of quark-gluon tagging at the LHC will at most be weakly supervised. Another theoretical complication
is that quarks pairs coming for example from a large-angle gluon splitting g → qq̄ and from an electroweak decay
Z → qq̄ have different color-correlations, so they are not really identical at the single-quark level. Experimentally, it is
also impossible to define pure quark vs gluon jets samples. While most LHC jets at moderate energies are gluons, we can
use W and Z decays to collect quark jets, but some of those decays actually include three or more jets, Z → qq̄g, which
again leads us to learn from mixed samples.

We can apply CWoLa to quark-gluon tagging, using a very simple classification network based on five substructure
observables like those shown in Eq.(1.6). To simplify things, the jets are generated from hypothetical Higgs decays with
mH = 500 GeV

pp→ H → qq / qq̄ . (3.5)

Again we train the network on two mixed samples and show the results in Fig. 31. In this example, we do not extract the
likelihood ratio, but train a standard classifier to separate the two training samples by minimizing the cross entropy. We
then apply the classifier to split signal and background, so we rely on the fact that our network knows the Neyman-Pearson
lemma. For the exact relation between a trained discriminator and the likelihood ratio we refer to Sec. 4.2.1. In the left
panel we see that the AUC is again stable as long as we stay away from equally mixed training samples. In the right panel
we see that the performance of the network is as good as the same network trained on labelled data.

Another application of CWoLa would be event classification, where we associate a signal with a specific phase space
configuration which can also be generated by background processes. This is an example for LHC analyses not based on
detailed hypothesis tests. A search with a minimal model dependence is a bump hunt in the invariant mass of a given pair
of particles. Looking for a resonance decaying to two muons or jets we get away with minimum additional assumptions,
for example on the underlying production process or correlations with other particles in the final state, by letting a mass
window slide through the invariant mass distribution and searching for a feature in this smooth observable. Technically,
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we can analyse a binned distribution by fitting a background model, taking out individual bins, and checking if χ2

changes. The reason why this method works is that we have many data points in the background regions and a localized
signal region, which can be covered by the background model through interpolation. This analysis idea is precisely what
we have in mind for an enhanced classification network with weakly supervised or unsupervised training.

Looking at our usual reference process, there exists no point in the signal phase space for the process

pp→ tt̄H → tt̄ (bb̄) (3.6)

which is not also covered by the tt̄bb̄ continuum background. The only difference is that in background regions like
mbb = 50 ... 100 GeV or mbb > 150 GeV there will be hardly any signal contamination while under the Higgs mass peak
mbb ∼ 125 GeV the signal-to-background ratio will be sizeable. This separation might appear trivial, but the mass
selection will propagate into the entire phase space. This means we can use sidebands to extract the number of
background events expected in the signal region and subtract the background from the combined mbb distribution. If we
want to subtract the background event by event over the entire phase space, we need to include additional information
from the remaining phase space directions, ideally encoded in an event-by-event classifier.

For a signal-background separation using the kind of likelihood-based classifier described above we need two mixed
training samples. We can use the mbb distribution to define two event samples, one with almost only background events
and one with an enhanced signal fraction. The challenge of such a construction is that over the entire phase space the
mixed samples need to be based on the same underlying signal and background distributions pS,B(x), just with different
signal fractions f1,2, as introduced in Eq.(3.1). This means that if we assume that the distribution of all phase space
features x, with the exception of mbb, are the same for signal and background, a CWoLa classifier will detect the signal
correctly. This is a strong assumption, and we will revisit this challenge in Sec. 6.3.3 in the context of density estimation.

Finally, on a slightly philosophical note we can argue that it is difficult to separate signal from background events in a
situation where both processes are defined though transition amplitudes over phase space and will interfere. Still, in this
case we can define a background label for all events which remain in the limit of zero signal strength and a signal label to
the pure signal and the interference with the background. Note that the interference can be constructive or destructive for
a given phase space point.

3.2 Anomaly searches

The main goal of the LHC is to search for new and interesting effects which would require us to modify our underlying
theory. If BSM physics is accessible to the LHC, but more elusive than expected, we should complement our
hypothesis-based search strategies with more general approaches. For example, we can search for jets or events which
stick out by some measure, turning them into prime candidates for a BSM physics signature. If we assume that essentially
all events or jets at the LHC are described well by the Standard Model and the corresponding simulations, such an outlier
search is equivalent to searching for the most non-SM instances. The difference between these two statements is that the
first is based on unlabeled data, while the second refers to simulations and hence pure SM samples. They are equivalent if
the data-based approach effectively ignores the outliers in the definition of the background-like sample and its implicitly
underlying phase space density.

3.2.1 (Variational) autoencoders

For the practical task of anomaly searches, autoencoders (AEs) are the simplest unsupervised ML-tool. In the AE
architecture an encoder compresses the input data into a bottleneck, encoding each instance of the dataset in an abstract
space with a dimension much smaller than the dimension of the input data. A decoder then attempts to reconstruct the
input data from the information encoded in the bottleneck. This architecture is illustrated in the upper left panel of Fig. 32
and works for jets using an image or 4-vector representation. Without the bottleneck the AE could just construct an
identity mapping of a jet on itself; with the bottleneck this is not possible, so the network needs to construct a compressed
representation of the input. This should work well if the ambient or apparent dimensionality of our data representation is
larger than the intrinsic or physical dimensionality of the underlying physics.
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The loss function for such an AE can be the MSE defined in Eq.(1.25), quantifying the agreement of the pixels in an input
jet image x and the average jet image output x′, summed over all pixels,

LMSE =
1

N

N∑
i=1

|xi − x′i|
2
. (3.7)

This sum is just an expectation value over a batch of jet images sampled from the usual data distribution pdata(x),

LMSE =
〈
|x− x′|2

〉
pdata

. (3.8)

The idea behind the anomaly search is that the AE learns to compress and reconstruct the training data very well, but
different test data passed through the AE results in a large loss.

Because AEs do not induce a structure in latent space, we have no choice but to use this reconstruction uncertainty or loss
also as the anomaly score. This corresponds to a definition of anomalies as an unspecific kind of outliers. Using the latent
loss as an anomaly score leads to a conceptual weakness when we switch the standard and anomalous physics hypothesis.
For example, QCD jets with a limited underlying physics content of the massless parton splittings given in Eq.(3.4) can
be described by a small bottleneck. An AE trained on QCD jets will not be able to describe top-decay jets with their three
prongs and massive decays. Turning the problem around, we can train the AE on top jets, in which case it will be able to
describe multi-prong topologies as well as frequently occurring single-prong topologies in the top sample. QCD jets are
now just particularly simple top jets, which means that they will not lead to a large anomaly score. This bias towards
identifying more complex data is also what we expect from the standard use of a bottleneck for data compression.

Moving beyond purely reconstruction-based autoencoders, variational autoencoders (VAEs) add structure to the latent
bottleneck space, again illustrated in Fig. 32. In the encoding step, a high-dimensional data representation is mapped to a
low-dimensional latent distribution, from which the decoder learns to generate the original, high-dimensional objects.
The latent bottleneck space then contains structured information which might not be apparent in the high-dimensional
input representation. This means the VAE architecture consists of a learnable encoder with the output distribution
z ∼ pE

θ(z|x) mapping the phase space x to the latent space z, and a learnable decoder with the output distribution
x ∼ pD

θ (x|z). The loss combines two terms

LVAE =
〈
−
〈

log pD
θ (x|z)

〉
pE
θ(z|x)

+ βKLDKL[pE
θ(z|x), platent(z)]

〉
pdata

. (3.9)

The first terms is the reconstruction loss, where we compute the likelihood of the output of the decoder pD
θ (x|z) and given

the encoder pE
θ(z|x), evaluated on batches sampled from pdata. We get back the MSE version serving as the AE

reconstruction loss in Eq.(3.8) when we approximate the decoder output pD
θ (x|z) as a Gaussian with a constant width. The

second term is a latent loss, comparing the latent-space distribution from the encoder to a prior platent(z), which defines
the structure of the latent space. A more systematic deviation of the VAE loss as a likelihood loss will follow in Sec. 4.1.

For a Gaussian prior we use the so-called re-parametrization trick to pretend to sample from any multi-dimensional
Gaussian with mean µ and standard deviation σ by instead sampling from a standard Gaussian

z = µ+ σ ε with ε ∼ N (µ = 0, σ = 1) . (3.10)

For such a standard Gaussian prior platent(z) and a Gaussian encoder output pE
θ(z|x) the KL-divergence defined in

Eq.(1.68) turns into the form of Eq.(1.78)

DKL[pE
θ(z|x),N (0, 1)] =

1

2n

n∑
i=1

(
σ2
i + µ2

i − 1− 2 log σi
)
, (3.11)

where σi and µi replace the usual n-dimensional encoder output z for a given x. Combining the simple
MSE-reconstruction loss of Eq.(3.7) with this form of the latent loss gives us an explicit form of the VAE loss for a batch
of events or jet images.

Because of the structured bottleneck we now have a choice of anomaly scores, either based on the reconstruction or the
latent space. This way the VAE can avoid the drawbacks of the AE by using an alternative anomaly score to the
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Figure 32: Architectures used for AE (left) and VAE (right) networks. All convolutions use a 5x5 filter size and all layers
use PReLU activations. Downsampling from 40x40 to 20x20 is achieved by average pooling, while upsampling is nearest
neighbor interpolation. Figure from Ref. [29].

reconstruction uncertainty. We can compare the alternative choices using the standard QCD and top jet-images with a
simple preprocessing described in Sec. 2.1.2. To force the network to learn the class the jet belongs to and to be able to
visualize this information, we restrict the bottleneck size to one dimension. In the VAE case this gives us a useful
probabilistic interpretation, since the mapping to the encoded space is performed by a probability distribution pE

θ(z|x). To
simplify the training of the classifier, we train on a sample with equal numbers of top and QCD jets. We are interested in
three aspects of the VAE classifiers: (i) performance as a top-tagger, (ii) performance as a QCD-tagger, (iii) stable
encoding in the latent space. Some results are shown in Fig. 33. Compared to the AE results, the regularisation of the
VAE latent space generates as relatively stable and structured latent representation, even converging to a representation in
which the top jets are clustered slightly away from the QCD jets. On the other hand, the separation in the VAE latent
space is clearly not sufficient to provide a competitive anomaly score.

For an unsupervised signal vs background classification a natural assumption for the latent space would be a bi-modal or
multi-modal structure. This is not possible for a VAE with a unimodal Gaussian prior, but we can try imposing an
uncorrelated Gaussian mixture prior on the n-dimensional latent space. The GMVAE then minimizes the same loss as the
VAE given in Eq.(3.9). However, for the regularization term we cannot calculate the KL-divergence analytically anymore.
Instead, we estimate it using Monte Carlo integration and start by re-writing it according to its definition in Eq.(1.68)

DKL[pE
θ(z|x), platent(z)] =

〈
log pE

θ(z|x)
〉
pE
θ(z|x)

−
〈

log platent(z)
〉
pE
θ(z|x)

. (3.12)

For an arbitrary number of Gaussians the combined likelihood prior is given by

platent(z) =
∑
r

p(z; r) pr

with p(z; r) =

n∏
i=1

1√
2πσr,i

exp

(
− (zi − µr,i)2

2σ2
r,i

)
(3.13)

where pr is the weight of the respective mixture component µr,i is the mean of mixture component r = 1 ... R in
dimension i, and σ2

r,i is the corresponding variance. All means, variances, and mixture weights are learned network
parameters.

The problem with the GMVAE is that it does not work well for unsupervised classification. When training a 2-component
mixture prior on our jet dataset the mixture components tend to collapse onto a single mode. To prevent this, we need to
add a repulsive force between the modes, calculated as a function of the Ashman distance between two Gaussian
distributions in one dimension,

D2 =
2(µ1 − µ2)2

σ2
1 + σ2

2

. (3.14)
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Figure 33: Symmetric performance of the toy-AE (upper) and toy-VAE (lower). In the large panels we show the ROC
curves for tagging top and QCD as signals. In the small panels we show the distributions of top and QCD jets in the
1-dimensional latent space. Figure from Ref.[29].

A value of D > 2 indicates a clear mode separation. We encourage bi-modality in our latent space by adding the loss term

LGMVAE = LVAE − λ tanh
D

2
. (3.15)

The tanh function is meant to eventually saturate and stop pushing apart the modes. To cut the long story short, the
Gaussian mixture prior will shape the latent space for the top vs QCD application and lead to a stable training. However,
there is no increase in performance in going from the VAE to the GMVAE. The reason for this is that while the top jets
occupy just one mode in latent space, the QCD jets occupy both. The mode assignment is mostly based on the amount of
pixel activity within the jet, rather than on specific jet features. This means we need to go beyond the GMVAE in that we
need a network which distributes the signal and background into the two different modes.

3.2.2 Dirichlet-VAE

The motivation, but ultimate failure of the GMVAE leads us to another way of defining a VAE with a geometry that leads
to a mode separation. We can use the Dirichlet distribution, a family of continuous multivariate probability distributions,
as the latent space prior,

Dα(r) =
Γ(
∑
i αi)∏

i Γ(αi)

∏
i

rαi−1
i , with i = 1 ... R . (3.16)

This R-dimensional Dirichlet structure is defined on an R-dimensional simplex, which means that all but one of the r
vector components are independent and

∑
i ri = 1. In our simple example with R = 2 the latent space is described by

r1 ∈ [0, 1], with r0 = 1− r1. The weights αi > 0 can be related to the expectation values for the sampled vector
components,

〈ri〉 =
αi∑
j αj

, (3.17)
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Figure 34: Architecture for the Dirichlet VAE. The approximate Dirichlet prior is indicated by the softmax step and the
bi-modal distribution shown above it. Figure from Ref.[29].

which means that the Dirichlet prior it will create a hierarchy among different mixture components. An efficient way to
generate numbers following a Dirichlet distributions is through a softmax-Gaussian approximation,

r ∼ softmaxN (z; µ̃, σ̃) ≈ Dα(r)

with µ̃i = logαi −
1

R

∑
i

logαi

σ̃i =
1

αi

(
1− 2

R

)
+

1

R2

∑
i

1

αi
. (3.18)

The loss function of the Dirichlet-VAE (DVAE) includes the usual reconstruction loss and latent loss. For the
higher-dimensional reconstruction loss we can use the cross-entropy between the inputs and the outputs, while the latent
loss is given by the KL-divergence between the per-jet latent space representation and the Dirichlet prior. This is easily
calculated for the Gaussians in the softmax approximation of the Dirichlet distribution and the Gaussians defined by the
encoder output

LDVAE =
〈
−
〈

log pD
θ (x|r)

〉
pE
θ(r|x)

+ βKLDKL[pE
θ(r|x),Dα(r)]

〉
pdata

, (3.19)

where the KL-divergence can be evaluated using Eq.(1.78). This way, training the DVAE is essentially equivalent to the
standard VAE with its loss given in Eq.(3.9).

With a Dirichlet latent space the sampled ri can be interpreted as mixture weights of mixture components describing the
jets. If we view the DVAE as a classification tool for a multinomial mixture model, these mixture components correspond
to probability distributions over the image pixels. These distributions enter into the likelihood function of the model,
which is parameterised by the decoder network. For our 2-dimensional example, the pure component distributions are
given by pD

θ (x|r1 = 0) and pD
θ (x|r1 = 1), and any output for r1 ∈ [0, 1] is a combination of these two distributions. Our

simple decoder architecture exactly mimics this scenario.
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Figure 35: Results for the DVAE with α1,2 = 1. In the large panels we show the ROC curves for tagging top and QCD
as signal. In the small panels we show the distributions of the top and QCD jets in the latent space developed over the
training. Figure from Ref.[29].
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To compare with the AE and VAE studies in Fig. 33 we can again train the DVAE on a mixture of QCD and top jets. We
look for symmetric patterns in QCD and top tagging and show the latent space distributions in Fig. 35. First of all, the
DVAE combined with its latent-space anomaly score identifies anomalies in both directions. The reason for this can be
seen in the latent space distributions, which quickly settles into a bi-modal pattern with equal importance given to both
modes. The QCD mode peaks at r1 = 0, indicating that the pD

θ (x|r1 = 0) mixture describes QCD jets, while the top
mode peaks at r1 = 1, indicating that the pD

θ (x|r1 = 1) mixture describes top jets. This means that a DVAE indeed solves
the fundamental problem of detecting anomalies symmetrically and without the complexity bias of the standard AE
architecture.

3.2.3 Normalized autoencoder

The problem with AE and VAE applications to anomaly searches leads us to the question what it means for a jet to be
anomalous. While the AE only relies on a bottleneck and the compressibility of the jet features, the DVAE adds the
notion of a properly defined latent space. However, Eq.(3.19) still combines an MSE-like reconstruction loss with a
shaped latent space, falling short of the kind of likelihood losses or probabilistically interpretable losses we have learned
to appreciate. A normalised autoencoder (NAE) goes one step further and constructs a statistically interpretable latent
space, a bridge from an out-of-distribution definition of anomalies to density-based anomalies.

We start by introducing energy-based models (EBMs), a class of models which can estimate probability densities
especially well. They are defined through a normalizable energy function, which is minimized during training. The
energy function can be chosen as any non-linear mapping of a phase space point to a scalar value,

Eθ(x) : RD → R , (3.20)

where D is the dimensionality of the phase space. This kind of mapping of a complex and often noisy distribution to a
single system energy can be motivated from statistical physics.

The EBM uses this energy function to define the loss based on a Boltzmann distribution describing the probability density
over phase space

pθ(x) =
e−Eθ(x)

Zθ
with Zθ =

∫
x

dxe−Eθ(x) , (3.21)

with the partition function Zθ. The main practical feature of a Boltzmann distribution is that low-energy states have the
highest probability. Furthermore, the Boltzmann distribution has two advantages: first, it can easily be integrated, which
means we can at least hope to compute Zθ. Second, it can be singled out as the probability distribution pθ(x) which gives
the largest entropy

S = −
∫
dx pθ(x) log pθ(x) , (3.22)

translating into a large model flexibility. Going beyond our usual likelihood loss, the loss of our normalized AE is the
negative logarithmic probability

LNAE = −
〈

log pθ(x)
〉
pdata

=
〈
Eθ(x) + logZθ

〉
pdata

, (3.23)

where we define the total loss as the expectation value over the per-sample loss. Unlike for the VAE, the loss really
minimizes the posterior of the data distribution to be correct, as a function of the network parameters θ; this is nothing but
a likelihood loss. The difference between the EBM and typical implementations of likelihood-ratio losses is that we do
not use Bayes’ theorem and a prior, so the normalization term depends on θ and becomes part of the training.

To train the network we want to minimize the loss in Eq.(3.23), so we have to compute the gradient of the full probability,

−∇θ log pθ(x) = ∇θEθ(x) +∇θ logZθ

= ∇θEθ(x) +
1

Zθ
∇θ
∫
x

dxe−Eθ(x)

= ∇θEθ(x)−
∫
x

dx
e−Eθ(x)

Zθ
∇θEθ(x)

= ∇θEθ(x)−
〈
∇θEθ(x)

〉
pθ
. (3.24)
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The first term in this expression can be obtained using automatic differentiation from the training sample, while the
second term is intractable and must be approximated.

In the minimization of the loss we evaluate the gradient of the loss as the expectation value over pdata(x). This allows us
to rewrite the gradient of the loss as the difference of two energy gradients〈

−∇θ log pθ(x)
〉
pdata

=
〈
∇θEθ(x)

〉
pdata

−
〈
∇θEθ(x)

〉
pθ
. (3.25)

The first term samples from the training data, the second from the model. According to the sign of the energy in the loss
function, the contribution from the training dataset is referred to as positive energy and the contribution from the model as
negative energy. There are three ways to to look at the second term, induced by the normalization constant Zθ, in the loss
gradient: (i) as a normalization which ensures that the loss vanishes for pθ(x) = pdata(x), similar to the usual likelihood
ratio loss of Eq.(2.3); (ii) as a sampling covering both, the data distribution and the model distribution, a little like a
forward and reverse KL-divergence; and (iii) as a background structure into the minimization of the likelihood
minimization.

Looking at the loss in Eq.(3.25) we can identify the training as a minmax problem, where we minimize the energy (or
MSE) of the training samples and maximize the energy (or MSE) of the modelled samples. While the energy of training
data points is pushed downwards, the energy of points sampled from the model distribution will be pushed upwards. For
instance, if pθ(x) reproduces pdata(x) over most of the phase space x, but pθ(x) includes an additional mode, the phase
space region corresponding to this extra mode will be assigned large Eθ(x) through the minimization of the loss. This
process of adjusting the energy continues until the model reaches the equilibrium in which the model distribution is
identical to the training data distribution.

One practical way of sampling from pθ(x) is to use Markov-Chain Monte Carlo (MCMC). The NAE uses Langevin
Markov Chains, where the steps are defined by drifting a random walk towards high probability points according to

xt+1 = xt + λx∇x log pθ(x) + σxεt with εt ∼ N (0, 1) . (3.26)

Here, λ is the step size and σ the noise standard deviation. When 2λ = σ2 the equation resembles Brownian motion and
gives exact samples from pθ(x) in the limit of t→ +∞ and σ → 0.

For ML applications working on images, the high dimensionality of the data makes it difficult to cover the entire physics
space x with Markov chains of reasonable length. For this reason, it is common to use shorter chains and to choose λ and
σ to place more weight on the gradient term than on the noise term. If 2λ 6= σ2, this is equivalent to sampling from the
distribution at a different temperature

T =
σ2

2λ
. (3.27)

By upweighting λ or downweighting σ we are effectively sampling from the distribution at a low temperature, thereby
converging more quickly to the modes of the distribution.

Despite the well-defined algorithm, training EBMs is difficult due to instabilities arising from (i) the minmax
optimization, with similar dynamics to balancing a generator and discriminator in a GAN; (ii) potentially biased sampling
from the MCMC due to a low effective temperature; and (iii) instabilities in the LMC chains. Altogether, stabilizing the
training during its different phases requires serious effort.

Because the EBM only constructs a normalized probability loss based on whatever energy function we give it, we can
upgrade a standard AE with the encoder-decoder structure,

fθ(x) : RD → RDz → RD . (3.28)

The training minimizes the per-pixel difference between the original input and its mapping, so we upgrade the AE to a
probabilistic NAE by using the MSE as the energy function in Eq.(3.20)

Eθ(x) = MSE = |x− fθ(x)|2 . (3.29)

By using the reconstruction uncertainty as the energy, the model will learn to poorly reconstruct inputs not in the training
distribution. This way it guarantees the behavior of the model all over phase space, especially in the region close to but
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Figure 36: Equirectangular projection of the latent space after pre-training (upper) and after NAE training (lower). The x-
and y-axis are the longitude and latitude on the latent sphere. We train on QCD jets (left) and on top jets (right). The lines
represent the path of the LMCs in the current iteration. Figure from Ref. [30].

not in the training data distribution. We cannot give such a guarantee for a standard AE, which only sees the training
distribution and could assign arbitrary reconstruction scores to data outside this distribution.

For the training of the NAE, specifically the estimation of the normalization Zθ we complement the standard MCMC in
phase space with the mapping between latent and phase spaces provided by the AE. If we accept that different
initializations of the MCMC defined in Eq.(3.26) lead to different results, we can tune λx and σx in such a way that we
can use a sizeable number of short, non-overlapping Markov chains. Next, we apply On-Manifold Initialization (OMI). It
is motivated by the observation that sampling the full data space is inefficient due to its high dimensionality, but the
training data lies close to a low-dimensional manifold embedded in the data space x. All we need to do is to sample close
to this manifold. Since we are using an AE this manifold is defined implicitly as the image of the decoder network,
meaning that any point in the latent space z passed through the decoder will lie on the manifold. This means we can first
focus on the manifold by taking samples from a suitably defined distribution in the low-dimensional latent space, and then
map these samples into data space via the decoder. After that, we perform a series of MCMC steps in the full ambient data
space to allow the Markov chains to minimize the loss around the manifold. During the OMI it is crucial that we cover the
entire latent space, thus a compact latent space is preferable. For this purpose we normalize the latent vectors so that they
lie on the surface of a hypersphere SDz−1, allowing for a uniform sampling of the initial batch in the latent space.

As usual, we apply the NAE to unsupervised top tagging, after training on QCD jets only, and vice versa. For the latent
space dimension we use Dz = 3, which allows us to visualize the latent space nicely. Before starting the NAE training we
pre-train the network using the standard AE procedure with the standard MSE loss. In the upper panels of Fig. 36 we
show a projection of the latent space after training the usual AE. In the left panels we train on the simpler QCD
background, which means that the latent space has a simple structure. The QCD jets are distributed widely over the
low-energy region, while the anomalous top jets cluster slightly away from the QCD jets. This changes when we train on
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Figure 37: Distribution of the MSE after training on QCD jets (left) and on top jets (right). We show the MSE for QCD
jets (blue) and top jets (orange) in both cases. Figure from Ref. [30].

the more complex top jets, as shown in the right panels. The latent MSE-landscape reflects this complex structure with
many minima, and top jets spread over most of the sphere. After the NAE training, only the regions populated by training
data have a low MSE. The sampling procedure has shaped the decoder manifold to correctly reconstruct only training jet
images. For both training directions, the Markov chains move from a uniform distribution to mostly cover the region with
low MSE, leading to an improved separation of the respective backgrounds and signals.

To show how the NAE works symmetrically for anomalous tops and for anomalous QCD jets, we can look at the
respective MSE distributions. In the left panel of Fig. 37 we first see the result after training the NAE on QCD jets. The
MSE values for the background are peaked strongly, cut off below 4 · 10−5 and with a smooth tail towards larger MSE
values. The MSE distribution for top jets is peaked at larger values, and again with an unstructured tail into the QCD
region. Alternatively, we see what happens when we train on top jets and search for the simpler QCD jets as an anomaly.
In the right panel of Fig. 37 the background MSE is much broader, with a significant tail also towards small MSE values.
The QCD distribution develops two distinct peaks, an expected peak in the tail of the top distribution and an additional
peak under the top peak. The fact that the NAE manages to push the QCD jets towards larger MSE values indicates that
the NAE works beyond the compressibility ordering of the simple AE. However, the second peak shows that a fraction of
QCD jets look just like top jets to the NAE.

The success of the NAE shows that anomaly searches at the LHC are possible, but we need to think about the definition of
anomalous jets and are naturally lead to phase space densities. This is why we will leave the topic of anomaly searches
for now, work on methods for density estimation, and return to the topic in Sec. 6.3.3.
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4 Generation and simulation

In the previous chapters we have discussed mainly classification using modern machine learning, using all kinds of
supervised and unsupervised training. We have seen how this allows us to extract more complete information and
significantly improve LHC analyses. However, classification is not the same as modern analyses in the sense that particle
physics analyses have to be related to some kind of fundamental physics question. This means we can either measure a
fundamental parameters of the Standard Model Lagrangian, or we can search for physics beyond the Standard Model.
Measuring a Wilson coefficient or coupling of the effective field theory version of the Standard Model is the modern way
to unify these two approaches. To interpret LHC measurements in such a theory framework the central tool are
simulations — how do we get from a Lagrangian to a prediction for observed LHC events in one of the detectors?

Simulations, or event generation based on perturbative QFT is where modern machine learning benefits the theory side of
particle physics most. Their input to our simulations is a Lagrangian, from which we can extract Feynman rules, which
describe the interactions of the particles we want to produce at the LHC. Using these Feynman rules we then compute the
transition amplitudes for the partonic LHC process at a given order in perturbation theory. We have learned how to
approximate these amplitudes with NN-surrogates in Sec. 1.3.1. As illustrated in Fig. 2 this includes the production and
decays, if we want to separate them, as well as the additional jet radiation from the partons in the initial and final states.
Just as the parton splittings forming jets, discussed in Sec. 2.1.1, this part of the simulation is described by the QCD
parton splittings. Fragmentation, of the formation and decay of hadrons out of partons is, admittedly, the weak spot of
perturbative QCD when it comes to LHC predictions. Finally, we need to describe the detector response through a
precision simulation, which is historically in the hands of the experimental collaborations. For theory studies we rely on
fast detector simulations, like Delphes, as mentioned in our discussion of the top tagging dataset in Sec. 2.1.3. It turns out
that from an ML-perspective event generation and detector simulations are similar tasks, requiring the same kind of
generative networks introduced in this section.

The concept which allows us to apply modern machine learning to LHC event generation and simulations is generative
networks. To train them, we start with a dataset which implicitly encodes a probability density over a physics or phase
space. A generative network learns this underlying density and maps it to a latent space from which we can then sample
using for example flat or Gaussian random numbers,

r ∼ platent(r) → x = fθ(r) ∼ pmodel(x) ≈ pdata(x) . (4.1)

The last step represents the network training, for instance in terms of a variational approximation. A typical latent
distribution is the standard multi-dimensional Gaussian,

platent(r) = N (0, 1) . (4.2)

Generative networks allow us to produce samples following a learned distribution. The generated data should then have
the same form as the training data, in which case the generative network will produce statistically independent samples
reproducing the implicit underlying structures of the training data. Because we train on a distribution of events and there
are no labels or any other truth information about the learned phase space density, generative network training is
considered unsupervised.

If the network is trained to learn a phase space density, we expect generative networks to require us to compare different
distributions, for instance the training distributions pdata(x) and the encoded density pmodel(x). We already know one way
to compare the actual and the generated phase space densities from Eq.(1.69). However, the KL-divergence is only one
way to compare such a probability distributions and part of a much bigger field called optimal transport. We remind
ourselves of the definition of the KL-divergence,

DKL[pdata, pmodel] =

〈
log

pdata(x)

pmodel(x)

〉
pdata

=

∫
dx pdata(x) log

pdata(x)

pmodel(x)
, (4.3)

The KL-divergence between two identical distributions is zero. A disadvantages of this measure is that it is not
symmetric, which in the above form means that phase space regions where we do not have data will not contribute to the
comparison of the two probability distributions. Two distributions with zero overlap have infinite KL-divergence. If the
asymmetric form of the KL-divergence turns out to be a problem, we can easily repair it by introducing the
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Jensen-Shannon divergence

DJS[pdata, pmodel] =
1

2

[
DKL

[
pdata,

pdata + pmodel

2

]
+DKL

[
pmodel,

pdata + pmodel

2

]]
=

1

2

[∫
dx pdata(x) log

2pdata(x)

pdata(x) + pmodel(x)
+

∫
dx pmodel(x) log

2pmodel(x)

pdata(x) + pmodel(x)

]
=

1

2

∫
dx

[
pdata(x) log

pdata(x)

pdata(x) + pmodel(x)
+ pmodel(x) log

pmodel(x)

pdata(x) + pmodel(x)

]
+ log 2

≡ 1

2

〈
log

pdata(x)

pdata(x) + pmodel(x)

〉
pdata

+
1

2

〈
log

pmodel(x)

pdata(x) + pmodel(x)

〉
pmodel

+ log 2 . (4.4)

The JS-divergence between two identical distributions also vanishes, but because it samples from both, pdata and pmodel, it
will not explode when the distributions have zero overlap. Instead, we find in this limit

DJS[pdata, pmodel]→
1

2

∫
dx

[
pdata(x) log

pdata(x)

pdata(x)
+ pmodel(x) log

pmodel(x)

pmodel(x)

]
+ log 2 = log 2 . (4.5)

On thing the KL-divergence and the JS-divergence have in common is that they calculate the difference between two
distributions based on the log-ratio of two functional values. Consequently, they reach their maximal values for two
distributions with no overlap in x, no matter how the two distributions look. This is counter-intuitive, because a distance
measure should notice the difference between two identical and two very different distributions with vanishing overlap,
for instance a two Gaussians vs a Gaussian and a double-Gaussian. This brings us to the next distance measure, which is
meant to work horizontally in the sense that it guarantees for example

W [pdata(x), pmodel(x) = pdata(x− a)] ≈ a . (4.6)

This Wasserstein distance or earth mover distance can be most easily defined for weighted sets of points defining each of
the two distributions pdata(x) and pmodel(y) in a discretized description

Mdata =

N1∑
i=1

pdata,iδxi and Mmodel =

N2∑
j=1

pmodel,jδyj . (4.7)

We then define a preserving transport strategy as a matrix relating the two sets, namely

πij ≥ 0 with
1

N2

∑
j

πij = pdata,i
1

N1

∑
i

πij = pmodel,j . (4.8)

The first normalization condition ensures that all entries in the model distributions j combined with the data entry i
reproduce the full data distribution, the second normalization condition works the other way around. We define the
distance between the two represented distributions as

W [pdata, pmodel] = min
π

1

N1N2

∑
i,j

|xi − yj | πij , (4.9)

where the minimum condition implies that we choose the best transport strategy. For our example from Eq.(4.6) with two
identical functions this strategy would give xi − yj = a. Alternatively, we can write the Wasserstein distance as an
expectation value of the distance between two points. This distance has to be sampled over the combined probability
distributions and then minimized over the so-called transport plan,

W [pdata, pmodel] = min
〈
|x− y|

〉
pdata(x),pmodel(y)

(4.10)

From the algorithmic definition we see that computing the Wasserstein distance is expensive and scales poorly with the
number of points in our samples. We will see that these three different distances between distributions can be used for
different generative networks, to learn and then sample from an underlying phase space distribution.
Finally, if we want to test the performance of a generative network a classifier or discriminator trained to distinguish
training data and generated data seems an obvious choice. As a matter of fact, this kind of comparison can already be part
of the network training, as we will see in Secs. 4.2 and 4.3.2. the reason why we are mentioning this here is that the
Neyman-Pearson lemma tells us that in this case the discriminator has to learn the likelihood ratio or a simple variation of
it. For a generative network over phase space this means we can extract the scalar field pmodel(x)/pdata(x) as the
unsupervised counterpart to the agreement between a regression network and its training data from Eq.(1.96).
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4.1 Variational autoencoders

We studied autoencoders and variational autoencoders already in Sec. 3.2.1, with the idea to map a physics space onto
itself with an additional bottleneck (AE) and an induced latent space structure in this bottleneck (VAE). Looking at their
network architecture from a generative network point of view, we can also sample from this latent space with
corresponding random numbers, for instance with a multi-dimensional Gaussian distribution. In that case the decoder part
of the VAE will generate events corresponding to the properties translated from the input phase space to the latent space
through the encoder. This means we already know one simple generative network.

In Sec. 3.2.1 we introduced the two-term VAE loss function somewhat ad hoc and without any reference to a probability
distribution or a stochastic justification. Let us now tackle it a little more systematically. We start by assuming that we
know the data x and implicitly its probability distribution pdata(x). We also want to enforce a given latent distributions
platent(r). In that case the the encoder generates according to the conditional probability pmodel(r|x), while the generator is
described by pmodel(x|r).

We start with the encoder training, which should approximate something like pmodel(r|x) ∼ platent(r). However, this
condition cannot be the final word, since it misses the conditional structure. To formally defined the encoder training we
resort to the variational approximation from Sec. 1.2.6, specifically Eq.(1.66). This means we train a conditional encoder
network to approximate the reference distribution p(r|x), which we can define using Bayes’ theorem

pmodel(r|x) ≈ p(r|x) ≡ pmodel(x|r) platent(r)

pdata(x)
. (4.11)

The target distribution combines the conditional generator with the known latent distribution, the data distribution
corresponding to the evidence. As before, we construct this approximation using the KL-divergence of Eq.(1.68),

DKL[pmodel(r|x), p(r|x)] =

〈
log

pmodel(r|x)

p(r|x)

〉
pmodel(r|x)

=

〈
log pmodel(r|x)− log

pmodel(x|r)platent(r)

pdata(x)

〉
pmodel(r|x)

= −
〈

log pmodel(x|r)
〉
pmodel(r|x)

+
〈

log pmodel(r|x)− log platent(r)
〉
pmodel(r|x)

+ log pdata(x)

= −
〈

log pmodel(x|r)
〉
pmodel(r|x)

+DKL[pmodel(r|x), platent(r)] + log pdata(x) . (4.12)

As before, the evidence pdata is independent of our network training, which means we can use DKL[pmodel(r|x), p(r|x)]
modulo the last term as the VAE loss function. Also denoting that everything is always evaluated on batches of events
from the training dataset we reproduce Eq.(3.9), namely

LVAE =
〈
−
〈

log pmodel(x|r)
〉
pmodel(r|x)

+ βKLDKL[pmodel(r|x), platent(r)]
〉
pdata

. (4.13)

We introduce the parameter βKL to allow for a little more flexibility in balancing the two training tasks which are
otherwise linked through Bayes’ theorem. Just like the Bayesian network, the VAE loss function derived through the
variational approximation includes a KL-divergence as a regularization.

As mentioned before, the structure of the latent space r, from which we sample, is introduced by the prior
platent(r) = N (0, 1) If we control the r-distribution, we can consider the conditional decoder pmodel(x|r) a generative
network producing events with the probability we desire. The problem with variational AEs in particle physics is that they
rely on the assumption that all features in the data can be compressed into a low-dimensional and limited latent space. In
the mix of expressivity and achievable accuracy VAEs are usually not competitive with the other generative network
architectures we will discuss next. An exception might be detector simulations, where the underlying physics of
calorimeter showers is simple enough to be encoded in a low-dimensional latent space, while the space of detector output
channels is huge.
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4.2 Generative Adversarial Networks

In our discussion of the VAE we have seen that generative networks are structurally more complex then regression or
classification networks. In the language of probability distributions and likelihood losses, we need a generator or decoder
network which relies on a conditional probability pmodel(x|r) for the target phase space distribution x given the
distribution of the incoming random numbers r. For the VAE we used the variational inference trick to construct this
latent representation.

An alternative way to learn the underlying density is to combine two networks with adversarial training. Adversarial
training means we combine two loss functions

Ladv = L1 − λL2 , (4.14)

where the first loss can for example train a classifier and the second term can compute an observable we want to
decorrelate. The second network uses the information from the first, classifier network. Because of the negative sign the
two sub-networks will now play with each other to find a combined minimum of the loss function. An excellent classifier
with small L1 will use and correctly reproduce the to-be-decorrelation variable, implying also a small L2. However, for
large enough λ the two networks can also work towards a smaller combined loss, where the classifier becomes less
ambitious, indicated by a finite L1, but compensated by an even larger L2. This balanced gain works best if the classifier
is trained as well as possible, but leaving out precisely the aspects which allow for large values of L2. The two networks
playing against each other will then find a compromise where variables entering L2 are ignored in the classifier training
represented by L1.

Mathematically, the constructive balance or compromise of two players is called a Nash equilibrium. Varying the
coupling λ we can strengthen and weaken either of the two sub-networks, a stable Nash equilibrium means that without
much tuning of λ the two networks settle into a combined minimum. This does not have to be the case, a combination of
two networks can of course be unstable in the sense that depending on the size of λ either L1 or L2 wins. Another danger
in adversarial training is that the adversary network might force the original network to construct nonsense solutions,
which we have not thought about, but which formally minimize the combined loss. In the beginning of Sec. 4 we have
observed a mechanism which can lead to such poor solution, where the KL-divergence is insensitive to a massive
disagreement between data and network, as long as the distribution we sample from in Eq.(4.3) vanishes. In this section
we will use adversarial training to construct a generative network.

4.2.1 Architecture

Similar to the VAE structure, the first element of a generative adversarial network (GAN) is the learned generator, just
like the VAE decoder

pmodel(x|r)
∣∣∣∣∣
platent(r)=N (0,1)

. (4.15)

Now the latent space r is replaced by a random number generator for r, following some simple Gaussian or flat
distribution. The argument x is the physical phase space of a jet, a scattering process at the LHC, or a detector output. We
remind ourselves that (unweighted) events are nothing but positions in phase space. The difference to the VAE is that we
do not train the generator as an inversion or encoder, but use an adversarial loss function like the one shown in Eq.(4.14).
The GAN architecture is illustrated in Fig. 38.

We know from Sec. 2 that it is not hard to train a classification network for jets or events, which means that given a
reference dataset pdata(x) and a generated dataset pmodel(x) we can train a discriminator or classification network to tell
apart the true data and the generated data phase space point by phase space point. This discriminator network is trained to
give

D(x) =

{
0 generated data
1 true data

(4.16)
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and values in between otherwise. If our discriminator is set up as a proper classification network, its output can be
interpreted as the probability of an event being true data. Given a true dataset and a generated dataset, we can train the
discriminator to minimize any combination of〈

1−D(x)
〉
pdata

and
〈
D(x)

〉
pmodel

. (4.17)

For a perfectly trained discriminator both terms will vanish. On the other hand, we know from Sec. 2 that the loss
function for such classification task should be the cross entropy, which motivates an ansatz for the discriminator loss

LD =
〈
− logD(x)

〉
pdata

+
〈
− log[1−D(x)]

〉
pmodel

= −
∫
dx
[
pdata(x) logD(x) + pmodel(x) log(1−D(x))

]
. (4.18)

Comparing this form to the two objectives in Eq.(4.17) we simply enhance the sensitivity by replacing 1−D → − logD.
The loss is always positive, and a perfect discriminator will produce zeros for both contributions. From the discriminator
loss, we can compute the optimal discriminator output

δ

δD

[
pdata(x) logD + pmodel(x) log(1−D)

]
=
pdata(x)

D
− pmodel(x)

1−D = 0

⇔ Dopt(x) pmodel(x) = (1−Dopt(x)) pdata(x)

⇔ Dopt(x) =
pdata(x)

pdata(x) + pmodel(x)
, (4.19)

assuming that the maximum of the integrand also maximizes the integral because of the positive probability distributions.
In general, this formula says that the optimal discriminator is given by the ratio of the two likelihoods. This results is
much more generally known as the Neyman-Pearson lemma. It tells us that the ratio of the two likelihoods is the most
powerful test statistic to distinguish the two underlying hypotheses, defined as the smallest false negative error for a given
false positive rate. This provides us with a statistically deep and extremely useful link between classification networks
and density estimation for instance through generative networks. Using a classifier to extract a likelihood ratio is called
the likelihood ratio trick.

To train the generator network pmodel(x|r) we now use our adversarial idea. The trained discriminator encodes the
agreement of the true and generated datasets, and all we need to do is evaluate it on the generated dataset

LG =
〈
− logD(x)

〉
pmodel

. (4.20)

This loss will vanish when the discriminator (wrongly) identifies all generated events as true events with D = 1.

In our GAN application this discriminator network gets successively re-trained for a fixed true dataset and evolving
generated data. In combination, training the discriminator and generator network based on the losses of Eq.(4.18)

Generator{r} {xG} {xT } MC Data

DiscriminatorLG

LD

Figure 38: Schematic diagram for a GAN. The input {r} describes a batch of random numbers, {x} denotes a batch of
phase space points sampled either from the generator or the training data.
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and (4.20) in an alternating fashion forms an adversarial problem which the two networks can solve amicably. The Nash
equilibrium between the losses implies, just like in Eq.(4.14), that a perfectly trained discriminator cannot tell apart the
true and generated samples.

To match the literature, we can merge the two GAN losses Eq.(4.18) and Eq.(4.20) into one formula. For the discriminator
loss in Eq.(4.18) we replace the sampling x ∼ pmodel(x) with a sampling r ∼ platent(r) and the generator x = G(r),

LD =
〈
− logD(x)

〉
pdata

+
〈
− log[1−D(G(r))]

〉
platent

(4.21)

For the generator loss in Eq.(4.20) we use the fact that minimizing − logD is the same as maximizing logD or
minimizing log(1−D) in the range D ∈ [0, 1],

LG =
〈
− logD(G(r))

〉
platent

∼
〈

log[1−D(G(r))]
〉
platent

. (4.22)

The ∼ indicates that the two functions will lead to the same result in the minimization, but we will see later that they
differ by a finite amount. After modifying the generator loss we can write the two optimizations for the discriminator and
generator training as a min-max game

min
G

max
D

〈
logD(x)

〉
pdata

+
〈

log[1−D(G(r))]
〉
platent

. (4.23)

Finally, we can evaluate the discriminator and generator losses in the limit of the optimally trained discriminator given in
Eq.(4.19),

LD → −
〈

logDopt(x)
〉
pdata
−
〈

log[1−Dopt(x)]
〉
pmodel

= −
〈

log
pdata(x)

pdata(x) + pmodel(x)

〉
pdata

−
〈

log
pmodel(x)

pdata(x) + pmodel(x)

〉
pmodel

≡ −2DJS[pdata, pmodel] + 2 log 2 , (4.24)

just inserting the definition in Eq.(4.4). It shows where the GAN will be superior to the KL-divergence-based VAE,
because the JS-divergence is more efficient at detecting a mismatch between generated and training data. For the same
optimal discriminator the modified generator loss from Eq.(4.22) becomes

LG →
〈

log(1−Dopt(x))
〉
pmodel

=

〈
log

2pmodel(x)

pdata(x) + pmodel(x)

〉
pmodel

− log 2

≡ DKL

[
pmodel,

pdata + pmodel

2

]
− log 2 . (4.25)

For a perfectly trained discriminator and generator the Nash equilibrium is given by

pdata(x) = pmodel(x) ⇒ LD = 2 log 2 and LG = − log 2 (4.26)

We can find the same result from the original definitions of Eq.(4.18) and (4.20), using our correct guess that the perfect
discriminator in the Nash equilibrium is constant, namely

D(x) =
1

2
⇒ LD = − log

1

2
− log

1

2
= 2 log 2

LG = − log
1

2
= log 2 . (4.27)

The difference in the value for the generator loss correspond to the respective definitions in Eq.(4.21) and (4.22).

The fact that the GAN training searches for a generator minimum given a trained discriminator, which is different from the
generator-alone training, leads to the so-called mode collapse. Starting from the generator loss, we see in Eq.(4.20) that it
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only depends on the discriminator output evaluated for generated data. This means the generator can happily stick to a
small number of images or events which look fine to a poorly trained discriminator. In the discriminator loss in Eq.(4.18)
the second term will, by definition, be happy with this generator output as well. From our discussion of the KL-divergence
we know that the first term in the discriminator loss will also be fine if large gradients of logD(x) only appear in regions
where the sampling through the training dataset pdata(x) is poor, which means for example unphysical regions.

After noticing that the JS-divergence of the GAN discriminator loss improves over the KL-divergence-base VAE, we can
go one step further and use the Wasserstein distance between the distributions pdata and pmodel. The Wasserstein distance
of two non-intersecting distributions grows roughly linearly with their relative distance, leading to a stable gradient.
According to the Kantorovich-Rubinstein duality, the Wasserstein distance between the training and generated
distributions is given by

W (pdata, pmodel) = max
D

[〈
D(x)

〉
pdata
−
〈
D(x)

〉
pmodel

]
. (4.28)

For the WGAN the discriminator is also called critic. The definition of the Wasserstein distance involves a maximization
in discriminator space, so the discriminator has to be trained multiple times for each generator update. A 1-Lipschitz
condition can be enforced through a maximum value of the discriminator weights. It can be be replaced by a gradient
penalty, as it is used for regular GANs.

4.2.2 Event generation

As discussed in Sec. 1.1.3, event generation is at the heart of LHC theory. The standard approach is Monte Carlo
simulation, as indicated in Fig. 2, and in this section we will describe how it can be supplemented by a generative
network. There are several motivations for training a generative network on events: (i) we can use such a network to
efficiently encode and ship standard event samples, rather than re-generating them every time a group needs them; (ii) we
will see in Sec 4.2.3 that we can typically produce several times as many events using a generative network than used for
the training; (iii) understanding generative networks for events allows us to test different ML-aspects which can be used
for phase space integration and generation; (iv) we can train generative network flexibly at the parton level or at the jet
level; (v) finally, we will describe potential applications in the following sections and use generative networks to construct
inverse networks.

The training dataset for event-generation networks are unweighted events, in other words phase space points whose
density represents a probability distribution over phase space. One of the standard reference processes is top pair
production including decays,

pp→ t∗t̄∗ → (bW+∗) (b̄W−∗)→ (bud̄) (b̄ūd) (4.29)

The star indicates on-shell intermediate particles, described by a Breit-Wigner propagator and shown in the Feynman
diagrams

Generator{r}, {m} {xG} {xT } MC Data

DiscriminatorMMD2

LG LD

Figure 39: Schematic diagram for an event-generation GAN. It corresponds to the generic GAN architecture in Fig. 38,
but adds the external masses to the input and the MMD loss defined in Eq.(4.33).



82 4 GENERATION AND SIMULATION

q

q̄

t

t
W

W

d̄

u

b

b

ū
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For intermediate on-shell particles the denominator of the respective propagator is regularized by extending it into the
complex plane, with a finite imaginary part [3]∣∣∣∣ 1

s−m2 + imΓ

∣∣∣∣2 =
1

(s−m2)2 +m2Γ2
. (4.30)

By cutting the corresponding self-energy diagrams, Γ can be related to the decay width of the intermediate particle. In the
limit Γ� m we reproduce the factorization into production rate and branching ratio, combined with the on-shell phase
space condition

lim
Γ→0

Γpart

(s−m2)2 +m2Γ2
= Γpart

π

Γ
δ(s−m2) = πBRpart δ(s−m2) (4.31)

For a decay coupling g the width scales like Γ ∼ mg2, so weak-scale electroweak particles have widths in the GeV-range,
which means means the Breit-Wigner propagators for top pair production define four sharp features in phase space.

As a first step we ignore additional jet radiation, so the phase space dimensionality of the final state is constant. Each
particle in the final state is described by a 4-vector, which means the tt̄ phase space has 6× 4 = 24 dimensions. If we are
only interested in generating events, we can ignore the detailed kinematics of the initial state, as it will be encoded in the
training data. However, we can simplify the phase space because all external particles are on their mass shells and we can
compute their energies from their momenta,

p2 = E2 −m2 ⇔ E =
√
p2 +m2 , (4.32)

leaving us with an 18-dimensional phase space and six final-state masses as constant input to the network training.
Another possible simplification would be to use transverse momentum conservation combined with the fact that the
incoming partons have no momentum in the azimuthal plane. We will now use this additional condition in the network
training and instead use it to test the accuracy of the network. A symmetry we could use is the global azimuthal angle of
the process and replacing the azimuthal angles of all final state particle with an azimuthal angle difference to one
reference particle.

The main challenge of training a GAN to learn and produce tt̄ events is that the Breit-Wigner propagators strongly
constrain four of the 18 phase space dimensions, but those directions are hard to extract from a generic parametrization of
the final state. To construct the invariant mass of each of the tops the discriminator and generator have to probe a
9-dimensional part of the phase space, where each direction covers several 100 GeV to reproduce a top mass peak with its
width Γt = 1.5 GeV. For a given LHC process and its Feynman diagrams we know which external momenta form a
resonance, so we can construct the corresponding invariant mass and give it to the neural network to streamline the
comparison between true and generated data. This is much less information than we usually use in Monte Carlo
simulations, where we define an efficient phase space mapping from the known masses and widths of every intermediate
resonance.

One way to focus the network on a low-dimensional part of the phase space is the maximum mean discrepancy (MMD)
combined with a kernel-based method to compare two samples drawn from different distributions. Using one batch of
training data points and one batch of generated data points, it computes a distance between the distributions as

MMD2(pdata, pmodel) =
〈
k(x, x′)

〉
x,x′∼pdata

+
〈
k(y, y′)

〉
y,y′∼pmodel

− 2
〈
k(x, y)

〉
x∼pdata,y∼pmodel

, (4.33)

where k(x, y) can be any positive definite, narrow kernel function. Two identical distributions lead to MMD(p, p) = 0
given enough statistics. Inversely, if MMD(pdata, pmodel) = 0 for randomly sampled batches, the two distributions have to
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Figure 40: Upper: transverse momentum distributions of the final-state b-quark and the decaying top quark for MC truth
and the GAN. The lower panels give the bin-wise ratios and the relative statistic uncertainty on the cumulative number
of events in the tail of the distribution for our training batch size. Lower: comparison of different kernel functions and
varying widths for reconstructing the invariant W -mass. Figure from Ref.[31].

be identical pdata(x) = pmodel(x). The shape of the kernels determines how local the comparison between the two
distributions is evaluated, for instance though a Gaussian kernel with exponentially suppressed tails or a Breit-Wigner
with larger tails. The kernel width becomes a resolution hyperparameter of the combined network. We can include the
MMD loss to the generator loss of Eq.(4.20),

LG → LG + λMMD MMD2 , (4.34)

with a properly chosen coupling λ, similar to the parton density loss introduced in Sec. 1.3.2. The modified GAN setup
for event generation is illustrated in Fig. 39.

To begin with, we can look at relatively flat distributions like energies, transverse momenta, or angular correlations. In
Fig. 40 we see that they are learned equally well for final-state and intermediate particles. In the kinematic tails we see
that the bin-wise difference of the two distributions increases to around 20%. To understand this effect we estimate the
impact of limited training statistics per 1024-event batch through the relative statistical uncertainty on the number of
events Ntail(pT ) in the tail above the quoted pT value. For the pT,b-distribution the GAN starts deviating at the 10% level
around 150 GeV. Above this value we expect around 25 events per batch, leading to a relative statistical uncertainty of
20%. The top kinematics is slightly harder to reconstruct, leading to a stronger impact from low statistics.

Next, we can look at sharply peaked kinematic distributions, specifically the invariant masses which we enhance using the
MMD loss. In the lower panels of Fig. 40 we show the effect of the additional MMD loss on learning the invariant
W -mass distribution. Without the MMD in the loss, the GAN barely learns the correct mass value. Adding the MMD loss
with default kernel widths of the Standard Model decay widths drastically improves the results. We can also check the
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Figure 41: Left: 1-dimensional camel back function, we show the true distribution (black), a histogram with 100 sample
points (blue), a fit to the samples data (green), and a high-statistics GAN sample (orange). Right: quantile error for
sampling (blue), 5-parameter fit (green), and GAN (orange), shown for 20 quantiles. Figure from Ref. [32].

sensitivity on the kernel form and width and find hardly any effect from decreasing the kernel width. Increasing the width
reduces the resolution and leads to too broad mass peaks.

In the following sections we will first discuss three aspects of generative networks and statistical limitations in the
training data. First, in Sec. 4.2.3 we study how GANs add physics information to a problem similar to a fit to a small
number of training data points. Second, in Sec. 4.2.4 we apply generative networks to subtracting event samples, a
problem where the statistical uncertainties scales poorly. Third, in Sec. 4.2.5 we use a GAN to unweight events, again a
problem where the standard method is known to be extremely inefficient. Finally, in Sec. 4.2.6 we use GANs to enhance
the resolution of jet images, again making use of an implicit bias orthogonal to the partonic nature of the jets.

4.2.3 GANplification

An interesting question for neural networks in general, and generative networks in particular, is how much physics
information the networks include in addition to the information from a statistically limited training sample. For a
qualitative answer we can go back to our interpretation of the network as a non-parametric fit. For a fit, nobody would
ever ask if a function fitted to a small number of training points can be used to generate a much larger number of points.
Also for a network it is clear that the network setup adds information. This is a positive effect of an implicit bias. For
neural networks applied to regression tasks we use such an implicit bias, namely that the relevant functions f(x) which
we want to approximate are smooth and do not include features below a certain x-resolution. Such a smoothness
argument also applies to generative networks and the underlying phase space density, the question becomes how much
this implicit bias accounts for in terms of events we can generate, compared to the number of training events.

Because it is impossible to generate information out of nothing, we need to ask ourselves which aspects of our knowledge
GANplification exchanges for an increased number of valid events. The information included in a dataset is the
information entropy defined in Eq.(1.11). It can also be defined for a continuous probability distribution and reaches its
maximum for a constant probability,

H = −
∫ c

0

dxp(x) ln p(x) with
∫ c

0

dxp(x) = 1 . (4.35)

It can be approximated by a histogram with B bins with equal widths ∆ = c/B,

H ≈ −∆
∑
i

p(xi) ln p(xi) with ∆
∑
i

p(xi) = 1 . (4.36)
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Alternatively, we can evaluate the information entropy in a discrete histogram with ni counts per bin as

HB(N) = −
∑
i

ni
N

ln
ni
N

with
∑
i

ni
N

= 1 . (4.37)

A sampled distribution cannot include more information that the underlying truth, which means

H > HB(N) . (4.38)

To relate the approximate formula for H and HB(N) we first use the normalization condition and then find

ni
N
≡ p(xi)∆ ⇒ HB(N) = −

∑
i

[p(xi)∆] ln [p(xi)∆]

= −∆
∑
i

p(xi) ln p(xi)−∆ ln ∆
∑
i

p(xi)

= −∆
∑
i

p(xi) ln p(xi)− ln ∆

= H − ln ∆ (4.39)

It looks like minimizing ∆→ 0 we can increase HB to exceed H , which contradicts Eq.(4.38). This is resolve by the fact
that more and finer bins only add information if there are enough entries per bin, such that the statistical fluctuations do
not wash out the bin-wise information. This means Eq.(4.39) defines the optimal bin width to evaluate a continuous
underlying density without loss of information

∆ = eH−HB(N) . (4.40)

This formula relates the resolution ∆ to the binned entropy HB(N), provided we know the full entropy H . In the next
step, we want to replace HB(N) with N , using the general relation

HB(N) =
1

M
lnN = lnN1/M with M ≥ 1 , (4.41)

where the maximum information entropy and hence minimal M = 1 is reached for a constant probability. In this limit we
know

H = −
∫ c

0

dx
1

c
ln

1

c
= ln c = lnB + ln ∆

⇒ HB = lnB ≡ lnN1/M

⇔ B = N1/M . (4.42)

If we want to stay away from too small event counts per bin, the range M > 2 or B <
√
N is reasonable. For non-trivial

probability distributions, Eq.(4.40) rewritten in terms of N becomes

∆ = eH elnN1/M

= eHN1/M . (4.43)

Using Eq.(4.43) we can argue that for constant HB we can describe a function with different event statistics N , leading to
different M -values or bin counts. According to Eq.(4.40) the same binned information entropy implies a universal
resolution ∆ for the training data and the generated events,

∆ = eHN
1/Mtrain
train ≡ eHN1/Mgen

gen

⇔ 1

Mtrain
logNtrain =

1

Mgen
logNgen

⇔ Mgen

Mtrain
=

logNgen

logNtrain
(4.44)

We assume a reasonable binning for the training dataset with Mtrain ≈ 2 and then avoid overfitting by requiring

Mgen < 3 ⇔ logNgen

logNtrain
<

3

2
(4.45)
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This formula gives a maximum value for the amplification factor Ngen/Ntrain, assuming that we increase N without really
increasing the resolution of the learned function beyond the training data.

A simple, but instructive toy example is a one-dimensional camel back function, two Gaussians defined by two means,
two widths, and a relative normalization, shown in the left panel of Fig. 41. Reflecting the fixed resolution ∆, we divide
the x-axis is into nquant quantiles, which means that for each bin j we expect the same number of events x̄j . To quantify
the amount of information for this fixed resolution, for instance in the training data, we compute the average quantile error

MSE =
1

nquant

nquant∑
j=1

(xj − x̄j)2
=

1

nquant

nquant∑
j=1

(
xj −

1

nquant

)2

, (4.46)

corresponding to the MSE defined in Eq.(1.25). Here xj is the estimated probability for an event to end up in each of the
nquant quantiles, and x̄j = 1/nquant is the constant reference value. In the right panel of Fig. 41 we show this MSE for 100
training points statistically distributed over 20 quantiles. The uncertainty indicated by the shaded region corresponds to
the standard deviation from 100 statistically independent sample.

Next, we apply a simple 5-parameter fit to the two means, the two standard deviations, and the relative normalization of
the camel back. As expected, the MSE for the fit is much smaller than the MSE for the training data, because the fit
function defines a significant implicit bias and is solidly over-constrained by the 100 data points. Again, the error bar
corresponds to 100 independent fits. Quantitatively, we find that the fitted function is statistically worth around 500 events
instead of the 100-event sample. This means, the fit leads to a statistical amplification by a factor five. If we define an
amplification factor for matched MSEs we can write our result as

Afit =
Nsampled(MSE = MSEfit)

Ntrain
≈ 5 . (4.47)

Finally, we train a very simple GAN for the 1-dimensional target space on the same 100 data points which we used for the
fit. For the first 100 GANned events we find that the MSE corresponds to the 100 training events. This means that the
training and generated samples of the same size include the same kind of information. This shows that the properties of
the training data are correctly encoded in the network. However, we can use the trained GAN to generate many more
events, and in Fig. 41 we see that the MSE improves up to 104 events. After that the MSE reaches a plateau and does not
benefit from the additional statistics. This curve reflects two effects. First, while the first 100 generated events carry as
much information, per event, as the training data, the next 900 events only carry the same amount of information as the
next 100 training events. The full information encoded in the network is less than 300 training events, which means
additional generated events carry less and less information. Second, the GAN does include roughly as much information
as 300 training events, implying an amplification factor

AGAN =
Nsampled(MSE = MSEGAN)

Ntrain
≈ 3 , (4.48)

surprisingly close to the parametric fit. This confirms our initial picture of a neural network as a non-parametric fit also
for the underlying density learned by a generative network.

This kind of behavior can be observed generally for sparsely populated and high-dimensional phase space, and the
amplification factor increases with sparseness. While a quantitative result on achievable amplification factors of
generative networks in LHC simulations will depend on many aspects and parameters, this result indicates that using
generative networks in LHC simulations can lead to an increase in precision.

4.2.4 Subtraction

The basis of all generative network is that we can encode the density, for instance over phase space, implicitly in a set of
events. For particle physics simulations, we can learn the density of a given signal or background process from Monte
Carlo simulations, possibly enhanced or augmented by data or in some other way. Most LHC searches include a signal
and several background processes, so we have to train a generative network on the combination of background samples.
This is not a problem, because the combined samples will describe the sum of the two phase space densities.

The problem becomes more interesting when we instead want to train a generative network to describe the difference of
two phase space densities, both given in terms of event samples. There are at least two instances, where subtracting event
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samples becomes relevant. First, we might want to study signal events based on one sample that includes signal and
background and one sample that includes background only. For kinematic distributions many analyses subtract a
background distribution from the combined signal plus background distribution. Obviously, this is not possible for
individual events, where we have to resort to event weights representing the probability that a given event is signal.
Second, in perturbative QCD not all contributions to a cross section prediction are positive. For instance, we need to
subtract contributions included in the definition of parton densities from the scattering process in the collinear phase space
regions. We also might want to subtract on-shell contributions described by a higher-order simulation code from a more
complex but lower-order continuum production, for example in top pair production. In both cases, we need to find a way
to train a generative network on two event samples, such that the resulting events follow the difference of their individual
phase space densities.

Following the GANplification argument from Sec. 4.2.3, extracting a smooth phase space density for the difference of
two samples also has a statistical advantage. If we subtract two samples using histograms we are not only limited in the
number of phase space dimensions, we also generate large statistical uncertainties. Let us start with S +B events and
subtract B � S statistically independent events. The uncertainty on the resulting event number per bin is then

∆S =
√

∆2
S+B + ∆2

B

=
√

(S +B) +B ≈
√

2B �
√
S . (4.49)

The hope is that the uncertainty on learned signal density turns out smaller than this statistical uncertainty, because the
neural network with its implicit bias constructs smooth distributions for S +B and for B before subtracting them.

We start with a simple 1-dimensional toy model, i.e. events which are described by a single real number x. We define a
combined distribution pS+B and a subtraction distribution pB as

pS+B(x) =
1

x
+ 0.1 and pB(x) =

1

x
. (4.50)

The distribution we want to extract is

pS = 0.1 . (4.51)

The subtraction GAN is trained to reproduce the labelled training datasets {xS+B} and {xB} simultaneously. The
architecture is shown in Fig. 42. It consists of one generator and two independent discriminators. The losses for the
generator and the two discriminators follow the standard GAN setup in Eqs.(4.21) and (4.22). The generator maps
random numbers {r} to samples {xG, c}, where xG stands for an event and c = S,B for a label. To encode the class

G{r}

c ∈ CS ∪ CB

{xG, c}

c ∈ CB

DS+B

DB

{xS+B}

{xB}

Data S +B

Data B

LDS+B

LDB

LG

Figure 42: Structure of the subtraction GAN. The training data is given by labelled events {xS,B} and {xB}. The label c
encodes the category of the generated events. Figure from Ref. [33].
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label c there are different options. First, we can assign integer values, for instance c = 0 for background and c = 1 for
signal. The problem with an integer or real label is that the network has to understand this label relative to a background
metric. Such a metric will not be symmetric for the two points c = 0, 1. Instead, we can use one-hot encoding by
assigning 2-dimensional vectors, just as in Eq.(2.72)

cone-hot
S =

(
1

0

)
and cone-hot

B =

(
0

1

)
(4.52)

This representation can be generalized to many labels, again without inducing an ordering and breaking the symmetry of
the encoding.

In Fig. 42 we see that for the class CB and the union of CS with CB we train two discriminators to distinguish between
events from the respective input samples and the labelled generated events. This training forces the events from class CB
to reproduce pB and all events to reproduce pS+B . If we then normalize all samples correctly, the events labelled as CS
will follow pS . The additional normalization first requires us to assign labels to each event and then to encode them into a
counting function based on the one-hot label encoding I(c). This counting function allows us to define a loss term which
ensures the correct relative weights of signal and background events,

LG → LG + λnorm

( ∑
c∈Ci I(c)∑

c∈CS+B
I(c)

− σi
σS+B

)2

. (4.53)

The individual rates σi are input parameters for example from Monte Carlo simulations.

In the left panel of Fig. 43 we show the input distributions of Eq.(4.50), as well as the true and generated subtracted
distribution. The dotted lines show the training dataset, the full lines show the generated distributions. This comparison
confirms that the GAN learns the input information correctly. We also see that the generated subtracted or signal events
follow Eq.(4.51). In the right panel we zoom into the subtracted sample to compare the statistical uncertainties from the
input data with the generated signal events. The truth uncertainty for the subtracted sample is computed from Eq.(4.49).
Indeed, the GAN delivers more stable results than what we expect from the bin-by-bin statistical noise of the training
data. The GANned distribution shows systematic deviations, but also at a visibly smaller level than the statistical
fluctuation of the input data.

After illustrating ML-subtraction of event samples on a toy model, we need to show how this method works in a particle
physics context with 4-momenta of external particles as unweighted events. A simple LHC example is the Drell–Yan
process, with a continuum photon contributions and a Z-peak. The task is to subtract the photon background from the full
process and generate events only for the on-shell Z-exchange and the interference with the background,

S +B : pp→ µ+µ−

B : pp→ γ → µ+µ− . (4.54)

Aside from the increased dimension of the phase space the subtraction GAN has exactly the same structure as shown in
Fig.(42). In the lower panels of Fig. 43 we see how the subtraction clearly extracts the Z-mass peak in the lepton energy
of the full sample, compared with the feature-less photon continuum in the subtraction sample. The subtracted curve
should describe the on-shell Z-pole and its interference with the continuum. It vanishes for small lepton energies, where
the interference is negligible. In contrast, above the Jacobian peak from the on-shell decay a finite interference remains as
a high-energy tail. In the right panel we again show the subtracted curve including the statistical uncertainties from the
input samples. Obviously, our subtraction of the background to a di-electron resonance is not a state-of-the-art problem in
LHC physics, but it illustrates how neural networks can be used to circumvent conceptual and statistical limitations.

4.2.5 Unweighting

A big technical problem in LHC simulations is how to get from, for example, cross section predictions over phase space
to predicted events. Both methods can describe a probability density over phase space, but using different ways of
encoding this information:

1. Differential cross sections are usually encoded as values of the probability density for given phase space points. The
points themselves follow a distribution, but this distribution has no relevance for the density and only ensures that all
features of the distribution are encoded with the required resolution.
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Figure 43: Illustration of the subtraction GAN for 1-dimensional toy events (top) and Drell–Yan events at the LHC. Left:
Generated (solid) and true (dashed) events for the two input distributions and the subtracted output. Right: distribution of
the subtracted events, true and generated, including the uncertainty envelope propagated from the input statistics. Figures
from Ref. [33].

2. Events are just phase space points without weights, and the phase space density is encoded in the density of these
unweighted events.

Obviously, it is possible to combine these two extreme choices and encode a phase space density using weighted events
for which the phase space distribution matters.

If we want to compare simulated with measured data, we typically rely on unweighted events on both sides. There is a
standard approach to transform a set of weighted events to a set of unweighted events. Let us consider an integrated cross
section of the form

σ =

∫
dx

dσ

dx
≡
∫
dxw(x) . (4.55)

The event weight w(x) is equivalent to the probability for a single event x. To compute this integral numerically we draw
events {x} and evaluate the expectation value. If we sample with a flat distribution in x this means

σ ≈
〈
dσ

dx

〉
flat
≡
〈
w(x)

〉
flat . (4.56)

For flat sampling, the information on the cross section is again included in the event weights alone. We can then transform
the weighted events {x,w} into unweighted events {x} using a hit-or-miss algorithm. Here, we rescale the weight w into
a probability to keep or reject the event x,

wrel =
w

wmax
< 1 , (4.57)
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Figure 44: Kinematic distributions for the Drell-Yan process based on 500k weighted training events, 1k unweighted events
using standard unweighting, and 30M unweighted events generated with the GAN. Figure from Ref.[34].

and then use a random number r ∈ [0, 1] such that the event is kept if wrel > r. A shortcoming of this method is that we
lose many events, for a given event sample the unweighting efficiency is

εuw =
〈w〉
wmax

� 1 . (4.58)

We can improve sampling and integration with a suitable coordinate transformations

x→ x′ ⇒ σ =

∫
dxw(x) =

∫
dx′

∣∣∣∣ ∂x∂x′
∣∣∣∣ w(x′) ≡

∫
dx′ w̃(x′) . (4.59)

Ideally, the new integrand w̃(x′) is nearly constant and the structures in w(x) are fully absorbed by the Jacobian. In this
case the unweighting efficiency becomes

ε̃uw =
〈w̃〉
w̃max

≈ 1 . (4.60)

This method of choosing an adequate coordinate transformation is called importance sampling, and the standard tool in
particle physics is Vegas.

An alternative approach is to train a generative network to produce unweighted events after training the network on
weighted events. We start with the standard GAN setup and loss defined in Eq.(4.21). For weighted training events, the
information in the true distribution factorizes into the distribution of sampled events pdata and their weights w(x). To
capture this combined information we replace the expectation values from sampling pdata with weighted means,

LD =

〈
− w(x) logD(x)

〉
pdata

〈w(x)〉pdata

+
〈
− log[1−D(G(r))]

〉
platent

. (4.61)

The generator loss is not affected by this change,

LG =
〈
− logD(G(r))

〉
platent

, (4.62)

and because it still produces unweighted events, their weighted means reduce to the standard expectation value of
Eq.(4.22).

As in Sec. 4.2.4, we use weights describing the Drell–Yan process

pp→ µ+µ− , (4.63)

now with a minimal acceptance cut

mµµ > 50 GeV . (4.64)
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We can generate weighted events with a naive phase space mapping and then apply the unweighting GAN to those events.
For a training dataset of 500k events the weights range from 10−30 to 10−4, even if we are willing to ignore more than
0.1% of the generated events. Effects contributing to this vast range are the Z-peak, the strongly dropping
pT -distributions, and our deliberately poor phase space mapping. The classic unweighting efficiency defined by Eq.(4.58)
is 0.22%, a high value for state-of-the-art tools applied to LHC processes.

In Fig. 44 we show a set of kinematic distributions, including the deviation from a high-precision truth sample. First, the
training dataset describes Eµ all the way to 6 TeV and mµµ beyond 250 GeV with deviations below 5%, albeit with
statistical limitation in the low-statistics tail of the mµµ distribution. The sample after hit-and-miss unweighting is limited
to 1000 events. Correspondingly, these events only cover Eµ to 1 TeV and mµµ to 110 GeV. In contrast, the unweighting
GAN distributions reproduce the truth information, if anything, better than the fluctuating training data. Unlike for most
GAN applications, we now see a slight overestimate of the phase space density in the sparsely populated kinematic
regions. For illustration purpose we can translate the reduced loss of information into a corresponding size of a
hypothetical hit-and-miss training sample, for instance in terms of rate and required event numbers, and find up to an
enhancement factor around 100. While it is not clear that an additional GAN-unweighting is the most efficient way of
accelerating LHC simulations, it illustrates that generative networks can bridge the gap between unweighted and
weighted events. We will further discuss this property for normalizing flow networks in Sec. 4.3.2.

4.2.6 Super-resolution

One of the most exciting applications of modern machine learning in image analysis is super-resolution networks. The
simple question is if we can train a network to enhance low-resolution images to higher resolution images, just exploiting
general features of the objects in the images. While super-resolution of LHC objects is ill-posed in a deterministic sense, it
is well-defined in a statistical sense and therefore completely consistent with the standard analysis techniques at the LHC.
Looking at a given analysis object or jet, we would not expect to enhance the information stored in a low-dimensional
image by generating a corresponding high-resolution image. However, if we imaging the problem of having to combine
two images at different resolution, it should be beneficial to first apply a super-resolution network and then combine the
images at high resolution, rather than downsampling the sharper image, losing information, and then combining the two
images. Beyond this obvious application, we could ask the question if implicit knowledge embedded in the architecture of
the super-resolution network can contribute information in a manner similar as we have seen in Sec. 4.2.3.

Related to the combination of images with different resolution, super-resolution networks will be used in next-generation
particle flow algorithms [35]. A related question on the calorimeter level alone is the consistent combination of different
calorimeter layers or to ensure an optimal combination of calorimeter and tracking information for charged and neutral
aspects of an event. Such approaches are especially promising when both sides of the up-sampling, for instance
low-resolution calorimeter data and high-resolution tracking data, are available from data rather than simulations.

We can apply super-resolution to jet images and use the top-tagging dataset described in Sec. 2.1.3 to test the model
dependence. The task is then to generate a high-resolution (HR), super-resolved (SR) version of a given low-resolution
(LR) image. This kind of question points towards conditional generative networks, which use their sampling functionality
to generate events or jets for or under the condition of a fixed event or jet starting point. As before, our QCD and top jet
images are generated in the boosted and central kinematic regime with

pT,j = 550 ... 650 GeV and |ηj | < 2 , (4.65)

including approximate detector effects. The jet images consist of roughly 50 active pixels, which means a sparsity of
99.8% for 160× 160 images. For each jet image we include two representations, one encoding pT in the pixels and one
including a power-rescaled p0.3

T . The first image will efficiently encode the hard pixels, while the second image gains
sensitivity for softer pixels especially for QCD jets. This allows the network to cover peaked patterns as well as more
global information. The training dataset consists of paired LR/HR images, generated by down-sampling the HR image
with down-scaling factors 2, 4, and 8.

The main building block of the super-resolution network, illustrated in Fig. 45, is an image generator, following the
enhanced super-resolution GAN (ESRGAN) architecture. It converts a LR image into a SR image using a convolutional
network. Upsampling a 2-dimensional image works in complete analogy to the downsampling using a convolutional
filter, described in Sec. 2.1. For simplicity, let us assume that we want to triple the size of an image using a (3× 3)-filter,
which is globally trained. We can then replace every LR-pixel by 3× 3 SR pixels multiplying the original pixel with the
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Figure 45: Training process for super-resolution jet images. Figure from Ref. [36].

filter, referred to as a patch. If we want to use the same filter to upsample only by a factor two, we just sum all SR pixel
contributions form the LR image. This method is called transposed convolutions, and it can incorporate the same aspects
like padding or strides as the regular convolution. An alternative upsampling method is pixel-shuffle. It uses the, in our
case 64 feature maps. To double the resolution two dimensions we combine four feature maps and replace each LR pixel
with 2× 2 SR pixels, one from each feature map. For jet images it turns out that up to three steps with an upsampling
factor of two works best if we alternate between pixel-shuffle and transposed convolutions.

The discriminator network is a simple convolutional network. It measures how close the generated SR dataset is to the
HR training data and is trained through the usual loss function from Eq.(4.21).

LD = 〈− logD(x)〉pdata + 〈− log[1−D(G(r))]〉platent . (4.66)

To improve the sensitivity of the discriminator, we also include two versions of it, one trained continuously and one where
we erase the memory by resetting all parameters after a certain number of batches.

The super-resolution generator loss include some additional functionalities. We can start with the usual generator loss
from Eq.(4.22). To ensure that the generated SR images and the true HR images really resemble one another, we aid the
discriminator by adding a specific term LHR(SR,HR) to the generator loss. Similarly, we can downsample the generates
SR images and compare this LRgen image to the true LR image pixel by pixel. The corresponding contribution to the
generator loss is LLR(LRgen,LR). Finally, when upsampling the LR image we need to distribute each LR pixel energy
over the appropriate number of SR pixels, a so-called patch. We force the network to spread the LR pixel energy such that
the number of active pixels corresponds to the HR truth through the loss contribution Lpatch(patch(SR), patch(HR)), to
avoid artifacts. The combined generator loss over the standard and reweighted jet images is then

LG →
∑

p=0.3,1

λp (λHR LHR + λLR LLR + λG LG + λpatch Lpatch) , (4.67)

This loss adds a sizeable number of hyperparameters to the network, which we can tune for example by looking at the set
of controlled subjet observables given in Eq.(1.6).

In a first test, we train and test the super-resolution network on QCD jets, characterized by a few central pixels. In Fig. 46
we compare the HR and SR images for QCD jets, as well as the true LR image with their generated LRgen counterpart. In
addition to average SR and HR images and the relevant patches, we show some pixel energy spectra and high-level
observables defined in Eq.(1.6). In the pixel distributions we see how the LR image resolution reaches its limits when,
like for QCD jets, the leading pixel carries most of the energy. For the 10th leading pixel we see how the QCD jet largely
features soft noise. This transition between hard structures and noise is the weak spot of the SR network. Finally, we
show some of the jet substructure observables defined in Eq.(1.6). The jet mass peaks around the expected 50 GeV, for the
LR and for the HR-jet alike, and the agreement between LR and LRgen on the one hand and between HR and SR on the
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Figure 46: Performance of a super-resolution network trained on QCD jets and applied to QCD jets. We show averaged
HR and SR images, average patches for the SR and the HR images, pixel energies, and high-level observables. In the
bottom row we show results after training on top jets. Figure from Ref. [36].

other is better than the agreement between the LR and HR images. A similar picture emerges for the pT -weighted girth
wPF, which describes the extension of the hard pixels. The pixel-to-pixel correlation C0.2 also shows little deviation
between HR and SR on the one hand and LR and LRgen on the other.

The situation is different for top jets, which are dominated by two electroweak decay steps. Comparing Figs. 47 with 46
we see that the top jets are much wider and their energy is distributed among more pixels. From a SR point of view, this
simplifies the task, because the network can work with more LR-structures. Technically, the original generator loss
becomes more important, and we can balance the performance on top-quark jets vs QCD jets using λG. Looking at the
ordered constituents, the mass drop structure is learned very well. The leading four constituents typically cover the three
hard decay sub-jets, and they are described better than in the QCD case. Starting with the 4th constituent, the relative
position of the LR and HR peaks changes towards a more QCD-like structure, so the network starts splitting one hard
LR-constituent into hard HR-constituents. This is consistent with the top-quark jet consisting of three well-separated
patterns, where the QCD jets only show this pattern for one leading constituent. Among the high-level observables, the
SR network shifts the jet mass peak by about 10 GeV and does well on the girth wPF, aided by the fact that the jet
resolution has hardly any effect on the jet size. As for QCD-jets, C0.2 is no challenge for the up-sampling.

The ultimate goal for jet super-resolution is to learn general jet structures, such that SR images can be used to improve
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Figure 47: Performance of a super-resolution network trained on top jets and applied to top jets. We show averaged HR
and SR images, average patches for the SR and the HR images, pixel energies, and high-level observables. In the bottom
row we show results after training on QCD jets. Figure from Ref. [36].

multi-jet analyses. In practice, such a network would be trained on any representative jet sample and applied to QCD and
top jets the same. This means we need to test the model dependence by training and testing our network on the respective
other samples. In the bottom panels of Fig. 46 and 47 we see that this cross-application works almost as well as the
consistent training and testing. This means that the way the image pixels are distributed over patches is universal and
hardly depends on the partonic nature of the jet.

4.3 Normalizing flows and invertible networks

After discussing the generative VAE and GAN architectures we remind ourselves that controlling networks and
uncertainty estimation are really important for regression and classification networks. So the question is if we can apply
the recipes from Sec. 1.2.6 to capture statistical or systematic limitations of the training data for generative networks. In
LHC applications we would want to know the uncertainties on phase space distributions, for example when we rely on
simulations for the background pT -distribution in mono-jet searches for dark matter. If we generate large numbers of
events, saturating the GANplification effect from Sec. 4.2.3, uncertainties on generated LHC distributions are
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uncertainties on the accuracy with which our generative network has learned the underlying phase space distribution it
then samples from. There exist, at least, three sources of uncertainty. First, σstat(x) arises from statistical limitations of
the training data. Two additional terms, σsys(x) and σth(x) reflect our ignorance of aspects of the training data, which do
not decrease when we increase the amount of training data. If we train on data, a systematic uncertainty could come from
a poor calibration of particle energy in certain phase space regions. If we train on Monte Carlo, a theory uncertainty will
arise from the treatment of large Sudakov logarithms of the kind log(E/m) for boosted phase space configurations. Once
we know these uncertainties as a function of phase space, we can include them in the network output as additional event
entries, for instance supplementing

ev =

(
{xµ,j}
{pµ,j}

)
−→


σstat/p

σsyst/p

σth/p

{xµ,j}
{pµ,j}

 , for each particle j. (4.68)

The first challenge is to extract σstat without binning, which leads us to introduce normalizing flows directly in the
Bayesian setup, in analogy to our first regression network in Secs. 1.2.6 and 1.3.1.

4.3.1 Architecture

To model complex densities precisely and sample from them in a controlled manner, we would like to modify the VAE
architecture such that the latent space can encode all phase space correlations. We can choose the dimensionality of the
latent vector r the same as the dimensionality of the phase space vector x. This gives us the opportunity to define the
encoder and decoder as bijective mappings, which means that the encoder and the decoder are really the same network
evaluated in opposite directions. This architecture is called a normalizing flow or an invertible neural network (INN),

latent r ∼ platent

Gθ(r)→
←−−−−−−→
← Gθ(x)

phase space x ∼ pdata , (4.69)

where Gθ(x) denotes the inverse transformation to Gθ(r). Given a sample r from the latent distribution, we can use G to
generate a sample from the target distribution. Alternatively, we can use a sample x from the target distribution to
compute its density using the inverse direction. In terms of the network Gθ(r) the physical phase space density and the
latent density are related as

dx pmodel(x) = dr platent(r)

⇔ platent(r) = pmodel(x)

∣∣∣∣∂Gθ(r)∂r

∣∣∣∣ = pmodel
(
Gθ(r)

) ∣∣∣∣∂Gθ(r)∂r

∣∣∣∣
⇔ pmodel(x) = platent(r)

∣∣∣∣∂Gθ(r)∂r

∣∣∣∣−1

= platent
(
Gθ(x)

) ∣∣∣∣∂Gθ(x)

∂x

∣∣∣∣ (4.70)

For an INN we require the latent distribution platent to be known and simple enough to allow for efficient sample
generation, Gθ to be flexible enough for a non-trivial transformation, and its Jacobian determinant to be efficiently
computable. We start by choosing a multivariate Gaussian with mean zero and an identity matrix as the covariance at the
distribution platent in the unbounded latent space. The INN we will use is a special variant of a normalizing flow network,
inspired by the RealNVP architecture, which guarantees a

• bijective mapping between latent space and physics space;
• equally fast evaluation in both direction;
• tractable Jacobian, also in both directions.

The construction of Gθ relies on the usual assumption that a chain of simple invertible nonlinear maps gives us a complex
map. This means we transform the latent space into phase space with several transformation layers, for which we need to
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know the Jacobians. For instance, we can use affine coupling layers as building blocks. Here, the input vector r is split in
half, r = (r1, r2), allowing us to compute the output x = (x1, x2) of the layer as(

x1

x2

)
=

(
r1 � es2(r2) + t2(r2)

r2 � es1(x1) + t1(x1)

)
⇔

(
r1

r2

)
=

(
(x1 − t2(r2))� e−s2(r2)

(x2 − t1(x1))� e−s1(x1)

)
., (4.71)

where si, ti (i = 1, 2) are arbitrary functions, and � is the element-wise product. In practice each of them will be a small
multi-layer network. The Jacobian of the transformation G is an upper triangular matrix, and its determinant is just the
product of the diagonal entries.

∂Gθ(r)

∂r
=

(
∂x1/∂r1 ∂x1/∂r2

∂x2/∂r1 ∂x2/∂r2

)
=

(
diag

(
es2(r2)

)
finite

0 diag
(
es1(x1)

))

⇒
∣∣∣∣∂Gθ(r)∂r

∣∣∣∣ =
∏

es2(r2)
∏

es1(x1) . (4.72)

Such a Jacobian determinant is computationally inexpensive and still allows for complex transformations. We refer to the
sequence of coupling layers as Gθ(r), collecting the parameters of the individual nets s, t into a joint θ.

Given the invertible architecture we proceed to train our network via a likelihood loss, which we already used as the first
term of the VAE loss in Eq.(4.13). It relies on the assumption that we have access to a dataset which encodes the
intractable phase space distribution pdata(x) and want to fit our model distribution pmodel(x) via Gθ. The likelihood loss
for the INN is

LINN = −
〈

log pmodel(x)
〉
pdata

= −
〈

log platent
(
Gθ(x)

)
+ log

∣∣∣∣∂Gθ(x)

∂x

∣∣∣∣
〉
pdata

. (4.73)

The first of the two terms ensures that the latent representation remains, for instance, Gaussian, while the second term
constructs the correct transformation to the phase space distribution. Given the structure of Gθ(x) and the latent
distribution platent, both terms can be computed efficiently. As in Eq.(1.68), one can view this maximum likelihood
approach as minimizing the KL-divergence between the true but unknown phase space distribution pdata(x) and our
approximating distribution pmodel(x).

While the INN provides us with a powerful generative model of the underlying data distribution, it does not account for
an uncertainty in the network parameters θ. However, because of its bijective nature with the known Jacobian, the INN
allows us to meaningfully switch from deterministic sub-networks s1,2 and t1,2 to their Bayesian counterparts. Here we
follow exactly the same setup as in Sec. 1.2.6 and recall that we can write the BNN loss function of Eq.(1.75) as

LBNN = −
〈

log pmodel(x)
〉
θ∼q

+DKL[q(θ), p(θ)] . (4.74)

We now approximate the intractable posterior p(θ|xtrain) with a mean-field Gaussian as the variational posterior q(θ) and
then apply Bayes’ theorem to train the network on the usual ELBO loss, now for event samples

LB-INN = −
〈

log pmodel(x)
〉
θ∼q,x∼pdata

+DKL[q(θ), p(θ)]

= −
〈

log platent
(
Gθ(x)

)
+ log

∣∣∣∣∂Gθ(x)

∂x

∣∣∣∣
〉
θ∼q,x∼pdata

+DKL[q(θ), p(θ)] (4.75)

By design, the likelihood, the Jacobian, and the KL-divergence can be computed easily.

To generate events using this model and with statistical uncertainties, we remind ourselves how Bayesian network sample
over weight space in Eq.(1.88), but how to predict a phase space density with a local uncertainty map. In terms of the
BNN network outputs analogous to Eq.(1.91) this means

p(x) =

∫
dθ q(θ) pmodel(x)

σ2
stat(x) =

∫
dθ q(θ) [pmodel(x|θ)− p(x)]

2
. (4.76)
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Figure 48: Density and predictive uncertainty distribution for a linear wedge ramp using a B-INN. The uncertainty on σstat
is given by its y-variation. The green curve represents a 2-parameter fit to Eq.(4.82). Figure from Ref. [37].

Here x denotes the initial phase space vector from Eq.(4.68), and the predictive uncertainty can be identified with the
corresponding relative statistical uncertainty σstat.

Let us illustrate Bayesian normalizing flows using a set of 2-dimensional toy models. First, we look a simple
2-dimensional ramp distribution, linear in one direction and flat in the other,

p(x, y) = 2x . (4.77)

The factor two ensures that p(x, y) is normalized. The network input and output consist of unweighted events in the
2-dimensional parameters space, (x, y).

In Fig. 48 we show the network prediction, including the predictive uncertainty on the density. Both, the phase space
density and the uncertainty are scalar fields defined over phase space, where the phase space density has to be extracted
from the distribution of events and the uncertainty is explicitly given for each event or phase space point. For both fields
we can trivially average the flat y-distribution. In the left panel we indicate the predictive uncertainty as an error bar
around the density estimate, covering the deviation from the true distribution well.

In the central and right panels of Fig. 48 we show the relative and absolute predictive uncertainties. The relative
uncertainty decreases towards larger x. However, the absolute uncertainty shows a distinctive minimum around x ≈ 0.45.
To understand this minimum we focus on the non-trivial x-coordinate with the linear form

p(x) = ax+ b with x ∈ [0, 1] . (4.78)

Because the network learns a density, we can remove b by fixing the normalization,

1 =

∫ 1

0

dx (ax+ b) =
a

2
+ b ⇒ p(x) = a

(
x− 1

2

)
+ 1 . (4.79)

Let us now assume that the network acts like a one-parameter fit of a to the density, so we can propagate the uncertainty
on the density into an uncertainty on a,

σstat ≡ ∆p ≈
∣∣∣∣x− 1

2

∣∣∣∣ ∆a . (4.80)

The absolute value appears because the uncertainties are defined to be positive, as encoded in the usual quadratic error
propagation. The minimum at x = 1/2 explains the pattern we see in Fig. 48. What this simple approximation cannot
explain is that the predictive uncertainty is not symmetric and does not reach zero. However. we can modify our simple
ansatz to vary the hard-to-model boundaries and find

p(x) =ax+ b with x ∈ [xmin, xmax]

⇒ p(x) =ax+
1− a

2
(x2

max − x2
min)

xmax − xmin
. (4.81)
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Figure 49: Density and predictive uncertainty distribution for the Gaussian ring. The uncertainty band on σstat is given by
different radial directions. The green curve represents a 2-parameter fit to Eq.(4.85). Figure from Ref. [37].

For the corresponding 3-parameter fit we find

σ2
stat ≡ (∆p)2 =

(
x− 1

2

)2

(∆a)2 +
(

1 +
a

2

)2

(∆xmax)2 +
(

1− a

2

)2

(∆xmin)2 . (4.82)

While the slight shift of the minimum is not explained by this form, it does lift the minimum uncertainty to a finite value.
If we evaluate the uncertainty as a function of x we cannot separate the effects from the two boundaries. The green line in
Fig. 48 gives a 2-parameter fit of ∆a and ∆xmax to the σstat distribution from the Bayesian INN.

While the linear ramp example could describe how an INN learns a smoothly falling distribution, like pT of one of the
particle in the final state, the more dangerous phase space features are sharp intermediate mass peaks. The corresponding
toy model is a 2-dimensional Gaussian ring in terms of polar coordinates,

p(r, φ) = N (r;µ = 4, σ = 1) with φ ∈ [0, π]

⇔ p(x, y) = N (
√
x2 + y2;µ = 4, σ = 1)× 1√

x2 + y2
. (4.83)

where the Jacobian 1/r ensures that both probability distributions are correctly normalized. We train the Bayesian INN
on Cartesian coordinates, just like for the ramp discussed above. In Fig. 49 we show the Cartesian density, evaluated on a
line of constant angle. This form includes the Jacobian and leads to a shifted maximum. Again, the uncertainty covers the
deviation of the learned from the true density.

Also in Fig. 49 we see that the absolute predictive uncertainty shows a dip at the peak position. As before, this leads us to
the interpretation in terms of appropriate fit parameters. For the Gaussian radial density we use the mean µ and the width
σ, and the corresponding variations of the Cartesian density give us

σstat = ∆p ⊃
∣∣∣∣ ddµ p(x, y)

∣∣∣∣ ∆µ

=
1

r

1√
2πσ

∣∣∣∣ ddµ e−(r−µ)2/(2σ2)

∣∣∣∣ ∆µ (4.84)

=
p(x, y)

r

∣∣∣∣2(r − µ)

2σ2

∣∣∣∣ ∆µ =
p(x, y)

r

|r − µ|
σ2

∆µ . (4.85)

This turns out the dominant uncertainty, and it explains the local minimum at the peak position. Away from the peak, the
uncertainty is dominated by the exponential behavior of the Gaussian.

The patterns we observe for the Bayesian INN indicate that our bilinear mapping is constructed very much like a fit. The
network first identifies the family of functions which describe the underlying phase space density, and then it adjusts the
relevant parameters, like the derivative of a falling function or the peak position of the Gaussian. We emphasize that this
result is extracted from a joint network training on the density and the uncertainty on the density, not from a visualization.
It also applies to normalizing flows only. Without a tractable Jacobian it is not clear how it can be generalized for example
to GANs, even though the results on super-resolution with jets trained on QCD jets and applied to top jets in Fig. 47
suggest that also the GANs first learn general aspects before focusing on details of their model.
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Figure 50: Visualisation of a spline layer for normalizing flows. The network positions of the spline knots and the derivative
at each knot. Splines linking the knots define a monotonic transformation. Figure from Ref. [38].

4.3.2 Event generation with uncertainties

When we want to use normalizing flows to describe complex phase space distributions we can replace the simple affine
coupling layer of Eq.(4.71) with more powerful transformations. One example are splines, smooth rational functions
which we typically use for interpolations. Such a spline is spanned by a set of rational polynomials interpolating between
a given number of knots. The positions of the knots and the derivatives of the target function at the knots are
parameterized by the network as bin widths θjx, bin heights θjy , and knot derivatives θjd, illustrated in Fig. 50.

We already know from Sec. 4.2.5 that it is easy to translate weighted into unweighted event samples through hit-and-miss
unweighting. However, we have also seen that this unweighting is computationally expensive, because the range of
weights is large. Furthermore, we know from Sec. 4.2.4 that LHC predictions can include events with negative weights,
and in this case we cannot easily unweight the sample. What we can do is train a generative network on weighted events,
using the modified loss from Eq.(4.73)

LINN, weighted = −
〈
w(x) log pmodel(x)

〉
pdata

. (4.86)

This loss defines the correct optimization of the generative network for all kinds of event samples, including negative
weights. Because this loss function only changes the way the network learns the phase space density, the generator will
still produce unweighted events.

We postpone the discussion of standard event generation to Sec. 4.3.2, where we also have a look at different sources of
uncertainties for generative networks. Instead, we will show how normalizing flows can be trained on events with
negative weights, specifically the process

pp→ tt̄ . (4.87)

If we generate events for this process to NLO in QCD, for instance using the MadGraph event generator. For the default
setup 23.9% of all events have negative weights.

In Fig. 51 we show two example distributions generated from the unweighting flow-network. The distributions without
event weights are to show that the network indeed learns the effect of the events with negative weights. We see that pT,t is
essentially unaffected by the weights, because this distribution is already defined by the LO-kinematics, and negative
weights only induce to a slight bias for small values of pT,t. As always, the generative network runs out of precision in
the kinematic tails of the distributions. The picture changes for the pT,tt distribution, which is zero at leading order and
only get generated through real-emission corrections, which in turn are described by a mix of positive-weight and
negative-weight events. The generative network learns the distribution correctly over the entire phase space. The
normalizing flow results in Fig. 51 can be compared to the GANned events in Fig. 40, and we see that the agreement
between the normalizing flow and the true phase space density is significantly better than for GANs, which means that
normalizing flows are better suited for this kind of precision simulations.
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Figure 51: Generated events for tt̄ production at NLO, including negative weights. We show the MC truth, the generative
normalizing flow, and the MC truth ignoring the sign of the event weights, the latter to illustrate the effects of the negative
weights. Figure from Ref. [38].

After confirming that normalizing flows can generate events, let us go back to the Bayesian setup introduced in Sec. 4.3
and analyse a little more systematically how we can extract a controlled and precise prediction from an INN. In Sec. 2.1.4
we have already introduced the strategy we will now follow for precision generative networks. In two steps we first need
to control that our network has captured all features of the phase space density and only then can we compute the different
uncertainties on the encoded density.

As for most NN-based event generators we now use unweighted LO events as training data, excluding detector effects
because they soften sharp phase space features. The production process

pp→ Zµµ + {1, 2, 3} jets (4.88)

is a challenge for generative networks, because it combines a sharp Z-resonance with the geometric separation of the jets
and a variable phase space dimensions. If we assume that the muons are on-shell, but the jets come with a finite invariant
mass, the phase space has 6 + njets × 4 dimensions. Standard cuts for reconstructed jets at the LHC are, as usual

pT,j > 20 GeV and ∆Rjj > 0.4 . (4.89)

In Fig. 52 we show an example correlation between two jets, with the central hole for ∆Rjj < 0.4. Strictly speaking,
such a hole changes the topology of the phase space and leads to a fundamental mismatch between the latent and phase
spaces. However, for small holes we can trust the network to interpolate through the hole and then enforce the hole at the
generation stage.

Since we have learned that preprocessing will make it easier for our network to learn the phase space density with high
accuracy, we represent each final-state particle by

{ pT , η,∆φ,m } , (4.90)

where we choose the harder of the two muons as the reference for the azimuthal angle and replace the azimuthal angle
difference by atanh(∆φ/π), to create an approximately Gaussian distribution. We then use the jet cuts in Eq.(4.89) to
re-define the transverse momenta as p̃T = log(pT − pT,min), giving us another approximately Gaussian phase space
distribution. Next, we apply a centralization and normalization

q̃i =
qi − qi
σ(qi)

(4.91)

for all phase space variables q. Finally, we would like each phase space variable to be uncorrelated with all other
variables, so we apply a linear decorrelation or whitening transformation separately for each jet multiplicity.
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Figure 52: Jet-jet correlations for events with two jets. We show truth (left) and INN-generated events (right). Figure from
Ref. [39].

After all of these preprocessing steps, we are left with the challenge of accommodating the variable jet multiplicity.
While we will need individual generative networks for each final state multiplicity, we want to keep these networks from
having to learning the basic features of their common hard process pp→ Zj. Just as for simulating jet radiation, we
assume that the kinematics of the hard process depends little on the additional jets. This means our base network gets the
one-hot encoded number of jets as condition. Each of the small, additional networks is conditioned on the training
observables of the previous networks and on the number of jets. This means we define a likelihood loss for a
conditional INN just like Eq.(4.73),

pmodel(x) → pmodel(x|c, θ) ⇒ LcINN = −
〈

log pmodel(x|c, θ)
〉
pdata

, (4.92)

where the vector c includes the conditional jet number, for example. While the three networks for the jet multiplicities are
trained separately, they form one generator with a given fraction of n-jet events.

To make our INN more expressive with a limited number of layers, we replace the affine coupling blocks of Eq.(4.71)
with cubic-spline coupling blocks. The coupling layers are combined with random but fixed rotations to ensure
interaction between all input variables. In Fig. 53 we show a set of kinematic distributions from the high-statistics 1-jet
process to the more challenging 3-jet process. Without any modification, we see that the mµµ distribution as well as the
∆Rjj distributions require additional work.

One way to systemically improve and control a precision INN-generator is to combine it with a discriminator. This way
we can try to exploit different implicit biases of the discriminator and generator to improve our results. The simplest
approach is to train the two networks independently and reweight all events with the discriminator output. This only
requires that our discriminator output can be transformed into a probabilistic correction, so we train it by minimizing a
cross-entropy loss in Eq.(4.21) to extract a probability

D(xi)→
{

0 generator
1 truth/data

(4.93)

for each event xi. For a perfectly generated sample we should get D(xi) = 0.5. The input to the three discriminators, one
for each jet multiplicity, are the kinematic observables given in Eq.(4.90). In addition, we include a set of challenging
kinematic correlations, so the discriminator gets the generated and training events in the form

xi = {pT,j , ηj , φj ,Mj} ∪ {Mµµ} ∪ {∆R2,3} ∪ {∆R2,4,∆R3,4} . (4.94)

If the discriminator output has a probabilistic interpretation we can compute an event weight

wD(xi) =
D(xi)

1−D(xi)
→ pdata(xi)

pmodel(xi)
. (4.95)
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Figure 53: Discriminator-reweighted INN distributions for Z+jets production. The bottom panels show the average cor-
rection factor obtained from the discriminator output. Figure from Ref. [39].

We can see the effect of the additional discriminator in Fig. 53. The deviation from truth is defined through a
high-statistics version of the training dataset. The reweighted events are post-processed INN events with the average
weight per bin shown in the second panel. While for some of the shown distribution a flat dependence wD = 1 indicates
that the generator has learned to reproduce the training data as well as the discriminator can tell, our more challenging
distributions are significantly improved by the discriminator.

While the discriminator reweighting provides us with an architecture that learns complex LHC events at the percent level,
it comes with the disadvantage of generating weighted events and it does not use the opportunity for the generator and
discriminator to improve each other. If it is possible to train the discriminator and generator networks jointly, we could
benefit from a GAN-like setup. The problem is that we have not been able to reach the required Nash equilibrium in an
adversarial training for the INN generator. As an alternative approach we can include the discriminator information in the
appropriately normalized generator loss of Eq.(4.73) through an additional event weight

LDiscFlow = −
〈
wD(x)α log

pmodel(x)

pdata(x)

〉
pdata

, (4.96)

in complete analogy to the weighted INN loss in Eq.(4.86). In the limit of a well-trained discriminator this becomes

LDiscFlow = −
〈(

pdata(x)

pmodel(x)

)α
log

pmodel(x)

pdata(x)

〉
pdata

= −
〈(

pdata(x)

pmodel(x)

)α
log pmodel(x)

〉
pdata

+

〈(
pdata(x)

pmodel(x)

)α
log pdata(x)

〉
pdata

. (4.97)

Because in our simple DiscFlow setup the discriminator weights ωD approximating pdata(x)/pmodel(x) do not have
gradients with respect to the generative network parameters this simplifies to

LDiscFlow = −
〈(

pdata(x)

pmodel(x)

)α
log pmodel(x)

〉
pdata

= −
∫
dx

(
pdata(x)

pmodel(x)

)α
pdata(x) log pmodel(x) . (4.98)

The hyperparameter α determines the impact of the discriminator output and can be scheduled. The loss in Eq.(4.98)
shows that we are, effectively, training on a shifted reference distribution. If the generator model populates a phase space
region too densely, ωD < 1 reduces the weight of the training events; if a region is too sparsely populated by the model,
ωD > 1 amplifies the impact of the training data. As the generator converges to the training data, the discriminator will
give wD(x)→ 1, and the generator loss approaches the standard INN form. Unlike the GAN setup from Sec. 4.2 this
discriminator–generator coupling does not require a Nash equilibrium between two competing networks.
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Figure 54: Discriminator-reweighted DiscFlow distributions for Z+ jets production. Figure from Ref. [39].

The joint discriminator-generator training has the advantage over the discriminator reweighting that it produces
unweighted events. In addition, we can keep training the discriminator after decoupling the generator and reweight the
events following Eq.(4.95). In Fig. 54 we show some sample distributions for Z+jets production. The DiscFlow generator
produces better results than the standard INN generator shown in Fig. 53, but it still benefits from a reweighting
postprocessing. For ∆Rjj < 0.4 we also see that the DiscFlow training only improves the situation in phase space
regions where we actually have training data to construct ωD(x).

Following our earlier argument, the improved accuracy of the INN-generator and the control through the discriminator
naturally lead us to ask what the uncertainty on the INN prediction is. We already know that the uncertainty estimate from
the BNN automatically covers limitations in the training data and training statistics. However, for the generative network
we have not discussed systematic uncertainties and data augmentations, like we applied them for instance in Sec. 2.1.4.

In the top panel of Fig. 55 we show the pT,j-distribution for Z + 1 jet production. We choose the simple 2-body final state
to maximize the training statistics and the network’s accuracy. In the second panel we show the relative deviation of the
reweighted INN-generator and the training data from the high-statistics truth. While the network does not exactly match
the precision of the training data, the two are not far apart, especially in the tails where training statistics becomes an
issue. In the third panel we show the discriminator weight wD defined in Eq.(4.95). In the tails of the distribution the
generator systematically overestimates the true phase space density, leading to a correction wD(x) < 1, before in the
really poorly covered phase space regions the network predictions starts to fluctuate.

The fourth panel of Fig. 55 shows the uncertainty reported by the Bayesian version of the INN-generator, using the
architecture introduced in Sec. 4.3.1. Like its deterministic counterpart, the B-INN overestimates the phase space density
in the poorly populated tail, but the learned uncertainty on the phase space density covers this discrepancy reliably.

Moving on to systematic or theory uncertainties, the problem with generative networks and their unsupervised training is
that we do not have access to the true phase space density. The network extracts the density itself, which means that any
augmentation, like additional noise, will define either a different density or make the same density harder to learn. One
way to include data augmentations is by turning the network training from unsupervised to supervised through an the
augmentation by a parameter known to the network. This means we augment our data via a nuisance parameter
describing the nature and size of a systematic or theory uncertainty, and train the network conditionally on this parameter.
The nuisance parameter is added to the event format given in Eq.(4.68). As a simple example, we can introduce a theory
uncertainty proportional to a transverse momentum, inspired by an electroweak Sudakov logarithm. As a function of the
parameter a we shift the unit weights of the training events to

w = 1 + a

(
pT,j1 − 15 GeV

100 GeV

)2

, (4.99)

where the transverse momentum is given in GeV, we account for a threshold at 15 GeV, and we choose a quadratic scaling
to enhance the effects of this augmentation. We train the Bayesian INN conditionally on a set of values a = 0 ... 30, just
extending the conditioning of Eq.(4.92)

pmodel(x) → pmodel(x|a, c, θ) (4.100)
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Figure 55: Illustration of uncertainty-controlled INN-generator. We show the reweighted pT,j1 -distribution for the inclusive
Z+jets sample, combined with the discriminatorD, the B-INN uncertainty, and the sampled systematic uncertainty defined
through the data augmentation of Eq.(4.99). Figure from Ref. [39].

In the bottom panel of Fig. 55 we show generated distributions for different values of a. To incorporate the uncertainty
described by the nuisance parameter in the event generation incorporating we sample the a-values for example using a
standard Gaussian. In combination, we can cover a whole range of statistical, systematic, and theoretical uncertainties by
using precise normalizing flows as generative networks. It is not clear if these flows are the final word on LHC simulations
and event generation, but for precision simulations they appear to be the leading generative network architecture.

4.3.3 Phase space generation

In addition to learning the phase space distribution of events from a set of unweighted events, parton-level events can also
be learned from the differential cross section directly. Mathematically speaking, the problem can be formulated as
sampling random numbers according to a given functional form. An ML-framework for this is not just useful for LHC
event generation, is can be used for any kind of numerical Monte-Carlo integration in high dimensions.

Numerical integration with Monte-Carlo techniques and importance sampling are already discussed in Sec. 4.2.5. Now,
we want the coordinate transformation of Eq.(4.59) to be learned by a normalizing flow. In the language of LHC rates of
events, we have to transform the differential cross section, dσ, into a properly normalized distribution,

pcross section =
dσ∫
dσ

. (4.101)

Then, we can use the loss functions discussed at the beginning of Sec. 4, like the KL-divergence, to learn the distribution.
Looking back at Eq.(4.3), we have with the identification of pdata = pcross section

Lphase Space = DKL[pcross section, pmodel] =

∫
dx pcross section(x) log

pcross section(x)

pmodel(x)
. (4.102)

The main difference to Eq.(4.3) is that now we do not have training samples from pdata, because generating samples
according to pcross section is the problem we want to solve. However, we do have samples distributed according to pmodel,
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Figure 56: Event weight distributions for sampling the total cross section for gg → 3 jets (left) and 4 jets (right) for
√
s =

1 TeV with N = 106 points, comparing Vegas optimization, INN-based optimization and an unoptimized (“Uniform”)
distribution. The inset in the right panel shows the peak region on a linear scale. Figure from Ref. [40].

generated from our model. We can use them for training, provided we correct their weights by introducing a factor
pmodel/pmodel into Eq.(4.102) and then interpreting it as an expectation value over pmodel,

Lphase Space =

〈
pcross section(x)

pmodel(x)
log

pcross section(x)

pmodel(x)

〉
pmodel

. (4.103)

However, we have to be careful when computing the gradients of the loss of Eq.(4.103) with respect to the network
weights. These enter, in principle, every quantity in Eq.(4.103), namely

• pcross section in Eq.(4.101) is computed by estimating the integral in the denominator with a Monte-Carlo estimate, which
can be improved using importance sampling and samples from pmodel.∫

dσ =
1

N

∑
dσ =

〈
dσ

pmodel

〉
pmodel

. (4.104)

The estimate, however, should just be a constant normalization factor, so the dependence on the network parameters is
spurious and a gradient with respect to them will not help the optimization task.

• pmodel in the denominator of the prefactor corrects for the fact that we have only samples from the model, not according
to pcross section. These can come from the current state of the model, or from a previous one when we recycle previous
evaluations. But since this distribution is external to the optimization objective, we should not take gradients of this
prefactor.

• pmodel in the denominator of the logarithm is the one we want to optimize, so we need its gradient.

The figure of merit, as introduced in Sec. 4.2.5, is the unweighting efficiency. It tells us what fraction of events survives a
hit-and-miss unweighting as given in Eq.(4.58). Figure 56 compares the unweighting efficiency for uniformly sampled,
Vegas sampled, and INN sampled points in gg → 3 jets and gg → 4 jets. We see that the normalizing flow beats the
standard Monte Carlo method by a large margin for the simpler case, but loses its advantage in the right panel. This points
to a problem in the scaling of neural network performance with the number of phase space dimensions, as compared to
the logarithmic scaling of established Monte Carlo methods.

4.3.4 Calorimeter shower generation

Another application of INNs as generative networks in LHC physics is the simulation of the detector response to
incoming particles. Such interactions are stochastic and implicitly defines a phase space distribution

p(xshower|initial state) . (4.105)
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Figure 57: 3-dimensional view of calorimeter shower produced by an incoming e+ with Einc = 10 GeV, simulated with
GEANT4. Figure from Ref. [41].

The initial state is characterized by the incoming particle type, energy, position, and angle to the detector surface. For
simplicity, we focus on showers originating from the center of the detector volume, and always perpendicular to the
surface. We also train a different INN for each particle type, so the learning task is simplified to

p(xshower|Einc) . (4.106)

As ground truth, we use 100,000 showers simulated with GEANT4, a simulation framework based on first principles.
Simulating all LHC events with GEANT4 is computationally extremely expensive. Especially high-energy showers can
take extremely long to simulate, orders of magnitude longer than low-energy showers due to the larger number of
secondary particles needing to be produced and tracked. Whenever only some features of the showers and not all details
on energy depositions are needed, fast simulations can be used. In these frameworks, a few high-level features are
simulated instead of the full shower information, trading shower fidelity for evaluation speed. Generative networks, such
as GANs or INNs, instead allow us to generate showers with many more details in the high-dimensional low-level feature
space and with the same speed for all incident energies.

The GANplification effect of Sec. 4.2.3 also applies to calorimeter showers, but there are two more effects that work in
our favor and allow us to generate many more events than are in the training sample. The use the fact that calorimeter
showers are independent of the hard scattering and independent of each other. Even for a fixed number of training
showers the combinatorial factors of combining them with the particles produced in the hard scattering will increase the
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number of statistically independent events. Second, depending on the chosen voxelization, the generated showers can be
rotated before they are combined with an LHC event.

As an example, we consider e+, γ, and π+ showers in a simplified version of the ATLAS electromagnetic calorimeter.
Showers are digitized into three layers of voxels, with varying size per layer. In total, the dataset contains 504 voxels. The
incident energy will be sampled uniformly in [1, 100] GeV. Figure 57 shows such a shower. Characteristic for calorimeter
datasets, we see a high degree of sparsity and energy depositions ranging over several orders of magnitude. Since the
three layers vary in their physical length, the energy deposited on average per layer also differs. To avoid being dominated
by the central layer in training, we normalize all showers such that they sum to one in each layer. This normalization can
be inverted in the generation when we know the layer energies, so we also have to learn the probability
p(E0, E1, E2|Einc). This can either be done by an independent generative network, or by augmenting the normalized
voxel energies with the layer energy information.

When training normalizing flows for calorimeter showers, the high degree of sparsity tends to overwhelm the likelihood
loss. The network focuses on learning the many zero entries and does not do well on single voxels with the dominant
energy depositions. To ameliorate this, we add noise below the read-out threshold of the detector to the voxels. After
generation, we then remove all entries below that threshold and recover the correct sparsity. In Fig. 58 we show the
deposited energies in the three layers and overall, for e+ showers from GEANT4, a GAN, and a normalizing flow.

The main advantage of generative networks over GEANT4 is speed. The first flow-based approach, however, was based
on an autoregressive architecture, which is fast to train but a factor 500 (given by the dimensionality of the voxel space)
slower in generation. This means that for a batch size of 10k showers, a GPU can produce a single shower in 36ms. Even
though this is significantly faster than GEANT4 (1772ms), it is much slower than the GAN (0.07ms). This difference can
be addressed in two ways. One would be to use an alternative normalizing flow architecture. The second one is to train a
second autoregressive flow with the inverse speed preference: fast sample generation and slow evaluation of the
likelihood loss. This is referred to as probability density distillation or teacher-student training. Starting from a flow
trained with the likelihood loss (CaloFlow v1), we freeze its weights and train a second flow to match the output of the
first flow. Using an MSE loss after every transformation and also to match the output of each of the NNs, we ensure that
this new flow becomes a copy of the first one, but with a fast generative direction.

4.3.5 Multi-channel importance sampling

In Sec. 4.3.3, we have introduced the concept of importance sampling and how to construct a better sampling density
using normalizing flows. A recurring feature of LHC scattering processes is multi-modal phase-space structures. It is
generally difficult, if not impossible, to find and parametrize a single density g that describes dσ across the entire phase
space. Instead, we decompose the phase-space integral into nc different channels

σ =

∫
dx
dσ

dx
≡
∫
dxw(x)

=

nc∑
i

∫
dxαi(x)w(x) =

nc∑
i

σi , (4.107)

by introducing normalized channel weights

nc∑
i

αi(x) = 1 with αi ∈ [0, 1] . (4.108)

For each channel we define a coordinate transformation

x
Gi(x)→←−−−−−−−→
←Gi(z)

z , (4.109)

which induces properly normalized densities

gi(x) =

∣∣∣∣∂Gi(x)

∂x

∣∣∣∣ with
∫
dx gi(x) = 1 . (4.110)
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This turns the phase-space integral into

σ =

nc∑
i

∫
dxαi(x)w(x) =

nc∑
i

∫
dz αi(x)

w(x)

gi(x)

∣∣∣∣
x=Gi(z)

, (4.111)

Normally, the construction of the channels is physics-inspired and employs analytic mappings which are then further
refined by an adaptive algorithm, for instance Vegas. While the channel cross sections σi are unchanged under the
mappings Gi, the variance

var2i ≡ var2i

[
αiw

gi

]
=

∫
dz

(
αi(x)w(x)

gi(x)

∣∣∣∣
x≡x(z)

− σi
)2

=

∫
dx gi(x)

(
αi(x)w(x)

gi(x)
− σi

)2

(4.112)

is minimized by the optimal mapping

gi(x)

∣∣∣∣∣
opt

=
αi(x)w(x)

σi
. (4.113)

Now, the goal of MadGraph Neural Importance Sampling (MadNIS) is to parametrize and learn both the channel weights
αi(x) and the coordinate transformation Gi(x) with neural networks.

MadNIS implements the channel weights as simple regression network,

αi(x) ≡ αiξ(x) , (4.114)

with network parameters ξ and the number of output nodes equal to the number of channels. The normalization condition
from Eq.(4.108) is guaranteed by the last layer

Softmaxαiξ(x) =
eαiξ(x)∑
j e
αjξ(x)

. (4.115)

It is often beneficial to use prior knowledge when training a neural network. While the channel weight network might
converge to the optimal channel weights with a sufficiently large training dataset, we can use physics to define a good
starting point. For instance, in MadGraph two well-motivated and normalized priors are

αMG
i (x) =

|Mi(x)|2∑
j |Mj(x)|2

αMG
i (x) =

Pi(x)∑
j Pj(x)

with Pi(x) =
∏
k∈prop

1

|pk(x)2 −m2
k − imkΓk|2

, (4.116)

defining the single-diagram enhanced multi-channel method. Relative to either of them we learn a correction

αiξ(x) = logαMG
i (x) + ∆iξ(x)

Softmaxαiξ(x) =
αMG
i (x) e∆iξ(x)∑

j

[
αMG
j (x) e∆jξ(x)

] , (4.117)

initialized as ∆iξ(x) = 0.

Next, MadNIS implements the channel-mappings as a combination of a physics-inspired analytic mappping and an INN,
as introduced in Sec. 4.3

x
analytic←−−−−→ y

INN←−−−−→ z . (4.118)
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This chain effectively replaces Vegas with an INN. MadNIS improves the physics-inspired phase-space mappings by
training an INN as

z = Giθ(x) or x = Giθ(z) , (4.119)

with the network weights θ. Similar to the multi-channel weights, we use physics knowledge to simplify the task of the
normalizing flow and improve its efficiency.

Combining the two networks, MadNIS simultaneously optimizes both the channel weights and the mappings to reduce
the variance of the integral. In contrast to Sec. 4.3.3, it does not normalize the integrands of each channel to probability
distributions, because the channel integrals anymore but are now functions of the trainable channel weights αiξ. The loss
function has to be constructed such that the relative channel contributions are preserved. MadNIS uses the weighted
squared sum of the variances of the channels from Eq.(4.112) to minimize the complete variance

Lvariance =

nc∑
i=1

N

Ni
var2i =

nc∑
i=1

N

Ni

∫
dx giθ(x)

(
αiξ(x)w(x)

giθ(x)
− σiξ

)2

=

nc∑
i=1

N

Ni

∫
dx

(
αiξ(x)2w(x)2

giθ(x)
− 2αiξ(x)w(x)σiξ + σ2

iξ

)

=

nc∑
i=1

N

Ni

(∫
dx

αiξ(x)2w(x)2

giθ(x)
−
[∫

dxαiξ(x)w(x)

]2
)
. (4.120)

In the last line we use the definition of σiξ as the learned approximation of Eq.(4.107). To evaluate the x-integration
numerically we introduced a new sampling density qi(x) which is independent of the model density giθ(x),

Lvariance =

nc∑
i=1

N

Ni

(〈
αiξ(x)2w(x)2

giθ(x) qi(x)

〉
x∼qi(x)

−
〈
αiξ(x)w(x)

qi(x)

〉2

x∼qi(x)

)
. (4.121)

The reason for choosing an independent sampling density is twofold: (i) potentially intractable integrand gradients, and
(ii) buffered training.

First, to optimize the normalizing flow and learn giθ, we have to compute the gradients∇θLvariance. f the sampling density
and model density coincide, qi = giθ, the sampled events x ≡ xθ depend on the network parameters θ. Computing the
gradients requires gradients of all terms of the integrand, including∇θw(xθ). In general, the weights are not
differentiable. By choosing a sampling density q independent of the network parameters θ, we only need the gradient of
giθ which is always tractable.

Second, to train a normalizing flow in the standard importance sampling setup requires continuously generating new
training events and train online. For expensive integrands, like higher-order or high-multiplicity matrix elements, this
limits the training capabilities. In that case it helps to buffer generated events and their underlying sampling density and
train on these events while continuously replacing the buffer with newly generated samples. To stabilize the combined
online and buffered training and to compute the loss with high precision, we choose a sampling density qi(x) ' giθ(x).

A critical hyperparameter in the variance loss in Eq.(4.121) is the numbers of points per channel, Ni, during training and
integral evaluation. Its optimal choice depends on the vari and can be computed analytically by minimizing the loss with
respect to Ni under the condition N =

∑
iNi. It gives

Ni = N
vari∑
j varj

⇔ N

Ni
=

∑
j varj
vari

. (4.122)

This known result from stratified sampling defines the MadNIS loss

LMadNIS =

[
nc∑
i=1

vari

]2

=

 nc∑
i=1

(〈
αiξ(x)2w(x)2

giθ(x)qi(x)

〉
x∼qi(x)

−
〈
αiξ(x)w(x)

qi(x)

〉2

x∼qi(x)

)1/2
2

. (4.123)

The variance of a channel usually scales with its cross section. Moreover, even if different channels contribute similarly to
the total cross section, their variances can still be very imbalanced. The MadNIS loss is always dominated by channels
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Figure 59: Left: learned Me+e− distribution where the middle panel shows the learned channel weights, and the lower
panel shows the ratio of the combined distribution to pure online training for reduction factors in training statistics. Right:
change in training time as a function of the reduction in training statistics R@ for integrands with different computational
costs. Figures from Ref. [43].

with a large variance, which can lead to unstable training if the number of points in these channels is too small. We can
further improve the MadNIS training by two additional tricks: Because the variance of the channels changes during the
training of the channel weights and during the training of the importance sampling, we track running means of the
channel variances and use them to adjust the number of points per channel during online training. To ensure a stable
training we first distribute a fraction of points evenly among channels. The remaining events are distributed according to
the channel variances, following Eq.(4.122).

For most LHC applications, MadNIS captures the relevant the phase space with a few channels. We can exploit this and
drop channels with negligible contribution to the total cross section. If we drop a channel, we also remove its contribution
to the buffered sample and adjust the normalization of the channel weights. This way no training time is invested into
dropped channels and the result remains unbiased.

We can benchmark the performance of MadNIS for different LHC processes. First, we consider the Drell-Yan process
with an additional Z ′-resonance,

pp→ γ, Z∗, Z ′
∗ → e+e− , (4.124)

assuming MZ′ = 400.0 GeV and ΓZ′ = 0.5 GeV. The left plot in Fig. 59 shows how the learned channels map out the
different Breit-Wigner peaks and simplify the INN tasks. Each learned channel weight αi dominates in a specific phase
space region. In the bottom panel and in the right plot, the effect of reduced training statistics induced by the buffered
training is compared to the traditional online training. For the same relative uncertainty the buffered training reduces the
CPU time by up to 80%.

Targeting actual LHC challenges, we can implement MadNIS in the MadGraph framework, to give is access to scattering
matrix elements, parton densities and analytic phase space mappings. We can then apply it to the cutting-edge scattering
processes

W + jets gg →W+dū gg →W+dūg gg →W+dūgg

tt̄+jets gg → tt̄+ g gg → tt̄+ gg gg → tt̄+ ggg , (4.125)

The number of Feynman diagrams at leading order ranges from 8 for Wdū production to 1240 for the tt̄ggg process.

In Fig. 60, we show the performance gain of MadNIS compared to Madgraph using Vegas only. As quality measure, we
show two different metrics: the relative standard deviation varσ/σ, as is it independent from the sampling statistics, and
the unweighting efficiency ε. Looking at the scaling with the number of additional gluons in the final state, the
unweighting efficiency decreases and standard deviation increases towards higher multiplicities, and the relative gain of
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Figure 60: Relative standard deviation and unweighting efficiency for W+jets and tt̄+jets with different numbers of gluons
in the final state. The performance gain is illustrated in the lower panels. Figure from Ref.[44].

MadNIS over Vegas remains roughly constant for W+jets production. For the even more challenging tt̄+jets process the
gain decreases for the 3-gluon case. This can partially be explained by an suboptimal implementation for many channels
(945 for tt̄+ 3jets), leaving work for the actual implementation in upcoming Madgraph releases.

4.4 Diffusion networks

Diffusion networks are a new brand of generative networks which are similar to normalizing flows, but unlike the INN
they are not fully bijective and symmetric. On the positive side, they tend to be more expressive that the relatively
constrained normalizing flows. We will look at two distinctly different setups, one based on a discrete time series in
Sec. 4.4.1 and another one based on differential equations in Sec. 4.4.2.

4.4.1 Denoising diffusion probabilistic model

Looking at the INN mapping illustrated in Eq.(4.69), we can interpret this basic relation as a time evolution from the
phase space distribution to the latent distribution or back,

pmodel(x0)
forward→
←−−−−−−→
←backward

platent(xT ) , (4.126)

identifying the original parameters x→ x0 and r → xT in the spirit of a discrete time series with t = 0 ... T . The
step-wise adding of Gaussian noise defines the forward direction of Denoising Diffusion Probabilistic Models (DDPMs).
The task of the reverse, generative process is to to denoise the diffused data.

The forward process, by definition, turns a phase space distribution into Gaussian noise. The multi-dimensional
distribution is factorized into independent steps,

p(x1, ..., xT |x0) =

T∏
t=1

p(xt|xt−1) with p(xt|xt−1) = N (xt;
√

1− βtxt−1, βt) . (4.127)

Each step describes a conditional probability and adds Gaussian noise with an appropriately chosen variance βt and mean√
1− βtxt−1 to generate xt. Following the original paper we can choose a linear scaling βt ∼ 2 · 10−2(t− 1)/T .

Naively, we would add noise with mean xt−1, but in that case each step would broaden the distribution, since independent
noise sources add their widths in quadrature. To compensate, we add noise with scaled mean

√
1− βtxt−1. In that case
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we can combine all Gaussian convolutions and arrive at

p(xt|x0) =

∫
dx1...dxt−1

t∏
i=1

p(xi|xi−1)

= N (xt;

√
1− β̄tx0, β̄t) with 1− β̄t =

t∏
i=1

(1− βi) . (4.128)

The reverse process in (4.126) starts with a Gaussian and gradually transforms it into the phase-space distribution through
the same discrete steps as Eq.(4.127). The corresponding generative network approximates each forward step and should
produce the correct phase-space distribution

pmodel(x0) =

∫
dx1...dxT platent(xT )

T∏
t=1

pθ(xt−1|xt)

with pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
θ(xt, t)) . (4.129)

Here, µθ and σθ are learnable parameters describing the individual conditional probability slices xt → xt−1. It turns out
that in numerical practice we can simplify it to σ2

θ(xt, t)→ σ2
t .

To link the forward and reverse directions, we first apply Bayes’ theorem on each slice defined in Eq.(4.127) to give us the
reverse p(xt−1|xt). The problem with this inversion is that the full probability distribution p(x1, ..., xT |x0) in Eq.(4.127)
is conditioned on x0. With this dependence we can compute the conditioned forward posterior as a Gaussian with an
x0-dependent mean,

p(xt−1|xt, x0) =
p(xt|xt−1)p(xt−1|x0)

p(xt|x0)
= N (xt−1; µ̂(xt, x0), β̂t)

with µ̂(xt, x0) =

√
1− β̄t−1βt

β̄t
x0 +

√
1− βtβ̄t−1

β̄t
xt and β̂t =

β̄t−1

β̄t
βt . (4.130)

For training the DDPM network we need to just approximate a set of Gaussians, Eq.(4.130), with their learned
counterparts in Eq.(4.129).

The loss function of the diffusion network is the same sampled likelihood as for the INN, given in Eq.(4.73), which we
can simplify by inserting and then dividing by p(x1, ..., xT |x0) following Eq.(4.127)

−
〈

log pmodel(x0)
〉
pdata

= −
∫
dx0 pdata(x0) log

(∫
dx1...dxT platent(xT )

T∏
t=1

pθ(xt−1|xt)
)

= −
∫
dx0 pdata(x0) log

(∫
dx1...dxT platent(xT )p(x1, ..., xT |x0)

T∏
t=1

pθ(xt−1|xt)
p(xt|xt−1)

)

= −
∫
dx0 pdata(x0) log

〈
platent(xT )

T∏
t=1

pθ(xt−1|xt)
p(xt|xt−1)

〉
p(x1,...,xT |x0)

(4.131)

This expression includes a logarithm of an expectation value. There is a standard relation, Jensen’s inequality, for convex
functions,

f(〈x〉) ≤ 〈f(x)〉 . (4.132)

Convex means that if we linearly interpolate between two points of the function, the interpolation lies above the function.
This is obviously true for a function around the minimum, where the Taylor series gives a quadratic (or even-power)
approximation. We use this inequality for our negative log-likelihood around the minimum. It provides an upper limit to
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the negative log-likelihood, which we minimize instead,

−
〈

log pmodel(x0)
〉
pdata

≤ −
∫
dx0 pdata(x0)

〈
log

(
platent(xT )

T∏
t=1

pθ(xt−1|xt)
p(xt|xt−1)

)〉
p(x1,...,xT |x0)

= −
∫
dx0...dxT pdata(x0) p(x1, ..., xT |x0) log

(
platent(xT )

T∏
t=1

pθ(xt−1|xt)
p(xt|xt−1)

)

≡ −
∫
dx0...dxT p(x0, ..., xT ) log

(
platent(xT )

T∏
t=1

pθ(xt−1|xt)
p(xt|xt−1)

)

=

〈
− log platent(xT )−

T∑
t=1

log
pθ(xt−1|xt)
p(xt|xt−1)

〉
p(x0,...,xT )

(4.133)

Now we use Bayes’ theorem for the individual slices pθ(xt−1|xt) and compare them with the reference form from
Eq.(4.130),

−
〈

log pmodel(x0)
〉
pdata

≤
〈
− log platent(xT )−

T∑
t=2

log
pθ(xt−1|xt)
p(xt|xt−1)

− log
pθ(x0|x1)

p(x1|x0)

〉
p(x0,...,xT )

=

〈
− log platent(xT )−

T∑
t=2

log
pθ(xt−1|xt)p(xt−1|x0)

p(xt−1|xt, x0)p(xt|x0)
− log

pθ(x0|x1)

p(x1|x0)

〉
p(x0,...,xT )

=

〈
− log platent(xT )−

T∑
t=2

log
pθ(xt−1|xt)
p(xt−1|xt, x0)

− log
p(x1|x0)

p(xT |x0)
− log

pθ(x0|x1)

p(x1|x0)

〉
p(x0,...,xT )

=

〈
− log

platent(xT )

p(xT |x0)
−

T∑
t=2

log
pθ(xt−1|xt)
p(xt−1|xt, x0)

− log pθ(x0|x1)

〉
p(x0,...,xT )

(4.134)

As usual, we ignore terms which do not depend on the network weights θ,〈
log pmodel(x0)

〉
pdata

≤
T∑
t=2

〈
log

p(xt−1|xt, x0)

pθ(xt−1|xt)

〉
p(x0,...,xT )

−
〈

log pθ(x0|x1)
〉
p(x0,...,xT )

+ const

=

T∑
t=2

∫
dx0...dxT p(x0, ..., xT ) log

p(xt−1|xt, x0)

pθ(xt−1|xt)
−
〈

log pθ(x0|x1)
〉
p(x0,...,xT )

+ const

=

T∑
t=2

〈
DKL[p(xt−1|xt, x0), pθ(xt−1|xt)]

〉
p(x0,xt)

−
〈

log pθ(x0|x1)
〉
p(x0,...,xT )

+ const

≈
T∑
t=2

〈
DKL[p(xt−1|xt, x0), pθ(xt−1|xt)]

〉
p(x0,xt)

(4.135)

The sampling follows p(x0, xt) = p(xt|x0) pdata(x0). The second sampled term will be numerically negligible compared
to the first T − 1 terms. The KL-divergence compares the two Gaussians from Eq.(4.130) and Eq.(4.129), with the two
means µθ(xt, t) and µ̂(xt, x0) and the two standard deviations σ2

t and β̂t,

LDDPM =

T∑
t=2

〈
1

2σ2
t

|µ̂− µθ|2
〉
p(x0,xt)

. (4.136)

To provide µ̂ we use the reparametrization trick on xt(x0, ε) as given in Eq.(4.128)

xt(x0, ε) =

√
1− β̄tx0 +

√
β̄tε with ε ∼ N (0, 1)

⇔ x0(xt, ε) =
1√

1− β̄t

(
xt −

√
β̄tε

)
, (4.137)
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xT ∼ N (0, 1)

DDPMt = T εθ xT−1 =
1√

1−βT

(
xT − βT√

β̄T
εθ

)
+ σTzT

zT−1 ∼ N (0, 1)

DDPMt = T − 1 εθ ... x1 =
1√

1−β2

(
x2 − β2√

β̄2

εθ

)
+ σ2z2

z1 ∼ N (0, 1)

DDPMt = 1 εθ

x0 =
1√

1−β1

(
x1 − β1√

β̄1

εθ

)

Figure 61: DDPM sampling algorithm, Figure from Ref. [45].

This form we insert into Eq.(4.130) to find, after a few simple steps.

µ̂(xt, ε) =
1√

1− βt

(
xt(x0, ε)−

βt√
β̄t
ε

)
. (4.138)

The same method can be applied to provide µθ(xt, t) ≡ µ̂(xt, εθ), in terms of the trained network regression εθ.

The derivation of the Bayesian INN in Sec. 4.3.1 can just be copied to define a Bayesian DDPM. Its loss follows from
Eqs.(4.136) and (4.75), with a sampling over network parameters θ ∼ q(θ) and the regularization term,

LB-DDPM =
〈
LDDPM

〉
θ∼q

+DKL[q(θ), p(θ)] . (4.139)

We turn the deterministic DDPM into the B-DDPM through two steps, (i) swapping the deterministic layers to the
corresponding Bayesian layers, and (ii) adding the regularization term to the loss. To evaluate the Bayesian network
sample over the network weight distribution.

For the DDPM training we start with a phase-space point x0 ∼ pdata(x0) drawn from the true phase space distribution and
also draw the time step t from a uniform distribution and ε from a standard Gaussian. We then use Eq.(4.138) to compute
the diffused data point after t time steps, xt. This means the uses many different time steps t for many different
phase-space points x0 to learn the step-wise reversed process. , which is why we use a relatively simple residual dense
network architecture, which is trained over many epochs.

The (reverse) DDPM sampling is illustrated in Fig. 61. We start with xT ∼ platent(xT ), drawn from the Gaussian latent
space distribution. Combining the learned εθ and the drawn Gaussian noise zT−1 ∼ N (0, 1) we calculate xT−1, assumed
to be a slightly less diffused version of xT . We repeat this sampling until we reach the phase space distribution of x0.
Because the network needs to predict εθ T times, it is slower than classic generative networks like VAEs, GANs, or INNs.

From Sec. 4.3.1 we know that we can illustrate the training of a generative network using a simple toy model, for example
the linear ramp defined in Eq.(4.78). In Fig. 62 we show the corresponding results to the B-INN results from Fig. 48. The
key results is that the DDPM learns the simple probability distribution with high precision and without a bias. Moreover,
the absolute predictive uncertainty on the estimated density has a minimum around x2 ∼ 0.7, albeit less pronounced than
for the B-INN. This suggests that the DDPM has some similarity to the INN, but its implicit bias on the fitted function
and its expressivity are different.

4.4.2 Conditional flow matching

An alternative approach to diffusion networks is Conditional Flow Matching (CFM). Like the DDPM, it uses a time
evolution to transform a phase space distributions into Gaussian noise, but instead of a discrete chain of conditional
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Figure 62: Density and predictive uncertainty distribution for a linear wedge ramp using diffusion networks. We show
DDPM results (left and center) and CFM results (right). The uncertainty on σstat is given by its x1-variation. Figure from
Ref. [45].

probabilities it constructs and solves a continuous ordinary differential equation (ODE)

dx(t)

dt
= v(x(t), t) , (4.140)

where v(x(t), t) is called the velocity field. We will learn the velocity field to generate samples by integrating this ODE
from t = 1 to t = 0. The ODE can be linked to a probability density p(x, t) through the continuity equation

∂p(x, t)

∂t
+∇x [p(x, t)v(x, t)] = 0 . (4.141)

These two equations are equivalent in that for a given probability density path p(x, t) any velocity field v(x, t) describing
the sample-wise evolution Eq.(4.140) will be a solution of Eq.(4.141), and vice versa. We will use the continuity equation
to learn the velocity field vθ(x, t) ≈ v(x, t) in the network training and then use the ODE with vθ(x, t) as a generator.

To realize the diffusion model ansatz of Eq.(4.126) we need to express the velocity field in terms of our known density
p(x, t) with the boundary conditions

p(x, t)→
{
pdata(x) t→ 0

platent(x) = N (x; 0, 1) t→ 1 ,
(4.142)

where we use x as the argument of platent, rather than r, to illustrate that it is an evolved form of the phase space
distribution x.

We start with the the forward, diffusion direction, where the time evolution goes from a phase space point x0 to the latent
standard Gaussian. In a conditional form we can write a simple linear interpolation

x(t|x0) = (1− t)x0 + tr →
{
x0 t→ 0

r ∼ N (0, 1) t→ 1

⇔ p(x, t|x0) = N (x; (1− t)x0, t) . (4.143)

This conditional time evolution is similar to the DDPM case in Eq.(4.128). For our generative model we need the
conditional velocity associated with p(x, t|x0). We combine Eqs.(4.140) and (4.4.2) to

v(x(t|x0), t|x0) =
dx(t|x0)

dt
=

d

dt
[(1− t)x0 + tr] = −x0 + r . (4.144)

Our linear interpolation leads to a time-constant velocity, which solves the continuity equation for p(x, t|x0) because we
construct it as a solution to the ODE

∂p(x, t|x0)

∂t
+∇x [p(x, t|x0)v(x, t|x0)] = 0 . (4.145)
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Next, we remove the conditioning and compute the full probability path from Eq.. We see that it fulfills both boundary
conditions of Eq.(4.142),

p(x, t) =

∫
dx0 p(x, t|x0) pdata(x0)

⇒ p(x, 0) =

∫
dx0 p(x, 0|x0) pdata(x0) =

∫
dx0 δ(x− x0) pdata(x0) = pdata(x)

p(x, 1) =

∫
dx0 p(x, 1|x0) pdata(x0) = N (x; 0, 1)

∫
dx0 pdata(x0) = N (x; 0, 1) . (4.146)

Similarly, we compute the unconditional velocity from its conditional counterpart,

∂p(x, t)

∂t
=

∂

∂t

∫
dx0 p(x, t|x0)pdata(x0)

=

∫
dx0

∂p(x, t|x0)

∂t
pdata(x0)

= −
∫
dx0 ∇x [p(x, t|x0)v(x, t|x0)] pdata(x0)

= −∇x
[
p(x, t)

∫
dx0

p(x, t|x0)v(x, t|x0)pdata(x0)

p(x, t)

]
≡ −∇x [p(x, t)v(x, t)]

⇔ v(x, t) =

∫
dx0

p(x, t|x0)v(x, t|x0)pdata(x0)

p(x, t)
. (4.147)

While the conditional velocity in Eq.(4.144) describes a trajectory between a normal distributed and a phase space sample
x0 that is specified in advance, the full velocity in Eq.(4.147) evolves samples from pdata to platent and vice versa.

Training the CFM means learning the velocity field in Eq.(4.147), a simple regression task, v(x, t) ≈ vθ(x, t). The
straightforward choice is the MSE-loss,

LFM =
〈

[vθ(x, t)− v(x, t)]
2
〉
t,x∼p(x,t)

=
〈
vθ(x, t)

2
〉
t,x∼p(x,t)

−
〈

2vθ(x, t)v(x, t)
〉
t,x∼p(x,t)

+ const , (4.148)

where the time is sampled uniformly over t ∈ [0, 1]. Again, we can start with the conditional path in Eq.(4.4.2) and
calculate the conditional velocity in Eq.(4.144) for the MSE loss. We rewrite the above loss in terms of the conditional
quantities, so the first term becomes

〈
vθ(x, t)

2
〉
t,x∼p(x,t)

=

〈∫
dx p(x, t)vθ(x, t)

2

〉
t

=

〈∫
dxvθ(x, t)

2

∫
dx0 p(x, t|x0)pdata(x0)

〉
t

=
〈
vθ(x, t)

2
〉
t,x0∼pdata,x∼p(x,t|x0)

=
〈
vθ(x(t|x0), t)2

〉
t,x0∼pdata,r

(4.149)

In the last term we use the simple form of x(t|x0) given in Eq.(4.4.2), which needs to be sampled over r. Similarly, we
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rewrite the second loss term as

−2
〈
vθ(x, t)v(x, t)

〉
t,x∼p(x,t)

= −2

〈∫
dx p(x, t)vθ(x, t)

∫
dx0p(x, t|x0)v(x, t|x0)pdata(x0)

p(x, t)

〉
t

= −2

〈∫
dxdx0 vθ(x, t) v(x, t|x0) p(x, t|x0) pdata(x0)

〉
t

= −2
〈
vθ(x, t) v(x, t|x0)

〉
t,x0∼pdata,x∼p(x,t|x0)

= −2
〈
vθ(x(t|x0), t) v(x(t|x0), t|x0)

〉
t,x0∼pdata,r

. (4.150)

The (conditional) Flow Matching loss of Eq.(4.148) then becomes

LCFM =
〈

[vθ(x(t|x0), t)− v(x(t|x0), t|x0)]
2
〉
t,x0∼pdata,r

. (4.151)

We can compute it using the linear ansatz from Eq.(4.4.2) as

LCFM =

〈[
vθ(x(t|x0), t)− dx(t|x0))

dt

]2
〉
t,x0∼pdata,r

=
〈

[vθ((1− t)x0 + tr, t)− (r − x0)]
2
〉
t,x0∼pdata,r

. (4.152)

As usually, we can turn the CFM into a Bayesian generative network. For the Bayesian INN or the Bayesian DDPM the
loss is a sum of the likelihood loss and a KL-divergence regularization, shown in Eqs.(4.75) and (4.139). Unfortunately,
the CFM loss in Eq.(4.151) is not a likelihood loss. To mimic the usual setup we still modify the CFM loss by switching
to Bayesian network layers and adding a KL-regularization,

LB-CFM =
〈
LCFM

〉
θ∼q(θ)

+ cDKL[q(θ), p(θ)]. (4.153)

While for a likelihood loss the factor c is fixed by Bayes’ theorem, in this case it is a free hyperparameter. However, we
find that the network predictions and their associated uncertainties are very stable when varying it over several orders of
magnitude.

To train the CFM we sample a data point x0 ∼ pdata(x0) and r ∼ N (0, 1) as the starting and end points of a trajectory, as
well as a time from a uniform distribution. We first compute x(t|x0) according to Eq.(4.4.2) and then v(x(t|x0), t|x0)
following Eq.(4.144). The point x(t|x0) and the time t are passed to a neural network which encodes the conditional
velocity field

vθ(x(t|x0), t) ≈ v(x, t|x0) . (4.154)

One property of the training algorithm is that the same network input, a time t and a position x(t|x0), can be produced by
many different trajectories with different conditional velocities. While the network training is based on a wide range of
possible trajectories, the CFM loss in Eq.(4.151) ensures that sampling over many trajectories returns a well-defined
velocity field.

Once the CFM network is trained, the generation of new samples is straightforward. We start by drawing a sample from
the latent distribution r ∼ platent = N (0, 1) and calculate its time evolution by numerically solving the ODE backwards in
time from t = 1 to t = 0

d

dt
x(t) = vθ(x(t), t) with r = x(t = 1)

⇒ x0 = r −
∫ 1

0

vθ(x, t)dt ≡ Gθ(r) , (4.155)

This generation is fast, as is the CFM training, because we can rely on established ODE solvers. Under mild regularity
assumptions this solution defines a bijective transformation between the latent space sample and the phase space sample
Gθ(x1), similar to its definition in the INN case, Eq.(4.69).
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Like the INN and unlike the DDPM, the CFM network also allows us to calculate phase space likelihoods. Making use of
the continuity equation, Eq.(4.141), we can write

dp(x, t)

dt
=
∂p(x, t)

∂t
+ [∇xp(x, t)] v(x, t)

=
∂p(x, t)

∂t
+∇x [p(x, t)v(x, t)]− p(x, t) [∇xv(x, t)]

= −p(x, t) ∇xv(x, t) . (4.156)

Its solution can be cast in the INN notation from Eq.(4.70),

p(r, t = 1)

p(x0, t = 0)
= exp

(
−
∫ 1

0

dt ∇xv(x(t), t)

)
≡ platent(G

−1
θ (x0))

pmodel(x0)
=

∣∣∣∣det
∂G−1

θ (x0)

∂x0

∣∣∣∣−1

⇔
∣∣∣∣det

∂G−1
θ (x0)

∂x0

∣∣∣∣ = exp

(∫ 1

0

dt ∇xvθ(x(t), t)

)
. (4.157)

Calculating the Jacobian requires integrating over the divergence of the learned velocity field, which is fast if we use
automatic differentiation.

To understand how the generative network learn, we can again use the 2-dimensional linear wedge combined with the
Bayesian setup. In the right panel of Fig. 62 we show the corresponding distribution. First, we see that the scale of the
uncertainty is a factor five below the DDPM uncertainty, which means that the CFM is easily and reliably trained for a
small number of dimensions. In addition, we see that the minimum in the absolute uncertainty is even flatter and at
x2 ∼ 0.3. Again, this is reminiscent of the fit-like INN behavior, but much less pronounced.

An interesting aspect of the CFM is that, unlike the other generative models we have discussed, nothing in our derivation
requires the latent distribution to be a Gaussian. Instead of Eq.(4.69) or Eq,(4.126) we can link any two distributions,
sample from one and into the second. An interesting LHC application is the generation of events from a narrow phase
space into a wider phase space. This kind of problem occurs for collinear or soft or on-shell subtraction terms, where we
need to model cancellations between phase spaces with different numbers of particles in the final state. Similarly, we can
try to generate off-shell decay configurations from an on-shell or Breit-Wigner approximation. Such off-shell effects are
expensive to simulate and numerically suppressed. The advantage of training a generative network to modify the on-shell
distributions as compared to training a generative network to simulate off-shell events is that the on-shell events already
include the full correlations, so the network only has to learns small modifications rather than the correlations themselves.

Let us look at the production of off-shell top quarks

pp→ (be+νe) (b̄µ−νµ) . (4.158)

The propagators of massive and unstable intermediate particles with mass m include the particle width Γ and have the
form

Γpart

(s−m2)2 +m2Γ2
tot

Γ→0−→ Γpart
π

Γtot
δ(s−m2) ≡ π BRpart δ(s−m2) . (4.159)

For vanishing widths, the decay propagator leads to a phase space constraint and the branching ratio BRpart into the partial
decay channel given by the off-shell process. For small, but finite width we can use this so-called Breit-Wigner
propagator to simulate off-shell effects. Far away from the on-shell pole this description is wrong, because Eq.(4.158)
does not actually require top quarks to appear in the Feynman diagrams. In Fig. 63 we show the on-shell and off-shell
distributions for the reconstructed top mass.

Generalizing Eq.(4.69) the generative task becomes

on-shell x ∼ pon(x) ←−−−−−−→ off-shell x ∼ pmodel(x|θ) ≈ poff(x) . (4.160)

The time-dependent probability distributions of Eq.(4.142) become

p(x, t)→
{
poff(x) t→ 0

pon(x) t→ 1 ,
(4.161)
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Figure 63: Left: kinematic distributions of on-shell vs off-shell top pair production, compared with the generated off-shell
distributions (DiDi). Right: migration plot between on-shell and generated off-shell configurations. Figure from Ref. [46].

and the loss function from Eq.(4.151) is samples from the on-shell and off-shell events,

LCFM =
〈

[vθ((1− t)x0 + tx1, t)− (x1 − x0)]
2
〉
t,x0∼poff,x1∼pon

. (4.162)

For the training, we can use paired events, if available, but we do not have to. This kind of mapping can also be achieved
using the Flows-For-Flows setup or the so-called Schrödinger bridge, but as a generalization of the CFM model to
Direct Diffusion (DiDi) it is particularly obvious.

In the left panel of Fig. 63 we compare the performance of a simple direct diffusion network to the on-shell base
distribution and the off-shell target distribution. The generated off-shell events reproduce the correct distribution in the,
apparently, extrapolated phase space region with reasonable precision. Deviations from the target distributions are
covered by the uncertainty bands of the Bayesian version. As always, the performance of the DiDi generator can be
improved through classifier reweighting.

Given that the off-shell extrapolation does not follow a well-defined simulation model, the DiDi training on unmatched
event samples has to construct some kind of optimal transport prescription. This is already discussed in some of the
original literature on CFM. We can illustrate the learned optimal transport prescription through the correlations between
each starting phase space point x0 and the generated off-shell phase space point x1. In the right panel of Fig. 63 we show
this correlation, for the transverse momentum of the anti-bottom quark. As one might expect, the optimal transport keeps
most events close to where they are and avoids moving event from one side of the top mass peak to the other.

4.5 Autoregressive transformer

Another recent generative network we can use for LHC physics is known as ChatGPT. This stands for generative
pre-trained transformer, the same transformer we have introduced as a permutation-invariant preprocessing in Sec. 2.2.3.
It needs pre-training for large language models, because we already know that the transformer learns the relations or links
between objects without assuming locality. For our purpose we combine our JetGPT with a Gaussian mixture model for
the density estimation, to cover the partonic or reconstruction-level phase space of LHC events.

A common problem of all network architectures introduced until now is the scaling of the network performance, in terms
of precision, training time, training dataset, with the phase space dimensionality. Because they learn all correlations in all
phase space directions simultaneously, we automatically see a power-law scaling. The autoregressive setup can alleviate
this by interpreting a phase space vector x = (x1, ...xn) as a sequence of directions xi, with factorizing conditional
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probabilities

pmodel(x) =

n∏
i=1

pθ(xi|x1, ..., xi−1)

=

n∏
i=1

pθ(xi|ω(i−1)) , (4.163)

where the parameters ω(i−1) encode the conditional dependence on x1, ...xi−1. For LHC applications the xi are the
standard phase space directions, like energies or transverse momenta or angles. The autoregressive setup improves the
scaling with the phase space dimensionality in two ways. First, each distribution pθ(xi|x1, ...xi−1) is easier to learn than
a distribution conditional on the full phase space vector x. Second, we can use our physics knowledge to group
challenging phase space directions early in the sequence x1, ..., xn.

From our earlier discussion we know that generative networks for the LHC can be understood as density estimation over
an interpretable phase space, from which the network then samples. We need a way to encode the phase space probability
for our transformer. A naive choice are binned probabilities w(i−1)

j in each phase space direction. If we want our
autoregressive transformer to scale better with dimensionality, a better approach is a Gaussian mixture with learnable
means and widths,

pθ(xi|ω(i−1)) =
∑

Gaussian j

w
(i−1)
j N (xi;µ

(i−1)
j , σ

(i−1)
j ) . (4.164)

The network architecture for the transformer generator of LHC events follows the Generative Pretrained Transformer
(GPT) models. The input data is a sequence of xi, followed by a linear layer to map each value xi in the latent space.
Next follow a series of blocks, which combine the self-attention layer of Sec. 2.2.3 with a standard feed-forward network.
The self-attention constructs correlations between the phase space directions. Finally, another linear layer leads to the
representation ω(i−1) given in Eq.(4.163). The only difference to the definition of the self-attention matrix a(j)

i in
Eq.(2.66) has to reflect the autoregressive ansatz,

a
(i)
j = 0 for j > i . (4.165)

Moreover, because the standard self-attention leads to permutation invariance in the phase space components, we need to
break it by adding positional information to the latent representation of xi through a linear layer using the one-hot
encoded phase space position i.

To train the autoregressive transformer we evaluate the chain of conditional likelihoods for the realized values xi,
providing pmodel(x) for the usual likelihood loss

LAT = −
〈

log pmodel(x)
〉
x∼pdata

= −
n∑
i=1

〈
log p(xi|ω(i−1))

〉
x∼pdata

. (4.166)

As any generative network, we bayesianize the transformer by drawing its weights from a set of Gaussians. In addition,
we need to add the KL-regularization to the likelihood loss, giving us

LB-AT =
〈
LAT

〉
θ∼q(θ)

+DKL[q(θ), p(θ)]. (4.167)

For large generative networks, we encounter the problem that too many Bayesian weights destabilize the network
training. While a deterministic network can switch of unused weights by just setting them to zero, a Bayesian network
can only set the mean to zero In that case its width will approach the prior p(θ), so excess weights contribute noise to the
training. This problem can be solved either by adjusting the prior hyperparameter or by only bayesianizing a fraction of
the network weights. A standard, extreme choice is be to bayesianize only the last layer. In any case it is crucial to
confirm that the uncertainty estimate from the network is on a stable plateau of the prior hyperparameter.

The transformer generation is illustrated in Fig. 64. For each component, ω(i−1) encodes the dependence on the previous
components x1, ..., xi−1, and correspondingly we sample from p(xi|ω(i−1)). The parameters ω(0), ..., ω(i−2) from the
sampling of previous components are re-generated in each step, but not used further. This means event generation is less
efficient than the likelihood evaluation during training, because it cannot be parallelized.
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Figure 64: Sampling algorithm for the autoregressive transformer.

To benchmark the Bayesian autoregressive transformer, or JetGPT, we target the same two-dimensional ramp which we
also used for the B-INN and the two diffusion models, Eq.(4.77). In Fig. 65 we show results from two representation of
the phase space density. In general, the density is described accurately. Unlike for the B-INN, Fig. 48, and the Bayesian
diffusion networks, Fig. 62, we do not observe any structure in the absolute or relative uncertainties. This means that the
training of the transformer does indeed not benefit from the maximum of available correlations in the middle of the phase
space. Instead, the absolute uncertainty grows with the density and the relative uncertainty decreases with the density, as
we expect from a bin-wise counting experiment. The autoregressive transformer cannot just be interpreted as a simple fit
of a class of functions.

In the left panel of Fig. 65 we see that a naive, binned density encoding leads to small uncertainties. In the center panel
we show the same results for a mixture of 21 Gaussians, leading to a much larger uncertainty. While for two dimensions
the advantage over the binned distribution is not obvious, it is clear that we need such a representation for LHC phase
spaces. The main problem can be seen in the right panel, at the upper edge of the ramp. Here, we have enough training
data to determine a well-suited model, but the Gaussian mixture model cannot reproduce the flat growth towards the sharp
upper edge. Instead, it introduces an artifact, just covered by the uncertainty. Because the transformer does no construct a
fitting function with a beneficial implicit bias, we also compare its predictive uncertainty with the statistical uncertainty of
the training data. As one would hope, the uncertainty of the generative network conservatively covers the limitations of
the training data.

To judge the promise of the diffusion networks and the JetGPT transformer for LHC applications, we can test them on the
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Figure 65: Density and predictive uncertainty distribution for a linear wedge ramp using a regressive transformer. We
show results from binned density encoding (left) and from a Gaussian mixture model (center and right). The uncertainty
on σpred ≡ σstat is given by its x1-variation. The blue line gives the statistical uncertainty of the training data. Figure from
Ref. [45].
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same LHC process as we did for the normalizing flows, Sec. 4.3.2,

pp→ Zµµ + {1, 2, 3} jets . (4.168)

We already know that the main challenge lies in the variable number of jets, the Z-peak, and the pairwise R-separation of
the jets. The phase space dimensionality is three per muon and four per jet, i.e. 10, 14, and 18 dimensions altogether.
Each particle is represented by

{ pT , η, φ,m } , (4.169)

and log(pT − pT,min) provides us with approximately Gaussian shape. All azimuthal angles are given relative to the
leading muon, and the jet mass is encoded as logm. Momentum conservation is not guaranteed and can be used to test
the network.

In the top panels of Fig. 66 we show the two key distributions from the B-DDPM network. In the left panel we see that
the network has learned the sharp Z-peak well, albeit not perfectly. The distinctive shape of the ratio indicates that the
DDPM models the Z-peak as slightly too wide. The R-separation between the second and third jets has a global peak
around Rj2j3 = π, and the subleading feature around the hard cut Rjj > 0.4. This feature shows the onset of the collinear
divergence, and comes out too strong for the DDPM. This result can be compared to the B-INN performance in Fig. 54,
which instead washes out the same distribution. This implies that diffusion networks have a strong implicit bias in the
way they fit a function to the data, but that it is different from the normalizing flow case.

Moving on to the CFM diffusion networks, we see that it learns the Z-peak perfectly, and much better than the predictive
uncertainty would suggest. For the Rj2j3 distribution the two diffusion networks show exactly the same limitations.

For the autoregressive transformer we make use of our freedom to order the phase space directions, allowing it to focus on
the angular correlations. (

(φ, η)j1,2,3 , (pT , η)µ1
, (pT , φ, η)µ2

, (pT ,m)j1,2,3
)
. (4.170)

In the bottom row of Fig. 66 we see that this strategy leads to a significant improvement of the Rjj distributions, but at the
expense of the learned Z-peak. The latter now comes with an increased width and a shift of the central value. These
differences illustrate that, also in comparison to the B-INN, the diffusion networks and the autoregressive transformer
come with distinct advantages and disadvantages, which suggests that for applications of generative networks to LHC
phase space we need to keep an open mind.
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Figure 66: Kinematic distributions form the DDPM diffusion network, the CFM diffusion network, and the JetGPT au-
toregressive transformer. Shown are the critical ∆Rj2j3 and Mµµ distributions. Figure from Ref. [45].
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5 Symmetries and representation learning

In particle physics, the feature space of neural network applications is usually some kind of phase space. This phase space
is, to phycisists, interpretable, and we know many exact or approximate symmetries. If we assume that a suitable data
representation is important for the performance of a realistic network, trained in a finite time on a finite amount of data,
we need to find and implement such a representation.

Since Emmy Noether we know that symmetries are the most basic structure in physics, especially in particle physics.
LHC physics is defined by an extremely complex symmetry structure, starting with LHC data, the detector geometry, to
the relativistic space-time symmetries and local gauge symmetries defining the underlying QFT. If we want to use
machine learning we need to embrace these symmetries.

The most obvious symmetry is permutation invariance of particles for instance in a jet, as discussed in Sec. 2.2.5. The jet
images introduced in Sec. 2.1 are defined in rapidity vs azimuthal angle, and their preprocessing exploits the rotation
symmetry around the jet axis. Theoretical invariances under infrared transformations motivated the IR-safe transformer
and the energy flow networks. The most relevant and interesting symmetry in LHC physics the Lorentz symmetry of
relativistic particles. We discussed it in Sec. 2.2.1 and gave an example for the learned underlying Minkowski metric in
Eq.(2.48). Indeed, the question is how many networks in particle physics have to spend GPU time on learning
permutation symmetry or the Minkowski metric for a set of particle 4-vectors.

From a structural perspective, there are two ways symmetries can affect neural network functions. First, we call a network
equivariant or covariant if for a symmetry operation S and a network output fθ(x) we have

fθ(S(x)) = S(fθ(x)) . (5.1)

This means we can recover a symmetry operation S on the data x as a symmetry operation of an equivariant network
output. For example, if we shift all pixels in an input image to a CNN in one direction, the training of the convolutional
filters will not change and the feature maps inside the network will just be shifted as well, so the CNN is equivariant
under translations. An equivalent definition of an equivariant network is that for two different inputs with the same
output, two transformed inputs also give the same output,

fθ(x1) = fθ(x2) ⇒ fθ(S(x1)) = S(fθ(x1)) = S(fθ(x2)) = fθ(S(x2)) . (5.2)

A stronger symmetry requirement is an invariant network, namely

fθ(S(x)) = fθ(x) . (5.3)

Following this line of thought, we want to implement a general representation for LHC data which is based on a set of
4-vectors, but allows the networks to use the benefits of symmetry-aware representations, and works for many network
tasks. There are, at least, three ways to achieve this:

1. hard-code a data representation which is, for instance, equivariant under Lorentz transformations;
2. learn a, for instance, symmetric data representation in a self-supervised manner, through contrastive learning;
3. learn such a data representation very generally, as what is usually advertized as pre-training or a foundation model.

5.1 Lorentz-equivariance

To generally simplify network tasks on LHC phase spaces, we can guarantee Lorentz equivariance for different networks
tasks. From Sec. 2.2.3 we know that transformers provide flexible and powerful data representations, and from many
applications in physics and beyond we also know that these data representations lead to great performance, at least when
we have enough training data. This means we could try to develop a universal Lorentz-equivariant transformer.

One way of constructing an equivariant transformer uses geometric algebra (L-GATr). Such a geometric algebra is an
extension of a vector space with an additional the geometric product. For two vectors it is decomposed into a symmetric
and an antisymmetric contribution,

xy =
{x, y}

2
+

[x, y]

2
, (5.4)
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where the anti-commutator is the usual inner product and the commutator is a new outer product. Neither of them is part
of the original vector space.

We are interested in the spacetime algebra in terms of a 4-vector space is R4 and the Minkowski metric. As its basis we
choose a set of four real vectors γµ, which satisfy

{γµ, γν} = 2gµν . (5.5)

This inner product establishes the basis elements as a set of orthogonal vectors and fixes their normalization. The
difference to the similar Dirac algebra and spinors is that they are defined over a complex rather than real vector space.
Next, we construct new elements of the algebra. All higher-order elements can be characterized as antisymmetric
products of γµ, organized in terms of grade or the number of γµ they require. For instance, the antisymmetric tensor σµν

is generated from the geometric product of two γµ and consequently has grade two,

γµγν =
{γµ, γν}

2
+

[γµ, γν ]

2
≡ gµν + σµν . (5.6)

The commutator σµν is a bivector, which can be interpreted as the plane in Minkowski space. The symmetric term in the
geometric product reduces the grade, while the antisymmetric term increases it. The whole product γµγν is a sum of
grade zero (scalar) and grade two. A generic element of the algebra that mixes grade information is called a multivector.

Next, the geometric product of three vectors contains the antisymmetric tensor εµνρσγµγνγρ and forms an axial vector.
The product of all four vectors defines the pseudoscalar

γ5 = γ0γ1γ2γ3 ≡ 1

4!
εµνρσγ

µγνγργσ. (5.7)

It acts as parity reversal and can be used to write axial vectors as γµγ5. The missing factor i compared to the usual
definition of γ5 reflects the difference between the complex Dirac algebra and our real spacetime algebra. Geometric
products with more than four γµ can be reduced to lower-grade structures.

Combining all these elements, we can express any multivector of the algebra as

x = xS 1 + xVµ γµ + xBµν σ
µν + xAµ γ

µγ5 + xP γ5 with


xS

xVµ
xBµν
xAµ
xP

 ∈ R16 . (5.8)

In this representation, we only include the nonzero and independent entries in the antisymmetric bivector. Multivectors
can be used to represent both spacetime objects and Lorentz transformations. For instance, particles are characterized by
their particle identification and their 4-momentum

xS = PID xVµ = pµ xTµν = xAµ = xP = 0 . (5.9)

Similarly, we can represent objects like transition amplitudes as a function of 4-momentum multivectors. A matrix
element as a function of 4-momenta can be decomposed into parity-even and parity-odd terms and then gives us two
scalar function and one pseudo-scalar function

|M|2 = |ME |2 + |MO|2 + 2 Re (M∗EMO)

= xS1 + xP γ5 with xS1 = |ME |2 + |MO|2 and xP γ5 = 2Re (M∗EMO) . (5.10)

Finally, the geometric algebra also describe symmetry operations on objects. In this framework Lorentz transformations
act as

Λv(x) = vxv−1 , (5.11)

where v is a multivector representing an element of the Lorentz group acting on the algebra element x. The representation
v is built by a simple rule: a multivector encoding an object that is invariant under a Lorentz transformation will also



126 5 SYMMETRIES AND REPRESENTATION LEARNING

Z + 1g Z + 2g Z + 3g Z + 4g

10−7

10−6

10−5

10−4

10−3

10−2

10−1

M
SE

on
st

an
da

rd
iz

ed
am

pl
it

ud
es

MLP

Transformer

DSI

GAP

CGENN

L-GATr

2018 2020 2022 2024 2026

time of publication

500

1000

1500

2000

2500

3000

1/
ε

B
(ε

S
=

0.
3)

TopoDNN

LoLa
PFN
TreeNiN

ParticleNet ParT

MIParT
LorentzNet

PELICAN
L-GATr

ParT-f.t. MIParT-f.t.

ParticleNet-f.t.

L-GATr-f.t.

Non-equivariant

Equivariant

Pretrained

Equivariant+Pretrained

Figure 67: Left: prediction error from L-GATr and several baselines for Z + ng amplitudes with increasing particle
multiplicity. size. Right: history of top taggers since Fig. 17. Figure from Ref. [47].

represent the transformation itself. This gives a dual interpretation to spacetime algebra elements as geometric objects and
as Lorentz transformations. This way, the algebra representation allows us to apply this boost on any object in the
geometric algebra, such that Lorentz transformations will never mix grades. Each algebra grade transforms under a
separate sub-representation of the Lorentz group.

Based on the multivector representation, we construct an equivariant transformer network L-GATr. In the form of Eq.(5.1)
its Lorentz equivariance implies

L-GATr
(

Λ(x)
)

= Λ
(

L-GATr(x)
)
. (5.12)

L-GATr follows the standard transformer architecture introduced in Sec. 2.2.3, including standard operations like linear
layer, attention, layer normalization, or an activation function. The only difference is that the feature or phase space is
multivectors x as defined in Eq.(5.8). The only additional structure is the geometric product defined in Eq.(5.4).

The main claim of representation learning is that we should be able to use the L-GATr data representation for different
LHC tasks, from amplitude regression to jet tagging and even generation. One caveat is that for some LHC tasks Lorentz
symmetry is not exact. In that case we have to allow L-GATr to break the symmetry in a flexible manner, for example
through hard-breaking reference multivectors as additional inputs and without altering the network architecture. The
network now has the option to tune out the reference vectors when they are not needed. An example is the LHC beam
direction, which breaks the Lorentz group to the subgroup of rotations around and boosts along the beam axis. The
natural reference vector is this beam direction xV± = (0, 0, 0,±1), or alternative the bivector representing the x− y plane,
xB12 = 1. The fact that for some tasks the Lorentz symmetry is broken implies that we will have to at least fine-tune the
universal L-GATr representation:

1. Our first L-GATr case study is on amplitude regression. Because we will see that one of the key advantages is an
improved scaling of the network accuracy with the number of particles in the final state, we switch from the γγg(g)
final state from Sec. 1.3.1 to a simpler, tree level process

qq̄ → Z + n g, n = 1 . . . 5 . (5.13)

To avoid soft or collinear divergences, we require

pT > 20 GeV and ∆R > 0.4 (5.14)
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for all final-state objects. The input data is still the initial and final state 4-momenta combined with standardized
amplitudes. The standard MSE loss can easily be expanded to a heteroskedastic loss or even to a BNN extension. The
improved scaling towards up to six particles in the final state is due to the permutation symmetry of transformers, as
discussed in Sec. 2.2.3.
The MSE or absolute accuracy of the amplitude network is shown in the left panels of Fig. 67. The benchmarks are a
standard MLP; a non-equivariant transformer; the deep-sets invariant network from Sec. 1.3.1; an equivariant MLP
using the geometric algebra (GAP); and an equivariant graph network using the geometric algebra (CGENN). We first
see that transformer and graph networks scale better with the number of external particles. L-GATr is roughly on par
with the leading DSI network for two gluons, but its improved scaling gives it the lead for three or more gluons.
Going to five gluons confirms the improved L-GATr scaling, in spite of a reduced number of training amplitudes
reflecting the event generation CPU limitations.

2. Next, we see what happens for jet tagging, the LHC task impacted most by modern ML. The specific task is given by
tagging boosted top jets, as introduced in Sec. 2.1.1. The performance of the L-GATr tagger is shown in the right panel
of Fig. 67, as a function of time. The performance measure is the background suppression at a fixed signal efficiency
of εs = 30%, shown in Tab. . For some of the older taggers the corresponding ROC curves are shown in Fig. 17.
The classic baselines are ParticleNet, a convolutional graph network discussed in Sec. 2.2.2 and the Particle
Transformer, a fully implemented tagger similar to the transformer introduced in Sec. 2.2.3. They define the cutting
edge of standard architectures with a background suppression around 1600, more than a factor 5 better than the first
ATLAS DNN-tagger and all tools from the pre-ML era.
A systematic performance boost comes from Lorentz-equivariant architectures, for instance LorentzNet as an
equivariant version of ParticleNet, PELICAN as an alternative with a focus on equivariant aggregation functions, and
L-GATr as the first equivariant transformer. All three show a background rejection around 2200.
The final improvement comes from pre-training the data-intensive transformers on another, much larger jet dataset.
For this purpose, we use a standard set of 100M jets from different partons, split into 10 different jet classes and
referred to as the JetClass dataset. After that, the transformers are fine-tuned by switching the last layer of the network
to map to a single output channel and re-initializing its weights. All three transformers benefit from pre-training,
where the equivariant and pre-trained L-GATr takes the lead with a background suppression around 2900, a factor ten
better than the pre-DNN taggers.

3. The third benchmark application is event generation. From Sec. 4.2.2 we know that top pair production is a challenge
because of the intermediate on-shell tops and W -bosons. We suspect from the amplitude regression that an
equivariant transformer will scale well with more particles in the final state, so we choose a more challenging
all-hadronic partonic process

pp→ tht̄h + n j, n = 0 . . . 4 , (5.15)

Network Accuracy AUC 1/εB (εS = 0.5) 1/εB (εS = 0.3)

architectures

ATLAS TopoDNN 0.916 0.972 – 295 ± 5
LoLa (Sec. 2.2.1) 0.929 0.980 – 722 ± 17
ParticleNet (Sec. 2.2.2) 0.940 0.9858 397 ± 7 1615 ± 93
ParT (Sec. 2.2.3) 0.940 0.9858 413 ± 16 1602 ± 81

equivariant
LorentzNet 0.942 0.9868 498 ± 18 2195 ± 173
PELICAN 0.9426 ± 0.0002 0.9870 ± 0.0001 – 2250 ± 75
L-GATr 0.9423 ± 0.0002 0.9870 ± 0.0001 540 ± 20 2240 ± 70

pre-trained
ParticleNet-f.t. 0.942 0.9866 487 ± 9 1771 ± 80
ParT-f.t. 0.944 0.9877 691 ± 15 2766 ± 130
L-GATr-f.t. 0.9446 ± 0.0002 0.98793 ± 0.00001 651 ± 11 2894 ± 84

Table 3: Top tagging accuracy, AUC, and background rejection 1/εB for the top tagging dataset described in Sec. 2.1.1.
The background suppression is the same as in the right panel of Fig. 67. The error bars are based on the mean and standard
deviation of five random seeds. Table from Ref. [47].
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Figure 68: Performance of the LGATr generator in terms of a trained classifier AUC. We show the scaling with the size of
the training dataset size (left) and with the number of particles in the final state. Figure from Ref. [47].

Again, to avoid soft and collinear divergences we require

pT,j > 22 GeV ∆Rjj > 0.5 |ηj | < 5 , (5.16)

and two b-tagged jets. The sizes of the tt̄+ n j datasets reflect the frequency of the respective processes, resulting in
9.8M, 7.2M, 3.7M, 1.5M and 480k events for n = 0 . . . 4. We train separate networks for each multiplicity, to allow
for a direct comparison between different architectures, but we know that transformers can also be trained jointly on
all multiplicities.
As the generative network architecture we employ the CFM from Sec. 4.4.2. The phase space parametrization for
which we require straight trajectories is crucial for the generator performance. A standard MLP and transformer
CFMs work on x defined as

p =


E

px

py

pz

 → f−1(p) = x =


xp

xm

xη

xφ

 ≡


log(pT − pmin
T )

logm2

η

φ

 , (5.17)

to encode v(x(t), t). For the Lorentz-equivariant generator, we choose a base distribution platent that is invariant under
the symmetry group and use Gaussians in (px, py, pz, logm2) with mean and standard deviation fitted to the phase
space distribution pdata. L-GATr starts with p and transforms x into the corresponding 4-momenta p = f(x). For
them, L-GATr encodes the velocity v(p(t), t) ≡ L-GATr(p). Finally, we transform this velocity back into x, using the
jacobian of the backwards transformation. As a test, we also define E(3)-GATr by encoding (px, py, pz) as a vector
and xm as a scalar.
To analyze the scaling, we can use the AUC of a classifier trained to tell apart generated from training events. In the
left panel of Fig. 68 we find a clear performance increase with increasing symmetry awareness. The transformer
architecture does not have a visible effect on the required training dataset. In the right panel we see that the scaling as
a function of the numbers of addional jets is essentially flat. Here is is important to keep in mind that the challenge of
the event generation is already in the hard tt̄ process, which might explain why additional jets hardly have an effect.

Altogether, we see that permutation invariance and Lorentz-equivariant encoded in the L-GATr data representation does
improve regression, classification, and generative networks. However, this improvement requires us to know these
symmtries and to encode them such that the network is allowed to break them, if needed.
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5.2 Contrastive learning

Especially when encoding symmetries in network architectures is hard, we would like a training procedure and loss
function which ensures that the latent or representation space is invariant under symmetries or invariances defined by
symmetric training data or symmetric data augmentations. A way to achieve this is contrastive learning of representations
(CLR). The goal of such a network is to map, for instance, jets xi described by their constituents to a latent or
representation space,

fθ : xi → zi , (5.18)

which is invariant to symmetries and theory-driven augmentations, and remains discriminative for the training and test
datasets.

As usually, our jets xi are described by nC massless constituents and their phase space coordinates given in Eq.(2.42), so
the jet phase space is 3nC-dimensional. We first take a batch of jets {xi} from the dataset and apply one or more
symmetry-inspired augmentations to each jet. This generate an augmented batch {x′i}. We then pair the original and
augmented jets into two datasets

positive pairs: {(xi, x′i)}
negative pairs: {(xi, xj)} ∪ {(xi, x′j)} for i 6= j . (5.19)

Positive pairs are symmetry-related and negative are not. The goal of the network training is to map positive pairs as close
together in representation space as possible, while keeping negative pairs far apart. Simply pushing apart the negative
pairs allows our network to encode any kind of information in their actual position in the latent space. Labels, for
example indicating if the jets are QCD or top, are not used in this training strategy, which is referred to as self-supervised
training. The trick to achieve this split in the representation space is to replace vectors zi, which the network outputs, by
their normalized counterparts,

fθ(xi) =
zi
|zi|

and fθ(x
′
i) =

z′i
|z′i|

. (5.20)

This way the jets are represented on a compact hypersphere, just as we already used it for the normalized autoencoder in
Sec. 3.2.3. On this space we can define the similarity between two jets as

s(zi, zj) =
zi · zj
|zi||zj |

∈ [−1, 1] , (5.21)

which is just the cosine of the angle between the jets in the latent space. This similarity is not a proper distance metric, but
we could instead define an angular distance in terms of the cosine, such that it satisfies the triangle inequality. Based on

Figure 69: Illustration of the uniformity and alignment concepts behind the contrastive learning. Figure from Ref. [25].
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this similarity we construct a contrastive loss. It can be understood in terms of alignment versus uniformity on the unit
hypersphere, illustrated in Fig. 69. Starting with negative pairs, a loss term like

LCLR ⊃
∑

j 6=i∈batch

[
es(zi,zj)/τ + es(zi,z

′
j)/τ

]
(5.22)

will be push them apart, preferring s→ −1, but on the compact hypersphere they cannot be pushed infinitely far apart.
This means our loss will be minimal when the unmatched jets are uniformly distributed. To map the jets to such a uniform
distribution in a high-dimensional space, the mapping will identify features to discriminate between them and map them
to different points. We have seen this self-organization effect for the capsule networks in Sec. 2.1.5. Next, we want the
loss to become minimal when for the positive pairs all jets and their respective augmented counterparts are aligned in the
same point, s→ 1

LCLR ⊃ −
∑
i∈batch

s(zi, z
′
i) (5.23)

This additional condition induces the invariance with respect to augmentations and symmetries. The contrastive loss is
given by a sum of the two corresponding conditions

LCLR = −
∑
i∈batch

s(zi, z
′
i)

τ
+
∑
i∈batch

log
∑

j 6=i∈batch

[
es(zi,zj)/τ + es(zi,z

′
j)/τ

]
= −

∑
i∈batch

log
es(zi,z

′
i)/τ∑

j 6=i∈batch

[
es(zi,zj)/τ + es(zi,z

′
j)/τ

] , (5.24)

The so-called temperature τ > 0 controls the relative influence of positive and negative pairs. The first term sums over all
positive pairs and reaches its minimum in the alignment limit. The negative pairs contribute to the second term, and the
expression in brackets is summed over all negative-pair partners of a given jet. If such a solution were possible, the loss
would force all individual distances to their maximum. For the spherical latent space the best the network can achieve is
the smallest average s-value for a uniform distribution.

Next, we can apply contrastive learning to LHC jets, to see if the network learns an invariant representation and defines
some kind of structure through the uniformity requirement. Before applying symmetry transformations and
augmentations we start preprocessing the jets as described in Sec.2.1.2 and ensure that the pT -weighted centroid is at the
origin in the η − φ plane. Now, rotations around the jet axes are a very efficient symmetry we can impose on our
representations. We apply them to a batch of jets by rotating each jet by angles sampled from 0 ... 2π. Such rotations in
the η − φ plane are not Lorentz transformations and do not preserve the jet mass, but for narrow jets with R . 1 the
corrections to the jet mass can be neglected. As a second symmetry we implement translations in the η − φ plane. Here,
all constituents in a jet are shifted by the same random distance, where shifts in each direction are limited to −1 ... 1.

In addition to (approximate) symmetries, we can also use theory-inspired augmentations. QFT tells us that soft gluon
radiation is universal and factorizes from the hard physics in the jet splittings. To encode this invariance in the latent
representation, we augment our jets by smearing the positions of the soft constituents, in η and φ using from a Gaussian
distribution centered on the original coordinates

η′ ∼ N
(
η,

Λsoft

pT

)
and φ′ ∼ N

(
φ,

Λsoft

pT

)
, (5.25)

with a pT -suppression in the variance relative to Λsoft = 100 MeV. Secondly, collinear splittings lead to divergences in
perturbative QFT. In practice. they are removed through the finite angular resolution of a detector, which cannot resolve
two constituents with pT,a and pT,b at vanishing ∆Rab � 1. We introduce collinear augmentations by splitting individual
constituents such that the total pT in an infinitesimal region of the detector is unchanged,

pT → pT,a + pT,b with ηa = ηb = η φa = φb = φ . (5.26)

These soft and collinear augmentations will enforce a learned IR-safety in the jet representation, unlike the modified
versions of the transformer or the EFPs.
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Figure 70: Visualization of the rotational invariance in representation space, where s(z, z′) = 1 indicates identical repre-
sentations. We compare JetCLR representations trained without (left) and with (right) rotational transformations. Figure
from Ref. [25].

Finally, we include the permutation symmetry among the constituents, for instance through a transformer-encoder. The
combination of contrastive loss and a permutation-invariant network architecture defines the JetCLR approach.

For a test sample of jets we can check if our JetCLR network indeed encodes symmetries. To illustrate the encoded
rotation symmetry we show how the representation is invariant to actual rotations of jets. We start with a batch of 100
jets, and produce a set of rotated copies for each jet, with rotation angles evenly spaced in 0 ... 2π. We then pass each jet
and its rotated copy through the JetCLR network, and calculate their similarity in the latent representation, Eq.(5.21). In
Fig. 70 we show the mean and standard deviation of the similarity as a function of the rotation angle without and with the
rotational symmetry included in the JetCLR training. In the left panel the similarity varies between 0.5 and 1.0 as a
function of the rotation angle, while in the right panel the JetCLR representation is indeed rotationally invariant. From the
scale of the radial axis s(z, z′) we see that the representations obtained by training JetCLR with rotations are very similar
to the original jets.

Before using the JetCLR construction for an explicit task, we can can analyze the effect of the different symmetries and
theory augmentations using a linear classifier test (LCT). For this test we train a linear neural network with a binary
cross-entropy loss to distinguish top and QCD jets, while our JetCLR training does not know about these labels. This
means the LCT tells us if the uniformity condition has encoded some kind of feature which we assume to be correlated
with the difference between QCD and top jets. A high AUC from the LCT points to a well-structured latent
representation. From first principles, it is not clear which symmetries and augmentations work best for learning
representations. In Tab. 4 we summarize the results after applying rotational and translational symmetry transformations
and soft+collinear augmentations. It turns our that, individually, the soft+collinear augmentation works best. Translations
and rotations are less powerful individually, but the combination defines by far the best-ordered representations.

Augmentation ε−1(εs=0.5) AUC

none 15 0.905
translations 19 0.916
rotations 21 0.930
soft+collinear 89 0.970
combined 181 0.979

Table 4: JetCLR classification results for different symmetries and augmentations and S/B = 1. The combined setup
includes translation and rotation symmetries, combined with soft and collinear augmentations. Table from Ref. [25].
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5.3 Transfer learning and foundation models

In the right panel of Fig. 67 we have seen that one way to improve, especially, the performance of transformers is
fine-tuning. The reason for this improvement is that the training dataset for top taggers introduced in Sec. 2.1.3 includes
only 2M training jets. For CNNs or graph networks this is sufficient, but for transformers the size of the training sample
becomes a limiting factor. The solution is pre-training a top tagger on a larger dataset, for instance the JetClass dataset
with 100M jets from many partons (including tops), and then fine-tune the transformers on the actual top tagging dataset.
If the task for the pre-training and the fine-tuning are sufficiently different, this procedure is called transfer learning. The
natural question is, how specific does pre-training have to be and how far away from the original dataset or network task
does it still help us. If we can generalize pre-training to many LHC applications, such a pre-trained network will serve as
a foundation model.

Foundation models outside LHC physics are usually trained using self-supervision, for instance masking data and learn to
fill in the blanks. This allows the network to represent the underlying structure of the data, for instance the underlying
symmetries. If we assume that we can in principle train a perfect networks in terms of expressivity and accuracy, the goal
of a foundation model is to make the training on a limited dataset more efficient. This goal is defined for given task, like
amplitude regression, jet or event classification, anomaly searches, generation, or conditional genetation. If this is our
goal, a foundation model for LHC can be trained on supervised tasks. In this section we will look at a foundation model
for many jet physics tasks at the LHC.

The dual architecture of the foundation model is illustrated in Fig. 71. The input to the central PET body are the particles
in the jet, as know from Sec. 2.2.3, conditioned on time parameter in the generative diffusion network. The time
information is encoded to a higher dimensional space using a time embedding layer. Contrary to other diffusion networks,
the time embedding includes a multiplication of the output of the Fourier features by the time parameter, such that the
output of the time embedding is zero when the input time is also zero. This way the time embedding is turned off when
the network is evaluated in classifier mode. Because not all jet datasets include particle identification (PID), the network
training uses feature drop, where with a given probability the PID information is replaced by zeros. This encourages the
network to learn a useful representation both in the presence and absence of these features. The outputs of the feature
embedding are combined with the time information though a shift and scaling operation. Before the transformer block the
network uses a positional token for the geometrical information of the neighborhood surrounding each particle. Even
though transformers can learn general correlations between particles, local information for instance in terms of the
dynamic graph convolution and its edges introduced in Sec. 2.2 often improves performance. The particle embedding
equipped with local information is then passed through multiple transformer blocks introduced in Sec. 2.2.3.

The classification of jet types takes as inputs the particles from the the PET body, supplemented with high-level kinematic
observables like the jet mass, transverse momentum, pseudorapidity, and particle multiplicity. It helps the network
converge faster when evaluated over datasets covering different fiducial regions than the ones used during training. The
jet information is embedded in a higher-dimensional space using a jet embedding layer. A trainable class token is then
used to summarize the information of the particle embeddings before the classification output. It is essentially interpreted
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Figure 71: Architecture of the OMNILEARN foundation model. The global structure is shown in the left, the individual
blocks in the right. Figure from Ref. [48].



5.3 Transfer learning and foundation models 133

as an additional particle, concatenated to the true particle inputs. Inside the transformer block, the outputs of the PET
body are not updated but only the class token is allowed to change at the end of each transformer block.

The generator head also takes as inputs the particle embeddings and the kinematic kinematics. Additionally, it uses the
time information and the set of class labels to condition the generator over the jet types to be simulated. The time and jet
information are embedded in a higher dimensional space using the same encoding blocks as in the PET body and the
classifier head. The outputs are passed through a layer drop operation, because when the network is used during
downstream tasks, the classes used to condition the PET architecture are hardly going to be the same as the ones used
during training. Randomly ignoring the class labels encourages the entire architecture to learn both a general and
specialized representation. The results of the layer drop operation are added to the outputs of the combined jet and time
embeddings, to serve as a diffusion token. Similarly to the classification token, it summarizes the particle embedding
information inside the transformer block. However, while the classification token is interpreted as an additional particle,
the diffusion token is a conditional shift of the particle embeddings produced by the PET body. Initially, all particles are
simultaneously shifted by the diffusion token created from the combined class labels, time, and jet information. The
diffusion tokens are then updated with every transformer layer. The diffusion prediction is then the sum of the original
PET body outputs with the learned diffusion tokens.The PET body model has 1.3M trainable weights, while the classifier
and generator heads have 268k and 416k trainable parameters, respectively.

The loss function of the foundation model combines the classification and generation tasks,

L = Lclass + Lgen + Lclass smear

= Lclass(y, yθ) + [vθ − v]
2

+ α2(t)Lclass(y, yθ; t) . (5.27)

We denote the input data as x. For the supervised PET classifier we use the standard cross entropy loss from Eq.(2.4) for
the classification output ypred and true labels y. The loss for the PET is the usual learned velocity which we know from
the CFM in Eq.(4.151). The third contribution to the loss comes from an additional classification along the CFM
trajectories parametrized by t. From Eq.(4.142) we know the probability distributions at the two endpoints, pdata for t = 0
and platent for t = 1. We chose a linear trajectory in Eq.(4.4.2), while for PET the general trajectories are written as

x(t) = α(t)x+ σ(t)r . (5.28)

The weight in front of the t-dependent classifier ensures that for t = 0 or α(0) = 1 and σ(0) = 0 the classifier uses the
unperturbed data. For t = 1, with α(1) = 0 and σ(1) = 1, the pure noise data cannot have any impact on the classifier
training. The foundation model is trained on the same 100M jets as the fine-tuned transformers in Sec. 5.1. Up to 150
particles are saved per jet to be used during training. For the fine-tuning the learning rate of the PET body is reduced by a
factor 10 compared to the rest of the PET architecture.

Acc AUC 1/εB
εS = 0.5 εS = 0.3

P-CNN 0.930 0.9803 201 ± 4 759 ± 24
PFN - 0.9819 247 ± 3 888 ± 17
ParticleNet 0.940 0.9858 397 ± 7 1615 ± 93
ParT 0.940 0.9858 413 ± 16 1602 ± 81

LorentzNet 0.942 0.9868 498 ± 18 2195 ± 173
PELICAN 0.9425 0.9869 - 2289 ± 204
L-GATr 0.9423 0.9870 540 ± 20 2240 ± 70

ParticleNet-f.t. 0.942 0.9866 487 ± 9 1771 ± 80
ParT-f.t. 0.944 0.9877 691 ± 15 2766 ± 130
L-GATr-f.t. 0.9446 0.98793 651 ± 11 2894 ± 84

PET Classifier 0.938 0.9848 340 ± 12 1318 ± 39
OMNILEARN 0.942 0.9872 568 ± 9 2647 ± 192

Table 5: Performance of the OMNILEARN foundation model for top tagging. The uncertainty quoted corresponds to the
standard deviation of five trainings with different random weight initialization. If the uncertainty is not quoted then the
variation is negligible compared to the expected value. Table from Ref.[48], with information added from Tab. 3.
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Figure 72: Validation loss curves obtained in the JetNet dataset with 30 (left) and 150 (right) particles. The OMNILEARN
validation loss is compared with the PET classifier trained from scratch. Figure from Ref.[48].

From the nine applications of the OMNILEARN foundation model mentioned in the original paper, we only look at two.
The first is the usual top tagging task. The results are shown in Tab. 5, and they are directly comparable to the fine-tuning
results for standard and equivariant transformers in Tab. 3. While the PET classifier is not meant to be competitive with
the best-performing jet classifiers, the foundation model trained on 100M jets and then fine-tuned on the top tagging
dataset performs at a level consistent with the best fine-tuned transformers. Given that the datasets and the transformer
architectures are the same, this is not surprising. The question is how this performance generalizes to different jet physics
tasks.

As a second task, OMNILEARN can be evaluated, for instance, on precision generation of very hard jets, with pT ∼ 1 TeV
and consisting of up to either up to 30 or up to 150 particles. For each jet, the four-momentum of the jet is provided
together with the particle multiplicity. One network learns to generate the jet kinematics, and the diffusion network of the
foundation model uses this information as a condition to generate the set of particle 4-momenta. In Fig. 72, the validation
loss of the PET generator and the OMNILEARN training shows how the foundation model starts from a smaller loss and
converges quicker, requiring around 30% fewer epochs than a generator trained from scratch.

After training, we can check the performance of the jet generation for different generating networks. As benchmarks, one
can use a point cloud diffusion network (FPCD) trained from scratch and a taylormade point-cloud EPiC-GAN. The first
three metrics are using the Wasserstein distance W introduced in Sec. 4. The Wasserstein distance can be evaluated on the
particle momenta (pT , η, φ) (P), adding the jet mass (PM), and a set of five leading coefficients of so-called energy flow
polynomials (PEFP). Two more metrics are based on the closest point cloud in two sets of jets, for instance constructed by
the smallest Wasserstein distance. Once we have such pairings, we can measure the diversity in the generated sample
through the ratio of generated jets matched to one jet in a reference dataset. Ideally, this co-called coverage is one. The
quality of the generated jets is based on the distance between the closest matched jet and the reference jet. It can be
expressed as the miminum matching distance (MMD) defined in Eq.(4.33). We show the results from the PET generator
and the OMNILEARN model in Tab. 6. In all metrics OMNILEARN shows at least as good performance as the benchmark
networks.

Interestingly, for LHC physics tasks the foundation model does not outperform networks trained from scratch for a given
task. The reason is that all benchmark networks are fully trained on a sufficiently large training dataset. However, the
foundation model is significantly more efficient in training time. Unlike for instance large language models such a physics
foundation model does not have to especially large, even a moderately large transformer architecture gives it sufficient
expressivity. The common tasks a foundation model trained in a supervised manner includes jet classification, jet
generation, likelihood estimation, and anomaly detection.
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Parton origin Model WPM (×10−3) WP (×10−3) WPEFP (×10−5) Coverage ↑ MMD

FPCD 0.44 ± 0.11 0.28 ± 0.05 0.91 ± 0.16 0.56 0.03
EPIC-GAN 0.4 ± 0.1 3.2 ± 0.2 1.1 ± 0.7 - -

Gluon PET generator 0.32 ± 0.09 0.34 ± 0.07 1.19 ± 0.26 0.56 0.02
OMNILEARN 0.47 ± 0.18 0.31 ± 0.11 1.05 ± 0.23 0.56 0.02

FPCD 0.46 ± 0.05 0.24 ± 0.02 0.43 ± 0.09 0.54 0.02
EPIC-GAN 0.4 ± 0.1 3.9 ± 0.3 0.7 ± 0.4 - -

Light Quark PET generator 0.41 ± 0.04 0.34 ± 0.08 0.74 ± 0.18 0.55 0.02
OMNILEARN 0.46 ± 0.13 0.39 ± 0.11 0.54 ± 0.14 0.53 0.02

FPCD 0.40 ± 0.07 0.30 ± 0.03 2.23 ± 0.16 0.58 0.05
EPIC-GAN 0.6 ± 0.1 3.7 ± 0.3 2.8 ± 0.7 - -

Top Quark PET generator 0.40 ± 0.08 0.28 ± 0.08 1.81 ± 0.33 0.57 0.04
OMNILEARN 0.38 ± 0.05 0.30 ± 0.07 1.84 ± 0.30 0.57 0.04

FPCD 0.29 ± 0.02 0.23 ± 0.02 0.22 ± 0.04 0.55 0.02
W Boson PET generator 0.15 ± 0.02 0.27 ± 0.07 0.12 ± 0.03 0.55 0.02

OMNILEARN 0.18 ± 0.01 0.27 ± 0.05 0.14 ± 0.04 0.56 0.02

FPCD 0.28 ± 0.05 0.22 ± 0.03 0.23 ± 0.03 0.55 0.02
Z Boson PET generator 0.24 ± 0.06 0.35 ± 0.06 0.20 ± 0.04 0.55 0.02

OMNILEARN 0.19 ± 0.05 0.38 ± 0.11 0.19 ± 0.03 0.56 0.02

Table 6: Comparison of different generative networks used for jet generation with 150 particles. Lower is better for all
metrics except for Coverage. Table from Ref.[48].
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6 Inverse problems and inference

If we use our simulation chain in Fig. 2 in the forward direction, the typical LHC analysis starts with a new,
theory-inspired hypothesis encoded in a Lagrangian as new particles and couplings. For every point in the BSM
parameter space we simulate events, compare them to the measured data using likelihood methods, and discard the BSM
physics hypothesis. This approach is inefficient for a variety of reasons:

1. BSM physics hypotheses have free model parameters like masses or couplings, even if an analysis happens to be
independent of them. If the predicted event rates follow a simple scaling, like for a truncated effective theory, this is
simple, but usually we need to simulate events for each point in model space.

2. There is a limit in electroweak or QCD precision to which we can reasonably include predictions in our standard
simulation tools. Beyond this limit we can, for instance, only compute a limited set of kinematic distributions, which
excludes these precision prediction from standard analyses.

3. Without a major effort it is impossible for model builders to derive competitive limits on a new model by recasting an
existing analysis, if the analysis requires the full experimental and theoretical simulation chains.

These three shortcomings point to the same task: we need to invert the simulation chain, apply this inversion to the
measured data, and compare hypotheses at the level of the hard scattering. Detector unfolding is a known, but
non-standard application. For hadronization and fragmentation an approximate inversion is standard in that we always
apply jet algorithms to extract simple parton properties from the complex QCD jets. Removing QCD jets from the hard
process is a standard task in any analysis using jets for the hard process and leads to nasty combinatorial backgrounds.
Unfolding to parton level is being applied in top physics, assuming that the top decays are correctly described by the
Standard Model. Finally, unfolding all the way to the parton-level is called the matrix element method and has been
applied to Tevatron signatures, for example single top production. All of these inverse simulation tasks have been tackled
with classical methods, and we will see how the can benefit from modern neutral networks.

Inverse problems in particle physics can be illustrated most easily for the case of detector effects. As a one-dimensional
binned toy example we look at a parton-level distribution fparton,j which gets transformed into freco,j at detector or
reconstruction level. We can model these detector effects as part of the forward simulation through a response matrix Gij ,

freco,i =

N∑
j=1

Gij fparton,j . (6.1)

We postulate the existence of an inversion with G through

fparton,k =

N∑
i=1

Gkifreco,i =

N∑
j=1

(
N∑
i=1

GkiGij

)
fparton,j with

N∑
i=1

GkiGij = δkj . (6.2)

If we assume that we know the N2 entries of G, this form gives us the N2 conditions to compute its inverse G. We
illustrate this one-dimensional binned case with a toy-smearing matrix

G =

1− ε ε 0

ε 1− 2ε ε

0 ε 1− ε

 . (6.3)

We can assume ε� 1, but we do not have to. We look at two input vectors, keeping in mind that in an unfolding problem
we typically only have one kinematic distribution to determine the inverse matrix G,

fparton = n

1

1

1

 ⇒ freco = fparton ,

fparton =

1

n

0

 ⇒ freco = fparton + ε

 n− 1

−2n+ 1

n

 . (6.4)
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The first example shows how for a symmetric smearing matrix a flat distribution removes all information about the
detector effects. This implies that we might end up with a choice of reference process and phase space such that we
cannot extract the detector effects from the available data. The second example illustrates that for bin migration from a
dominant peak the information from the original fparton gets overwhelmed easily. We can also compute the inverse of the
smearing matrix in Eq.(6.3) and find

G ≈ 1

1− 4ε

1− 3ε −ε ε2

−ε 1− 2ε −ε
ε2 −ε 1− 3ε

 , (6.5)

where we neglect the sub-leading ε2-terms whenever there is a linear term as well. The unfolding matrix extends beyond
the nearest neighbor bins, which means that local detector effects lead to a global unfolding matrix and unfolding only
works well if we understand our entire dataset. The reliance on useful kinematic distributions and the global dependence
of the unfolding define the main challenges once we attempt to unfold the full phase space of an LHC process.

Current unfolding methods follow essentially this simple approach and face three challenges. First, the required binning
into histograms is chosen before the analysis and ad-hoc, so it is not optimal. Second, the matrix structure behind
correlated observables implies that we can only unfold two or three observables simultaneously. Finally, detector
unfolding often misses some features which affect the detector response.

To illustrate how ML-methods enable unfolding, we define the problem using four unbinned and high-dimensional phase
space densities. For the training we always rely on simulated predictions psim, giving us paired events at the parton level
xparton and at the reconstruction level xreco. This forward simulation, for example of detector effects, models the
probability that a given configuration xparton turns into xreco, it encodes the conditional probability p(xreco|xparton).
Classical simulation-based inference then compares forward-simulated and measured events over the phase space xreco.
Unfolding will then be applied to the measured pdata(xreco) and unfolds the corresponding events to follow punfold(xparton),

psim(xparton)
unfolding inference←−−−−−−−−→ punfold(xparton)

p(xreco|xparton)

y
xp(xparton|xreco)

psim(xreco)
forward inference←−−−−−−−−−→ pdata(xreco) (6.6)

Because our forward simulation is statistical, if not quantum, we can define an inverse simulation in the same
non-deterministic sense as p(xparton|xparton). Inference based on unfolded data works in xparton, which means that we only
need to unfold, for instance, the detector once and can then do inference using an event generator without detector
simulation. Because the forward simulation in Fig. 2 always adds phase space dimensions and complexity, unfoldig
inference should be easier than forward inference, and depending on the physics of the tested theory hypothesis it might
still be optimal.

If we rely on paired simulated events to define the unfolding, we can use Bayes’ theorem to relate the forward and inverse
simulations,

p(xparton|xreco) = p(xreco|xparton)
psim(xparton)

psim(xreco)
. (6.7)

In the forward direction, the paired events describe p(xreco|xparton), where the initial distribution of the events is given by
p(xparton). In the unfolding direction the paired events give us p(xparton|xreco), but with a different prior p(xreco). If we are
lucky, the simulation agrees with data perfectly, psim(xreco) = pdata(xreco), so we can transfer unfolding probability from
the simulation to the data blindly. In reality, this will not be the case, so we need to apply some kind of correction to
remove any unwanted network dependence or prior, as discussed below.
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6.1 Unfolding by reweighting

OmniFold is an ML-based technique that iteratively unfolds detector effects. It works on high-dimensional phase spaces
and does not require histograms or binning. Its reweighting technique is illustrated in analogy to Eq.(6.6),

psim(xparton)
classifier weights (3)−−−−−−−−−−−−→ punfold(xparton)

pull (2)/push weights(4)

xy
psim(xreco)

classifier weights (1)←−−−−−−−−−−→ pdata(xreco) (6.8)

It start from reconstruction-level data and predict the parton-level configuration for a measured configuration. It avoids a
direct mapping from reconstruction-level events to parton level events and instead employs an iterative reweighting based
on simulated pairs of parton-level and reconstruction-level configurations,

(xparton, xreco) . (6.9)

These simulated events need to be reweighted at the reconstruction level, to reproduce the measured data. Because of the
pairing, this reweighting can be pushed to the parton level.

As a starting point, we assume that the simulated event pairs have finite weights, while the data starts with unit weights.
The Omnifold algorithm consists of four steps:

1. First, it learns weights w(xreco), such that w(xreco)psim(xreco) ≈ pdata(xreco).
2. It uses the paired simulation to pull the weights w(xreco) to the corresponding w(xparton). While w(xreco) is well

defined, w(xparton) might not be, for instance when one xparton corresponds to several xreco with different weights.
3. If w(xparton)psim(xparton) is a good candidate for punfold(xparton), we learn w′(xparton) re-defining
punfold(xparton) = w′(xparton)p(xparton), where p(xparton) only has unit weights. Formally, this turns the unfolded
distribution into a function of xparton only.

4. Again, we use the paired simulation to push the improved weights from w′(xparton) to w′(xreco). The change from the
w(xreco)psim(xreco) to w′(xreco)psim(xreco) should be small.

5. Now starting from w′(xparton)psim(xreco) instead of psim(xreco) we iterate these steps until they have converged and

punfold(xparton) = w′∞(xparton) psim(xparton) . (6.10)

Because the iteration steps do not require additional simulations and work on fixed, paired datasets, this method is fast
and efficient. The ultimate question is how well it describes correlations between phase space points.

To illustrate the performance of Omnifold, we look at jets and represent the actual data, pdata(xreco), with the Herwig event
generator. For the simulation of paired jets, psim(xparton) and psim(xreco), we use the Pythia event generator. We then use
Omnifold can unfold the Herwig data to the parton level, and compare these results with the true Herwig distributions at
the parton level

punfold(xparton) ↔ pdata(xparton) . (6.11)

While the event information can be fed into the network in many ways, the Omnifold authors choose to use the deep sets
representation of point clouds as introduced in Sec. 2.2.4. For a quantitative test we show a set of jet substructure
observables, defined in Eq.(1.6). The detector effects, described by the fast Delphes simulation can be seen in the
difference between the generation curves, ∼ (xparton), and the simulation curves, ∼ (xreco). We see that the jet mass and
the constituent multiplicity are significantly reduced by the detector resolution and thresholds. The data distributions from
Herwig represent pdata(xreco), and we observe a significant difference to the simulation, where Herwig jets have more
constituents than Pythia jets.

If we now use the Pythia-trained Omnifold algorithm to unfold the mock data we can compare the results to the green
truth curves. The ratio punfold(xparton)/pdata(xparton) is shown in the lower panels. We see that, as any network, this
deviation is systematic in the bulk and becomes noisy in the kinematic tails. The same is true for the classical, bin-wise
iterative Bayesian unfolding (IBU), and the unbinned and multi-dimensional Omnifold method clearly beats the bin-wise
method.
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Figure 73: Unfolding results for sample substructure observables, using Herwig jets as data and using Pythia for the
simulation. The lower panels include statistical uncertainties on the 1-dimensional distributions. The jet multiplicity M
corresponds to nPF defined in Eq.(1.6). Figure from Ref. [49].

6.2 Conditional generative networks

Instead of constructing a backwards mapping for instance from the detector level to the parton level using classifier
reweighting, we can also tackle this inverse problem with generative networks, specifically a conditional normalizing flow
or cINN. In this section we will describe two applications of this versatile network architecture, one for unfolding and one
for inference or measuring model parameters.

6.2.1 Generative unfolding

The idea of using conditional generative networks for unfolding is to encode the conditional probability p(xparton|xreco) in
a conditional generative network. Using the scheme of Eq.(6.6) this means

psim(xparton) punfold(xparton)

paired data

xy
xpmodel(xparton|xreco)

psim(xreco)
correspondence←−−−−−−−−→ pdata(xreco) (6.12)

Just as Omnifold, the inverse simulation is trained on pairs of simulated events. Technically, we start from a simple latent
distribution, with the generative network transforms into the required phase space distribution,

z ∼ platent(z) −→ xparton ∼ pmodel(xparton|xreco) . (6.13)

In terms of the conditional probability, the phase space distribution of an unfolded dataset can be derived from Bayes’
theorem in Eq.(6.7),

p(xreco|xparton)psim(xparton) = p(xparton|xreco)psim(xreco)

psim(xparton) ≡ psim(xparton)

∫
dxreco p(xreco|xparton) =

∫
dxreco p(xparton|xreco)psim(xreco) , (6.14)

where we are using the normalization condition of the conditional probability in the first argument. If we encode the
conditional probability into a network with the learned pmodel and apply it to the actual data, the unfolded phase space
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Figure 74: Illustration of the cINN setup. Figure from Ref. [50].

distribution becomes

punfold(xparton) =

∫
dxreco pmodel(xparton|xreco) pdata(xreco) . (6.15)

Technically, we can evaluate this integral over xreco by sampling the learned conditional unfolding probability from
pdata(xr) and ignore the argument xreco of the originally joint distribution. This form uses prior distributions for individual
events, which means that we can also take single measured event and unfold them any number of times. The problem is
that we train the network on simulated data, and we do not know how well the simulations agree with the actual data. This
difference cannot be absorbed into a reweighting, but has to involve re-training the network. We will discuss an iterative
re-training in Fig. 77.

A key ingredient to unfolding with generative networks [51] is to train the network with a likelihood loss [50] or ensuring
that its learns to generate a probability like for the CFM. We employ an INN to map an set of random numbers to a
parton-level phase space with the corresponding dimensionality. To capture the information from the reconstruction-level
events we condition the INN on such an event. Trained on a given process the network will now generate probability
distributions for parton-level configurations given a reconstruction-level event and an unfolding model. The cINN is still
invertible in the sense that it includes a bi-directional training from Gaussian random numbers to parton-level events and
back, but the invertible nature is not what we use to invert the detector simulation. We will eventually need show how the
conditional INN retains a proper statistical notion of the inversion to parton level phase space. This avoids a major
weakness of standard unfolding methods, namely that they only work on large enough event samples condensed to
one-dimensional or two-dimensional kinematic distributions, such as a missing transverse energy distribution in mono-jet
searches or the rapidities and transverse momenta in top pair production.

The structure of the conditional INN (cINN) is illustrated in Fig. 74. We first preprocess the reconstruction-level data by a
small subnet, xreco → f(xreco) and omit this additional step below. After this preprocessing, the detector information is
passed to the functions si and ti in Eq.(4.71), which now depend on the input, the output, and on the fixed condition. The
cINN is trained a loss similar to Eq.(4.73), but now maximizing the probability distribution for the network weights θ,
conditional on xparton and xreco always sampled in pairs

LcINN = −
〈

log pmodel(θ|xparton, xreco)
〉
pparton∼preco

. (6.16)

Next, we need to turn the posterior for the network parameters into a likelihood for the network parameters and evaluate
the probability distribution for the event configurations. Because we sample the parton-level and reconstruction-level
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Figure 75: cINNed pT,q distributions. Training and testing events include exactly two jets. The lower panels give the ratio
of cINNed to parton-level truth. Figure from Ref. [50].

events as pairs, it does not matter which of the two we consider for the probability. We use Bayes’ theorem to turn the
probability for θ into a likelihood, with xparton as the argument,

LcINN = −
〈

log
pmodel(xparton|xreco, θ)pmodel(θ|xreco)

pmodel(xparton|xreco)

〉
pparton∼preco

= −
〈

log pmodel(xparton|xreco, θ)
〉
pparton∼preco

− log pmodel(θ) + const . (6.17)

As before, we ignore all terms irrelevant for the minimization. The second term is a simple weight regularization, which
we also drop in the following. We now apply the usual coordinate transformation, defined in Fig. 74, to introduce the
trainable Jacobian,

LcINN = −
〈

log pmodel(xparton|xreco, θ)
〉
pparton∼preco

= −
〈

log platent(Gθ(xparton|xreco)) + log

∣∣∣∣∂Gθ(xparton|xreco)

∂xparton

∣∣∣∣
〉
pparton∼preco

. (6.18)

This is the usual likelihood loss, but conditional on reconstruction-level events and trained on event pairs. As before, we
assume that we want to map the parton-level phase space to Gaussian random numbers. In that case the first term becomes

log platent(Gθ(xparton)) = −||Gθ(xparton))||22
2

. (6.19)

We can briefly discuss the symmetry of the problem. If we think of the forward simulation as generating a set of
reconstruction-level events for a given detector-level event and using Gaussian random numbers for the sampling, the
forward simulation and the unfolding are completely equivalent. The reason for this symmetry is that in the entire
argument we never consider individual events, but phase space densities, so our inversion is stochastic and not
deterministic.

To see what we can achieve with cINN unfolding we use the hard reference process

qq̄ → ZW± → (`−`+) (jj) . (6.20)

We could use this partonically defined process to test the cINN detector unfolding. However, we know from Sec. 4.3.2
that once we include incoming protons we also need to include QCD jet radiation, so our actual final state is given by the
hadronic process

pp→ (`−`+) (jj) + {0, 1, 2} jets . (6.21)
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Figure 76: cINNed pT,q and mW,reco distributions. Training and testing events include exactly three (left) and four (right)
jets from the dataset including ISR. Figure from Ref. [50].

All jets are required to pass the basic acceptance cuts

pT,j > 25 GeV and |ηj | < 2.5 . (6.22)

These cuts regularize the soft and collinear divergences at fixed-order perturbation theory.

The second task of our cINN unfolding will be to determine which of the final-state jets come from the W -decay and
which arise from initial-state QCD radiation. Since ISR can lead to harder jets than the W -decay jets, an assignment by
pT,j will not solve the jet combinatorics. This unfolding requires us to define a specific hard process with a given number
of external jets. We can illustrate this choice using two examples. First, a di-lepton resonance search typically probes the
hard process pp→ µ+µ− +X , where X denotes any number of additional, analysis-irrelevant jets. We would invert this
measurements to the partonic process pp→ µ+µ−. A similar mono-jet analysis instead probes the process
pp→ Z ′j(j) +X , where Z ′ is a dark matter mediator decaying to two invisible dark matter candidate. Depending on the
analysis, the relevant background process to invert is pp→ Zννj or pp→ Z ′jj, where the missing transverse momentum
recoils against one or two hard jets. Because our inversion network in trained on matched pairs of simulated events, we
implicitly define the appropriate hard process when generating the training data.

In Fig. 75 we show the unfolding performance of the cINN, trained and tested on exclusive 2-jet events. The two jets are
mapped on the two hard quarks from the W -decay, ordered by pT . In the left panel we see that the detector effects on the
harder decay jets are mild and the unfolding is not particularly challenging. On the right we the effect of the minimum-pT
cut and how the network is able to remove this effect when unfolding to the decay quarks. The crucial new feature of this
cINN output is that it provides probability distribution in parton-level phase space for a given reconstruction-level event.
By definition of the loss function in Eq.(6.17) we can feed a single reconstruction-level event into the network and obtain
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Figure 77: Illustration of the iterative cINN unfolding. In the text, we use xparton instead of ‘Truth’. Figure from Ref. [52].

a probability distribution over parton-level phase space for this single event. Obviously, this guarantees that any kinematic
distribution and any correlation between events is unfolded correctly at the sample level.

Next, we can demonstrate how the cINN unfolds a sample of events with a variable number of jets from the hard process
and from ISR. First, we show the unfolding results for events with three jets in the upper panels of Fig. 76. For three jets
in the final state, the combination of detector effects and ISR has a visible effect on the kinematics of the leading quark.
This softening is correctly reversed by the unfolding. For the sub-leading quark the problem and the unfolding
performance is similar to the exclusive 2-jet case. The situation becomes more interesting when we consider samples with
two to four jets all combined. Now the network has to flexibly resolve the combinatorial problem to extract the two
W -decay jets from a mixed training sample. In Fig. 76 we show a set of unfolded distributions from a variable jet
number. Without showing them, it is clear that the pT,j-threshold at the detector level is corrected, and the cINN allow for
both pT,q values to zero. Next, we see that the comparably flat azimuthal angle difference at the parton level is reproduced
to better than 10% over the entire range. Finally, the mjj distribution with a additional MMD loss re-generates the
W -mass peak at the parton level almost perfectly. The precision of this unfolding is not any worse than it is for the INN
generator in Sec. 4.3.2. This means that conditional generative networks unfold detector effects and jet radiation for LHC
processes very well, even through their network architectures are more complex than the classifiers used in Sec. 6.1.

As discussed in Eq.(6.15), we need to remove any unwanted model dependence from the learned unfolding probability.
For instance, the leading model dependence of the forward simulations and the learned unfolding probability could be
some kind of mass scale µ,

psim(xparton|µ) =

∫
dxreco p(xparton|xreco, µ)psim(xreco|µ) . (6.23)

This mass scale can be an unphysical nuisance parameter or an observable. If we just apply the trained unfolding
generator to the real data, we find

punfold(xparton|µ, µ̄) =

∫
dxreco pmodel(xparton|xreco, µ)pdata(xreco|µ̄) with µ 6= µ̄ . (6.24)

In this dual dependence of the unfolded distribution, µ̄ comes from the actual data, and µ is the prior from the simulated
training data. If we cannot avoid an influence by the prior, we need to define a re-training algorithm which ensures that
we can unfold with a probability learned with the correct top mass pmodel(xparton|xreco, µ̄). One method to achieve that is
classically referred to Bayesian iterative unfolding, and similar to the Omnifold reweighting strategy described in
Sec. 6.1. The iterative IcINN algorithm is illustrated in Fig. 77:

1. We start with simulated event pairs before and after detector, train the cINN on the two psim(x|µ) (step 1), and unfold
the measured data pdata(xreco|µ̄) (step 2). This gives events following punfold(xparton|µ, µ̄).
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2. Next, we train a classifier to learn the ratio between the punfold(xparton|µ, µ̄) and psim(xparton|µ) and reweight the latter
(step 3). From the combined argument of punfold we see that this will replace µ→ µ̄ for part of psim, but not all, so we
will be left with psim(xparton|µ, µ̄).

3. Because the training data is paired events, we can transfer these weights to psim(xreco|µ, µ̄) and use the weighted,
paired events to re-train the unfolding cINN pmodel(xparton|xreco, µ, µ̄).

4. The training-unfolding-reweighting steps can be repeated until the algorithm converges, µ→ µ̄, the classifier returns
a global value of 0.5, and our learned unfolding probability only depends on µ̄,

punfold(xparton|µ̄) =

∫
dxreco pmodel(xparton|xreco, µ̄)pdata(xreco|µ̄) (6.25)

As a side remark, this algorithm only works if at the end of step 1 µ̄ appears in punfold(xparton|µ, µ̄) and if in step 2 the
reweighting is numerically stable. Technically, it turns out to be more efficient if the cINN is not trained from scratch each
time. To re-train the cINN on the weighted paired events the loss function in Eq.(6.16) is supplemented with learned
weights

LcINN = −
〈
w(xreco) log pmodel(θ|xparton, xreco)

〉
pparton∼preco

. (6.26)

This iterative approach ensures that the unfolding network is trained on events similar to the data we actually unfold, so
there is no bias from a difference between training data and measured data. This removes a major systematic uncertainty
from unfolded experimental results and it makes it easier to generalize the unfolding network from one hard process to
another.

6.2.2 Unfolding top decays

An especially challenging unfolding task is for mass measurements, where we have to unfolding of strongly peaked
kinematic distributions. An example which appears all through these lecture notes is boosted hadronic top decays,

t→ bW+∗ → bud̄ . (6.27)

A decaying boosted top forms a jet, as discussed in Sec. 2.1.1, which to first approximation consists of three constituent
subjets. The fundamental physics parameter which describes the kinematics and which we want to measure is the top
mass mt. It is approximately given by the peak position of the measured invariant mass of these three constituent jets

mt ∼M2
jjj = M2

12 +M2
23 +M2

13 −m2
1 −m2

2 −m2
3 . (6.28)

As we will see, the main challenge of top decay unfolding is the model dependence from the top mass value assumed for
the simulated training data.

The simulated top events are inspired by a CMS analysis using classical unfolding methods and contain lepton-hadron top
pairs

pp→ tt̄→ (bqq̄′) (b̄`−ν̄) + c.c. with ` = e, µ . (6.29)

Similar to Eq.(2.19) we reconstruct a top jet and require for the fat jet and the three constituent (sub-)jets with

pT,J > 400 GeV and pT,j1,2,3 > 30 GeV |ηj1,2,3 | < 2.5 , (6.30)

As discussed in Sec. 6.2.1, the training events contain paired gen-level and reco-level information.

The unfolding task is described in Eq.(6.12), where we learn the conditional unfolding probability

pmodel(xparton|xreco) ≈ p(xparton|xreco) (6.31)

from the paired training data. We refer to the generated particle-level phase space xparton, even though it does not really
have to be at the parton level.
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For the top decays, the unfolding scheme shown in Eq.(6.12) is missing a critical complication. Our simulation assumes a
top mass value ms, which we can tune to match the actual data. The dependencies of the four phase space distributions on
ms and its ‘correct’ value in the data, md, imply

psim(xparton|ms) punfold(xparton|ms,md)

p(xreco|xparton)

y
xpmodel(xparton|xreco,ms)

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md) (6.32)

In the forward direction, p(xreco|xparton) does not have an explicit ms-dependence, but in the inverse direction the
simulated datasets and Bayes’ theorem induce such a dependence. By assumption, ms = md ensures that the simulated
and actual data agree at the reco-level,

psim(xreco|ms = md)
!
= pdata(xreco|md) . (6.33)

This is the relation we use to infer md at the reco-level. Alternatively, we can do the same inference at the gen-level,
requiring

psim(xparton|ms = md)
!
= punfold(xparton|ms = md,md) . (6.34)

The problem with this unfolded inference is the dual dependence of punfold(xparton|ms,md) through the reco-level data and
the learned conditional probability. In fact, looking at Eq.(6.32) the situation for top decays is even worse, in that the
unfolded distribution only depends on the prior

punfold(xparton|ms,md) ≈ punfold(xparton|ms,��md) . (6.35)

A mix of physical dependence and prior could be targeted by the reweighting-based iterative method from Fig. 77.
However, a shift of a peaked distribution immediately leads to large density ratios between the true and the shifted
distributions. The iterative method implicitly assumes that punfold(xparton|ms,md) depends mostly on md and at a reduced
level on ms, which is not at all the case for top mass unfolding. This is why we develop an alternative, one-step strategy
to remove the dominating top mass bias:

1. First, we increase the sensitivity on md by pre-processing the data and adding an estimator of md to the representation
of xreco. We simply use the weighted median of the 3-jet masses in a batch of events at reco-level, M batch

jjj ,

M batch
jjj ≈ md ≡ mt

∣∣∣∣∣
data

. (6.36)

This batch-wise kinematic information can be extracted at the level of the loss evaluation, and it goes beyond the
usual single-event information, similar to the MMD loss from Sec. 4.2.2.

2. Second, we weaken the bias from the training data by combining training data with different top masses, but without
an additional label,

mt = {169.5, 172.5, 175.5} GeV (combined training). (6.37)

The range has to ensure that top mass in the data is within the training range, to avoid network extrapolation.

Any kind of density estimation over LHC phase space is local, provided we apply the correct Minkowski metric, and for
instance forward-simulating or unfolding detector effects do not lead to multi-mode distributions over the conditional
probabities. This is why normalizing flows, as introduced in Sec. 4.3, and their more expressive CFM cousins introduced
in Sec. 4.4.2 are so successful. However, when we move from individual 4-momenta to jets or events, combinatorics lead
to non-local effects. These can be described well using transformers, or more specifically self attention, as introduced in
Sec. 2.2.3.

Unfolding a set of subjets is a problem of this kind, where we estimate the joint phase space distribution of a set of
4-vectors, and the accuracy of the density estimation is the main challenge. This suggests to combine an INN or CFM
generator with transformer modules one of two ways:
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Figure 78: Schematic representation of a parallel Transfusion network. Figure from Ref. [53].

• First, we can encode the velocity vθ(x, t) in Eq.(4.151) in a network that includes attention layers. We call such a
network TraCFM, and it allows the network to learn the joint multi-constituent phase space density including a
combinatorial assignment.

• Alternatively, we can factorize the sampling into CFMs for individual constituents and link these CFMs with a
transformer. We call this combination Transfusion.

For the unfolding of detector effects in top decays we can assume that the conditional probabilities of the individual
constituents are essentially uncorrelated with each other, while the information on the top mass and the W -mass comes
from the (correct) combination of the subjets.

A generative transformer incorporating CFM blocks for individual constituents is shown in Fig. 78. Each component of
the n-dimensional condition and of the N -dimensional input x(t) is individually embedded by concatenating positional
information and zero padding. The embedded conditions are passed through the encoder part of a transformer, while the
embedded input is passed through the decoder. In both transformer parts, we apply self-attention and cross-attention to
learn the correlations in the condition and in the input. The transformer output is a high-dimensional embedding vector ci,
which is mapped back to a 1-dimensional component of the velocity field by a shared linear layer. This way we express
the learned N -dimensional velocity field as

vθ(xgen(t), t, xreco) = (vθ(c1, t), . . . , vθ(cN , t)) . (6.38)

Using the Transfusion architecture we first unfold a 4-dimensional part of the full phase space, defined by the di-jet and
tri-jet invariant masses,

x =
(
{Mik},Mjjj

)
i, k = 1, 2, 3 , (6.39)

This phase space includes enough information to measure the top mass and calibrate the analysis using the W -mass peak.
The results for two assumed top masses in pdata are shown in Fig. 79. Neither of these two mass values appear in the
training data. In both panels we the top mass peak is the main kinematic feature, and it is reproduced without a significant
shift in the relative deviation. The fitted peak values are mpeak = (171± 1) GeV and mpeak = (173± 1) GeV,
respectively. While the bias will never vanish entirely, it is well contained within the numerical uncertainties.

If we want to not just measure the top mass, but search for any kind of new physics effect in top decays, we need to unfold
the full 12-dimensional phase space. If the top mass measurement is more precise in the 4-dimensional subspace, we can
assume that we know the top mass in our dataset for the full unfolding. This factorization of our two physics questions
helps with the precision. The full phase space can be described as

x =
(
{mi}, {Mik}, {pT,i}, {ηi}

)
i, k = 1, 2, 3 , (6.40)
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Figure 79: Mjjj-distribution from 4-dimensional unfolding of data with mt = 171.5 GeV (left) and mt = 173.5 GeV
(right). We train the network combining samples with the three top masses given in Eq.(6.37). Figure from Ref. [53].

As a side remark — an issue arises for the azimuthal angle between the two leading jets. This angle is learned as a
correlation of seven phase space directions, and in terms of cos ∆φ. Numerically, the network does not ensure the
physical range cos ∆φ = −1 ... 1. We can enforce the physical range by cutting the cosine for small angles, but this leads
to a slight mis-modelling of the small-∆φ regime. Instead, we accept that for unfolding the masses in the parametrization
of Eq.(6.40) we might have to pay a prize in the coverage of the angular correlations, and we apply an additional
acceptance cut ∆φij > 0.1 to reco- and gen-levels unfolded events.
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Figure 80: Kinematic distributions after full, 12-dimensional unfolding. We show the target 3-jet distribution, one of the
di-jet masses with the W -peak, and two subjet observables. Figure from Ref. [53].



148 6 INVERSE PROBLEMS AND INFERENCE

An set of unfolded kinematic distribution from the 12-dimensional phase space is shown in Fig 80. Given Eq.(6.40), most
of the shown kinematic observables are, in reality, complex correlations of our phase space basis, so notion of learned
observables and learned correlation does not really hold. Even for the full phase space, the ratio of generated and unfolded
kinematic observables is extremely close to unity, the biggest deviation appearing in the triple jet mass. This include the
three 2-jet masses, for which the condition Mik ≈ mW leads to three distinct lines on top of the conbinatorial continuum.

This study serves as a blueprint for an actual CMS analysis, both, for a top mass measurement and for a wider use of the
unfolded data, and it has been confirmed that the results shown here are quantitatively the same for the full CMS
simulations. This means that, similar to the situation in astrophysics, it will be possible to measure the top mass in
unfolded LHC data as an undergraduate project. Moreover, phenomenologists can test their new physics models on
unfolded LHC data provided they can run a simple phase space generator like Madgraph.

6.3 Simulation-based inference

As simulation-based inference we consider a wide range of methods which all share the basic idea that we want to use
learned probabilities or likelihoods to extract information from data. Ideally this happens event by event, to be optimal.
Likelihoods have been a theme for all our ML-applications, starting with the network training introduced in Sec. (1.2.1).
In this section we will be a little more specific and introduce two ways we can use modern ML-methods to infer
fundamental (model) parameters from LHC data.

6.3.1 Generative inference

Our first method, also referred to as BayesFlow, follows directly from Sec. 6. If a conditional generative network can
invert a forward simulation by generating a conditional probability distribution in the target phase space, we should also
be able to generate posterior probability distributions in model space xparton → m conditional on a complex phase space
xreco → x,

psim(m) pinf(m)

p(x|m)

y
xp(m|x)

psim(x)
correspondence←−−−−−−−−→ pdata(x) (6.41)

The main difference to the original setup of Eq.(6.6) is that the inverse conditional generation produces the posterior for
the inference problem. In that sense this method is Bayesian by nature. The training relies on simulated labelled events
representing the joint distribution

(m,x) ∼ psim(m,x) . (6.42)

Just as for the unfolding, it relies on the assumption that the simulation reproduces the data correctly, psim(x) ≈ pdata(x).
Another technical challenge is that the training is fully amortized, which can mean that we map a large training dataset
onto the Gaussian latent space, leading to memory limitations. A new structural element is the summary network, which
learns a latent representation of the phase space.

We can illustrate this simulation-based inference method, which is extremely successful in astrophysics or gravitational
wave physics, on the QCD splittings building up the parton shower. These splitting kernels are given in Eq.(3.4), and their
common pre-factor has been measured with LEP data. In terms of the color factors these classic measurements give

CA ≡ Nc = 2.89± 0.21 and CF ≡
N2
c − 1

2Nc
= 1.30± 0.09 . (6.43)

For a more systematic approach to measuring the splitting kernels, organized in terms of the relative transverse
momentum of the daughter particles in the splitting, we modify the strictly collinear splitting kernels of Eq.(3.4). We keep
the argument z describing the momentum fraction of the leading daughter parton, and parameterize the transverse
momentum in the splitting using a new observable y, defined by

p2
T = y z(1− z) . (6.44)
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In terms of the soft and collinear variables the relevant splitting kernels for massless QCD now read

Pg←g(z, y) = CA

[
Dgg

(
z(1− y)

1− z(1− y)
+

(1− z)(1− y)

1− (1− z)(1− y)

)
+ Fggz(1− z) + Cggyz(1− z)

]
Pq←q(z, y) = CF

[
Dqq

2z(1− y)

1− z(1− y)
+ Fqq(1− z) + Cqqyz(1− z)

]
Pg←q(z, y) =

1

2

[
Fqq

(
z2 + (1− z)2

)
+ Cgqyz(1− z)

]
. (6.45)

For the mixed kernel Fqg ≡ Fgg reflects the fact that they come from the same Feynman diagram. The complete model
space is then given by

m ∈ {Dgg,qq, Fgg,qq, Cgg,qq} . (6.46)

The collinear expressions from Eq.(3.4) can be recovered in the limit p2
T ∝ y → 0. To leading order in perturbative QCD

they are given by

Dqq,gg = 1 Fqq,gg = 1 Cqq,gg,gq = 0 . (6.47)

These parameters are a generalization of the CA vs CF measurements quoted in Eq.(6.43). The prefactors Dij would
correspond to a universal correction like a two-loop anomalous dimension and resums sub-leading logarithms arising
from the collinear splitting of soft gluons. Their measurements can largely be identified as

Dqq ∼ CF and Dgg ∼ CA . (6.48)

The Fij modify the leading terms in pT , truncated in the strong coupling. The rest terms Cij are defined through an
additional factor p2

T . The modified splitting kernels of Eq.(6.45) can be included in a Monte Carlo generator, for instance
Sherpa.

To extract the splitting parameters from measured jets x we can use the cINN architecture from Sec. 6.2.1. Before
applying is to LHC jets including hadronization and detector simulation, we test the inference model on a simple toy
shower. We simulate jets using the process

e+e− → Z → qq̄ , (6.49)

with massless quarks and a hard showering cutoff at 1 GeV. Most jets appear close to the phase space boundary
pT,j < mZ/2. For each event we apply the parton shower to one of the outgoing quarks, such that the second quark acts
as the spectator for the the first splitting, and we only consider one jet. The network then analyses the set of outgoing
momenta except for the initial spectator momentum. For the training data we scan the parameters {Dij , Fij , Cij} in two
or three dimensions. The input to the summary network per batch are a sets of constituent 4-vectors, and we typically
train on 100k randomly distributed points in model space. This number is much smaller than what we typically use for
network training at the LHC.

For our first test we restrict the shower to the Pqq kernel, such that a hard quark successively radiates collinear and soft
gluons. This way our 3-dimensional model space is given by

{Dqq, Fqq, Cqq} . (6.50)

In the left panel of Fig. 81 we show the posterior probabilities for these model parameters assuming true SM-values. All
1-dimensional posteriors are approximately Gaussian. The best-measured parameter of the toy model is the regularized
divergence, followed by the finite terms, and then the rest term with its assumed pT -suppression. This reflects the
hierarchical structure of the splitting kernel. The correlations between parameters are small, but not negligible.

In a second step we include all QCD splitting kernels from Eq.(6.45) and target the unknown rest terms

{Cqq, Cqg, Cgg} . (6.51)

This means we assume our perturbative predictions for the leading contributions to hold, so we need to estimate the
uncertainty of the perturbative description. For Cqq the uncertainty band shrinks slightly, in the absence of the dominant
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Figure 81: Posterior probabilities for the toy shower, gluon radiation only, {Dqq, Fqq, Cqq} (left), and the pT -suppressed
rest terms for all QCD splittings, {Cqq, Cgg, Cgq} (right). We assume SM-like jets. Figure from Ref. [54].

contributions to this kernel. For the other two rest terms, Cgg and Cgq , we find significantly larger uncertainty bands and a
strong anti-correlation.

For a more realistic simulation we rely on a full Sherpa shower with hadronization and a fast detector simulation. The
dataset consists of our usual particle flow objects forming the jet. Unlike for the classification of boosted jets we study
relatively soft jets, again simulated from Z-decays with a spectrum

pT,j = 20 GeV ...
mZ

2
. (6.52)

To illustrate the physics limiting the measurement, we show two high-level observables from Eq.(1.6) for the toy shower,
after hadronization, and after detector effects in Fig. 82. The shaded bands reflect a variation Dqq = 0.5. ... 2. The
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Figure 82: High-level observables nPF and C0.2 for 100k jets. We show the distributions for the toy shower, the Sherpa
shower with hadronization, and including a detector simulation The bands indicate the variation of Dqq = 0.5. ... 2 (dotted
and dashed). Figure from Ref. [54].



6.3 Simulation-based inference 151

0.9 1.0 1.1

Dqq

5

σ =0.047

0.5 1 1.5

Dgg

0.9

1

1.1

Dqq

0.5 1 1.5

Dgg

1 σ =0.41

Posterior

Gaussian fit

Relative error of 2%

0.9 1.0 1.1

Dqq

5

σ =0.047

0.5 1 1.5

Dgg

0.9

1

1.1

Dqq

0.5 1 1.5 2

Dgg

0.5

σ =0.5

Posterior

Gaussian fit

Relative error of 2%

Figure 83: Posterior probabilities for the Sherpa shower, soft-collinear leading terms for all QCD splittings, {Dqq, Dgg}.
We assume SM-like jets and show results without Delphes detector simulation (left) and including detector effects (right).
Figure from Ref. [54].

number of constituents nPF generally increases with Dqq. The toy shower with a high cutoff and no hadronization does
not generate a very large number of particle flow objects. Hadronization increases the number of constituents
significantly, but is not related to QCD splittings. The finite detector resolution and the detector thresholds decreases nPF
again. The constituent-constituent correlation C0.2 loses all toy events at small values when we include hadronization,
while the broad feature around C0.2 ∼ 0.4 narrows and moves to slightly larger values. The main message from Fig. 82 is
that from a QCD point of view the hadronization effects are qualitatively and quantitatively far more important than the
detector effects.

To simplify the task in view of the hadronization effects we allow for all QCD splittings, but only measure the leading
soft-collinear contributions, corresponding to CF and CA,

{Dqq, Dgg} . (6.53)

The results are shown in Fig. 83. First, we see that the measurement after hadronization only and after hadronization and
detector effects is not very different. In both cases we see a significant degradation of the measurements, especially in
Dgg , and a strong correlation which reflects the fact that we are only looking at quark-induced jets. For an actual
measurement this correlation could be easily removed by combining quark-dominated and gluon-dominated samples.

6.3.2 Likelihood extraction

In spite of discussing likelihoods and likelihood ratios several times, we have never written down the likelihood as we use
it in an analysis of datasets consisting of unweighted and uncorrelated events. A likelihood for a counting experiment can
be split into the statistical probability of observing n event with b background events expected, and a normalized
probability of observing individual events in a given phase space point. If we phrase the question in terms of a hypothesis
or set of model parameters θB we can write

p(x|θB) = Pois(n|b)
n∏
i=1

fB(xi) with Pois(n|b) =
bn

n!
e−b . (6.54)
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The Neyman–Pearson lemma then tells us that if we want to, for instance, decide between a background-only and
signal-plus-background hypothesis we will find optimal results by using the likelihood ratio as the estimator

p(x|θS+B)

p(x|θB)
=

Pois(n|s+ b)
∏
i fS+B(xi)

Pois(n|b) ∏i fB(xi)

= e−s
(
s+ b

b

)n ∏
i fS+B(xi)∏
i fB(xi)

= e−s
∏
i(s+ b)fS+B(xi)∏

i bfB(xi)
= e−s

∏
i[sfS(xi) + bfB(xi)∏

i bfB(xi)]
. (6.55)

We have used the assumption that s+ b signal plus background events follow weighted signal and background
distributions independently. We can translate this into the log-likelihood ratio as a function of the transition amplitudes
f(x) over phase space, noticing that the log-likelihood ratio is additive for phase space points or events xi,

log
p(x|θS+B)

p(x|θB)
= −s+

∑
i

log

[
1 +

sfS(xi)

bfB(xi)

]
. (6.56)

If we work with simulation only, consider irreducible backgrounds at the parton level, and limit ourselves to the same
partons in the initial state, we can compute the log-likelihood ratio as

log
p(x|θS+B)

p(x|θB)
= −s+

∑
i

log

[
1 +
|MS(xi)|2
|MB(xi)|2

]
. (6.57)

Prefactors relating the transition matrix element to the fully exclusive cross sections, including parton densities, will drop
out of the ratio of signal and backgrounds. This means we can use Eq.(6.56) to compute the maximum possible
significance for observing a signal over a background integrating over matched signal and background event samples.
Moving from two equal hypotheses, signal vs background, to measuring a parameter θ around a reference value θref we
can rewrite the corresponding likelihood ratio

log
p(x|θ)
pref(x)

= −s+
∑
i

log

[
1 +
|M(xi|θ)|2
|M(xi)|2ref

]
with pref(x) ≡ p(x|θref) . (6.58)

If we are interested in parameter values θ close to a reference point θref, we can simplify our problem and taylor the log
likelihood around θref,

log
p(x|θ)
p(x|θref)

= (θ − θref)
∂

∂θ
log p(x|θ)

∣∣∣∣∣
θref︸ ︷︷ ︸

t(x|θref)

+O
(
(θ − θref)

2
)
. (6.59)

The leading term is called the score in statistics or optimal observable in particle physics. Neglecting the higher-order
terms we solve this equation and find

p(x|θ) ≈ et(x|θref)(θ−θref) p(x|θref) . (6.60)

This relation to the likelihood function implies that the score t(x|θref) are its sufficient statistics. If we measure it we
capture all information on θ included in the the full event record x. It is possible to show that the score is not only linked
to the Neyman-Pearson lemma for discrete hypotheses HS+B vs HB , but also saturates the Cramér-Rao bound for a
continuous parameter measurement θ ∼ θref.

For the application of modern ML-methods to likelihood extraction we follow the approach of the public analysis tool
MadMiner [55, 56]. In Eq.(4.19) we have already seen the relation between classifiers and likelihood ratios. The starting
point is the Neyman-Pearson lemma, telling us that an optimal discriminator D has to reproduce the likelihood ratio. To
confirm this we start from the optimally trained discriminator in Eq.(4.19), translate the output into our new conventions,
and solve for the likelihood ratio,

Dopt(x) =
pref(x)

pref(x) + p(x|θ) =
1

1 +
p(x|θ)
pref(x)

⇔ p(x|θ)
pref(x)

=
1−Dopt(x)

Dopt(x)
. (6.61)
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To construct this estimator for the likelihood ratio we start by generating two training datasets, one following pref(x) and
one following p(x|θ). In a slight variation of the two-hypothesis classification we now train a θ-dependent classifier,
where θ enters the training as a condition. After training, we can use the output of this classifier for a given value of θ as a
numerical approximation to the likelihood ratio p(x|θ)/pref(x). This approach has the advantage that we only need to
train a stable classification network. The advantage of this method is that it is fast for a limited number of phase space
points, as long as the network has converged on a smooth classification output. In the MadMiner implementation this
approach is called calibrated ratios of likelihoods (Carl).

For a second approach, we go beyond classification and train a regression network to encode likelihoods or likelihood
ratios over the combined phase space and parameter space (x, θ). For this purpose we modify the relation between the
likelihood ratio given in Eq.(6.58) and the matrix elements using an approximate factorization for LHC physics including
a range of latent variables. We start with the observation that we can write the likelihood in x as an integral over latent
variables which describe the hard process zp, the step to the parton shower zs, and to the detector level zd. We can also
assume that our parameter of interest only affects the hard scatting,

p(x|θ) =

∫
dz p(x, z|θ) ≈

∫
dzddzsdzp p(x|zd) p(zd|zs) p(zs|zp) p(zp|θ) . (6.62)

Using this factorization we see that the problem with the likelihood ratio is that it is given by a ratio of two integrals, for
which there is no easy and efficient way to evaluate it, even using modern ML-methods,

p(x|θ)
pref(x)

=

∫
dz p(x, z|θ)∫
dz pref(x, z)

. (6.63)

However, we can simplify the problem using the property of the joint likelihood ratio being an unbiased estimator of the
likelihood ratio. This means we can evaluate the ratio of the joint likelihoods instead of the ratio of the likelihoods,

p(x, z|θ)
pref(x, z)

≈ p(zp|θ)
pref(zp)

=
|M(zp|θ)|2
|Mref(zp)|2

σref

σ(θ)
. (6.64)

In the last step we do not assume that all prefactors in the relation between matrix element and rate cancel, so we ensure
the correct normalization explicitly. The advantage of using the joint likelihood ratio as an estimator for the likelihood
ratio is that we can encode it in a network comparably easily, using the factorization properties of LHC rates.

Inspired by the fact that the joint likelihood ratio can serve as an estimator for the actual likelihood ratio we can try to
numerically extract the likelihood ratio from the joint likelihood ratio. If we assume that we have a dataset encoding the
likelihood ratio over phase space we still need to encode it in a network. We simplify our notation from Eq.(6.62) to

p(x, z|θ) = p(x|zp) p(zp|θ) or p(x|θ) =

∫
dzp p(x, zp|θ)

≈
∫
dzp p(x|zp) p(zp|θ) . (6.65)

Slightly generalizing the problem we can ask if it is possible to construct proxies for (x, zp)-dependent distributions as
x-dependent distributions, with a given test function. This is similar to the variational approximation introduced in
Sec. 1.2.6. We will see that the test function p(x|zp)p(zp|θ) combined with an L2 norm over the two functions will turn
out useful

F (x) =

∫
dzp

[
f(x, zp)− f̂(x)

]2
p(x|zp) pref(zp) . (6.66)

The variational condition defines the approximation f̂∗(x) through a minimization of F (x),

0 =
δF

δf̂
=

δ

δf̂

∫
dzp

[
f(x, zp)− f̂(x)

]2
p(x|zp) pref(zp)

=

∫
dzp p(x|zp) pref(zp)

δ

δf̂

[
f(x, zp)− f̂(x)

]2
= −2

∫
dzp p(x|zp) pref(zp)

[
f(x, zp)− f̂(x)

]
⇔ f̂∗(x) =

∫
dzp f(x, zp) p(x|zp) pref(zp)∫

dzp p(x|zp) pref(zp)
=

∫
dzp f(x, zp) p(x|zp) pref(zp)

pref(x)
. (6.67)
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We can apply this method to the joint likelihood ratio from Eq.(6.64) and find

f(x, zp) =
p(zp|θ)
pref(zp)

≈ p(x|zp) p(zp|θ)
p(x|zp) pref(zp)

⇒ f̂∗(x) =

∫
dzp f(x, zp) p(x|zp) p(zp|θ)

pref(x)
=
p(x|θ)
pref(x)

. (6.68)

This means that by numerically minimising Eq.(6.66) as a loss function we can train a regression network for reproduce
the likelihood ratio from Eq.(6.58).

The third, and final approach to extract likelihoods for the LHC starts with remembering that according to Eq.(6.59) the
derivative of the log-likelihood ratio is a sufficient statistics for a parameter of interest θ in the region around θref. This
leads us to computing the joint score

t(x, z|θ) =
∂

∂θ
log p(x, z|θ) =

1

p(x, z|θ)
∂

∂θ
p(x, z|θ)

≈ p(x|zd) p(zd|zs) p(zs|zp)
p(x|zd) p(zd|zs) p(zs|zp) p(zp|θ)

∂

∂θ
p(zp|θ) =

∂p(zp|θ)/∂θ
∂(zp|θ)

=
σ(θ)

|M(zp|θ)|2
∂

∂θ

|M(zp|θ)|2
σ(θ)

=
∂|M(zp|θ)|2/∂θ
|M(zp|θ)|2

− ∂σ(θ)/∂θ

σ(θ)
, (6.69)

and limit our analysis to θ ∼ θref. Just as for the joint likelihood ratio we use the variational approximation from Eq.(6.67)
to train a network for the score. This time we define, in the simplified notation of Eq.(6.65),

F (x) =

∫
dzp

[
f(x, zp)− f̂(x)

]2
p(x|zp) p(zp|θ)

f(x, zp) = t(x, zp|θ) =
p(x|zp) ∂p(zp|θ)/∂θ
p(x|zp) p(zp|θ)

⇒ f̂∗(x) =

∫
dzp f(x, zp) p(x|zp) p(zp|θ)∫

dzp p(x|zp) p(zp|θ)
=

∫
dzp p(x|zp) ∂p(zp|θ)/∂θ

p(x|θ) = t(x|θ) . (6.70)

This means we can also encode the score as the local summary statistics for a model parameter θ in a network using a
variational approximation. In MadMiner this method is called score approximates likelihood locally or Sally.

To illustrate this score extraction we look at the way heavy new physics affects the Higgs production channel

pp→WH → `ν̄ bb̄ . (6.71)

If we assume that new particles are heavy and not produced on-shell, the appropriate QFT description is
higher-dimensional operators and the corresponding Wilson coefficients. The effective Lagrangian we use to describe
LHC observation then becomes

L = LSM +
∑
d,k

Cdk
Λd−4

Odk . (6.72)

We can organize the effective Lagrangian by the power d of the scale of the unknown new physics effects, Λ. The
coupling parameters Ck are called Wilson coefficients. The Lagrangian of the renormalizable Standard Model has mass
dimension four, there exists exactly one operators at dimension five, related to the neutrino mass, and 59 independent
operators linking the Standard Model particles at dimension six. Adding flavor indices increases this number very
significantly. The WH production process mostly tests three of them,

OHD = (φ†φ)�(φ†φ)− 1

4
(φ†Dµφ)∗(φ†Dµφ)

OHW = φ†φW a
µνW

µνa

O(3)
Hq = (φ†i

↔
D a
µ φ)(QLσ

aγµQL) , (6.73)
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Figure 84: Expected exclusion limits from rates only (grey), simplified template cross sections (green), and using Sally to
extract the score. Limits based on a linearized description in the Wilson coefficients are shown as dashed lines, while the
solid lines also include squared contributions of the operators defined in Eq.(6.73). Figure from Ref. [57].

where φ is the Higgs doublet, Dµ the full covariant derivative, W a
µν the weak field strength, and

φ†i
↔
D a
µ φ = iφ†(σ

a

2 Dµφ)− i(Dµφ)† σ
a

2 φ. The three operators affect the transition amplitude for WH production in
different ways. In principle, dimension-6 operators can come with up to two derivatives, which after a Fourier
transformation turn into two powers of the momentum transfer in the interaction, p2/Λ2. Of the three operators in
Eq.(6.73) it turns out that OHD induces a finite and universal contribution to the Higgs wave function, turning into a
rescaling to all single-Higgs interactions. In contrast, OHW changes the momentum structure of the WWH vertex and
leads to momentum-enhanced effects in the WH final state. The operator C(3)

Hq has the unusual feature that it induces a
qq′WH 4-point interaction which avoids the s-channel suppression of the SM-process and also leads to a momentum
enhancement in the WH kinematics.

Based on what we know about the effects of the operators, we can study their effects in the total production rate and a few
specific kinematic distributions,

σWH pT,W ≈ pT,H mT,tot ∼ mWH . (6.74)

Because of the neutrino in the final state it is hard to reconstruct the invariant mass of the WH final state, so we can use a
transverse mass construction as the usual proxy. These transverse mass constructions typically replace the neutrino
3-momentum with the measured missing transverse momentum and have a sharp upper cutoff at the invariant mass, more
details are given in Ref. [3].

For the simple 2→ 2 signal process given in Eq.(6.71) we would expect that the number of independent kinematic
variables is limited. At the parton level a 2→ 2 scattering process can be described by the scattering angle, the azimuthal
angle represents a symmetry, and the embedding of the partonic process into the hadronic process can be described by the
energy of the partonic scattering as a second variable. This means, measuring Wilson coefficients from 2-dimensional
kinematic correlations should be sufficient. This leads to a definition of a set of improved simplified template cross
sections (STXS) in terms of the two kinematic variables given in Eq.(6.74). The extraction of the score using the Sally
method allows us to benchmark this 2-dimensional approach and to quantify how much of the entire available information
is captured by them.

In Fig. 84 we show two slices in the model space spanned by the operators and Wilson coefficients given in Eq.(6.73). In
the left panel we first see that even for two operators the rate measurement leaves us with an approximately flat direction
in model space. Adding 2-dimensional kinematic information breaks this flat directions, but this breaking really requires
us to also include the squared contributions of the Wilson coefficients, specifically OHW . Using the full phase space
information leads to significantly better results, even for the simple 2→ 2 process. The reason is that we are not really
comparing the SM-predictions and the dimension-6 signal hypothesis, but are also including the continuum background
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to `ν̄bb̄ production, and in the tails of the signal kinematics this continuum background becomes our leading limitation. In
the right panel of Fig. 84 we show another slice through the model parameter space, now omitting the operator OHD
which is only constrained by the total WH rate. Again, we have a perfectly flat direction from the rate measurement, but
the two remaining operators can be distinguished already in the linearized description from their effects over phase space,
and the 2-dimensional kinematic information captures most of the effects encoded in the full likelihoods. This example is
not an actual measurement, but only a study for the LHC Run 3, but it shows how we can employ simulation-based
inference in a more classical way, with binned kinematic distributions, and using the full likelihood information. It should
be obvious which methods does better.

6.3.3 Flow-based anomaly detection

Now that we can extract likelihoods from event samples, we need to ask what kind of data we would train on. In the last
section we used supervised training on simulated event samples for this purpose. An alternative way would be to use
measured data to extract likelihoods. Obviously, this has to be done with some level of unsupervised training. In Sec. 3.1
we introduced the CWoLa method and its application to bump hunt searches for BSM physics. Our goal is to use
unsupervised likelihood extraction to enhance such bump hunts.

The general setup of such searches is illustrated in Fig. 85: We start with a smooth feature m, for example the di-jet or
di-lepton invariant mass, and look for signal bumps rising above the falling background. In addition, we assume that the
signal corresponds a local overdensity in other event features, collectively referred to as x. The problem we want to
address is how to estimate for the background in a data-driven way all over phase space. Usually, one defines a signal
region (SR) and a side band (SB), and estimates the amount of background in the signal region based on the side bands.
One then scans over different signal region hypotheses, covering the full feature space in m. A simple technical method is
to fit the m-distribution, remove individual bins, and look for a change in χ2. This data-driven approach has the
advantage that it does not suffer from imperfect background simulations. In the Higgs discovery plots it looks like this is
what ATLAS and CMS did, but this is not quite true, because the information on the additional features in x was crucial
to enhance the statistical power of the side band analysis. Using the machine-learning techniques we discussed so far, we
can approach this problem from several angles.

As always, the Neyman-Pearson lemma ensures that the best discriminator between two hypotheses is the likelihood ratio,
with the specific relation given in Eqs.(4.19) and (6.61). The key point of the CWoLa method in Sec. 3.1 is that a network
classifier learns a monotonic function of this ratio, if the two training dataset have different compositions of signal and
background. If we identify the two training datasets with a data-driven modelling of the background likelihood and a
measured signal+background likelihood we can use CWoLa to train a signal vs background classifier using the link

x ∼ pdata(x|m ∈ SR)

x ∼ pdata(x|m ∈ SB)

class−→ pS+B(x)

pB(x)
→ pS(x)

pB(x)
. (6.75)

In the last CWoLa step we train a classifier to distinguish events from the signal and background regions, only using the
features x and not m. The challenge with this method is the fine print in the CWoLa method, which essentially requires m
and x to not be correlated, so we can ignore the fact that in Eq.(6.75) the numerator and denominator are evaluated in
different phase space regions.

If we could use some kind of network to access likelihoods directly, this would allow us to construct the likelihood ratio
simply as a ratio of two independently learned likelihoods. This method is called ANOmaly detection with Density
Estimation or Anode. Here, one flow learns the assumed background density from the side bands, pmodel(x|m ∈ SB),
where the label ‘model’ indicates that we will use this distribution to model the background in the signal region. Since the
label m is a continuous variable, we can extract the density of events in the signal region from pmodel(x|m) simply by
passing events with m ∈ SR through it and using the network to interpolate in m. For this to happen, the flows have to
learn the conditional density p(x|m) instead of the joint density p(x,m) because we need to be able to interpolate into the
signal region to compute pmodel(x|m ∈ SR). If a flow has learned p(x,m) and then sees m /∈ SR, it will return
p(x,m ∈ SR) = 0 instead of interpolating from the side bands into the signal region. This means Anode approximates
the data distribution in the background regions and then relies on an interpolation to reach the signal region,

pdata(x|m ∈ SB)
train−→ pmodel(x|m ∈ SB)

interpolate−→ pmodel(x|m ∈ SR) . (6.76)

The interpolated pmodel(x|m) for all m is given by the red distribution in Fig. 85. The second network directly learns a
hypothetical signal-plus-background density from the signal region pdata(x|m ∈ SR). The learned density in the signal
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Figure 85: Definition of signal region (SR) and side band (SB). The red distribution is the assumed background, the blue
is the signal. Features of the events other than m are called x. Figure from from Ref.[58].

region includes the hypothetical signal, trained in an unsupervised manner. We can now form the ratio of the two learned
densities in the signal region, each encoded in a network,

pdata(x|m ∈ SR)

pmodel(x|m ∈ SR)
, (6.77)

which approaches the desired log-likelihood ratio and can be used for analysis.

Finally, we can go beyond classification and density estimation and make use of the fact that normalizing flows are not
only density estimators, but generative networks. The corresponding method of enhancing a bump hunt is to combine the
ideas of CWoLa and Anode to Classifying Anomalies THrough Outer Density Estimation or Cathode. First, we learn the
distribution of events in the side band, pmodel(x|m ∈ SB), just like in the Anode approach. Second, using this density
estimator, pmodel(x|m), we sample artificial events in the signal region

pdata(x|m ∈ SB)
train−→ pmodel(x|m ∈ SB)

sample−→ x ∼ pmodel(x|m ∈ SR) . (6.78)

To guarantee the correct distribution of the continuous condition m we use a kernel density estimator. This is a
parameter-free method for density estimation, where for instance a Gaussian kernel is placed at each element of the
dataset and the sum of all Gaussians at a given point is an estimator for the points density. Selecting a Gaussian at random
and sampling from it draws samples from this distribution. The method is less efficient than normalizing flows, especially
at high dimensions and for large datasets, but it is well-suited to model the m-dependence in the signal region from the
side bands.

The sampled events will follow the distribution pmodel(x|m ∈ SR), expected for background-only events in the signal
region and again corresponding to the red distribution in Fig. 85. If there are actual signal events in the signal region we
can use the two datasets following pmodel(x|m ∈ SR) and pdata(x|m ∈ SR) to train a CWoLa classifier, as illustrated in
Eq.(6.75). This means the third step of Cathode is to apply the CWoLa method: we train a classifier to distinguish the
generated events from the data in the signal region. If there is a signal present, the classifier learns to distinguish the two
sets based on the log-likelihood ratio argument of Eq.(3.2).

Cathode has several advantages over the other bump-hunt enhancing algorithms. First, unlike for CWoLa the data and the
generated samples have m ∈ SR, so even when the features x are correlated with m, the classifier will not learn to
distinguish the sets by deducing the value of m from x. Second, in contrast to CWoLa, the amount of training data is not



158 6 INVERSE PROBLEMS AND INFERENCE

Figure 86: Signal process in the LHC Olympics R&D dataset, from Ref. [59].

limited. Cathode can oversample events in the signal region. which improves the quality of the classifier the same way we
have seen with GANplification in Sec. 4.2.3 and super-resolution in Sec. 4.2.6. Finally, compared to Anode, the
likelihood-ratio in Eq.(6.77) is learned from a classifier and not constructed as a ratio of two learned log-likelihoods. This
is easier and gives more stable results.

As an application we compare CWola, Anode, and Cathode to a standard new-physics searches dataset, namely the
LHC Olympics R&D dataset. This dataset consists of simulated di-jet events from Pythia and with the fast detector
simulation Delphes. It includes 1M QCD di-jet events as background and 1k signal events describing the process

Z ′ → X(→ qq)Y (→ qq) with mZ′ = 3.5 TeV,mX = 500 GeV,mY = 100 GeV . (6.79)

All events are required to satisfy a single-jet trigger with pT > 1.2 TeV. We use the kinematic training features

{ mj1j2 ,mj1 ,mj2 −mj1 , τ
j1
21 , τ

j2
21 } . (6.80)

Here j1 and j2 refer to the two highest-pT jets ordered by jet mass (mj1 < mj2 ), and τij ≡ τi/τj are their n-subjettiness
ratios defined in Eq.(2.16). The di-jet invariant mass mj1j2 defines the signal and side band regions through

SR : mjj = 3.3 ... 3.7 TeV . (6.81)

In Fig. 87 we see how the three methods perform in terms of the significance improvement characteristic (SIC), which
gives the improvement factor of the statistical significance S/

√
B. The supervised anomaly detector as a reference is

given by a classifier trained to distinguish perfectly modeled signal from background. The idealized anomaly detector
shows the best possible performance of a data-driven anomaly detector. It is trained to distinguish perfectly modeled
background from the signal plus background events in the signal region. Of the three methods Cathode clearly
outperforms Anode and CWoLa and approaches the idealized anomaly detection over a wide range of signal efficiencies,
indicating that the distribution of artificial events in the signal region follows the true background distribution closely.

6.3.4 Symbolic regression of optimal observables

After learning how to extract likelihood ratios for a given inference task from simulations and from data, we want to
return to particle theory and ask what we can learn from these numerical methods for particle theory. This is an example
where we expect a numerical code or a neural network to correspond, at least approximately, to a formula. At least for
physics, such an approximate formula would be the perfect explanation or illustration of our neural network. Formulas
also have practical advantages over neural networks — we know that neural networks are great at interpolating, but
usually provide very poor extrapolations. If we combine networks with formulas as models, these formulas will provide a
much better extrapolation. This means is that in a field where all improvements in precision involve a step from analytic
to numerical expressions, we need a way to at least approximately invert this direction. This is a little different from
typical applications of symbolid regression, where we start from some kind of data, use a neural network to extract the
relevant information, and then turn this relevant information into a formula. We really just want to see a formula for a
neural network in the sense of explainable AI.

In Eq.(6.59) we have introduced the score or the optimal observable for the model parameter θ in a completely abstract
manner, and in Sec. 6.3.3 we have deliberately avoided all ways to understand the likelihood ratio in terms of theory or
simulations. However, in many LHC applications, for example in measuring the SMEFT Wilson coefficients defined in
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Figure 87: Significance improvement characteristic (SIC) for different bump-hunting methods. Figure from Ref. [58].

Eq.(6.73), we can at least approximately extract the score or optimal observables. For those Wilson coefficients the
natural reference point is the Standard Model, θref = 0. At parton level and assuming all particle properties can be
observed, we know from Eq.(6.58) that the likelihood is proportional to the transition amplitude,

p(x|θ) ∝ |M(x|θ)|2 = |M(x)|2ref + θ|M(x)|2int +O(θ2) , (6.82)

where |M|2int denotes the contribution of the interference term between Standard Model and new physics to the complete
matrix element. In that case the score becomes

t(x|θref = 0) =
|M(x)|2int

|M(x)|2ref
. (6.83)

This formula illustrates that the score does not necessarily have to be an abstract numerical expression, but that we should
be able to encode it in a simple formula, at least in a perturbative approach.

The approximate parton-level description of the score suggests that it should be possible to derive a closed formula in
terms of the usual phase space observables. As the numerical starting point we use an event generator like MadGraph to
generate a dataset of score values over phase space. Extracting formulas from numerical data is called symbolic
regression. The standard application of symbolic regression is in combination with a neural network, where a complex
dataset is first described by a neural network, extracting its main feature and providing a fast and numerical powerful
surrogate. This neural network is then transformed into approximate formulas. In our case, we directly approximate the
numerically encoded score of Eq.(6.83) with compact formulas.

The public tool PySR uses a genetic algorithm to find a symbolic expression for a numerically defined function in terms
of pre-defined variables. Its population consists of symbolic expressions, which are encoded as trees and consist of nodes
which can either be an operand or an operator function. The operators we need are addition, subtraction, multiplication,
squaring, cubing and division, possibly sine and cosine. The algorithm is illustrated in Fig. 88. The tree population
evolves when new trees are created and old trees are discarded. Such new trees are created through a range of mutation
operators, for instance exchanging, adding, or deleting nodes. The figure of merit which we use to evaluate the new trees
is the MSE between the score values t(xi|θ) and the PySR approximation gi, as defined in Eq.(1.25)

MSE ∼
∑
i

[g(xi)− t(xi|θ)]2 , (6.84)

Unlike for a network training we do not want an arbitrarily complex and powerful formula, so we balance the MSE with
the number of nodes a complexity measure. The PySR figure of merit is then defined with the additional parsimony
parameter through the regularized form

MSE∗ = MSE + parsimony ·#nodes . (6.85)
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Figure 88: Illustration of the PySR algorithm.

This combination will automatically find a good compromise between accuracy and complexity.

Simulated annealing is a standard minimum finder algorithm. Its key feature is a temperature T which allows the
algorithm to sample widely in the beginning and then focus on a local minimum. It accepts a mutation of a tree with the
probability

p = min

[
exp

(
− 1

T

MSE∗new −MSE∗old

MSE∗old

)
, 1

]
. (6.86)

If the new tree is better than the old tree, MSE∗new < MSE∗old, the exponent is larger than zero, and the probability to
accept the new tree is one. If the new tree is slightly worse than the old tree, the exponent is smaller than zero, and the
algorithm can keep the new tree as an intermediate step to improve the population, but with a finite probability. This
probability is rapidly decreased when we dial down the temperature. The output of the PySR algorithm is a set of
expressions given by the surviving populations once the algorithm is done. This hall of fame (HoF) depends on the MSE
balanced by the number of nodes. If we are really interested in the approximate function. we need to supplement PySR
with an optimization fit of all parameters in the HoF functions using the whole dataset. Such a fit is too slow to be part of
the actual algorithm, but we need it for the final form of the analytic score and for the uncertainties on this form.

There are cases where optimal observables or scores are used for instance by ATLAS to test fundamental properties of
their datasets. One such fundamental question is the CP-symmetry of the V V H vertex, which can for instance be tested
in weak boson fusion Higgs production. It turns out that for this application we know the functional form of the score at
leading order and at the parton level, so we can compare it to the PySR result going beyond these simple approximations.
The signal process we need to simulate is

pp→ Hjj . (6.87)

To define an optimal observable we choose the specific CP-violating operator at dimension six, in analogy to Eq.(6.72),

L = LSM +
f
WW̃

Λ2
O
WW̃

with O
WW̃

= −(φ†φ) W̃ k
µνW

µνk . (6.88)

We know that the signed azimuthal angle between the tagging jets ∆φ is the appropriate genuine CP-odd observable. This
observable has the great advantage that it is independent of the Higgs decay channels and does not involve reconstructing
the Higgs kinematics. In Fig. 89 we show the effect of this operator on the WBF kinematics. First, the asymmetric form
of ∆φ can most easily be exploited through an asymmetry measurement. Second, the additional momentum dependence
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Figure 89: Kinematic distributions for the two tagging jets in WBF Higgs production at parton level for two Wilson
coefficients f

WW̃
.

of O
WW̃

leads to harder tagging jets This is unrelated to CP-violation, and we have seen similar effects in Sec. 6.3.2.
Finally, there is no effect on the jet rapidities.

For the leading partonic contribution to WW -fusion, ud→ Hdu we can compute the score at the Standard Model point,

t(x|f
WW̃

= 0) ≈ − 8v2

m2
W

(kdku) + (pupd)

(pdpu)(kukd)
εµνρσ k

µ
dk

ν
up
ρ
dp
σ
u , (6.89)

where ku,d are the incoming and pu,d the outgoing quark momenta. We can assign the incoming momenta to a positive
and negative hemisphere, k± = (E±, 0, 0,±E±), do the same for the outgoing momenta p±, and then find in terms of the
signed azimuthal separation

t(x|f
WW̃

= 0) ≈ − 8v2

m2
W

2E+E− + (p+p−)

(p+p−)
pT+pT− sin ∆φ . (6.90)

The dependence t ∝ sin ∆φ reflects the CP-sensitivity while the prefactor t ∝ pT+pT− reflects the dimension-6 origin.

For small deviations from the CP-conserving Standard Model we show the dependence on the score in Fig. 90. The
kinematic observables are the same as in Fig. 89, and we see how f

WW̃
> 0 moves events from ∆φ > 0 to ∆φ < 0. The

dependence on pT,1 indicates large absolute values of the score for harder events, which will boost the analysis when
correlated with ∆φ. The dependence on ∆η is comparably mild. To encode this score dependence in a formula we use
PySR on the observables

{ xp,1, xp,2, ∆φ, ∆η } with xp,j =
pT,j
mH

. (6.91)

In Tab. 7 we show the results, alongside the improvement in the MSE. Starting with the leading dependence on ∆φ, PySR
needs 8 nodes with one free parameter to derive t ≈ pT,1pT,2 sin ∆φ. Beyond this point, adding ∆η to the functional form
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Figure 90: Score for simplified WBF Higgs production at parton level and with f
WW̃

= 0. The kinematic observables
correspond to Fig. 89.
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compl dof function MSE

3 1 a∆φ 1.30 · 10−1

4 1 sin(a∆φ) 2.75 · 10−1

5 1 a∆φxp,1 9.93 · 10−2

6 1 −xp,1 sin(∆φ+ a) 1.90 · 10−1

7 1 (−xp,1 − a) sin(sin(∆φ)) 5.63 · 10−2

8 1 (a− xp,1)xp,2 sin(∆φ) 1.61 · 10−2

14 2 xp,1(a∆φ− sin(sin(∆φ)))(xp,2 + b) 1.44 · 10−2

15 3 −(xp,2(a∆η2 + xp,1) + b) sin(∆φ+ c) 1.30 · 10−2

16 4 −xp,1(a− b∆η)(xp,2 + c) sin(∆φ+ d) 8.50 · 10−3

28 7
(xp,2 + a)(bxp,1(c−∆φ)

8.18 · 10−3

−xp,1(d∆η + exp,2 + f) sin(∆φ+ g))
5 10 15 20 25 30

complexity

10 2

10 1

M
SE

Table 7: Score hall of fame for simplified WBF Higgs production with f
WW̃

= 0, including a optimization fit.

leads to a further improvement with a 4-parameter description and 16 nodes. The corresponding formula for the score is

t(xp,1, xp,2,∆φ,∆η|fWW̃
= 0) = −xp,1 (xp,2 + c) (a− b∆η) sin(∆φ+ d)

with a = 1.086(11) b = 0.10241(19) c = 0.24165(20) d = 0.00662(32) . (6.92)

The numbers in parentheses give the uncertainty from the optimization fit. While d comes out different from zero, it is
sufficiently small to confirm the scaling t ∝ sin ∆φ. Similarly, the dependence on the rapidity difference ∆η is
suppressed by b/a ∼ 0.1. This simple picture will change when we move away from the Standard Model and evaluate the
score are finite f

WW̃
. However, for this case we neither have a reference results nor an experimental hint to assume such

CP-violation in the HV V interaction.

Until now, we have used PySR to extract the score at parton level. The obvious question is what happens when we add a
fast detector simulation to the numerical description of the score. To extract the (joint) score from the MadGraph event
samples we can use MadMiner. In general, detector effects will mostly add noise to the data, which does affect the PySR
convergence. We find the same formulas as without detector effects, for instance the 4-parameter formula of Eq.(6.92),
but with different parameters,

t(xp,1, xp,2,∆φ,∆η|fWW̃
= 0) = −xp,1 (xp,2 + c) (a− b∆η) sin(∆φ+ d)

with a = 0.9264(20) b = 0.08387(35) c = 0.3542(20) d = 0.00911(67) . (6.93)

The absolute differences are small, even though the pull for instance of c exceeds 100. Still, d� 1 ensures t ∝ sin ∆φ
also after detector effects, and b/a� 1 limits the impact of the rapidity observable. Indeed, detector effects do not
introduce a significant bias to the extracted score function.

Finally, we can switch from the MSE∗ figure of merit something more realistic, for instance the expected reach of the
different approximations in an actual analysis. To benchmark the reach we can compute the log-likelihood distributions
and extract the p-value for an assumed f

WW̃
= 0 including detector effects and for an integrated Run 2 LHC luminosity

of 139 fb−1. The analytic functions we use from the HoF in Fig. 7 are

a1pT,1pT,2 a2 sin ∆φ a3pT,1pT,2 sin ∆φ . (6.94)

The first is just wrong and does not probe CP-violation at all. The second taylors the proper results for small azimuthal
angles, which does appear justified looking at Fig. 89. The third function is what we expect from the parton level. We
compare these three results to the Sally method using the four PySR observables in Eq.(6.91), and using the full set of 18
observables. All exclusion limits are shown in Fig. 91. Indeed, for all score approximations the likelihood follows a
Gaussian shape. Second, we find that beyond the minimal reasonable form apT1pT2 sin ∆φ there is only very little
improvement in the expected LHC reach for the moderate assumed luminosity.

This application of symbolic regression confirms our hope that we can use modern numerical methods to reverse the
general shift from formulas to numerically encoded expressions. In the same spirit as using perturbative QCD we find that
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Figure 91: Projected exclusion limits assuming f
WW̃

= 0 for different (optimal) observables. The Sally network uses pT1 ,
pT2

, ∆φ and ∆η, Sally full uses 18 kinematic variables.

symbolic regression provides us with useful and correct approximate formulas, and formulas are the language of physics.
The optimal observable for CP-violation is the first LHC-physics formula re-derived using modern machine learning, and
at least for Run 2 statistics it can be used in experiment without any loss in performance. However, when analyszing more
data we have to extract a more precise formula, again a situation which is standard in physics, where most of our simple
formulas rely on a taylor series or a perturbative expansion.

With this appliation we are at the end of our tour of modern machine learning and its LHC applications. We have
established neural networks as extremely powerful numerical tools, which are not black boxes, but offer a lot of control.
First, an appropriate loss function tells us exactly what the network training is trying to achieve. Second, neural network
output comes with an uncertainty band, in some cases like NNPDF even with a comprehensive uncertainty treatment.
And, finally, trained neural networks can be transformed into formulas. Given what we can do with modern machine
learning at the LHC, there is no excuse to not play with them as new and exciting tools. What we have not talked about is
the unifying power of data science and machine learning for the diverging fields of particle theory and particle experiment
— to experience this, you will have to come to a conference like ML4Jets or a workshop like Hammers and Nails and
watch for yourselves.
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[54] S. Bieringer, A. Butter, T. Heimel, S. Höche, U. Köthe, T. Plehn, and S. T. Radev, Measuring QCD Splittings with
Invertible Networks, SciPost Phys. 10 (2021) 6, 126, arXiv:2012.09873 [hep-ph].

[55] J. Brehmer, K. Cranmer, G. Louppe, and J. Pavez, A Guide to Constraining Effective Field Theories with Machine
Learning, Phys. Rev. D 98 (2018) 5, 052004, arXiv:1805.00020 [hep-ph].

[56] J. Brehmer, F. Kling, I. Espejo, and K. Cranmer, MadMiner: Machine learning-based inference for particle physics,
Comput. Softw. Big Sci. 4 (2020) 1, 3, arXiv:1907.10621 [hep-ph].

[57] J. Brehmer, S. Dawson, S. Homiller, F. Kling, and T. Plehn, Benchmarking simplified template cross sections in
WH production, JHEP 11 (2019) 034, arXiv:1908.06980 [hep-ph].

[58] A. Hallin, J. Isaacson, G. Kasieczka, C. Krause, B. Nachman, T. Quadfasel, M. Schlaffer, D. Shih, and
M. Sommerhalder, Classifying Anomalies THrough Outer Density Estimation (CATHODE), arXiv:2109.00546
[hep-ph].

[59] G. Kasieczka et al., The LHC Olympics 2020 a community challenge for anomaly detection in high energy physics,
Rept. Prog. Phys. 84 (2021) 12, 124201, arXiv:2101.08320 [hep-ph].

http://dx.doi.org/10.21468/SciPostPhys.15.4.141
http://arxiv.org/abs/2212.06172
http://dx.doi.org/10.21468/SciPostPhys.17.1.023
http://dx.doi.org/10.21468/SciPostPhys.17.1.023
http://arxiv.org/abs/2311.01548
http://dx.doi.org/10.21468/SciPostPhysCore.8.1.026
http://arxiv.org/abs/2305.10475
http://dx.doi.org/10.21468/SciPostPhysCore.7.3.064
http://arxiv.org/abs/2311.17175
http://arxiv.org/abs/2411.00446
http://dx.doi.org/10.1103/PhysRevD.111.054015
http://dx.doi.org/10.1103/PhysRevD.111.054015
http://arxiv.org/abs/2502.14652
http://dx.doi.org/10.1103/PhysRevLett.124.182001
http://arxiv.org/abs/1911.09107
http://dx.doi.org/10.21468/SciPostPhys.9.5.074
http://arxiv.org/abs/2006.06685
http://dx.doi.org/10.21468/SciPostPhys.8.4.070
http://dx.doi.org/10.21468/SciPostPhys.8.4.070
http://arxiv.org/abs/1912.00477
http://arxiv.org/abs/2212.08674
http://arxiv.org/abs/2501.12363
http://dx.doi.org/10.21468/SciPostPhys.10.6.126
http://arxiv.org/abs/2012.09873
http://dx.doi.org/10.1103/PhysRevD.98.052004
http://arxiv.org/abs/1805.00020
http://dx.doi.org/10.1007/s41781-020-0035-2
http://arxiv.org/abs/1907.10621
http://dx.doi.org/10.1007/JHEP11(2019)034
http://arxiv.org/abs/1908.06980
http://arxiv.org/abs/2109.00546
http://arxiv.org/abs/2109.00546
http://dx.doi.org/10.1088/1361-6633/ac36b9
http://arxiv.org/abs/2101.08320


Index

anomaly detection, 3, 66, 74, 156

Bayes’ theorem, 18
Bayes’ theorem, 7, 23, 71, 96, 112, 137
Bayesian network, 21, 23, 26, 47, 96, 114, 117, 120
boosted decision tree, 11, 41
buffered vs online training, 109

Cramér-Rao bound, 152
CWoLa, 64, 156, 157

energy-based network, 71
event generators, 5, 7, 27, 44, 75, 81, 99, 104, 138, 159
evidence lower bound, 23

heteroskedastic loss, 18, 27

jet algorithm, 6, 27, 40, 54, 136
jet images, 41, 43, 51, 53, 67, 84, 91, 124
jet tagging, 3, 40, 41, 51, 64, 73

KL-divergence, 22, 24, 37, 67, 70, 75, 77, 113

likelihood loss, 23, 24, 27, 31, 71, 96, 101, 112, 117,
120, 141

MadNIS, 108

Neyman-Pearson lemma, 6, 65, 79, 152, 156

optimal observable, 6, 152, 158, 160

QCD splittings, 148
QCD splittings, 5, 40, 65, 130

regularization, 15, 24, 31, 68, 114, 117, 120, 141

self-attention, 58, 62, 120
statistical amplification, 86, 94, 106
statistical uncertainty, 7, 26, 32, 47, 83, 84, 87, 96
symmetries, 1, 6, 43, 52, 56, 62, 82, 160
systematic uncertainty, 7, 26, 48, 95, 103, 144

theory uncertainty, 7, 95, 103

uncertainties, 7, 13, 17, 25, 30, 47, 83, 88, 94, 99, 100,
117, 120

unfolding, 6, 136, 138, 139

167


	Basics
	Particle physics
	Data recording
	Jet and event reconstruction
	Simulations
	Inference
	Uncertainties

	Machine learning basics
	Multivariate classification
	Fits and interpolations
	Neural networks
	Likelihood loss
	Repulsive ensembles
	Bayesian networks

	Regression
	Amplitudes with uncertainties
	Parton density regression
	Numerical integration


	Classification
	Convolutional networks
	Jet images and top tagging
	Architecture
	Top tagging benchmark
	Bayesian CNN
	Capsules

	Representing point clouds
	4-Vectors
	Graph convolutional network
	Transformer
	Deep sets
	CNNs to transformers and more


	Non-supervised classification
	Classification without labels
	Anomaly searches
	(Variational) autoencoders
	Dirichlet-VAE
	Normalized autoencoder


	Generation and simulation
	Variational autoencoders
	Generative Adversarial Networks
	Architecture
	Event generation
	GANplification
	Subtraction
	Unweighting
	Super-resolution

	Normalizing flows and invertible networks
	Architecture
	Event generation with uncertainties
	Phase space generation
	Calorimeter shower generation
	Multi-channel importance sampling

	Diffusion networks
	Denoising diffusion probabilistic model
	Conditional flow matching

	Autoregressive transformer

	Symmetries and representation learning
	Lorentz-equivariance
	Contrastive learning
	Transfer learning and foundation models

	Inverse problems and inference
	Unfolding by reweighting
	Conditional generative networks
	Generative unfolding
	Unfolding top decays

	Simulation-based inference
	Generative inference
	Likelihood extraction
	Flow-based anomaly detection
	Symbolic regression of optimal observables


	Index

