
Feynman graphs and renormalization
in quantum diffusion ∗

László Erdős
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Abstract

We review our proof that in a scaling limit, the time evolution of a quan-
tum particle in a static random environment leads to a diffusion equation. In
particular, we discuss the role of Feynman graph expansions and of renor-
malization.

1 Introduction

The emergence of irreversibility from reversible dynamics in large systems has
been one of the fundamental questions in science since the days of Maxwell and
Boltzmann. The famous debate about the statistical character of the second law
of thermodynamics and the related controversy about Boltzmann’s Stoßzahlansatz
in the derivation of his transport equation has been very fruitful for physics and
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mathematics. After Lanford’s rigorous justification of the Boltzmann equation for
a classical many–particle system at short kinetic time scales[1], the mathemati-
cal justification of the Boltzmann equation at longer timescales has remained a
challenge up to the present time. The analogous statement for quantum systems
remains open even at the short kinetic timescale.

A related important question is to understand how Brownian motion emerges as
an effective law from time-reversal-invariant microscopic physical laws, as given
by a Hamiltonian system or the Schrödinger equation. Kesten-Papanicolaou[2]
proved that the velocity distribution of a classical particle moving in an environ-
ment consisting of random scatterers (i.e., Lorenz gas with random scatterers) con-
verges to a Brownian motion in a weak coupling limit in dimensions d ≥ 3. In this
model the bath of light particles whose fluctuations lead to the Brownian motion of
the observed particle is replaced with random static impurities. A similar result was
obtained in d = 2 dimensions[4]. Recently[3], the same evolution was controlled
on a longer time scale and the position process was proven to converge to Brownian
motion as well. Bunimovich and Sinai[5] proved the convergence of the periodic
Lorenz gas with a hard core interaction to a Brownian motion. In this model the
only source of randomness is the distribution of the initial condition. Finally, Dürr,
Goldstein and Lebowitz[6] proved that the velocity process of a heavy particle in a
light ideal gas, which is a model with a dynamical environment, converges to the
Ornstein-Uhlenbeck process.

Although Brownian motion was discovered and first studied theoretically in
the context of classical dynamics, it also describes the motion of a quantum parti-
cle in a random environment, on a timescale that is long compared to the standard
kinetic timescale[7, 8, 9]. In the following we describe this result and the strat-
egy of the proof in a bit more detail. Besides the motivation discussed above, the
random Schrödinger operator that we study is also the standard model for trans-
port of electrons in metals with impurities, which plays a central role in the the-
ory of the metal–insulator transition[10, 11]. The outstanding open mathematical
question in this area is the proof of the extended states conjecture, stating that in
dimensions d ≥ 3, at weak disorder, the spectrum of such Hamiltonians is ab-
solutely continuous. Despite much effort, this conjecture has up to now only been
proven[12, 13, 14] on the Bethe lattice, which can be interpreted as the case d = ∞.
In a system with a magnetic field, the existence of dynamical delocalization at cer-
tain energies near the Landau levels has been proven recently[15].
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2 The problem and the main result

We consider random Schrödinger operators, both on a lattice and in the continuum,
in d ≥ 3 dimensions. In this presentation, we focus on the case d = 3. The time
evolution of the Anderson Model (AM) is generated by

i ∂∂tψ(t) = Hψ(t), ψ(0) = ψ0 with H = −
1

2
∆ + λVω on `2(Zd) (1)

where −∆ is the standard discrete Laplacian and the potential is given by V (x) =
∑

a∈Zd Va(x), with Va(x) = vaδx,a, and va independent identically distributed
(i.i.d.) random variables. We assume that mk = E

(

vka
)

satisfies

∀i ≤ 2d : mi <∞, m1 = m3 = m5 = 0, m2 = 1. (2)

The continuum analogue of this model is the Quantum Lorentz Model (QLM),
where H = − 1

2∆ + λVω on L2(Rd), with ∆ the standard Laplacian, Vω(x) =
∫

Rd B(x− y)dµω(y), where B is a fixed spherically symmetric Schwarz function
with 0 ∈ supp B̂, µω is a Poisson point process on R

d with homogeneous unit
density and i.i.d. random masses:

µω =
∞

∑

γ=1

vγ(ω)δyγ (ω). (3)

{yγ(ω)} is Poisson, independent of the weights {vγ(ω)}. Again, mk := Ev v
k
γ is

assumed to satisfy (2).
Suppose the initial state is localized, i.e. ψ̂0 is smooth. How does the solu-

tion ψ(t) = e−itHψ0 behave for large t ? If λ = 0, the time evolution is easily
calculated in Fourier space: ψ̂(t, k) = e−ite(k)ψ̂0(k), with e(k) = k2/2 (QLM) or
e(k) =

∑d
i=1(1−cos ki) (AM). It is equally easy to see that the motion is ballistic,

i.e.
〈X2〉t = 〈ψ(t), X2ψ(t)〉 ∼ t2. (4)

If λ 6= 0, one expects either localization, 〈X2〉t = O(1) for all t, or diffusive
behaviour (extended states), 〈X2〉t = O(t), depending on λ and ψ̂0. The localized
behaviour corresponds to dense pure point spectrum at almost every energy; this
was proven for large disorder[16, 17] and away from the spectrum of the Laplacian.
Extended states correspond to absolutely continuous spectrum. As mentioned, the
latter has been proven[12, 13, 14] on the Cayley tree for small λ > 0. At this time
there is no proof of existence of extended states in d = 3. For a simpler case,
namely that of randomness with a decaying envelopping function, i.e. Vω(x) =
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ωxh(x), ωx i.i.d., h fixed, there is a proof[18, 19] that for η > 1
2 and h(x) ∼ |x|−η

as |x| → ∞, H = −∆ + Vω has absolutely continuous spectrum.
Our result is formulated in terms of the Wigner function

Wψ(x, v) =

∫

dy eivyψ(x+
y

2
)ψ(x−

y

2
) (5)

which can be thought of as an analogue of a phase space density (but can be-
come negative). Its marginals are

∫

Wψ(x, v)dx = |ψ̂(v)|2 and
∫

Wψ(x, v)dv =
|ψ(x)|2. Moreover,

Ŵψ(ξ, v) =

∫

dx e−ixξWψ(x, v) = ψ̂(v − ξ/2) ψ̂(v + ξ/2). (6)

On the lattice, one has to modify the definition of the Wigner transform slightly[9].
The kinetic scaling is given by

η = λ2, T = ηt, X = ηx, (7)

i.e. the microscopic time and space variables both become of order λ−2, so that
velocities remain unscaled.

Theorem 2.1
EW η

ψ(T η−1)
(X ,V) −→

η→0
F (X ,V, T ), (8)

F the solution of the linear Boltzmann equation

∂

∂T
F (X ,V, T ) + (∇e)(V) · ∇XF (X ,V, T )

= 2π

∫

dU δ(e(U) − e(V))
∣

∣

∣B̂(U − V)
∣

∣

∣

2
[F (X ,U , T ) − F (X ,V, T )] .(9)

This theorem was first proven for the continuum for small time T [20], then for
arbitrary time[21], and later extended to the lattice case[22].

The diffusive scaling is defined by

ε = λ2+κ/2, X = εx, T = ελκ/2t = λκ+2t. (10)

This is long compared to the kinetic timescale: the kinetic variables X and T
diverge as λ→ 0 when X and T are kept fixed,

X = λ−κ/2X, T = λ−κT. (11)

A first hint at diffusion is that under this scaling X 2/T = X2/T is independent of
λ. The result for the Anderson model is
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Theorem 2.2 Let d = 3, ψ0 ∈ `2(Z3) and ψ(t) be the solution to the random
Schrödinger equation with initial condition ψ0. If κ > 0 is small enough and
ε = λ2+κ/2, then in the limit λ → 0, EW ε

ψ(λ−2−κT ) converges weakly to the
solution f of a heat equation.

More precisely: denote 〈F 〉E = Φ(E)−1
∫

dv F (v)δ(E−e(v)), where Φ(E) =
∫

dv δ(E − e(v)). Let E ∈ (0, 3) and Dij(E) = 1
2πΦ(E) 〈∇ie ∇je〉E , and let f

be the solution of the heat equation

∂

∂T
f(T,X,E) = ∇X ·D(E)∇X f(T,X,E) (12)

f(0, X,E) = δ(X) 〈|ψ̂0|
2〉E . (13)

Let O(x, v) be a Schwartz function on R
d × R

d/2πZ
d. Then

lim
ε→0

∑

X∈(εZ/2)d

∫

dv O(X, v) EW ε
ψ(λ−κ−2T )(X, v)

=

∫

Rd

dX

∫

dv O(X, v) f(T,X, e(v)). (14)

The limit is uniform on [0, T0] for any T0 > 0.

We discuss some of the ideas in the proof of this theorem in Section 3.

If ψ̂0 ∈ C1 and λ is small enough, we have the more detailed error estimate
∫

dv

∫

dξ Ô(ξ, v) EŴ ε
ψ(λ−2−κT )(ξ, v) (15)

=

∫

dξ

∫

Φ(E)dE e−
T
2
〈ξ, D(E)ξ〉E 〈Ô(ξ, ·)〉E 〈Ŵψ0(εξ, ·)〉E + o(1).

The Boltzmann equation also gives the same diffusion equation in the long time
limit, but it was itself derived from the quantum mechanical time evolution only
for shorter timescales. The main difficulty in the proof is to deal with contributions
that vanish for λ → 0 under kinetic scaling, but that become important under
the above–defined diffusive scaling. More technically speaking, in the Feynman
expansion done to analyze the time evolution, most of these terms would even
diverge under diffusive scaling if we did not renormalize the propagator.

The allowed values of κ are in an interval [0, κ0), where κ0 is a universal con-
stant. For technical reasons, κ0 has to be chosen very small in the proof. Heuris-
tically, i.e. ignoring many of the technical complications and assuming optimal
bounds, one would expect the remainder of the renormalized Feynman graph ex-
pansion to vanish up to κ0 = 2, and to diverge for κ0 > 2.
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The diffusive scaling leads to a diffusion on the energy shells. A diffusion
mixing energy shells is expected to start at t = λ−4.

An intuitive way of interpreting the expansion described below is as an ex-
pansion in the number N of collisions of the particle with the randomly (but stati-
cally) arranged obstacles represented by the potential. As compared to the previous
results[21, 22], the main new feature here is that under diffusive scaling, the effec-
tive number of collisions of the particle diverges. That is, not only is it necessary to
expand to an order N that diverges as λ → 0, but also the main contribution does
not come from terms with a finite number of collisions.

3 Collision histories, Feynman graphs, and ladders

We discuss some of the ideas of the proof for the example of the Anderson model,
i.e. the lattice situation. For the detailed bounds of Feynman graphs, the lattice
leads to a number of complications[9], but for the presentation it is easier.

3.1 Collision histories

Let us start with a formal time–ordered expansion, setting H0 = −1
2∆ and ex-

panding in λV . Then ψ(t) = e−itHψ0 =
∑

n≥0 ψ
(n)(t) with

ψ(n)(t) = (−iλ)n
∫

dµn+1(s)e
−isnH0V e−isnH0 . . . V e−is0H0ψ0 (16)

where s = (s0, . . . , sn) and

dµn+1(s) =

∫

[0,∞)n+1

ds0 . . . dsn δ



t−
n

∑

j=0

sj



 . (17)

Because V =
∑

a∈Zd Va, it is natural to split each ψ(n) further, ψ(n)(t) =
∑

an
ψ

(n)
an (t).

Every sequence of obstacle labels an = (a1, . . . , an) ∈ (Zd)n represents a colli-
sion history, and for k ∈ {1, . . . , n− 1}, the time variables sk in (17) are the time
differences between two subsequent collisions. The delta function in (17) enforces
the constraint that these time differences, together with the propagation times s0

before the first collision and sn after the last one, add up to the total time t. We
shall discuss convergence questions about this expansion later.

Our detailed analysis takes place in momentum space, where each V acts as a
convolution operator, so that

ψ̂n(t, pn)=(-i)n
∫

dµ
n+1(s)

∫ n−1
∏

j=0

ddpj

(2π)d e−isje(pj)
n

∏

j=1

V̂ (pj-pj−1)ψ̂0(p0). (18)
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Very schematically, one can represent this as follows, where each of the dashed
lines represents a factor λV and each of the full lines gets a phase factor e−isje(pj).

As the convolution formula shows, one can define a momentum flow in this graph,
where the momentum change pj − pj+1 flows away through the dashed line. Be-
fore the disorder average, there is no translation invariance in the system, so every
scattering at an obstacle changes the momentum of the particle.

3.2 Disorder average and graphs

Recalling (6), we have

E

[

Ŵψ(t)(ξ, v)
]

=
∑

n,n′

∑

an,a′
n′

E

[

ψ̂
(n)
an (t, v − ξ/2)ψ̂

(n′)
a
′
n′

(t, v + ξ/2)

]

. (19)

Note that there are now two, a priori independent, collision histories, one for ψ and
one for ψ̄. It will be part of the proof to show that, in the scaling limit we consider,
the only contributions after self–energy renormalization come from the so-called
ladder graphs, where the two collision histories are identical: n = n′ and an = a

′
n.

Because the disorder is i.i.d., translation invariance holds for the average, which
means that momentum conservation also holds for the dashed lines, which for the
Anderson model simply correspond to a factor λ2, since the second moment of the
disorder was normalized to 1 in (2).

The result can be represented as a graph built of two particle lines, particle–
disorder vertices, which are joined by disorder lines, and, if the randomness is
non-Gaussian, disorder-disorder vertices, which correspond to the higher moments
of the disorder distribution. An example is

Particle lines get propagators e−isje(pj), interaction lines give factors λ2, and the
disorder-disorder vertex of degree four corresponds to a factor m4λ

4.
It is clear that in the way the expansion was introduced above, one really needs

the assumption that arbitrary moments, not just the first 2d ones, exist. The ex-
pansion employed in the true proof contains a stopping rule which avoids high
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moments, but we shall not discuss this here in more detail. In fact, we shall in the
following assume for simplicity that the disorder is Gaussian, so that there are no
vertices of higher degree for the dashed lines, and the average just corresponds to
a pairing of interaction lines.

An example of a pairing is as follows

Note that here, there is a crossing of the two pairing lines in the graphical repre-
sentation, but there are no vertices in which more than one interaction line enters.

A special class of pairings are the up–down pairings, where n = n′ and the
pairing corresponds to a permutation σ ∈ Sn:

The most important term turns out to be the ladder graph, corresponding to
σ = id:

3.3 Graph bounds

In the following, we give a brief discussion of bounds of the contributions of indi-
vidual graphs, restricting to up–down pairings. If one takes a bound in the repre-
sentation (18), each phase factor is replaced by 1. This leads to a bound of order
(λt)n/n! (where the n! comes from the time ordering implied by the delta func-
tion in (17)), which does not even allow to consider the kinetic scaling where λ2t
is fixed. For this reason, the following propagator representation is useful. Let
η > 0. Then, inserting the Fourier representation of the delta function,

∫

[0,∞)n+1

dn+1s δ



t−
n+1
∑

j=1

sj





n+1
∏

j=1

e−isje(pj)
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= etη
∫

[0,∞)n+1

dn+1s δ



t−
n+1
∑

j=1

sj





n+1
∏

j=1

e−isj(e(pj)−iη)

= etη
∫

dα
2π e−itα

∫

[0,∞)n+1

dn+1s

n+1
∏

j=1

e−isj(α−e(pj)+iη)

= i−netη
∫

dα
2π e−iαt

n+1
∏

j=1

1

α− e(pj) + iη
. (20)

It is convenient to choose η = t−1.
The contribution of a permutation σ ∈ Sn, corresponding to an up–down pair-

ing graph Γσ , to 〈Ô, Ŵ ε
ψ〉 is

V al(Γσ) = λ2n e2tη

∫

dα dβ
(2π)2

ei(β−α)t

∫

dξ

∫ n
∏

j=0

ddpj

(2π)d

∫ n
∏

k=0

ddqk
(2π)d Ô(ξ, pn)Ŵ

ε
ψ0

(ξ, p0)

n
∏

j=0

1

β − ω(qj −
εξ
2 ) − iη

1

α− ω(pj −
εξ
2 ) − iη

n
∏

j=1

δ
(

pj − pj−1 − (qσ(j) − qσ(j)−1)
)

. (21)

At the moment, ω(p) = e(p) ∈ R; later, ω will change under renormalization and
become complex.

A simple Schwarz inequality separating the dependence on the pi and that on
the qi implies that for all σ

|V al(Γσ)| ≤ V al(Γid). (22)

The ladder is easy to calculate at ξ = 0, and a ladder of length n is of order
1
n!(λ

2t)n = 1
n!T

n.
A crucial observation is that the values of graphs with crossings get inverse

powers of t, as compared to the ladder. This follows from the bound
∫

dp
1

|α− ω(p) + iη|

1

|β − ω(±p+ q) − iη|
≤ C| log η|3

η−b

|||q||| + η
(23)

(b = 0 for the continuum; 1/2 ≤ b ≤ 3/4 on the lattice). |||p||| = |p| in the
continuum, |||p||| = min{|p − v| : vi ∈ {0,±π}} on the lattice. Again, here
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ω(p) = e(p). This motivates why the ladder graph gives the dominant contribution
under kinetic scaling. However, the number of graphs goes like n!, which cancels
the 1/n!, hence expanding to infinite order one gets majorants by geometric series,
which converge only on very short kinetic timescales T . This is the reason for
the restriction to small kinetic timescales in the first proof[20] of the Boltzmann
equation for the QLM.

3.4 Expansions to finite order and remainder terms

Major progress[21] came from the realization that one can do an expansion to finite
order with an efficient remainder estimate. A natural way to generate a finite–order
expansion is the Duhamel formula

ψ(t) = e−itHψ0 = e−itH0ψ0 +

∫ t

0
ds e−i(t−s)HλV e−isH0ψ0. (24)

Iteration gives

ψ(t) =

N−1
∑

n=0

ψ(n)(t) + ΨN (t), (25)

where

ΨN (t) = (−i)

∫ t

0
ds e−i(t−s)HλV ψ(N−1)(s) (26)

and
ψ(n)(t) = (−iλ)n

∫

dµn+1(s)e
−isnH0V . . . V e−is0H0ψ0. (27)

An alternative way of looking at this is via its relation to the resolvent formula

Rz = R(0)
z +RzλV R

(0)
z (28)

where Rz = (z−H)−1 and R(0)
z = (z−H0)

−1. Iteration of the resolvent equation
and using the Fourier transform gives the above propagator representation directly.
The Duhamel formula is obtained via

e−itH = −etη
∫

dα
2πi e−iαt Rα+iη. (29)

The second crucial ingredient is that one can use the unitarity of the full time
evolution to reduce all terms to ones where no H appears in the time evolution
any more:

‖ΨN (t)‖ ≤

∫ t

0
ds

∥

∥

∥e−i(t−s)HλV ψ(N−1)(s)
∥

∥

∥ ≤

∫ t

0
ds

∥

∥

∥λV ψ(N−1)(s)
∥

∥

∥.(30)
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Thus

‖ΨN (t)‖2 ≤ t |λ|2
∫ t

0
ds

∥

∥

∥
V ψ(N−1)(s)

∥

∥

∥

2
. (31)

The remaining integral over s effectively gives a factor t, which is the price to
pay for this unitarity bound. To control this factor, one needs exhibit more factors
t−1 in graphs with several independent crossings, and treat graphs with only one
crossing explicitly (in the resolvent iteration, the unitarity bound would be replaced
by ‖Rα+iη‖ ≤ η−1).

By a Schwarz inequality, one can see that the Wigner transform is continuous
in L2 norm:
∣

∣

∣
E

(

〈Ô, Ŵ ε
ψ1
〉 − 〈Ô, Ŵ ε

ψ2
〉
)∣

∣

∣
≤ C

∫

dξ sup
v

∣

∣

∣
Ô(ξ, v)

∣

∣

∣

√

E‖ψ1‖
2

E‖ψ1 − ψ2‖
2.

(32)
Thus the unitarity bound can also be used for the Wigner transform. The proof
of the Boltzmann equation[21] on an arbitrarily large kinetic timescale T uses an
expansion up to order N ∼ log t. The ladder terms give the gain term in the
Boltzmann equation. The lowest order self–energy correction gives the loss term
in the Boltzmann equation. It corresponds to the “gate” graph

3.5 Long time scale: renormalization

Because the ladder with n rungs is of order (λ2t)n/n!, it diverges under diffusive
scaling, and so do other graphs. To increase the time beyond λ−2, we need to do
a renormalization. Formally, one can think of this as a resummation of the gate
diagrams, which are of self–energy type, but this geometric series converges only
for small λ2t. A way to avoid such formal resummations is to change the way H
is split into a “free” and an interaction part, i.e., expand around a different H0. For
ε > 0 set

Θε(α) =

∫

dq
1

α− e(q) + iε
. (33)

This is the value of the gate diagram at energy α in the Anderson model (in the
QLM, the integrand contains an additional factor from the interaction function).
The limit Θ(α) = limε→0+ Θε(α) exists and is Hölder continuous[7] in α of order
1/2. Let

θ(p) = Θ(e(p)). (34)
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The idea is now to put λ2θ(p) as a counterterm, which by construction subtracts ev-
ery insertion of a gate diagram at the point α = e(p) where the particle propagator
is singular. Because α and η appear only as auxiliary quantities in the expansion,
it was necessary to take ε→ 0 above and define θ in an α–independent way.

The counterterm is added and subtracted so that the Hamiltonian does not
change: let ω(p) = e(p) + λ2θ(p) and decompose

H = ω(P ) + U, U = λV − λ2θ(P ) (35)

(where P denotes the momentum operator). The function ω can be thought of as
a new dispersion relation of energy as a function of momentum. However, ω also
has a negative imaginary part, roughly of order λ2. More precisely, for d ≥ 3 there
is c > 0 such that

Im ω(p) ≤ −cλ2|||p|||d−2. (36)

Thus H0 is no longer selfadjoint. However, the negative sign of Im ω implies that
the resolvent Rα+iη is still well-defined, since the imaginary parts add up with
the same sign. Correspondingly, the time evolution operator e−isH0 is no longer
unitary but it remains bounded for s ≥ 0. Both the Duhamel and the resolvent
iteration are thus well-defined. Besides the new propagator (α+ iη−ω(p))−1, the
important change is that every factor U now also contains a counterterm insertion
−λ2θ(p). The point about these iterations is that they can be stopped (or even mod-
ified) after every expansion step. It is thus clear that one can group the counterterms
that appear in the expansion together with the gates that get created when taking
the average over the disorder. The cancellation among these two terms provides a
small factor that makes such terms vanish in the diffusive scaling limit. Moreover,
it is clear that one can implement rules for stopping the expansion independently
of the subsequent disorder average. In particular, because the randomness is i.i.d.,
one can avoid moments beyond the power 2d by stopping the expansion when a
given site has appeared in the collision history d times. The terms to which no
such repetition or renormalization cancellation applies are expanded up to order
n ∼ λ2tλ−δ ∼ λ−κ−δ , where δ > 0 depends on κ. The intuition behind this is that
certain graphs with n ∼ λ2t ∼ λ−κ give the main contribution, and expanding up
to an order that is λ−δ higher leads again to small factors.

The imaginary part of ω gives effectively a regularization O(λ2) instead of
O(η) for the denominators, which changes the values of all diagrams significantly.
In particular, the integral for one rung of the ladder becomes

∫

λ2 dp

(α−ω(p+r)−iη) (β−ω(p−r)+iη)
= 1 + C0λ

1−O(κ) . (37)
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where C0 is a constant. Thus with this renormalization, the ladders become of
order 1, so that one can go beyond kinetic scaling. Indeed, in the language of
Feynman graphs, the main result can be stated informally as

After renormalization, the sum of the ladder graphs for the Wigner
transform converges to a solution of the heat equation in the diffusive
scaling limit.

The precise statements are Theorems 5.1, 5.2, and 5.3 in Ref.[7]. They involve
in particular proving that the terms which do not correspond to pure up–down pair-
ings vanish in the limit, and dealing with a number of technical complications
which arise from the fact that one has to do an expansion to a finite order.

3.6 The key estimate for controlling combinatorics

We have had to leave out almost all technical details to avoid overloading the pre-
sentation, but we should like to at least mention the heart of the proof here at the
end, to clarify the main ideas about the Feynman graph expansion.

Focusing on up-down pairings, we have to deal with a combinatorial problem
of bounding the sum over the n! permutations σ ∈ Sn. As mentioned, with an
expansion to infinite order, one cannot get beyond the kinetic scaling because of
this factor n!. The control of the remainders is done here by choosing an appro-
priate stopping n for the expansion and by “beating down the combinatorics by
power counting”. That is, we prove exponential suppression of the values of Feyn-
man graphs in the number of crossings they have, that is, loosely speaking, in their
complexity.

The precise notion capturing the complexity of a permutation σ ∈ Sn is its
degree d(σ), defined as the number of non–ladder and non–antiladder indices. Es-
sentially, the ladder indices are those for which σ(i + 1) = σ(i) + 1, and the
antiladder indices are those for which σ(i+ 1) = σ(i) − 1.

Theorem 3.1 Let Γσ be the Feynman graph corresponding to σ. There is γ > 0
such that for all σ

|V al(Γσ)| ≤ Cλγd(σ). (38)

This theorem is proven using a special integration algorithm for bounding the val-
ues of large Feynman graphs[7].

The number of permutations with degree D is

Nn,D = |{σ ∈ Sn : d(σ) = D}| ≤ 2(2n)D. (39)
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Expanding up to n = O(λ−κ−δ), δ > 0, we have by (38), if γ − κ− δ > 0,

∑

σ∈Sn
d(σ)≥D

λγd(σ) =

k
∑

d=D

λγdNn,d ≤ 2

k
∑

d=D

(2λ)d(γ−κ−δ) ≤ O(λD(γ−κ−δ)). (40)

Thus the contribution from the sum of all terms with degree D ≥ 2 is small if
γ − κ − δ > 0, hence the essential restriction for the value of κ is that of γ. As
mentioned, one would hope to get close to γ = 2 in (38), but γ has to be chosen
smaller for technical reasons.

4 Conclusion

We have shown that, for random Schrödinger operators with a weak static disorder
the quantum mechanical time evolution can be controlled on large space and time
scales where a diffusion equation governs the behavior. The Schrödinger evolution
is time–reversible – yet irreversibility on large scales emerges. This apparent con-
troversy is resolved by noting that along the scaling limit microscopic degrees of
freedom have been effectively integrated out.

Although the expansion methods we use bear some resemblance to those of
constructive quantum field theory, there are also a few noteworthy differences.
First, because we analyze the time evolution at real time, the (near–)singularities
of the propagators are located on hypersurfaces, and not at points, as would be the
case in Euclidean field theories. The singularity structure is to some extent similar
to that in real time Fermi surface problems, although there is no fixed Fermi surface
here – the integrals over α and β “test” all possible level sets of the function e(p),
and this leads to a number of serious complications. Second, we are able to control
the combinatorics of a straightforward Feynman graph expansion in momentum
space, while the analysis in constructive field theory (to our knowledge, always)
needs to be done by cluster expansions in position space to avoid the divergence of
an infinite series of Feynman graphs. The reason for this is twofold: the unitarity
bound allows us to do an expansion to a finite order, and our strong improvement
(38) over standard power counting bounds allows us to push this order so high that
we can reach the scale where diffusion sets in, while still retaining control of the
remainders.

The genuine challenge is to show diffusion without taking scaling limits, i.e.
for a fixed (small) disorder λ and for any time independent of λ. With expansion
techniques, this would require to renormalize not only the self–energy to arbitrary
order but also the four–point functions. Refining the self–energy renormalization
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poses no fundamental difficulty. The correct renormalization of all four–point func-
tions in this problem, however, remains a widely open problem.
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