

Ultracold gases and Functional renormalization

II

Michael Scherer (Jena)

Work in collaboration with

S. Diehl (Innsbruck), S. Flörchinger (Heidelberg), H. Gies (Jena), J. M. Pawlowski (Heidelberg) and C. Wetterich (Heidelberg)

FOR 723 Retreat, Ladenburg 2008
The BCS-BEC Crossover

Ultracold gases of fermionic atoms near Feshbach resonance: Crossover between BCS superfluidity and BEC of molecules.
The BCS-BEC Crossover

Ultracold gases of fermionic atoms near Feshbach resonance: Crossover between BCS superfluidity and BEC of molecules.

- Stefan: Basics of FRG for ultracold fermions, Thermodynamics, BEC-side
The BCS-BEC Crossover

Ultracold gases of fermionic atoms near Feshbach resonance: Crossover between BCS superfluidity and BEC of molecules.

- Stefan: Basics of FRG for ultracold fermions, Thermodynamics, BEC-side
- Today: BCS-side (Particle-hole fluctuations, Rebozonization,...), Unitarity regime
Crossover can be parametrized by the dimensionless inverse s-wave scattering length $c^{-1} \rightarrow$. Experimental realization by the phenomenon of Fesbach resonances.
Parametrization

Crossover can be parametrized by the dimensionless inverse s-wave scattering length $c^{-1} \to$. Experimental realization by the phenomenon of Fesbach resonances.

- $c^{-1} < -1$: Weakly attractive regime \to Cooper pairing below $T_c \to$ BCS superfluidity
Parametrization

Crossover can be parametrized by the dimensionless inverse s-wave scattering length $c^{-1} \rightarrow$. Experimental realization by the phenomenon of Fesbach resonances.

- $c^{-1} < -1$: Weakly attractive regime \rightarrow Cooper pairing below $T_c \rightarrow$ BCS superfluidity
- $c^{-1} > 1$: Two-body bound state exists \rightarrow Formation of molecules \rightarrow below T_c: BEC
Parametrization

Crossover can be parametrized by the dimensionless inverse s-wave scattering length c^{-1} →. Experimental realization by the phenomenon of Fesbach resonances.

- $c^{-1} < -1$: Weakly attractive regime → Cooper pairing below T_c → BCS superfluidity
- $c^{-1} > 1$: Two-body bound state exists → Formation of molecules → below T_c: BEC
- $|c^{-1}| < 1$: Strongly correlated regime, Unitarity limit at $c^{-1} \rightarrow 0$
Universality

- Limit of broad Feshbach resonances (experiments, e.g. with ^6Li and ^{40}K)
Universality

- Limit of broad Feshbach resonances (experiments, e.g. with ^6Li and ^{40}K)
- Universality: Thermodynamic quantities are independent of the microscopic details and can be expressed in terms of only two dimensionless parameters: The concentration $c = a k_F$ and the temperature T/T_F. The units are set by the density $n = k_F^3/(3\pi^2)$.

\[\begin{align*}
\text{h} \\
\end{align*} \]
Microscopic action

\[
S = \frac{1}{T} \int_0^T d\tau \int d^4x \left\{ \psi^\dagger (\partial_\tau - \Delta - \mu) \psi + \phi^*(\partial_\tau - \frac{\Delta}{2} - 2\mu + \nu) \phi \\
- h(\phi^* \psi_1 \psi_2 + h.c.) \right\}.
\]

- Grassmann field \(\psi = (\psi_1, \psi_2) \), fermions in two hyperfine states
Microscopic action

\[S = \frac{1/T}{\int_0^T \int_{\tilde{x}} \{ \psi^\dagger (\partial_\tau - \Delta - \mu)\psi + \phi^* (\partial_\tau - \frac{\Delta}{2} - 2\mu + \nu)\phi \]

\[- h(\phi^* \psi_1 \psi_2 + h.c.) \} \].

- Grassmann field \(\psi = (\psi_1, \psi_2) \), fermions in two hyperfine states
- complex scalar field \(\phi \), molecules, Cooper pairs or auxiliary field
Microscopic action

\[S = \frac{1}{T} \int_{0}^{1/T} d\tau \int d\vec{x} \left\{ \psi^\dagger (\partial_\tau - \Delta - \mu) \psi + \phi^* (\partial_\tau - \frac{\Delta}{2} - 2\mu + \nu) \phi
- h (\phi^* \psi_1 \psi_2 + h.c.) \right\}. \]

- Grassmann field \(\psi = (\psi_1, \psi_2) \), fermions in two hyperfine states
- complex scalar field \(\phi \), molecules, Cooper pairs or auxiliary field
- nonrelativistic natural units with \(\hbar = k_B = 2M = 1 \)
Microscopic action

\[S = \int_0^{1/T} d\tau \int d\vec{x} \left\{ \psi^\dagger (\partial_\tau - \Delta - \mu) \psi + \phi^* (\partial_\tau - \frac{\Delta}{2} - 2\mu + \nu) \phi \right. \]

\[- h (\phi^* \psi_1 \psi_2 + h.c.) \} . \]

- Grassmann field \(\psi = (\psi_1, \psi_2) \), fermions in two hyperfine states
- complex scalar field \(\phi \), molecules, Cooper pairs or auxiliary field
- nonrelativistic natural units with \(\hbar = k_B = 2M = 1 \)
- chemical potential \(\mu \), Yukawa coupling \(h \)
Microscopic action

\[S = \frac{1}{T} \int_0^T d\tau \int_{\tilde{x}} \{ \psi^\dagger (\partial_\tau - \Delta - \mu) \psi + \phi^* (\partial_\tau - \frac{\Delta}{2} - 2\mu + \nu) \phi \\
- h(\phi^* \psi_1 \psi_2 + h.c.) \} . \]

- Grassmann field \(\psi = (\psi_1, \psi_2) \), fermions in two hyperfine states
- complex scalar field \(\phi \), molecules, Cooper pairs or auxiliary field
- nonrelativistic natural units with \(\hbar = k_B = 2M = 1 \)
- chemical potential \(\mu \), Yukawa coupling \(h \)
- detuning from the Feshbach resonance \(\nu = \mu(B - B_0) \)
Inverse Hubbard-Stratonovic Transformation I

\[S = \frac{1}{T} \int_0^{1/T} d\tau \int d\vec{x} \{ \psi^\dagger (\partial_\tau - \Delta - \mu)\psi + \phi^* (\partial_\tau - \frac{\Delta}{2} - 2\mu + \nu)\phi \]

\[- h(\phi^* \psi_1 \psi_2 + h.c.) \} . \]

- Bosonic field appears quadratically in the microscopic action
Inverse Hubbard-Stratonovic Transformation I

\[S = \frac{1}{T} \int_0^1 d\tau \int d\vec{x} \left\{ \psi^\dagger (\partial_\tau - \Delta - \mu) \psi + \phi^* (\partial_\tau - \frac{\Delta}{2} - 2\mu + \nu) \phi \\
- h(\phi^* \psi_1 \psi_2 + h.c.) \right\}. \]

- Bosonic field appears quadratically in the microscopic action
 \Rightarrow we can carry out the functional integral
Inverse Hubbard-Stratonovic Transformation I

\[
S = \frac{1}{T} \int_0^1 d\tau \int_{\vec{x}} \left\{ \psi^\dagger (\partial_\tau - \Delta - \mu) \psi + \phi^*(\partial_\tau - \frac{\Delta}{2} - 2\mu + \nu)\phi \\
- h(\phi^* \psi_1 \psi_2 + h.c.) \right\}.
\]

- Bosonic field appears quadratically in the microscopic action
 \(\Rightarrow\) we can carry out the functional integral

\[
S = \frac{1}{T} \int_0^1 d\tau \int_{\vec{x}} \left\{ \psi^\dagger (\partial_\tau - \Delta - \mu) \psi + \frac{\lambda_{\psi,\text{eff}}}{2} (\psi^\dagger \psi)^2 \right\},
\]
Inverse Hubbard-Stratonovic Transformation I

\[S = \frac{1}{T} \int_0^1 d\tau \int dx \{ \psi^\dagger (\partial_\tau - \Delta - \mu) \psi + \phi^* (\partial_\tau - \frac{\Delta}{2} - 2\mu + \nu) \phi \\
\quad - h(\phi^* \psi_1 \psi_2 + h.c.) \} . \]

- Bosonic field appears quadratically in the microscopic action
 \[\Rightarrow \] we can carry out the functional integral

\[S = \frac{1}{T} \int_0^1 d\tau \int dx \{ \psi^\dagger (\partial_\tau - \Delta - \mu) \psi + \frac{\lambda_{\psi,\text{eff}}}{2} (\psi^\dagger \psi)^2 \} , \]

where \(\lambda_{\psi,\text{eff}}\) is a momentum-dependent effective four-fermion vertex.
Inverse Hubbard-Stratonovic Transformation II

In momentum space the effective four-fermion vertex reads

\[\lambda_{\psi, \text{eff}} = -\frac{\hbar^2}{P_{\phi}(q)}, \]
Inverse Hubbard-Stratonovic Transformation II

In momentum space the effective four-fermion vertex reads

\[\lambda_{\psi,\text{eff}} = -\frac{\hbar^2}{P_\phi(q)}, \]

with the classical inverse boson propagator

\[P_\phi(q) = iq_0 + \frac{1}{2}q^2 + \nu - 2\mu. \]
Inverse Hubbard-Stratonovic Transformation II

In momentum space the effective four-fermion vertex reads

\[\lambda_{\psi, \text{eff}} = -\frac{h^2}{P_\phi(q)}, \]

with the classical inverse boson propagator

\[P_\phi(q) = iq_0 + \frac{1}{2}q^2 + \nu - 2\mu. \]

The inverse process, going from a purely fermionic theory to a theory of fermions and bosons, is called "bosonization".

![Diagram](image-url)
Momentum Dependent Four-Fermion Interaction

\[S = \int_0^{1/T} d\tau \int_{\vec{x}} \psi^\dagger (\partial_\tau - \Delta - \mu) \psi + \frac{\lambda_{\psi,\text{eff}}}{2} (\psi^\dagger \psi)^2 , \]
Momentum Dependent Four-Fermion Interaction

\[
S = \frac{1}{T} \int_0^\infty d\tau \int \psi^\dagger (\partial_\tau - \Delta - \mu) \psi + \frac{\lambda_{\psi,\text{eff}}}{2} (\psi^\dagger \psi)^2 ,
\]

A generally momentum dependent four-fermion interaction is renormalized. The flow of \(\lambda_\psi \) has two contributions:

\[
\partial_t \lambda_\psi = \tilde{\partial}_t + \tilde{\partial}_t
\]
A generally momentum dependent four-fermion interaction is renormalized. The flow of λ_{ψ} has two contributions:

The first one is referred to as particle-particle loop, the second one as particle-hole loop.
BCS theory only considers the particle-particle fluctuations (first loop)
BCS theory only considers the particle-particle fluctuations (first loop)

Pointlike coupling
BCS theory only considers the particle-particle fluctuations (first loop)

Pointlike coupling

Valid for weak attractive interactions, finite density \((\sigma > 0)\), small temperatures \(T\)
BCS-theory in RG language I

- BCS theory only considers the particle-particle fluctuations (first loop)
- Pointlike coupling
- Valid for weak attractive interactions, finite density \((\sigma > 0)\), small temperatures \(T\)
- Pairing of fermions is indicated by \(1/\lambda_\psi \to 0\)
BCS-theory in RG language I

- BCS theory only considers the particle-particle fluctuations (first loop)
- Pointlike coupling
- Valid for weak attractive interactions, finite density ($\sigma > 0$), small temperatures T
- Pairing of fermions is indicated by $1/\lambda_\psi \to 0$
- The pp-loop effect increases as T is decreased
BCS theory only considers the particle-particle fluctuations (first loop)
Pointlike coupling
Valid for weak attractive interactions, finite density ($\sigma > 0$), small temperatures T
Pairing of fermions is indicated by $1/\lambda_\psi \to 0$
The pp-loop effect increases as T is decreased
The temperature at which $1/\lambda_\psi \to 0$ at the scale $k = 0$ is the BCS transition temperature $T_{c,\text{BCS}}$
Within BCS theory the outer momenta are averaged over the Fermi surface and the critical temperature is found to be

$$\frac{T_{c,\text{BCS}}}{T_F} \approx 0.61 e^{-\frac{\pi}{2k_F} |a^{-1}|}.$$

Here a is the (vacuum) s-wave scattering length.
Within BCS theory the outer momenta are averaged over the Fermi surface and the critical temperature is found to be

$$\frac{T_{c,\text{BCS}}}{T_F} \approx 0.61 e^{-\frac{\pi}{2k_F}|a^{-1}|}.$$

Here a is the (vacuum) s-wave scattering length. For $k \to 0$, $\mu \to 0$, $T \to 0$, $\nu \to 0$:

$$a = \frac{\lambda_\psi}{8\pi}$$
Gorkov’s correction to BCS-theory I

- pp-loop diverges for $T \to 0$ leading to a transition to superfluidity, ph-loop remains finite

What does that imply for the critical temperature?
Gorkov’s correction to BCS-theory I

- pp-loop diverges for $T \to 0$ leading to a transition to superfluidity, ph-loop remains finite

What does that imply for the critical temperature?

$$\lambda_\psi(k = 0)^{-1} = \lambda_\psi(k = \Lambda)^{-1} + \text{pp-loop} + \text{ph-loop}.$$
Gorkov’s correction to BCS-theory I

- pp-loop diverges for $T \to 0$ leading to a transition to superfluidity, ph-loop remains finite

What does that imply for the critical temperature?

$$\lambda_{\psi}(k = 0)^{-1} = \lambda_{\psi}(k = \Lambda)^{-1} + \text{pp-loop} + \text{ph-loop}. \quad (1)$$

- Evaluate ph-loop for $T = 0$ and add it to initial value

$$\left(\lambda_{\psi,\Lambda}^{\text{eff}}\right)^{-1} = \lambda_{\psi}(k = \Lambda)^{-1} + \text{ph-loop}, \quad (2)$$
Gorkov’s correction to BCS-theory I

- pp-loop diverges for $T \to 0$ leading to a transition to superfluidity, ph-loop remains finite

What does that imply for the critical temperature?

$$\lambda_{\psi}(k = 0)^{-1} = \lambda_{\psi}(k = \Lambda)^{-1} + \text{pp-loop} + \text{ph-loop}.$$

- Evaluate ph-loop for $T = 0$ and add it to initial value

$$\left(\lambda_{\psi,\Lambda}^{\text{eff}}\right)^{-1} = \lambda_{\psi}(k = \Lambda)^{-1} + \text{ph-loop},$$

- T_c depends exponentially on the "microscopic effective coupling"
Gorkov’s correction to BCS-theory I

- pp-loop diverges for $T \to 0$ leading to a transition to superfluidity, ph-loop remains finite

What does that imply for the critical temperature?

$$\lambda_\psi(k = 0)^{-1} = \lambda_\psi(k = \Lambda)^{-1} + \text{pp-loop} + \text{ph-loop}.\quad \quad \quad (1)$$

- Evaluate ph-loop for $T = 0$ and add it to initial value

$$\left(\lambda_{\psi,\Lambda}^{\text{eff}}\right)^{-1} = \lambda_\psi(k = \Lambda)^{-1} + \text{ph-loop},$$

- T_c depends exponentially on the ”microscopic effective coupling”

\Rightarrow Any shift in $\left(\lambda_{\psi,\Lambda}^{\text{eff}}\right)^{-1}$ results in a multiplicative factor for T_c.

Gorkov’s correction to BCS-theory II

Screening of the interaction between two fermions by the particle-hole fluctuations is a quantitative effect and lowers the critical temperature as compared to BCS theory by a multiplicative factor.
Gorkov’s correction to BCS-theory II

Screening of the interaction between two fermions by the particle-hole fluctuations is a quantitative effect and lowers the critical temperature as compared to BCS theory by a multiplicative factor

$$T_c = \frac{1}{(4e)^{1/3}} T_{c,\text{BCS}} \approx \frac{1}{2.2} T_{c,\text{BCS}}.$$

This is the Gorkov effect (1963).
Bosonization

In a bosonized language, the fermionic interaction is described by boson exchange

\[\partial_t \overset{\sim}{=} \tilde{\partial}_t + \ldots \]
Bosonization

In a bosonized language, the fermionic interaction is described by boson exchange

\[\partial_t \tilde{\rho} = \tilde{\partial}_t + \ldots \]

The phase transition to the superfluid phase is indicated by the vanishing of the bosonic mass term \(m^2 = 0 \) (SSB)
In a bosonized language, the fermionic interaction is described by boson exchange

\[
\partial_t = \tilde{\partial}_t + \ldots
\]

- The phase transition to the superfluid phase is indicated by the vanishing of the bosonic mass term \(m^2 = 0 \) (SSB)
Bosonization

In a bosonized language, the fermionic interaction is described by boson exchange

\[\partial_t = \tilde{\partial}_t + \ldots \]

The phase transition to the superfluid phase is indicated by the vanishing of the bosonic mass term \(m^2 = 0 \) (SSB)
Bosonization

In a bosonized language, the fermionic interaction is described by boson exchange

\[
\partial_t = \tilde{\partial}_t + \ldots
\]

The phase transition to the superfluid phase is indicated by the vanishing of the bosonic mass term \(m^2 = 0 \) (SSB)
Bosonization

In a bosonized language, the fermionic interaction is described by boson exchange

\[\partial_t = \tilde{\partial}_t + \ldots \]

The phase transition to the superfluid phase is indicated by the vanishing of the bosonic mass term \(m^2 = 0 \) (SSB)

For vanishing external momenta: \(\lambda_{\psi, \text{eff}} = \frac{-\hbar^2}{m^2} \)
Bosonization

In a bosonized language, the fermionic interaction is described by boson exchange

\[
\partial_t = \tilde{\partial}_t + \ldots
\]

The phase transition to the superfluid phase is indicated by the vanishing of the bosonic mass term \(m^2 = 0 \) (SSB)

- For vanishing external momenta: \(\lambda_{\psi,\text{eff}} = \frac{-\hbar^2}{m^2} \)

In this setting, where the bosonization took place only on the microscopic scale, we do not account for particle-hole fluctuations.
Bosonization is destroyed by the RG flow

We neglected so far, that the term

$$\int_{\tau, \vec{x}} \lambda \psi \psi_1 \psi_1 \psi_2 \psi_2,$$

is re-generated by the flow.
Bosonization is destroyed by the RG flow

We neglected so far, that the term

$$\int_{\tau, \vec{x}} \lambda_\psi \psi_1^\dagger \psi_1^\dagger \psi_2^\dagger \psi_2,$$

is re-generated by the flow.

$$\partial_t \lambda_\psi = \tilde{\partial}_t$$
Bosonization is destroyed by the RG flow

We neglected so far, that the term

$$\int_{\tau, \vec{x}} \lambda_\psi \psi_1^\dagger \psi_1^\dagger \psi_2^\dagger \psi_2,$$

is re-generated by the flow.
Bosonization is destroyed by the RG flow

We neglected so far, that the term

$$\int_{\tau, \vec{x}} \lambda_\psi \psi_1^\dagger \psi_1 \psi_2^\dagger \psi_2,$$

is re-generated by the flow.

λ_ψ contributes to the effective interaction between fermions

$$\lambda_{\psi, \text{eff}} = \frac{-\hbar^2}{m^2} + \lambda_\psi.$$
Bosonization is destroyed by the RG flow

We neglected so far, that the term

\[\int_{\tau, \vec{x}} \lambda_\psi \psi_1^\dagger \psi_1 \psi_2^\dagger \psi_2, \]

is re-generated by the flow.

\[\lambda_\psi \] contributes to the effective interaction between fermions

\[\lambda_{\psi, \text{eff}} = \frac{-\hbar^2}{m^2} + \lambda_\psi. \]

→ Connection between divergence of \(\lambda_{\psi, \text{eff}} \) and SSB?
Rebosonization I

Idea:

- Bosonize at microscopic scale with a field ϕ_Λ, $\Rightarrow \lambda_\psi,\Lambda = 0$
Rebosonization I

Idea:
1. Bosonize at microscopic scale with a field ϕ_Λ, $\Rightarrow \lambda_{\psi,\Lambda} = 0$
2. Perform one renormalization step δk
Rebosonization I

Idea:
1. Bosonize at microscopic scale with a field ϕ_Λ, $\Rightarrow \lambda_{\psi,\Lambda} = 0$
2. Perform one renormalization step δk
3. The boxdiagram regenerates a nonvanishing $\lambda_{\psi,\Lambda-\delta k}$
Rebosonization I

Idea:

1. Bosonize at microscopic scale with a field ϕ_Λ, $\Rightarrow \lambda_{\psi,\Lambda} = 0$
2. Perform one renormalization step δk
3. The boxdiagram regenerates a nonvanishing $\lambda_{\psi,\Lambda-\delta k}$
4. Bosonize again (with a field $\phi_{\Lambda-\delta k}$), $\Rightarrow \lambda_{\psi,\Lambda-\delta k} = 0$
Idea:

1. Bosonize at microscopic scale with a field ϕ_Λ, $\Rightarrow \lambda_{\psi,\Lambda} = 0$
2. Perform one renormalization step δk
3. The boxdiagram regenerates a nonvanishing $\lambda_{\psi,\Lambda-\delta k}$
4. Bosonize again (with a field $\phi_{\Lambda-\delta k}$), $\Rightarrow \lambda_{\psi,\Lambda-\delta k} = 0$
5. Repeat the steps 2 - 4 until we reach $k=0$
Rebosonization I

Idea:

1. Bosonize at microscopic scale with a field ϕ_{Λ}, $\Rightarrow \lambda_{\psi,\Lambda} = 0$
2. Perform one renormalization step δk
3. The boxdiagram regenerates a nonvanishing $\lambda_{\psi,\Lambda - \delta k}$
4. Bosonize again (with a field $\phi_{\Lambda - \delta k}$), $\Rightarrow \lambda_{\psi,\Lambda - \delta k} = 0$
5. Repeat the steps 2 - 4 until we reach $k = 0$

(Re-)appearance of a λ_{ψ} by the flow of the box diagrams can be absorbed by the introduction of scale dependent fields ϕ_k
Rebosonization II

For scale dependent fields we obtain a modified flow equation (Gies & Wetterich, 2001)

\[\partial_k \Gamma_k [\chi_k] = \frac{1}{2} \text{STr} \left[\left(\Gamma_k^{(2)} + R_k \right)^{-1} \partial_k R_k \right] + \int \frac{\delta \Gamma_k}{\delta \chi_k} \partial_k \chi_k. \]
For scale dependent fields we obtain a modified flow equation (Gies & Wetterich, 2001)

\[
\partial_k \Gamma_k[\chi_k] = \frac{1}{2} \text{Str} \left[\left(\Gamma_k^{(2)} + R_k \right)^{-1} \partial_k R_k \right] + \int \frac{\delta \Gamma_k}{\delta \chi_k} \partial_k \chi_k.
\]

The \(k \)-dependence can be chosen arbitrarily.
For scale dependent fields we obtain a modified flow equation (Gies & Wetterich, 2001)

\[\partial_k \Gamma_k [\chi_k] = \frac{1}{2} \text{STr} \left[\left(\Gamma_k^{(2)} + R_k \right)^{-1} \partial_k R_k \right] + \int \frac{\delta \Gamma_k}{\delta \chi_k} \partial_k \chi_k. \]

The k-dependence can be chosen arbitrarily.

We choose the following scale dependence for the bosonic fields.

\[\partial_k \bar{\phi}_k(q) = (\psi_1 \psi_2)(q) \partial_k \nu. \]

With $\partial_k \nu$ to be determined.
Rebosonization III

In consequence the flow equations in SYM get modified

\[\partial_k \bar{h} = \partial_k \bar{h} \bigg|_{\bar{\phi}_k} - \bar{m}^2 \partial_k \nu, \]
\[\partial_k \lambda_\psi = \partial_k \lambda_\psi \bigg|_{\bar{\phi}_k} - 2 \bar{h} \partial_k \nu. \]
Rebosonization III

In consequence the flow equations in SYM get modified

\[\partial_k \bar{h} = \partial_k \bar{h} |_{\bar{\phi}_k} - \bar{m}^2 \partial_k \nu, \]
\[\partial_k \lambda_\psi = \partial_k \lambda_\psi |_{\bar{\phi}_k} - 2 \bar{h} \partial_k \nu. \]

We can choose \(\partial_k \nu \) such that the flow of \(\lambda_\psi \) vanishes. Then we have \(\lambda_\psi = 0 \) on all scales.
In consequence the flow equations in SYM get modified

\[\partial_k \bar{h} = \partial_k \bar{h} |_{\phi_k} - \bar{m}^2 \partial_k \nu, \]
\[\partial_k \lambda \psi = \partial_k \lambda \psi |_{\phi_k} - 2\bar{h} \partial_k \nu. \]

We can choose \(\partial_k \nu \) such that the flow of \(\lambda \psi \) vanishes. Then we have \(\lambda \psi = 0 \) on all scales.

\[\Rightarrow \]

\[\partial_k \bar{h} = \partial_k \bar{h} |_{\phi_k} - \frac{\bar{m}^2}{2\bar{h}} \partial_k \lambda \psi |_{\phi_k}. \] (1)
In consequence the flow equations in SYM get modified

\[
\partial_k \bar{h} = \partial_k \bar{h} \bigg|_{\phi_k} - \bar{m}^2 \partial_k \nu ,
\]
\[
\partial_k \lambda_\psi = \partial_k \lambda_\psi \bigg|_{\phi_k} - 2\bar{h} \partial_k \nu .
\]

We can choose \(\partial_k \nu \) such that the flow of \(\lambda_\psi \) vanishes. Then we have \(\lambda_\psi = 0 \) on all scales.

\[
\Rightarrow
\]

\[
\partial_k \bar{h} = \partial_k \bar{h} \bigg|_{\phi_k} - \frac{\bar{m}^2}{2\bar{h}} \partial_k \lambda_\psi \bigg|_{\phi_k} . \tag{1}
\]

Now, the four-fermion interaction is purely given by the boson exchange and ph-fluctuations are incorporated via the second term in the latter equation.
Critical Temperature

We can determine the transition temperature (critical temperature T_c) from normal fluidity to superfluidity in this system:
Critical Temperature

We can determine the transition temperature (critical temperature T_c) from normal fluidity to superfluidity in this system:

- Scattering physics of the fermionic system in vacuum ($T = 0$ and $n = 0$) gives microphysical parameters
Critical Temperature

We can determine the transition temperature (critical temperature T_c) from normal fluidity to superfluidity in this system:

- Scattering physics of the fermionic system in vacuum ($T = 0$ and $n = 0$) gives microphysical parameters
- Microphysics does not depend on temperature
Critical Temperature

We can determine the transition temperature (critical temperature T_c) from normal fluidity to superfluidity in this system:

- Scattering physics of the fermionic system in vacuum ($T = 0$ and $n = 0$) gives microphysical parameters
- Microphysics does not depend on temperature
- Start the flow in the UV at defined T and look in the IR if it ends up in the symmetric phase or the spontaneously broken phase
Critical Temperature

We can determine the transition temperature (critical temperature T_c) from normal fluidity to superfluidity in this system:

- Scattering physics of the fermionic system in vacuum ($T = 0$ and $n = 0$) gives microphysical parameters.
- Microphysics does not depend on temperature.
- Start the flow in the UV at defined T and look in the IR if it ends up in the symmetric phase or the spontaneously broken phase.

- The temperature for which $m_0^2 \to 0$ as $k \to 0$ is T_c. This is directly related to the divergence of the effective four-fermion coupling

$$\lambda_{\psi,\text{eff}} \propto \frac{-\hbar^2}{m^2} \to \infty.$$
Truncation

We cannot investigate Γ_k in its full generality but we have to truncate it, i.e. choose a suitable approximation, where we allow for the RG running of all parameters.
Truncation

We cannot investigate Γ_k in its full generality but we have to truncate it, i.e. choose a suitable approximation, where we allow for the RG running of all parameters.

$$\Gamma_k[\chi] = \int_{\tau,\vec{x}} \left\{ \psi^\dagger (\partial_\tau - \Delta - \mu) \psi + \phi^* (Z_{\phi,k} \partial_\tau - \frac{\Delta}{2}) \phi \right\} + U_k(\rho, \mu) - h_k (\phi^* \psi_1 \psi_2 + h.c.) \right\}$$
Truncation

We cannot investigate Γ_k in its full generality but we have to truncate it, i.e. choose a suitable approximation, where we allow for the RG running of all parameters.

\[
\Gamma_k[\chi] = \int_{\tau,\vec{x}} \{ \psi^\dagger (\partial_\tau - \Delta - \mu) \psi + \phi^* (Z_{\phi,k} \partial_\tau - \frac{\Delta}{2}) \phi \\
+ U_k(\rho, \mu) - h_k (\phi^* \psi_1 \psi_2 + h.c.) \} \tag{2}
\]

For the effective potential, we use an expansion around the k-dependent location of the minimum $\rho_0(k)$.

\[
U_k(\rho, \mu) = m_k^2 (\rho - \rho_0) + \frac{1}{2} \lambda_k (\rho - \rho_0)^2
\]
Truncation

We cannot investigate Γ_k in its full generality but we have to truncate it, i.e. choose a suitable approximation, where we allow for the RG running of all parameters.

\[
\Gamma_k[\chi] = \int \left\{ \psi^\dagger (\partial_\tau - \Delta - \mu) \psi + \phi^*(Z_{\phi,k} \partial_\tau - \frac{\Delta}{2}) \phi
+ U_k(\rho, \mu) - h_k (\phi^* \psi_1 \psi_2 + h.c.) \right\}
\]

For the effective potential, we use an expansion around the k-dependent location of the minimum $\rho_0(k)$.

\[
U_k(\rho, \mu) = m_k^2 (\rho - \rho_0) + \frac{1}{2} \lambda_k (\rho - \rho_0)^2
+ U(\rho_0, \mu_0) - n_k (\mu - \mu_0) + \alpha_k (\mu - \mu_0)(\rho - \rho_0)
\]
Critical Temperature
Thanks for your attention
Thanks for your attention

Questions?