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Why are Ultracold quantum gases interesting?

Ultracold gases in the bulk are simple systems!

for example: Fermi surface is usually a sphere.

Both fermions and bosons can be studied.

Interactions can be tuned to arbitrary values.

Lower dimensional systems can be realized.

Very nice model system to test methods of quantum and statistical
field theory!
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Lagrangians

We use a local field theory to describe the microscopic model.
Examples:

1 Bose gas with pointlike interaction

L = ϕ∗
(

∂τ − ~∇2
− µ

)

ϕ+
1

2
(ϕ∗ϕ)2 .

2 Fermions in the BCS-BEC-Crossover

L = ψ†(∂τ − ~∇2
− µ)ψ + ϕ∗(∂τ −

1

2
~∇2

− 2µ+ ν)ϕ

−h(ϕ∗ψ1ψ2 + h.c.).

These are effective theories on the length scale of the Bohr radius
a0 ≈ 0.5 × 10−10m.
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Symmetries of nonrelativistic field theories

U(1) for particle number conservation.

Translations and Rotations.

Galilean boost transformations.

Possibly conformal symmetries (see talk by S. Moroz).

U(1) and Galilean invariance are broken spontaneously by a
Bose-Einstein condensate.

Galilean invariance is broken explicitely by a thermal bath for
T > 0.
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The grand canonical ensemble

Functional integral representation of the partition function

Z = e−βΩG = Tr e−β(H−µN) =

∫

Dχe−S[χ].

Generalization with J = δ
δφ

Γk[φ]

e−Γk[φ] =

∫

Dχe−S[φ+χ]+Jχ− 1
2
χRk χ.

Rk is an infrared cutoff function

suppresses all fluctuations Rk → ∞ for k → ∞.
is removed Rk → 0 for k → 0.

Γk[φ] is the average action or flowing action.

Grand canonical potential is obtained from
βΩG = Γk[φ] for k = 0 and J = 0.
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How the flowing action flows

Simple and exact flow equation (Wetterich 1993)

∂kΓk[φ] =
1

2
STr

(

Γ
(2)
k [φ] +Rk

)−1
∂kRk.

Differential equation for a functional.

For most cases not solvable exactly.

Approximate solutions can be found from Truncations.

Ansatz for Γk with a finite number of parameters.
Derive ordinary differential equations for this parameters or
couplings from the flow equation for Γk.
Solve these equations numerically.
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A remark on the cutoff function

In principle the choice of the infrared regulator Rk is quite
arbitrary.

Different forms may be used for error estimation.

The idea of optimization is to choose Rk such that a
maximum of sensible physics is obtained for a given truncation
(Litim, Pawlowski).

In our case it is usefull to have Rk independent from
frequency. Matsubara summation can then be done
analytically.

For fermions we choose a cutoff that regularizes the fermi
surface.
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Truncations

For many purposes derivative expansions are suitable
approximations. For example we use for the BCS-BEC Crossover

Γk =

∫

τ,~x

{

ψ†(∂τ − ~∇2
− µ)ψ + ϕ∗(Zϕ∂τ −Aϕ

1

2
~∇2)ϕ

−h(ϕ∗ψ1ψ2 + h.c.) +
1

2
λψ(ψ†ψ)2 + Uk(ϕ

∗ϕ, µ)

}

The coefficients Zϕ, Aϕ, λψ, h and the effective potential Uk
are scale-dependent.

The effective potential Uk contains no derivatives - describes
homogeneous fields.

Wave-function renormalization and self-energy corrections for
fermions can be included as well.
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The effective potential

We use a Taylor expansion around the minimum ρ0

Uk(ϕ
∗ϕ) = −p+m2 (ϕ∗ϕ− ρ0) +

1

2
λ (ϕ∗ϕ− ρ0)

2.

Typical flow:
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Solving the flow equation - Phase diagram

Information on phase diagram is contained in form of the
effective potential U(ρ, µ, T ) at macroscopic scale.
Very nice generalization of Landau’s theory of phase
transitions!
Examples: BCS-BEC Crossover (talk M. Scherer)
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Solving the flow equation - Phase diagram

Information on phase diagram is contained in form of the
effective potential U(ρ, µ, T ) at macroscopic scale.
Very nice generalization of Landau’s theory of phase
transitions!
Examples: Superfluid Bose gas in d = 2.
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Solving the flow equation - Thermodynamic observables
We calculate the grand canonical potential and can therefore
access many thermodynamic observables!

dU = −dp = −s dT − ndµ

By taking derivatives one obtains e. g. for Bose gas in d = 3
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1
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T/n2/3

c2
2/n2/3

entropy density s = −
∂U
∂T

,

energy density
ǫ = −p+ Ts+ µn,

specific heat cv,

isoth. compressibility κT ,

adiab. compressibility κS ,

velocity of sound I,

velocity of sound II.



Solving the flow equation - Occupation numbers
Usually density can be written as

n =

∫

~p

n(~p)

with Occupation number n(~p). Example: Homogeneous Bose gas

n(~p) = nc δ
(d)(~p) + nT (~p).

Occupation numbers are measured in time-of-flight experiments.

Picture from W. Ketterle, MIT.
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Flow equations for occupation numbers

Use momentum-dependent chemical potential µ = µ(~p)

S =

∫

p

ϕ∗(p)
[

ip0 + ~p2
− µ(~p)

]

ϕ(p) + ...

Obtain occupation numbers from

n(~p) = −
δ

δµ(~p)
U.

Flow equations for n(~p) can be derived (Wetterich 2008).
Example: Bose gas in d = 2 with finite size.
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Flow equations for new physics

1 component Fermi gas - no s-wave interaction

2 component Fermi gas - BCS-BEC crossover

3 component Fermi gas - ??
On the lattice: Trion formation (Rapp et al. 2007).

Consider model with global SU(3) symmetry in truncation

Γk =

∫

x

ψ†(∂τ − ~∇2
− µ)ψ + ϕ†(∂τ − ~∇2/2 +m2

ϕ)ϕ

+χ∗(∂τ − ~∇2/3 +m2
χ)χ

+hǫijk(ϕ
∗
iψjψk + h.c.) + g(ϕiψ

∗
i χ+ h.c.)

atoms: ψ = (ψ1, ψ2, ψ3), bosons: ϕ = (ϕ1, ϕ2, ϕ3) trion: χ.

ψi ϕi χ h g
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Flow equations for new physics
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Thank you for your attention!


