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Today: BCS-side (Particle-hole fluctuations,
Rebosonization,...), Unitarity regime
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Parametrization

Crossover can be parametrized by the dimensionless inverse s-wave
scattering length c−1 →. Experimental realization by the
phenomenon of Fesbach resonances.

c−1 < −1: Weakly attractive regime → Cooper pairing below
Tc → BCS superfluidity

c−1 > 1: Two-body bound state exists → Formation of
molecules → below Tc: BEC

|c−1| < 1: Strongly correlated regime, Unitarity limit
at c−1 → 0
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Limit of broad Feshbach resonances (experiments, e.g. with
6Li and 40K)

Universality: Thermodynamic quantities are independent of
the microscopic details and can be expressed in terms of only
two dimensionless parameters: The concentration c = akF
and the temperature T/TF . The units are set by the density
n = k3

F /(3π
2).
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Grassmann field ψ = (ψ1, ψ2), fermions in two hyperfine states

complex scalar field φ, molecules, Cooper pairs or auxiliary
field

nonrelativistic natural units with ~ = kB = 2M = 1

chemical potential µ, Yukawa coupling h

detuning from the Feshbach resonance ν = µ(B −B0)
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− h(φ∗ψ1ψ2 + h.c.)
}

.
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S =

1/T
∫

0

dτ

∫

~x

{

ψ†(∂τ − ∆ − µ)ψ +
λψ,eff

2
(ψ†ψ)2

}

,

where λψ,eff is a momentum-dependent effective four-fermion
vertex.
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Inverse Hubbard-Stratonovic Transformation II

In momentum space the effective four-fermion vertex reads

λψ,eff = −
h2

Pφ(q)
,

with the classical inverse boson propagator

Pφ(q) = iq0 +
1

2
~q2 + ν − 2µ .

The inverse process, going from a purely fermionic theory to a
theory of fermions and bosons, is called ”bosonization”.
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S =

1/T
∫

0

dτ

∫

~x

ψ†(∂τ − ∆ − µ)ψ +
λψ,eff

2
(ψ†ψ)2 ,

A generally momentum dependent four-fermion interaction is
renormalized. The flow of λψ has two contributions:

p1 p2

p′

1 p′

2

p1 p2

p′

2 p′

1

∂tλψ = ∂̃t + ∂̃t

The first one is referred to as particle-particle loop, the second one
as particle-hole loop.
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BCS theory only considers the
particle-particle fluctuations (first loop)

Pointlike coupling

Valid for weak attractive interactions, finite
density (σ > 0), small temperatures T

Pairing of fermions is indicated by 1/λψ → 0

The pp-loop effect increases as T is decreased

The temperature at which 1/λψ → 0 at the
scale k = 0 is the BCS transition
temperature Tc,BCS
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BCS-theory in RG language II

Within BCS theory the outer momenta are averaged over the
Fermi surface and the critical temperature is found to be

Tc,BCS

TF
≈ 0.61e

− π
2kF

|a−1|
.

Here a is the (vacuum) s-wave scattering length.
For k → 0, µ→ 0, T → 0, n→ 0:

a =
λψ
8π
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Gorkov’s correction to BCS-theory I

pp-loop diverges for T → 0 leading to a transition to
superfluidity, ph-loop remains finite

What does that imply for the critical temperature?

λψ(k = 0)−1 = λψ(k = Λ)−1 + pp-loop + ph-loop .

Evaluate ph-loop for T = 0 and add it to initial value

(

λeff
ψ,Λ

)−1
= λψ(k = Λ)−1 + ph-loop ,

Tc depends exponentially on the ”microscopic effective
coupling”

⇒ Any shift in
(

λeff
ψ,Λ

)−1
results in a multiplicative factor for Tc.
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Gorkov’s correction to BCS-theory II

Screening of the interaction between two fermions by the
particle-hole fluctuations is a quantitative effect and lowers the
critical temperature as compared to BCS theory by a multiplicative
factor

Tc =
1

(4e)1/3
Tc,BCS ≈

1

2.2
Tc,BCS .

This is the Gorkov effect (1963).
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Bosonization

In a bosonized language, the fermionic interaction is described by
boson exchange

p1 p2

p′

1 p′

2

p1 p2

p′

2 p′

1

∂t = ∂̃t + . . .

The phase transition to the superfluid phase is indicated by
the vanishing of the bosonic mass term m2 = 0 (SSB)

For vanishing external momenta: λψ,eff = −h2

m2

In this setting, where the bosonization took place only on the
microscopic scale, we do not account for particle-hole fluctuations.
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Bosonization is destroyed by the RG flow

We neglected so far, that the term

∫

τ,~x
λψψ

†
1ψ1ψ

†
2ψ2 ,

is re-generated by the flow.

λψ contributes to the effective interaction between fermions

λψ,eff =
−h2

m2
+ λψ .

→ Connection between divergence of λψ,eff and SSB?
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Rebosonization I

Idea:

1 Bosonize at microscopic scale with a field φΛ, ⇒ λψ,Λ = 0

2 Perform one renormalization step δk

3 The boxdiagram regenerates a nonvanishing λψ,Λ−δk
4 Bosonize again (with a field φΛ−δk), ⇒ λψ,Λ−δk = 0

5 Repeat the steps 2 - 4 until we reach k = 0

(Re-)appearance of a λψ by the flow of the box diagrams can
be absorbed by the introduction of scale dependent fields φk
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Rebosonization II

For scale dependent fields we obtain a modified flow equation
(Gies & Wetterich, 2001)

∂kΓk[χk] =
1

2
STr

[

(

Γ
(2)
k +Rk

)−1
∂kRk

]

+

∫

δΓk
δχk

∂kχk .

The k-dependence can be chosen arbitrarily.
We choose the following scale dependence for the bosonic fields.

∂kφ̄k(q) = (ψ1ψ2)(q)∂kυ .

With ∂kυ to be determined.
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∂kλψ = ∂kλψ
∣

∣

φ̄k
− 2h̄∂kυ.

We can choose ∂kυ such that the flow of λψ vanishes. Then we
have λψ = 0 on all scales.
⇒

∂kh̄ = ∂kh̄

∣

∣

∣

∣

φk

−
m̄2

2h̄
∂kλψ

∣

∣

∣

∣

φk

. (1)

Now, the four-fermion interaction is purely given by the boson
exchange and ph-fluctuations are incorporated via the second term
in the latter equation.
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We can determine the transition temperature (critical temperature
Tc) from normal fluidity to superfluidity in this system:

Scattering physics of the fermionic system in vacuum (T = 0
and n = 0) gives microphysical parameters
Microphysics does not depend on temperature
Start the flow in the UV at defined T and look in the IR if it
ends up in the symmetric phase or the spontaneously broken
phase

The temperature for
which m2

0 → 0 as k → 0
is Tc. This is directly
related to the divergence
of the effective
four-fermion coupling
λψ,eff ∝ −h2

m2 → ∞.
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Truncation

We cannot investigate Γk in its full generality but we have to
truncate it, i.e. choose a suitable approximation, where we allow
for the RG running of all parameters.

Γk[χ] =

∫

τ,~x

{

ψ†(∂τ − ∆ − µ)ψ + φ∗(Zφ,k∂τ −
∆

2
)φ (2)

+Uk(ρ, µ) − hk (φ∗ψ1ψ2 + h.c.)
}

For the effective potential, we use an expansion around the
k-dependent location of the minimum ρ0(k).

Uk(ρ, µ) = m2
k(ρ− ρ0) +

1

2
λk(ρ− ρ0)

2

+U(ρ0, µ0) − nk(µ− µ0) + αk(µ− µ0)(ρ− ρ0)
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