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In these lectures I consider the half-filled two-dimensional (2D) Hubbard model
on the honeycomb lattice and I review the rigorous construction of its ground state

properties by making use of constructive fermionic Renormalization Group methods.



1. INTRODUCTION

There are very few quantum interacting systems whose ground state prop-
erties (thermodynamic functions, reduced density matrices, etc.) can be com-
puted without approximations. Among these, the Luttinger and the Thirring
model (one-dimensional spinless relativistic fermions) and the BCS model (spin-
ning fermions with infinite - mean field - interactions); the construction of the
ground states of these systems is based on some remarkable exact solutions, which
make use of bosonization techniques and Bethe ansatz. Besides the exact solu-
tions, another rigorous powerful method that allowed in a few cases to fully con-
struct the ground state properties of a system of interacting fermions is Renor-
malization Group (RG); most of the available results concern one-dimensional
(1D) weakly interacting fermions (ultraviolet O(N) models with N > 2, non-
relativistic spinless and spinnig fermions). In more than one dimensions, most
of the result derived by rigorous RG techniques concern finite temperature prop-
erties (two-dimensional fermionic systems above the BCS critical temperature).
Two remarkable exceptions are the Fermi liquid construction by Feldman et al.,
which concerns zero temperature properties of a system of interacting fermions
with highly asymmetric Fermi surface, and the ground state construction of the
short range half-filled Hubbard model on the honeycomb lattice by Giuliani and
Mastropietro, which will be reviewed here. The latter result is of interest for the
physics of graphene, a newly discovered material consisting of a one-atom thick
layer of graphite.

The goal of these lectures is to give a self-contained proof of the analyticity
of the ground state energy of the Hubbard model on the two-dimensional (2D)
honeycomb lattice at half filling and weak coupling. A simple extension of the
proof of convergence of the series for the specific ground state energy presented
below allows one to construct the whole set of reduced density matrices at weak
coupling (see [1]): it turns out that the off-diagonal elements of these matrices
decay to zero at infinity, with the same decay exponents as the non-interacting
system; in this sense, the construction presented below rigorously exclude the
presence of long range order (LRO) in the ground state, and the absence of
anomalous critical exponents (in other words, the interacting system is in the
same universality class as the non-interacting one).

The plan of these lectures is the following. I will first introduce the model
and state the main result. Next I will: (i) review the non-interacting case; (ii)
describe the formal series expansion for the ground state energy; (iii) estimate
by power-counting the generic n-th order in perturbation theory and identify the
potentially divergent contributions; (iv) describe an (order by order) convergent

resummed perturbation theory; (v) describe a way to reorganize and estimate



the perturbation theory (determinant expansion) that allows one to prove con-

vergence of the resummed series.

2. THE MODEL AND THE MAIN RESULTS

The grandcanonical Hamiltonian of the 2D Hubbard model on the honeycomb
lattice at half filling in second quantized form is given by:

==t > > ( P a+b;r+5 UG;U) T (2.1)
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where:

1. A4 = A is a periodic triangular lattice, defined as A = B/LB, where L €
N and B is the infinite triangular lattice with basis ﬁ = %(3, \/3), l; =
%(3, —\/3) Ap = AA+(§L- is obtained by translating A 4 by a nearest neighbor
vector 5;, 1 =1,2,3, where

01 =(1,0), & =5(-1, V3), b= 51 —/3). (2.2)
The honeycomb lattice we are interested in is the union of the two triangular
sublattices A4 and Ap.

2. a%_ are creation or annihilation fermionic operators with spin index o =1
and site index ¥ € Ay, satisfying periodic boundary conditions in Z. Sim-
ilarly, b;a are creation or annihilation fermionic operators with spin index

o =TJ and site index ¥ € Ap, satisfying periodic boundary conditions in 7.

3. U is the strength of the on—site density—density interaction; it can be either

positive or negative.

Note that the Hamiltonian (2.1) is hole-particle symmetric, i.e., it is invariant
under the exchange a~ <—>a;F0_, bi+61, — b;F+61, . This invariance implies
in particular that, if we define the average density of the system to be p =
(2[A])THN) 40, with N =3 O(afgazo—i-b;él 7.5, ,) the total particle number
operator and (-), = Tr{e 7" }/Tr{e_ﬁHA} the average with respect to the
(grandcanonical) Gibbs measure at inverse temperature 3, one has p = 1, for any

|A| and any . Let

fs(U) = —E \Al|lm |A| ™ log Tr{e #Ha} (2.3)
be the specific free energy of the system and e(U) = limg_,, f3(U) the specific
ground state energy. We will prove the following Theorem.



Theorem 2.1 There exist a constant Uy > 0 such that, if |U| < Uy, the specific
free energy f3(U) of the 2D Hubbard model on the honeycomb lattice at half filling
15 an analytic function of U, uniformly in 5 as B — oo, and so is the specific
ground state energy e(U).

The proof is based on RG methods, which will be reviewed below. A straight-
forward extension of the proof of Theorem 2.1 allows one to prove that the cor-
relation functions (i.e., the off-diagonal elements of the reduced density matrices
of the system) are analytic functions of U and they decay to zero at infinity with
the same decay exponents as in the non-interacting (U = 0) case, see [1]. This
rigorously excludes the presence of LRO in the ground state and proves that the

interacting system is in the same universality class as the non-interacting system.

3. THE NON-INTERACTING SYSTEM

Let us begin by reviewing the construction of the finite and zero temperature
states for the non-interacting (U = 0) case. In this case the Hamiltonian of

interest reduces to

M=t X X (0L ) o1
ras T

with A, afga, b;erg‘ , defined as in items (1)~(4) after (2.1). We aim at computing
the spectrum of HY by diagonalizing the right hand side (r.h.s.) of (3.1). To this
purpose, we pass to Fourier space. We identify A with the set of vectors in a

fundamental cell, and we write
A:{nll_i—i—ngl_; c0<ny,ny <L—-1}, (3.2)

with [} = 1(3,/3) and Iy = 1(3,—V/3). The reciprocal lattice A* is the set of
vectors K such that ¢’5% =1, if 7 € A. A basis q1, ¢> for A* can be obtained by

the inversion formula:

Ly Iy Y
<Q11 C]12> - ( 11 21) 7 (3'3)
21 422 lig o
which gives
. 27 ., 27
q1 = ?(17\/5) ) q2 = ?(17 _\/§) . (3-4)
We call B, the set of quasi-momenta k of the form
F="a ™ o me ez, (3.5)

L L



identified modulo A*; this means that B can be identified with the vectors k of
the form (2.2) and restricted to the first Brillouin zone:

my .  Mmo
M+ 228 0<my,my<L—1}. (3.6)

BL:{k_L I

Given a periodic function f : A — R, its Fourier transform is defined as

- 1 kT P10
(@) = T > M f(k), (3.7)
EEBL
which can be inverted into
fRy=3e®f@), keB. (3.8)
FeA

where we used the identity

S e = A6 (3.9)

ZeA

and ¢ is the periodic Kronecker delta function over A*.

We now associate to the set of creation/annihilation operators % o bi » the
corresponding set of operators in momentum space:
ot = L Z eiz’Ef&i bt _ L Z eﬂﬁf(;i (3.10)
To A ko’ T+ho T |A] ko * '
keBy, keBy,
Using (3.7)—(3.9), we find that
P zmm + [ Fikipt+
ap, = etz bE,a => e b5+51,o— (3.11)
ZeA ZeA
are fermionic creation/annihilation operators satisfying
{a ag ., k, = |AL07 7i0e, 000 {bka, o 3 =|Ao 70e—e'00,0 (3.12)
and {ak Y% .} =0, which are periodic over A*. [Of course, there is some arbi-
trariness in the definition of a aEU, bEU: we could change the two sets of operators

— i~ - b
by multiplying them by two k-dependent phase factors, ei%»v, eiwﬁvff, and get a

completely equivalent theory in momentum space. The freedom in the choice of
these phase factors corresponds to the freedom in choosing the origins of the two
sublattices A 4, Ag and is reflected into the so-called Berry-gauge symmetry of the
theory (a local gauge symmetry in momentum space). It must be stressed that
changing the Berry phase, the boundary conditions of a Ai bi at the boundaries
of the first Brillouin zone change, our explicit choice of the Berry phase has the

“advantage” of making a a~ b~ periodic over A* rather than quasi-periodic.]



With the previous definitions, we can rewrite

A=t Z > (ag b 5 bl az,) = (3.13)
e

- - -

_ |A|2 Z Z Z +zkx —ik! (46; 75‘1)&%0850 _i_efzkz +ik! (Z+6; fél)l;ir 4= )
el o=NEkeB, s 7

1=1,2
— “(k)at b A+
keB o= N
with v = %t the unperturbed Fermi velocity (if the hopping strength ¢ is chosen
to be the one measured in real graphene, v turns out to be approximately 300
times smaller than the speed of light) and

ﬂ‘#

gzezg —41)

=1

ﬂukzmﬁm} (3.14)
the complex dispersion relation.

The Hamiltonian HY can be diagonalized by introducing the fermionic opera-

tors
) 1. Q(E)A . 1. Q (k) -
o= —(ag b ). Br,=—F=(az, ——=bz, ), (315
o = gl e e gl i) - 619
in terms of which we can re-write
Z S (- [Q®)ag ag, + 1QRIBE B,) . (3.16)

keB o=1l

with

1Q(k)| = 2\/(1 + 2cos(3k1/2) cos(V3ky/2))? + 4sin?(3k; /2) cos?(V/3k,/2) |

(3.17)
which is vanishing iff k= pp, w = £, with
2m 2m
e = (—,w—re=) . 3.18
¥ = (g (3.13)

Close to the Fermi points py, the complex dispersion relation vanishes linearly:
QFE + &) = ik, + wky + O(K'?) (3.19)

resembling in this sense the relativistic dispersion relation of (2 + 1)-dimensional
Dirac fermions.

From eqn(3.16) it is apparent that the ground state of the system consists in
a Fermi sea such that all the negative energy states (the “a-states”) are filled



and all the positive energy states (the “S-states”) are empty. The specific ground
state energy e A Is

Con = Z (k)] (3.20)
k:eB
from which
o) = 20 [ F o) (3.21)
|B|
where B := {k = t,q, + t2.@» : t; € [0,1)} and |B| = 872v/3/9. Similarly, the
finite volume specific free energy fy ) := —(8|A[)~" log Tr{e Hi} is
fin = > log [(1+ B (14 0B (3.22)
’ s
from which
di ol ~sol()|
fs(0) = B B log [(1+e )(1+e ) - (3.23)

For the following, it is useful to compute also the Schwinger functions of the
system, defined as follows. Let us introduce the two component fermionic oper-

ators UE_ = (a f bE ) and let us write Ut =af_ and Vi _, = bE .

o o +5 z,0,1 z,o Z,0, :Jc+51,
We also consider the operators Uk, = eflows e with x = (x,7) and
xo € [0, f], for some S > 0; we call 2y the time variable. We write Ui, =ai,

and U, = = b 51,00 With 01 = (0, 51). We define the n-points Schwinger functions

at finite volme and finite temperature as:

SRy 61,00, P13+ 3 X, Eny Ony Pn) = (T{YL 500 ""I’iliyan,pn}h,A (3.24)

where: x; € [0, 5] x A, 0; =1, €, = £, p; = 1,2 and T is the operator of fermionic

time ordering, acting on a product of fermionic fields as:

T(‘Ilfcll,al,pl e \Ilfcz,an,pn) = (_1) X:((11))707r<1):P7r(1) o xtr((?)ﬂw(n)w«(n) (3'25)

where 7 is a permutation of {1,...,n}, chosen in such a way that x.q)y >

- > Tr(n), and (—1)7 is its sign. [If some of the time coordinates are equal each
other, the arbitrariness of the definition is solved by ordering each set of operators
with the same time coordinate so that creation operators precede the annihila-
tion operators.] Taking the limit A — oo in (3.24) we get the finite tempera-
ture n-point Schwinger functions, denoted by S2(x1, 1,01, p1;- - Xn, Eny Ons Pr),
which describe the properties of the infinite volume system at finite temper-
ature. Taking the § — oo limit of the finite temperature Schwinger func-
tions, we get the zero temperature Schwinger functions, simply denoted by
Sn(X1,€1,01, P15 -+ ; Xy En, On,y Pn), Which by definition characterize the proper-

ties of the thermal ground state of (2.1) in the thermodynamic limit.



In the non-interacting case, i.e., if Hy = HY, the Hamiltonian is quadratic in
the creation/annihilation operators. Therefore, the 2n-point Schwinger functions
satisfy the Wick rule, i.e.,

+ - + —
<T{qjx1 01,p1 \ijl,ol,pl \Ijxn,an,pn \ijn,og,p;)@[x =detG )
G’L] - 0-10- <T{\Ij \D+ ’ /}) . (326)

Xiy045P4 yj,aj,pj B,A

Moreover, every n—point Schwinger function S?A(xy,e1, 01, p1;. .. Xn, €ny Ony Pn)

with >°1" ; g; # 0 is identically zero. Therefore, in order to construct the whole

set of Schwinger functions of HY, it is enough to compute the 2-point function

SPMNx —y) = (T{Y,, V5, }>,8A‘ This can be easily reconstructed from the
2-point function of the a-fields and S-fields.

+ - FEA .

Let © € A, aaa = |A|~ 1Zk€BL iomal;’o_ and (3, ? |A| 121306& eima,;’g, if

x = (0, ), let o, = = M} woai e~ Ham and g5, = efamog= e~Hiwo A straight-

forward computation shows that7 if =68 <xyg—1yo <0,

(T{ag,0i, 1), = o Z k) (3.27)
FeB,
; ; co(zo—0)2(F)| ) cv(@o—yo+B)I2(R)|
: > 0)————— — (g — yo < _
[ (zo — Yo ) 1+ cvBlm) (2o — yo < 11 evBlo®) } )
(T{Broly o} ~ik@ (3.28)
ke,
o—v(@0—y0)|2(F)| e—v(@o—yo+8)|2(F)|
-1 — Y > 0)———— — 1 — Y <0 S
[1(@o =0 > 0) [+ oommy ~ M#o =90 < 0) =20 )
and (T{a;, }) = (T{Br,y o )sn = 0. A priori eqns(3.28) and (3.29)

are deﬁned only for —B < x9 — Yo < [, but we can extend them periodically
over the whole real axis; the periodic extension of the propagator is continuous in
the time variable for xq — yo € SZ, and it has jump discontinuities at the points
To — Yo € PZ. Note that at xo — yo = [n, the difference between the right and
left limits is equal to (—1)"dz 7, so that the propagator is discontinuous only at
x—y = BZx0. If we define Bg, 1, := Byx By, with Bz = {ko = 2”(ng—l— ) : ng € Z},
then for x —y & % x 0 we can write

S . 1
(T{ 0Oy 0 }) s 4 = 21x e k(x=y) — (3.29)
Sy T T Bl ke%yL —iko — v|Q(k)|
5. ‘ 1
(T{BroByo}) s = aix e~k S (3.30)
TEVTIBA T BIA| ke%u —iko 4 v|Q(k)|



If we now re-express i, and B, in terms of af, and by, ,, using (3.15), we
find that, for x —y & BZ x 0:

Ség’A(X - y—)ﬂvpl = Sg’A(Xu 07 ) pa Y) Ja +7 Pl)‘UZO -
1 —ik-(x—y) ik —O)* E
BIAl 5, k3 +02(Q(k) 12 \ —vQ(k) ke /),

Finally, if x —y = (0=, 0):

1 1 0 —uQ (k)
Sﬁ’A 07,0) = —= + —— - < - ) . (3.32
0 (07.0) 2 BIA] ke%,L k3 + v2[Q(k)[2 \ —vS2(k) 0 332

4. PERTURBATION THEORY AND GRASSMANN INTEGRATION

Let us now turn to the interacting case. The first step is to derive a formal
perturbation theory for the specific free energy and ground state energy. In other
words, we want to find rules to compute the generic perturbative order in U of
fan == —(BIA]) "t log Tr{e PHa}. We write Hy = HY + Vi, with V, the operator
in the second line of eqn(2.1) and we use Trotter’s product formula

e P = Tim [ PHR/M(1 — QVA)]” (4.1)
n

n—o0

so that, defining V) (t) := etHR Ve ~tHR

Trd{e—BHa
G (4.2)
Tr{e PHr}
8 th tvor - Te{e PHRV, (t;) -~ Vi(tn)}
=1+ —1N/ dt/dtm/ dt :
szjl( ) o o P 0 N Tr{e PH3}
Using the fermionic time-ordering operator defined in eqn(3.25), we can rewrite
eqn(4.2) as
Tr{e PHr} N0
U , 4.3
e LR ORI (43)
where (- >6A = Tr{e PHR.} /Tr{e PHRY,
n _ I _ 1
Vﬁf\ =U Z / \IJXTp\IIXTp 5)(\1[&%/)\1}&%0 B 5) ) (4‘4)

p=1,2

and [ 5)dx must be interpreted as [,y dx = f 5/2 dzo > zcp- Note that the
N-th term in the sum in the r.h.s. of eqn(4.3) can be computed by using the
Wick rule (3.26) and the explicit expression for the 2-point function eqns(3.31)-
(3.32). It is straightforward to check that the “Feynman rules” needed to compute
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(T{(VaA(W))N }>g , are the following: (i) draw NN graph elements consisting of
4-legged vertices, with the vertex associated to two labels x; and p;, 2 =1,..., N,
and the four legs associated to two exiting fields (with labels (x;, T, p1) and (x;, |
,pi)) and two entering fields (with labels (x;, 1, p;) and (x;,, p;)), respectively;
(ii) pair the fields in all possible ways, in such a way that every pair consists
of one entering and one exiting field, with the same spin index; (iii) associate
to every pairing a sign, corresponding to the sign of the permutation needed to

bring every pair of contracted fields next to each other; (iv) associate to every

— +
Xi,04,P37 — Xj5,05,05

the j-th vertex, with orientation from j to ¢; (v) associate to every oriented line

paired pair of fields [¥ | an oriented line connecting the i-th with

[j — i] a value equal to

I L) ( iko —vQ*<E>>
PisPj

(X —%x5) = > L '
Goies ( ;) BIA]| k2 4+ 02|Q(k))2 \ —vQ(F) iko

kB

(4.5)
where Bg\i) = BEM) x By, BEM) = Bs N {ko : x0(27M|ko|) > 0} and xo(t) is
a smooth compact support function that is equal to 1 for ¢ < 1/3 and equal to
0 for ¢ > 2/3; (vi) associate to every pairing (i.e., to every Feynman graph) a
value, equal to the product of the sign of the pairing times U” times the product
of the values of all the oriented lines; (vii) integrate over x; and sum over p; the
value of each pairing, then sum over all pairings; (viii) finally, take the M — oo
limit: the result is equal to (T{(VﬁjA(\If))NHg,’A. Note that the M — oo limit of
the propagator g(x) is equal to Sy (x) if x # 0, while g(0) = S5*(0) + 5. the
difference between ¢ and 55 A takes into account the —% terms in the definition
of Vaa().

An algebraically convenient way to re-express eqn(4.3) is in terms of Grass-
o="m, p=1,

2 .
Gf 7, where the Grassmann vari-
keB

mann integrals. Consider the set {ﬁfa o)

ables %fg , satisfy by the definition the anticommutation rules {zﬁf;a 0 1&16(//70,7 o=
0. In particular, the square of a Grassmann variable is zero and the only non-
trivial monomials in the considered Grassmann variables are at most linear in
each variable. Let the Grassmann algebra generated by the considered set of
Grassmann variables be the set of all polynomials obtained by linear combina-
tions of such non-trivial monomials. Let us also define the Grassmann integration

/ [ersg\/i) Hi#’f d&; - pdzﬁg -] @s the linear operator on the Grassmann algebra

such that, given a monomial Q(@ZAJ_,Q/AJJF) in the variables Qﬂia,p, its action on
L _ R 1T

Q7. ¢7) is 0 except in the case Q(¢~,¢") = [enon 1523 Yicop¥iopr UP to

a permutation of the variables. In this case the value of the integral is determined,
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by using the anticommutation properties of the variables, by the condition

p=1,2 R R p=1,2 . R
H H d¢lto7pd¢1:,mp} H H @ij,a,p%—:mp =1 (4‘6)
ke =T ke =T

Defining the free propagator matrix gy as

) B —iky  —vQ(k)\ "
i = xo(27[kol) (—UQ(E) —iky (4.7)
and the “Gaussian integration” Py/(dv) as
T FIAP Do M koDP
Py (diyp) = = Ud@baahpadwa-
e (di)) [ 1—([M) /<:8+UQ|Q(/€)|2 k,0,1%%k,0,1%%k,0,2% %k 2}
keBS')
o=Tl
: exp{ (BIA])™ Z @/)ka g k0, }a (4.8)
keBS")

it turns out that

/P(dw)l//}l:ho’l,pll/;:g,ag,pg = /8|A|50'110'25k17k2[gkl]p1,p2 ) (49)

while the average of an arbitrary monomial in the Grassmann variables with
respect to Py (dv) is given by the fermionic Wick rule with propagator equal to
the r.h.s. of eqn(4.9). Using these definitions and the Feynman rules described
above, we can rewrite eqn(4.3) as

Tr{e_BHA} . V()
T i, / Par(dip)e V@) (4.10)
where
V() =U Z/ AX Uy s Vs oVt (4.11)
p=1,2
1 . ~
;o,p = Y eﬂkwlﬁw , x € (—=B/2,8/2] x A (4.12)
BIA| ke 5y

and the exponential in the r.h.s. of eqn(4.10) must be identified with its Tay-
lor series (which is finite, due to the anticommutation rules of the Grassmann
variables and the fact that the Grassmann algebra is finite for every finite M).

Let now

M= B log/PM d)(e V)Y | (4.13)

Proposition 1 Let 8 and |A| be sufficiently large. Assume that there exists Uy > 0
such that Féj\g) is analytic in the complex domain |U| < Uy and is uniformly
convergent as M — oo. Then, if |U| < Uy,

fan=— | B > log (2 +2cosh(Bo[Q(R)]) + lim Fi. (4.14)
keBy
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Proof. We need to prove that

Tr{e PHx}

— _ : (M)
m = exp{ — B|A| A}Ignoo Fga't- (4.15)

The first key remark is that, if 5, A are finite, the left hand side of (4.15) is a
priori well defined and analytic on the whole complex plane. In fact, by the Pauli
principle, the Fock space generated by the fermion operators %m bjE > with
7 € A, o =1, is finite dimensional. Therefore, writing Hy = H3 + VA, Wlth HY
and V, two bounded operators, we see that Tr{e %A} is an entire function of U,

simply because e ## converges in norm over the whole complex plane:

= < BIVAILS < 51
—BHA|| < Bf HO Vil = /B || A A _
le ||_nZ:%n!(H all = [[Vall) ;;) o 7;; (n— k)]
eBIHRI+BIVAIl (4.16)
where the norm || - || is, e.g., the Hilbert-Schmidt norm || A|| = /Tr(AtA).

On the other hand, by assumption, Fﬁ(]\//{) is analytic in |U| < Uy, with Uy inde-
pendent of 3, A, M, and uniformly convergent as M — oo. Hence, by Weierstrass
theorem, the limit Fjn = limpy o0 F| ﬁ(,]\/{) is analytic in |U| < Uy and its Taylor
coefficients coincide with the limits as M — oo of the Taylor coefficients of Fj (M )
Moreover, lim oo e ” AR — = ¢ PIMFsA again by Weierstrass theorem.

As discussed above, the Taylor coefficients of e #IM¥Fs.a coincide with the Tay-
lor coefficients of Tr{e s} /Tr{e PHoa}: therefore, Tr{e P} /Tr{e FHon} =
e AIMFsa in the complex region |U| < Uy, simply because the Lh.s. is entire in
U, the r.h.s. is analytic in |U| < Uy and the Taylor coefficients at the origin of
the two sides are the same. Taking logarithms at both sides proves (4.14). =

By Proposition 1, the Grassmann integral eqn(4.13) can be used to com-
pute the free energy of the original Hubbard model, provided that the r.h.s.
of eqn(4.13) is analytic in a domain that is uniform in M, 8, A and that it con-
verges to a well defined analytic function uniformly as M — oo. The rest of these
notes are devoted to the proof of this fact. We start from eqn(4.13), which can

be rewritten as

PN = ! 3 (_I)NST(V; N), (4.17)
CBIAl & N
where the truncated expectation ET is defined as
aN
ETViN) = 5 log/PM (d)eV @, _, . (4.18)
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More in general,

oN
gT(Vl, o 7VN) - m IOg/PM(d@ZJ)GMVl(wH— +ANVN(¢)|/\1'=0 (4.19)

and ET(V1,...,Vn)lyoy = ET(V;N). Tt can be checked by induction that
the truncated expectation is related to the simple expectation £(X(¢)) =

J Pru(d) X () by

Y,

1
T)vq)

EVr---Vy) = i 7V

IR

)&V, Yk )

(4.20)
where the second sum in the r.h.s. runs over the partitions of {1,..., N} into
disjoint sets Y, i = 1,...,p, such that Y; = {ji,...,jfy, }. Note that E(VV) =
EWVr, .., VN)y,—y can be computed as a sum of Feynman diagrams whose val-
ues are determined by the same Feynman rules described after eqn(4.4) (with
the exception of rule (viii): of course, since £(X) = [ Py (dy)X, M should be
temporarily kept fixed in the computation); we shall write

EWVN)= > Val(g), (4.21)
gel'y
where 'y is the set of all Feynman diagrams with N vertices, constructed with
the rules described above; @(g) includes the integration over the space-time
labels x; and the sum over the component labels p;: if G € 'k, we shall write
symbolically

Val(G) = ogUY Y / dx; - dxy [] g0 (x(0) =X (0) . (4.22)

Pl PN Leg

where og is the sign of the permutation associated to the graph G and we denoted
by (x(¢), p(¢)) and (x'(¢), p'(¢)) the labels of the two vertices, which the line ¢
exits from and enters in, respectively. Using eqns(4.20)-(4.21), it can be proved
by induction that

ET(V;N) = Y Val(g), (4.23)

ger?t,

where '\, C 'y is the set of connected Feynman diagrams with N vertices. Com-
bining eqn(4.17) with eqn(4.23) we finally have a formal power series expansion
for the specific free energy of our model (better, of its ultraviolet regularization
associated to the imaginary-time ultraviolet cutoff xo(27|ko|)). The Feynman
rules for computing \751(9) allow us to derive a first very naive upper bound on
the N-th order contribution to F[gf\/{), that is to

Fy 1 (_1)N8T(V- N) (4.24)
T BIAL W o '
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We have:

(M;N)
|F5 A B|A|N' Z |Val(G

gert,
~ T4
N!

where |[I'}| is the number of connected Feynman diagrams of order N and

2N 1M gl gl (4.25)

BIAICITDN|gl|IN+ [1gl|~* is a uniform bound on the value of a generic con-
nected Feynman diagram of order N. The bound is obtained as follows: given
G € T, select an arbitrary “spanning tree” 7 C G, i.e. a loopless subset of G
that connects all the NV vertices; now: the integrals over the space-time coordi-
nates of the product of the propagators on the spanning tree can be bounded
by BIA] - ||g||¥"; the product of the remaining propagators can be bounded by
|g||¥+1; finally, the sum over the p; labels is bounded by 2V. Using eqn(4.25)
and the facts that, for a suitable constant C' > 0: (i) |[T%| < CN(N1)?, (ii)
119]]0e < C2M~h"where the negative integer h* is such that 2" 1 < /3 < 21"
(i) ||gl]y < C27"", we find:

(V| < (203 |U])N N1 2M(NHD 2N (4.26)

This pessimistic bound has two main problems: (i) a combinatorial problem, as-
sociated to the N!, which makes the r.h.s. of eqn(4.26) not summable over N,
not even for finite M and h*; (ii) a divergence problem, associated to the factor
QM(N+1)=2h"N " which diverges exponentially as M — oo (i.e., as the ultraviolet
regularization is removed) and as h* — —oo (i.e., as the temperature is sent to
0). The combinatorial problem is solved by a smart reorganization of the pertur-
bation theory, in the form of a determinant expansion, together with a systematic
use of the Gram-Hadamard bound. The divergence problem is solved by system-
atic resummations of the series: we will first identify the class of contributions
that produce ultraviolet or infrared divergences and then we show how to induc-
tively resum them into a redefinition of the coupling constants of the theory; the
inductive resummations are based on a multiscale integration of the theory: at
the end of the construction, they will allow us to express the specific free energy
in terms of modified Feynman diagrams, whose values are not affected anymore
by ultraviolet or infrared divergences.

5. THE DETERMINANT EXPANSION

Let us now show how to attack the first of two problems that arose at the
end of previous section. In other words, let us show how to solve the combina-

torial problem by reorganizing the perturbative expansion discussed above into
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a more compact and more convenient form. In the previous section we discussed
a Feynman diagram representation of the truncated expectation, see eqn(4.23).
A slightly more general version of eqn(4.23) is the following. For a given set of
indices P = {f1,..., fip}, with fi = (x;,04, pi, &), € € {+, =}, let

T ()
Y(P) = 1] Uipotrn - (5.1)
feprP

with obvious notation. Each field @/Ji((];))a( £p(f) Can be represented as an oriented
half-line, emerging from the point x(f) and carrying an arrow, pointing in the
direction entering or exiting the point, depending on whether e(f) is equal to —
or +, respectively; moreover, the half-line carries two labels, o(f) € {1,]} and
p(f) € {1,2}. Now, given s set of indices P, ..., P;, we can enclose the points
x(f) belonging to the set P;, for some j = 1,..., s, in a box: in this way, assuming
that all the points x(f), f € U;P;, are distinct, we obtain s disjoint boxes. Given
P :={P,..., P}, we can associate to it the set I'7(P) of connected Feynman
diagrams, obtained by pairing the half-lines with consistent orientations, in such
a way that the two half-lines of any connected pairs carry the same spin index,
and in such a way that all the boxes are connected. Using a notation similar to
eqn(4.22), we have:

EX(p(P),...,0(P)) = Y Val(G),  Val(G) = og [ gote).pr0)(x(0)—x'(£))
GerT(p) Leg
(5.2)

A different a more compact representation for the truncated expectation, alter-
native to eqn(5.2), is the following:

ETW(P),.. . 0P = 3 ar Hgg/dPT(t) det G (t) (5.3)

TeT(P) LeT

where:

e any eclement 7' of the set T(P) is a set of lines forming an anchored tree
between the boxes P, ..., P,, i.e., T is a set of lines that becomes a tree if

one identifies all the points in the same clusters;
e «ar is a sign (irrelevant for the subsequent bounds);
e g is a shorthand for g, () (x(¢) — x'(£));

o ift ={t;» €[0,1],1 <i,i" < s}, then dPr(t) is a probability measure with
support on a set of t such that ¢;;; = u; - uy for some family of vectors

u; € R” of unit norm;
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o if 2n =37 | |P), then GT(t) is a (n — s+ 1) x (n — s + 1) matrix, whose
elements are given by G}F,f/ = ti(p).if9ecr.p), where: f. f' & Fp, FTdif Uger
{f}, f?} and f}, f? are the two field labels associated to the two (entering
and exiting) half-lines contracted into ¢; i(f) € {1,...,s} is s.t. f € Pyp;
ge(s,fy 1s the propagator associated to the line obtained by contracting the

two half-lines with indices f and f’.

If s =1 the sum over T is empty, but we can still use the above equation by
interpreting the r.h.s. as 1 if P, is empty, and det GT(1) otherwise.

The proof of the determinant representation is described in Appendix A. Using
eqn(5.3) we get an alternative representation for the N-th order contribution to

the specific free energy:

FLSAX;N) _ 1 (_1>N5T(V'N) — 1 _ NZ Z aT/dx1
: BIA] NI /3|A| N' pLpN TET N
T (e = x0) [ APr(t) det G (1) (5.4)
LeT

Using the fact that the number of anchored trees in Ty is bounded by C¥ N! for

a suitable constant C, from eqn(5.4) we get:
[Fon ™1 < (const.)V[UY [|g]1Y ]| det G ()]l - (5.5)

In order to bound det G*, we use the Gram-Hadamard inequality, stating that, if
M is a square matrix with elements M;; of the form M;; =< A;, B; >, where A,,
B; are vectors in a Hilbert space with scalar product < -,- >, then

| det M| < JTIIAll - I Bi]] - (5.6)

where || - || is the norm induced by the scalar product.

Let H = R™ ® Hy, where H, is the Hilbert space of the functions F :
[=8/2,5/2) x A — C?, with scalar product (F,G) = ¥, [ dz F;(z)G,(2),
where F, = [F],, G, = [G],, p = 1,2, are the components of the vectors F and
G. It is easy to verify that

Gy = titpiim 9o o) (X = X)) = (Wigp) © As(p) p(r)> Wits) © Bx(py,(7)) »

(5.7)
where u; € R”, ¢ = 1,...,n, are vectors such that ¢;; = u; - uy, and A, , and
By, have componentS'

—zk(z X)
[Ax ,(2) Z v X0 (27 M|kl 2|Q 25971‘, (5.8)

kes(™)

ik —oQ0* (k)
By VX0 (2 M ko) kb= (P10
[ P Z | <—’UQ<I{7) Zl{?() i )

keB(M)
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so that

1 2-M|k .
Al = 3 0B ) e (5.9)
BIA] kB (k6 + v2[Q(k)[?]
L

S (@ Mo DI + eIR(R)F] < c2M
keBS")

[1Bse,ll* =

ﬁH

for a suitable constant C'. Using the Gram-Hadamard inequality, we find
|| det G| < (comst.)N2M=P)WN+). gubstituting this result into eqn(5.5), w
finally get:

|F5M M| < (const.)N|U|N 2M(NFD-2NR (5.10)

which is similar to equn(4.26), but for the fact that there is no N! in the r.h.s.!
In other words, using the determinant expansion, we recovered the same dimen-
sional estimate as the one obtained by the Feynman diagram expansion and we
combinatorially gained a 1/N!. The r.h.s. of eqn(5.10) is now summable over N
for |U| sufficiently small, even though non uniformly in M and h*. In the next
section we will discuss how to systematically improve the dimensional bound by

an iterative resummation method.

6. THE MULTISCALE INTEGRATION: THE ULTRAVIOLET
REGIME

In this section we begin to illustrate the multiscale integration of the fermionic
functional integral of interest. This method will later allow us to perform iterative
resummations and to re-express the specific free energy in terms of a modified
expansion, whose N-th order term is summable in N and uniformly convergent
as M — oo and h* — —oo, as desired.

The first step in the computation of the partition function

Zwsri= [ Puldp)e ™) (6.1)

and of its logarithm is the integration of the ultraviolet degrees of freedom corre-
sponding to the large values of ky. We proceed in the following way. We decom-
pose the free propagator gy into a sum of two propagators supported in the regions
of kg “large” and “small”, respectively. The regions of kg large and small are de-
fined in terms of the smooth support function yo(t) introduced after eqn(4.5);

note that, by the very definition of x¢, the supports of XO(\/ k3 + |l¥ — ph|? ) and
Xo(\/k’g + |k — pal? ) are disjoint (here | - | is the euclidean norm over R?/A*).
We define

Fuw () = 1= xo (VR + 1K =55 ) = xo(VI§ + k=] ) (6.2)
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and f;,. (k) =1— f...(k), so that we can rewrite gy as:
~ ~ ~odef A (y.. ~ (2.7,
i = fuo ()G + Fir ()5 0 (k) + g1 (k) . (6.3)

We now introduce two independent set of Grassmann fields {wl({uavp } and
{wkgp }, with k € BBL, o =t,, p = 1,2, and the Gaussian integrations

P(dyp)) and P(dy(r)) defined by
/P(dw(““’) wkl o1 lekz 02,02 6’A|501 Cf26k1 ko9 (u v )(kl)m 02
/ Pyl it = BIAGoy 000k 10 (K1) s - (6.4)

Similarly to Py(di)), the Gaussian integrations P(di")), P(di")) also admit
an explicit representation analogous to (4.8), with g replaced by §**)(k) or
3% (k) and the sum over k restricted to the values in the support of f,., (k) or
fir.(k), respectively. It easy to verify that the ultraviolet propagator g*¥)(x —
y) = (B|A])! Zkesg@ e~ k&Y gluv) (k) satisfies, for all n > 0,

Ch
g (x—y)| < ———
L+ |x =yl

uniformly in M; here ||x|| = (/|03 + |Z]3, with | - |5 the distance over the one-
dimensional torus of length 5 and |- |5 the distance over the periodic lattice A.

(6.5)

The definition of Grassmann integration implies the following identity (“addition
principle”):

/P d’gZ) V() _ /P 77Zj(zr /P ¢(uv p(Em) fap(u-v.) (66)

so that we can rewrite the partition function as

= - (M) i.r.) .7
EnmpL = o BINES _/p di)! Yexp { Z — gr V(¢( )—|—-);n)} =

n>1

— 6_6|A|FO,]W/P(dw(i.r.))e—]}()(w(ir')) ’ (67)

where the truncated expectation L, is defined, given any polynomial V; (%))
with coefficients depending on ¥, as

€L, (Vi)sn) = =

and V) is fixed by the condition Vy(0) = 0. We will prove below that V, can be

written as

(u.v.))e)\Vl (p(u-v-)) ’

- (6.8)

o0 n

VO(¢) (B|A|) Z Z Z [ H ka; 1,05,P25— 1¢1(<2:;27;P2j} ’

n=1 01y, 0n =T} P1,--,p2n=01,2 k1,.. . kap, j=1

'WM,Qn,B(klv s 7k2n 1) 6 Z k2] 1 k2j y (69)
j=1
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where p = (p1, ..., pan) and we used the notation

(k) = 0(k)d(ko) . 6(k)=1IAl Y. Orniiimi s O(ko) = Bdko, (6.10)

n1,n2€%

with by, by a basis of A*. The possibility of representing V), in the form (6.9), with
the kernels WMQ’%B independent of the spin indices o;, follows from a number of
remarkable symmetries, discussed in Appendix B. The regularity properties of

the kernels are summarized in the following Lemma, which will be proved below.

Lemma 6.1 The constant Fyp in (6.7) and the kernels WM,QH,B in (6.9) are
given by power series in U, convergent in the complex disc |U| < Uy, for Uy
small enough and independent of 5, A, M, after Fourier transform, the X-space

counterparts of the kernels WM’%’B satisfy the following bounds:

/Xm"'dX2n|: H |’X1_X]|

1<i<j<2n

" [Wagamp (51, - Xa)| < BIAJCE U1

(6.11)
Jor some constant Cp, > 0, where m = 32 <, j<o, M;j. Moreover, the limits
Fo = limpy oo Fopr and Wap, ,(X1, ..., Xon) = Hmpsoo Waron p(X1, . .., Xop,) exist
and are reached uniformly in M, so that, in particular, the lirr;itmg functions are
analytic in the same domain |U| < U.

Remark.
Once that the ultraviolet degrees of freedom have been integrated out, the re-
maining infrared problem (i.e., the computation of the Grassmann integral in the
second line of (6.7)) is essentially independent of M, given the fact that the limit
W, of the kernles Wy oy, , is reached uniformly and that the limiting kernels are
analgftic and satisfy the same bounds as (6.11). For this reason, in the infrared
integration described in the next two sections, M will not play any essential role
and, for this reason, from now on we shall not stress anymore the dependence on

M, for notational simplicity.

Before we present the proof of Lemma 6.1, let us note that the kernels Wy o, ,
satisfy a number of non-trivial invariance properties. We will be particularlgf
interested in the invariance properties of the quadratic part WM,Qv(PIaPQ)(k)7 which
will be used below to show that the structure of the quadratic part of the new
effective interaction has the same symmetries as the free integration. The crucial
properties that we will need are summarized in the following Lemma, which is

proved in Appendix B.
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~ Lemma 6.2. Let Waa(k)A = Waroa)(k), Wap(k) = Wara 22 (k), Wap(k) =
Wirz,0,2) (k) and Wia(k) = Wara,2,1)(k). Then the following properties are valid:
(i) Waa(k) = Wip(k) and Way(k) = W (k);

(i) as  — 00, for w =4, W, (0,0%) = Wyu(0,5%) = 0;

(iii) as B, |A] = oo, for w =+,

8,;Waa(0 )

0, Re{@ko Woaa(0, 7)Y =0, Ok Wan(0,5) =0,
-

Re{@kl ( p } = Im{@k2 ab(O )} =0 s (612)
10, Wap (0, ) = w0, Wap(0, 5§ -
Remarks.

1) For simplicity, the properties (ii) and (iii) are spelled out only in the zero
temperature limit and in the thermodynamic limit; however, as it will be clear
from the proof, those properties all have a finite temperature/volume counterpart.
2) Lemma 3 implies that in the vicinity of the Fermi points the kernel Wy o () (k)

can be rewritten in the form

—0 - —iZOkO (50<Zk/ — Wk/)
Wara,p.p) (Ko, Py + k') = (50(_“{:,1 k) —zzoko 2 , (6.13)
p.p’

for some real constants zg, dy, modulo higher order terms in (ko, ¥'). Therefore,
it is apparent that its structure is the same as the one of S’O(k), modulo higher

order terms in (ko, &').

Let us now turn to the proof of Lemma 6.1, which illustrates the main RG

strategy that will be also used below, in the more difficult infrared integration.

Proof of Lemma 6.1. Let us rewrite the Fourier transform of ¢(**) (k) as

=> ¢ (), (6.14)

h=1

where

g™ (x Y fuw(K)Hpy(ko)e ™ g, (6.15)
ﬁ| |k€8(]\[)

with Hl(k’o) = X0(2_1|]{Z0|> and, if h Z 1, Hh(]{?(]) = X0(2_h|l€0’) — X0(2_h+1‘k0|>.

Note that [¢")(0)],, = 0, p = 1,2, and, for any integer K > 0, ¢! (x) satisfies

the bound
Ck

< _ 6.16
I T @ o)y + R (6.16)

9™ ()
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where || is the distance on the one dimensional torus of size § and |- |4 is the dis-
tance on the periodic lattice A. Moreover, g (x) admits a Gram representation:

Mi(x—y)=[dz [Ag,h) (x —z)]*- B (y — z), with

9p.p

p
f'ka
[A(h) Z Y fuv Hh J i
’ keB(M) + v?[Q(k |2 ’
. ik —o (k)
B™ o () Hy (ko) e~ [ 70 6.17
[ P ( 6| ke%M) f h( 0>6 —UQU{?) Zko ME )
and

JAD (x —)[]> < C277" IBM(y — )| < c2*", (6.18)

for a suitable constant C.

Our goal is to compute

e—ﬂ\A|F0,M—V0(w(i‘r>) :/P(d¢[1:M])e—v(lb(i'r‘)-ﬁ-%/)[l’M])
log/P e ) SR (L)

where P(di)M) is the fermionic “Gaussian integration” associated with the
propagator 307, g™ (k) (i.e., it is the same as P(d“*"))); moreover, we want to
prove that Fy s and Vy(10")) are uniformly convergent as M — co. We perform
the integration of (6.19) in an iterative fashion: in fact, we will inductively prove
that

e*ﬁ|A|FO,1\/17VO(w(i'T)) _ e,B|A|Fh /P<dw[1,h])€7V(h)(’¢y(i4r<)+w[l,h]) (620)

where P(dy") is the fermionic “Gaussian integration” associated with the prop-
agator Yr_, g™ (k) and VM) = V; for 1 < h < M,

V(h)w[lﬁ]) — (6.21)
. [1,h 1,h]— (h)
- Zl Z/ dxy - dX2 H X2g ]J1r0g p2j— 11/13[(2j,]0'j:p2j] WM,QTL@(XI’ T ’XQ") :
n p, :

In order to inductively prove (6.20)-(6.21) we use the addition principle to rewrite

/P dwuh —P() (g (8-7) LplLoh]Y /P d@b [Lh— 1] /P d@b V<h) (pE7) pap[Lh =1 gy ()

(6.22)
where P(dip™) is the fermionic Gaussian integration with propagator § (k).
After the integration of ¢)")) we define

e_v(hil)('ll)(i‘r‘)‘f'd)[l’hil])_B|A|Eh _ /P<d¢(h))e_V(h)("Z”(Ln)'i'w[l’hil]'i"lz)(h)) 7 (623)
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which proves (6.20) with
M
> e (6.24)
k=h+1

Let & be the truncated expectation associated to P(di)(): then we have

e+ VO (@) = 3 S (CHET VO + W) (6.25)

n>1 n.

The r.h.s. of eqn(6.25) can be graphically represented as in Fig.1. The term

FIG. 1. The graphical representation of YV

with n final points corresponds to the n-th term in the sum: a scale label h — 1
should be attached to the leftmost node (called the root); a scale label h should
be attached to the central node (corresponding to the action of £F); a scale
label h 4 1 should be attached to the n rightmost nodes with the big black dots
(representing V™). The sum of the tree graphs in Fig.1 can be represented by a
simple tree consisting of a single horizontal branch, connecting the root (on scale
h — 1) with a big black dot on scale h. Iterating the graphical equation in Fig.1
up to scale M, and representing the endpoints on scale M + 1 as simple dots
(rather than big black dots), we end up with a graphical representation of V"
in terms of trees, see Fig.2, defined in terms of the following features.

\
L

T

A

‘<\ <““

S
T~
\\

AN

/] ]\

VSN

n

FIG. 2. A tree 7 € 7~VM;n,h3 the root is assumed to be on scale h and the endpoints to
be on scale M + 1.
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1. Let us consider the family of all trees which can be constructed by joining
a point r, the root, with an ordered set of n > 1 points, the endpoints of
the unlabeled tree, so that r is not a branching point. n will be called the
order of the unlabeled tree and the branching points will be called the non
trivial vertices. The unlabeled trees are partially ordered from the root to
the endpoints in the natural way; we shall use the symbol < to denote the
partial order. Two unlabeled trees are identified if they can be superposed
by a suitable continuous deformation, so that the endpoints with the same
index coincide. It is then easy to see that the number of unlabeled trees
with n end-points is bounded by 4. We shall also consider the labelled trees
(to be called simply trees in the following); they are defined by associating
some labels with the unlabelled trees, as explained in the following items.

2. We associate a label 0 < h < M — 1 with the root and we denote 7~’M;h7n the
corresponding set of labeled trees with n endpoints. Moreover, we introduce
a family of vertical lines, labeled by an integer taking values in [h, M + 1],
and we represent any tree 7 € 7~‘M;h,n so that, if v is an endpoint, it is
contained in the vertical line with index h, = M + 1, while if it is a non
trivial vertex, it is contained in a vertical line with index h < h, < M, to
be called the scale of v; the root r is on the line with index h. In general,
the tree will intersect the vertical lines in set of points different from the
root, the endpoints and the branching points; these points will be called
trivial vertices. The set of the vertices will be the union of the endpoints,
of the trivial vertices and of the non trivial vertices; note that the root is
not a vertex. Every vertex v of a tree will be associated to its scale label
h,, defined, as above, as the label of the vertical line whom v belongs to.
Note that, if v; and vy are two vertices and vy < vq, then h,, < hy,.

3. There is only one vertex immediately following the root, which will be
denoted vg and cannot be an endpoint; its scale is h + 1.

4. Given a vertex v of T € Tarp., that is not an endpoint, we can consider the
subtrees of 7 with root v, which correspond to the connected components of
the restriction of 7 to the vertices w > v. If a subtree with root v contains

only v and one endpoint on scale h, + 1, it will be called a trivial subtree.

5. With each endpoint v we associate a factor V(w[l’M]) and a set x,, of space-
time points (the corresponding integration variables in the x-space repre-

sentation).

6. We introduce a field label f to distinguish the field variables appearing in
the factors V(M) associated with the endpoints; the set of field labels
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associated with the endpoint v will be called I,,; note that if v is an endpoint
|I,| = 4. Analogously, if v is not an endpoint, we shall call I, the set of
field labels associated with the endpoints following the vertex v; x(f), e(f),
o(f) and p(f) will denote the space-time point, the ¢ index, the ¢ index
and the p index, respectively, of the Grassmann field variable with label f.

In terms of trees, the effective potential V), 0 < h < M (with VO ()
identified with Vy(1/")), can be written as

VO QM)+ BlA[en =Y > V(7 g (6.26)
n=1 TE%M;h,n
where, if vy is the first vertex of 7 and 71,...,7s (s = s,,) are the subtrees of 7
with root vo, V™ (7, ") is defined inductively as:
(_1)s+1

VO (7, M) = En VD () YO (7 ) (6.27)

s!

Given the constants €, as defined by eqn(6.26), the

For what follows, it is important to specify the action of the truncated expecta-
tions on the branches connecting any endpoint v to the closest non-trivial vertex
v" preceding it (here we are call v non-trivial if s,, > 1). In fact, if 7 has only one
end-point, it is convenient to rewrite V) (7, M) = g &1, - £, (VM)

in telescopic series as:

M

VO gty = V(@) + 37 &y - EF ) = V() o (6.28)

k=h+1

If we graphically represent the k-th term in the r.h.s. of eqn(6.28) by a subtree
with only one end-point, with root on scale h and endpoint on scale k+ 1, we end
up with an alternative representation of the effective potentials, which is based
on a slightly modified tree expansion. The set of modified trees with n endpoints
contributing to YV will be denoted by Tarnn; every 7 € Tarnn is characterized
in the same way as the elements of 7~'M;h7n, but for two features: (i) the endpoints
of 7 € Ty.nn are not necessarily on scale M +1; (ii) if v, is an endpoint of 7, then
it is associated either to V(i[»—1) if the non trivial vertex v/ immediately
preceding v, on 7 is on scale by — 1, or to &L V(@A) — P(eplthe—2)] Hif
hy < h,, —1. See Fig.3.

In terms of these modified trees, we have:

VO 4 BlAfena =30 35 VW(rulth) (6.20)
n=1 TGTM;h,n

where, if vy is the first vertex of 7 and 7,..., 7 (s = s,,) are the subtrees of 7
with root vy, V(7,141 is defined inductively as follows:
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FIG. 3. A tree 7 € Tarnn: the root is assumed to be on scale h and the endpoints to
be on scales < M + 1.

i) if s > 1, then

(~1)

VIO () = =

R el G ) FEED Ml C N | P
(6.30)

where VD (1, LA+ is equal to Y+ (7, LA+ if the subtree 7; con-

tains more than one end-point, or if it contains one end-point but it is not

a trivial subtree; it is equal to V(¢!V"+1) if 7; is a trivial subtree;

i) if s = 1, then VW (1,9(EM) is equal to EL [V (7, BN if 7 s not
a trivial subtree; it is equal to L [V (1) — V(] if 7 is a trivial

subtree.

Note that, with V(1) defined as in eqn(4.11) and with the choice we made
of the ultraviolet cutoff (such that [¢"(0)],, = 0), we get L[V (pr+1) —
V(y!B"] = 0 (i.e., the tadpoles are zero). This implies that, if v is not an
endpoint and n(v) is the number of endpoints following v on 7, and if 7 has a
vertex v with n(v) = 1, then its value vanishes: therefore, in the sum over the
trees, we can freely impose the constraint that n(v) > 1 for all vertices v € 7 that
are not endpoints. From now on we shall assume that the trees in Ty, satisty
this constraint. Using its inductive definition, the right hand side of eqn(6.29)
can be further expanded, and in order to describe the resulting expansion we
need some more definitions.

We associate with any vertex v of the tree a subset P, of I, the external fields
of v. These subsets must satisfy various constraints. First of all, if v is not an
endpoint and vy,...,vs, are the s, > 1 vertices immediately following it, then
P, C U;P,,; if v is an endpoint, P, = I,. If v is not an endpoint, we shall denote
by @, the intersection of P, and P,,; this definition implies that P, = U;Q,,. The
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union Z, of the subsets P,, \ Q,, is, by definition, the set of the internal fields of
v, and is non empty if s, > 1. Given 7 € Ty, there are many possible choices
of the subsets P,, v € 7, compatible with all the constraints. We shall denote
by P, the family of all these choices and by P the elements of P,. With these
definitions, we can rewrite V" (7, ¢[bh]) as;

VW (7 gty = %y

PcP,
VO (7, P) = [ dx (P ) K (x0y) (6.31)
where x, = User, {x,},
Tk [1,h] (/)
PI(P) = fH V(o (f)olh) (6.32)
epry,

and K;h;f 1)(Xv0) is defined inductively by the equation, valid for any v € 7 that
is not an endpoint,

LIRS 00)] LR\ Qo). T (P, \ Qu )
- (6.33)
where ") (P,, \ Q,,) has a definition similar to (6.32). Moreover, if v; is an
endpoint K{"*1(x,,) is equal to the kernel of V(¢!*); if v; is not an endpoint,
Kl = Kiﬁgl), where P; = {P,,w € 1;}. Using in the r.h.s. of eqn(6.33) the
determinant representation of the truncated expectation discussed in the previous

hy
K% (x,) =

section, we finally get:

VO (r,P) = /dxvow[l POV (x0) = S VWP T),  (6.34)
TeT TeT
where
WTPT<X’L}0) = (635)
—U"{ 1 . '/dPTU ) det GMTo(t,) lg 501_0;92 l ( l—y,)]}
not e.p.

and G™T»(t,) is a matrix analogous to the one defined in previous section, with
g replaced by ¢™. Note that W.p 1 and, therefore, V) (7, P) do not depend on
M: Vﬁ) (1) depends on M only through the choice of the scale labels (i.e., the
dependence on M is all encoded in Tprp,). Using eqns(6.34)-(6.35), we finally
get the bound:

1
5\/\\/dxl"'dX21|WJ$Z)2Lp(X1>---vxzz)|S > o X > X

n>max{1,/—1} T€TMhn PEPr TET
|Pyg =21

1
/dez v l 11 ;H%?deetGh”’Tv(tv)’ IT 119" i — y)l|| - (6.36)

leT v not e.p. °V° €T,
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Now, an application of the Gram—Hadamard inequality, combined with the di-
mensional bounds eqn(6.18), implies that

|detG™ T (t,)] < (const.)zzl | Poy | =1 Po] =2(s0=1) (6.37)

By the decay properties of g™ (x) given by eqn(6.16), it also follows that
1 . 1o
11 svl/ I di =y llg™ o -yl <t I 2™V, (6.38)

v not e.p. LeT, v not e.p. Sy-
Plugging eqns(6.37)-(6.38) into eqn(6.36), we find that the L.h.s. of (6.36) can be
bounded from above by

Y Y Y Sleomst)y W[ [I 2tV (60)

n>max{1,l—1} T€Tar;n,n PEPr TET v not e.p. Sy
| Pyg =21

Using the following relations, which can be easily proved by induction,

Yo (sp—1)=n-1, (6.40)

Z (hv - h)(sv - 1) = Z (hv - hv’)(n(v) - 1) )

where v’ is the non trivial vertex immediately preceding v on 7, we find that

eqn(6.39) can be rewritten as
Lg—wv—hv/)(n(v)—l)]

Z Z Z Z(const.)”|U|”2_h(”_1){ H -

n>max{1,l—-1} T€Tarr;n,n PEPr TET v not e.p. “VU*
[Pyq |=21

)

(6.41)
where we remind the reader that n(v) > 1 for any 7 € Tyrp,,. Now, the number of
terms in ) pcr can be bounded by (const.)” [T, yot ep. Sv!; moreover, |P,| < 4n(v)

and n(v) — 1 > max{1, ”(2”)}, so that n(v) —1 > $ + “fg'. Therefore,

1
m / dX1 R dXQl|W]$/}[l7)2l7£(X1, c. ,X21)| S Z (CODSt.)n|U|n2_h(n_1) :

n>max{1,l—1}

> (I[ et 52 (T 277, (6.42)

TETM.h.nV DOt e.p. PePr v not e.p.
w [Pyg |=21

Now, the sum over P can be bounded using the following combinatorial inequality:
let {py,v € 7}, with 7 € Tpr.pn, a set of integers such that p, < 325, p,, for all
v € 7 that are not endpoints; then, if a > 0,

I > <oy,

v not e.p. Pv
which implies that

Z ( H 2*‘P”|/16) < (const.)™ . (6.43)

PePr v not e.p.
| Pyg =21



28

Similarly, one can prove that

SSO(IT 2% ) < (const.)” (6.44)

TGTM;h »? not e.p.

uniformly in M as M — oco. Collecting all the previous bounds, we obtain

1
o [ dxalWiih, (x,ox) <X (const) U2

n>max{1,/—1}

(6.45)
which implies (6.11) with m = 0. The proof of the general case, m > 0, is
completely analogous. The constant €;, can be bounded by the r.h.s. of eqn(6.36)
with [ = 0 and n > max{2,l — 1} (because the contributions to &, with [ = 1 are
zero, by the condition that the tadpoles vanish), which implies

en < Z (const.)™|U|"27""=Y < (const.)|U|*27" . (6.46)
n>max{2,l—1}
Therefore, Fypr = ch\il € is given by an absolutely convergent power series in
U, as desired. A critical analysis of the proof shows that all the bounds are
uniform in M, 5, A and all the expressions involved admit well-defined limits as
M, 5,|A| — oo, whoch admit the same bounds. See [1] for details on these
technical aspects.

7. THE MULTISCALE INTEGRATION: THE INFRARED REGIME

We are now left with computing
S = ¢ N[ Py (7.1)

We proceed in an iterative fashion, similar to the one described in the previous
section for the integratin of the large values of ky. As a starting point, it is
convenient to decompose the infrared propagator as:

¢ (x,y) = 3 ¢ P @0 (<0 (x ) | (7.2)
w==%

where, if K = (ko, ¥,

- —ik —o (K + )\ !
95" y) = o 2 ol i (x )< Q~,°W (k F>>
B| |k’€B“’ —v (k' +pF) —Zko

(7.3)

and B, = By x By, with By = {85, + %y — jg , 0 < ny,ny < L — 1}

Correspondingly, we rewrite 1)) as a sum of two independent Grassmann fields:

(zr):i: Z ezﬁlfﬁfqﬁ <0)+ (74)

xop X,0,p,W
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and we rewrite (6.7) in the form:

Empr = e B\AIFo/p (d(E0)eVOWE) (7.5)
where V(O (1(<9)) is equal to Vi (1)), once 9™ is rewritten as in (7.4), i.e
P(0) (1/,(20)) — (7.6)

Z ’A| Z Z, Z [ H w O'] P2j—1,w25— 1wkj0)0'] P2 ng} ’
- ) 1 n

n=1 O15eon=Tl p1,p2n=1,2 K| ,.. K}
2n
Wznpw(ki, Ky ) (D (1Y (PR +K))) =
j=1
= N (<0) (0)
— Zl / Xm . e dX2 |:H X23 1 JJ P25 —1,W2j— legj70'j7p2jaw2j:|WQ”vB:H(X]" N 7X2TL>
n=10,pw j=1
with:
D) w=(w1,...,wa), a=(01,...,0,) and p% = (0,pF);

2) Wég?g,g(klh s 7k,2n71> = WM72n7g(k/1 + p;jv te 7k/2n 1 + pl;}n 1) see (69)7

3) the kernels Wz(g?pﬁ(xl, ..., Xgy) are defined as:

WQ(S?B,Q(XD < 7X2n) = (77)
. 2n ) o
= (B|A|)_2n Z 6ZZJ 1( k ijanw(k/D"'?k/Qn—l) 5(2(_1)J(pF] +k;)) .
K, Kk 7j=1

Moreover, Py, ,(d(S?) is defined as

xo(|k’[)>0
Py 40 (=) =No—1[ 1 TII dzbkfﬁpwd@wﬁf?,pw] : (7.8)

k/EB“’ o,W,p

xo([k'])>0

ep{—BANT Y Y (KR, A ()Y

w=k,0=t| KEBY

where:
—ik —v V(K + pg
AO,w(kI> _ _/'l/ 0 N (% ( ’ +pF) _
—vQK + pE) —iky
. —Z'Q)ko + So(k/) CQ(Zki - Wl{?é) + t07w(k/)
 \wo(—ik] — wkb) +t5 ,(K) —iCoko + so(k') ’

Ny is chosen in such a way that [ Py, a,(d(S9) =1, ¢ =1, vg = v, 50 := 0 and
[tow(X)] < CK%.

It is apparent that the ¥(<9 field has zero mass (i.e., its propagator de-
cays polynomially at large distances in x-space). Therefore, its integration re-

quires an infrared multiscale analysis. As in the analysis of the ultraviolet
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problem, we define a sequence of geometrically decreasing momentum scales
2" 'h = 0,-1,-2,... Correspondingly we introduce compact support functions
fu(K) = xo(27"K|) — x0o(27""1K'|) and we rewrite

Yo(|K|) = Z Fr(K) . (7.9)

h=—00
The purpose is to perform the integration of (7.5) in an iterative way. We step by
step decompose the propagator into a sum of two propagators, the first supported
on momenta ~ 2" h < 0, the second supported on momenta smaller than 2".
Correspondingly we rewrite the Grassmann field as a sum of two independent
fields: (&P = (M) 4 h(SP=1) and we integrate the field ™. In this way we
inductively prove that, for any h < 0, eqn(7.5) can be rewritten as

EMpL =€ mAth/ s (A SV OED) (7.10)

where Fj,, Ap, V) will be defined recursively, xn(|K'|) = S fe(k') and
Py, 4, (d)SW) is defined in the same way as Py, a,(d(SY) with (S yq,
Ap s Co, Vo, So, tow replaced by Q/J(Sh),Xh,AhM,Ch,Uh,Sh?th’w, respectively. More-
over YW (0) = 0 and

n

o

_ -2 } : ] I J{sh)+ 7(<h)—

= El:(ﬁ|/\|) " §: [ Khi 1,05,02j—1,w2j—1 kl2j7o—j7p2j7w2j:| .
n—=

T,0,W. k/17 ,k’ 7j=1
2n
< (h .
WK, K, ) 63 (1) (P +K))) = (7.11)
j=1
N - <h)- (h)
B Z / dxq - 'dX2n|: H X2J h%sz 1,W2;5— 11/’>(<2j,¢)7j,p2j,w%} W%Bvﬂ(xl’ T ’XQ") '

B :

Note that the field wk/
has the same support as xp, that is on a neighborood of size 2" around the

“..» Whose propagator is given by x,(|k'|)[AP (k)]

singularity k' = 0 (that, in the original variables, corresponds to the Dirac point
k = p%). It is important for the following to think W2n P> h <0, as functions of
the variables {(x, vx }n<k<o. The iterative construction below will inductively im-
ply that the dependence on these variables is well defined. The iteration continues

(M)
up to the scale h* and the result of the last iteration will be Zp 51, = e PIMEFS A"

Localization and renormalization. In order to inductively prove (7.10) we write
v = cy® 4 ry® (7.12)

where

xn(|k'[)>

EV(h 6’A| Z¢ Z Z wk’ ;0,01 wwk/ 0,02, wWQ(,hB),(w,w) (k/) y (713)
o=t} r1,p2=12
w==+
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and RV™ is given by (7.11) with 3°°, replaced by >°°,, that is it contains only
the monomials with four or more than four fields.

Note that in (7.13) the w-index of the 1) fields is the same; this follows from the
fact that in the terms with different w’s the momenta verify kj —ki, +p% —pp* =
nlgl + nggz, for some choice of nq,n9, and such a condition cannot be verified if
k', k) are in the support of the (5" fields, as one can easily check.

Remark. The fact that the quadratic terms with different w’s, i.e., the one-
particle umklapp processes, do not contribute to the infrared effective potential is
a crucial fact, which reduces the number of relevant running coupling constants
and, in particular, tells us that the interaction does not generate mass terms.

The symmetries of the action, which are described in Appendix B and are pre-
served by the iterative integration procedure, imply that, in the zero temperature
and thermodynamic limit, VV2 o, »(0) =0 and

—izhko §h(2k/1 - wké)
L W 0) — 7.14
O P1n02) (w, “J)( ) <5h(—zki — Wké) —izpko P1,02 , ( )

for suitable real constants zj,, d,. The proof of (7.14) is completely analogous to
the proof of Lemma 6.2 and will not be belabored here.
Once that the above definitions are given, we can describe our iterative inte-

gration procedure for h < 0. We start from (7.10) and we rewrite it as

/ o, (dp(EW) gV WEN)RVB ) -5l (7.15)
with
xn(|K'])>0
LYW (=Y = (BIA])~ Z Z : (7.16)
S —izpko + ffh(k ) On(iky — why) + 7w (K') HER-
Ko \ 5, (—ik) — why) + 7, (K) —izpko + o (K) Ko *
Then we include LV™ in the fermionic integration, so obtaining
_RY(B) (p(Sh)y_ e
/ P g (W) e RO W) BN P ter) (7.17)
where
e = S (K) A LW L 1 (78)
w,0 k! n>1

is a constant taking into account the change in the normalization factor of the

measure and

A1 o(K) = ( —iC ko + Sh1(K') Tn_1 ik, — wh) +th1’w(k’)>

U1 (—iky — wkh) + 1,1, (K) —iCp_1ko + 5h-1(K)
(7.19)
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with:
Cra(K) = G+ znxan (k') Th—1(K) = v + Snxn(kK')
Sh-1(K) = sp(K) + on(K)xn(k) , thorw(k) = thw(K) + 7hw (k) xn (K'(7.20)

Now we can perform the integration of the ¢® field. We rewrite the Grassmann
field (" as a sum of two independent Grassmann fields (=*=1 4 (") and

correspondingly we rewrite (7.17) as

—BIA|(Fp+ (<h— 1 h — RV (h(Sh=1) 14 ()
ﬁ||<heh/ o () /th“@/’())@ (w o™

(7.21)
where
)~ ( —iGhrko 511 (K) iR = ) + () )
’ vp_1(—iky — wkh) + t’;L_Lw(k/) —iCh_1ko + sp_1(K)
(7.22)
with:

Ch—1 = Cp + 21 , Up—1 = Up + Op, ,
Shfl(k/> = Sh(k/) + O'h(k/) s thfl’wa{/) = th,w(k/) + Th’w(kl> . (723)

The single scale propagator is

/P h,Zh_l(dw(h))1/}7(3),;1,pl,W1w>(<l;),;'r2,P2,WQ = 601,0250117012 [gc(uh) (X17 X2)]p17p2 ) (724)

where

1

M Z e—ik’(m—xz)fh(k/) {Zh—l,w(k/)]_l ‘ (7.25)
K

GD%’YL

go(Jh) (x1,%2) =
After the integration of the field on scale h we are left with an integral involving
the fields ("1 and the new effective interaction V"~ defined as

V(=1 (p(Sh=1))_g, BIA| _ / . 1(dw(h))6_Ry(h)(¢(§h71>+¢(h>) ’ (7.26)

with V*=1(0) = 0. It is easy to see that V=1 is of the form (7.11) and that
Fy_1 = Fj + ey + €. It is sufficient to use the identity

o+ VD (D) = 3

n>1

Ly gl RV ERD W)y | (7.27)

n!
where ET( (™);n) is the truncated expectation of order n w.r.t. the propa-
gator g™, which is the analogue of (6.8) with ¥)(“) replaced by ¥ and with
P(dy™v)) replaced by O N (L (h)).
Note that the above procedure allows us to write the effective constants (¢, vp,),
h <0, in terms of (Cp, vg), h < k < 0, namely Cu_y = 85 ((Cu,vn), - - -, (Co, ) and
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Uh_1 = BY((Ch,vn), - - -, (Co, ), where 57 is the so—called Beta function.

An iterative implementation of (7.27) leads to a representation of V" (1(<h),
h < 0, in terms of a new tree expansion. The set of trees of order n contributing
to VW (1(=M) is denoted by T,. The trees in T}, are defined in a way very
similar to those in Tz, but for the following differences: (i) the scale labels of
the vertices of 7 € Ty, are between h + 1 and 1; (ii) with each endpoint v we
associate one of the monomials with four or more Grassmann fields contributing
to RV (¢p(Sh=1) " corresponding to the terms with n > 2 in the r.h.s. of (7.6)
(with (=0 replaced by (=#»~1). In terms of these trees, the effective potential
Yy p< —1, can be written as

VO GED) 4 BlAfes = Yo 30 VI (r, ) (7.28)
n=17€Ty, p
where, if vy is the first vertex of 7 and 71,...,7s (s = s,,) are the subtrees of 7

with root vy, VW (7,1(<") is defined inductively as follows:
i) if s > 1, then

(_1)s+1
s!

Y (T, ¢(Sh)) - ggﬂ[f;(hﬂ)(ﬁ, w(éhﬂ)); o ;T/(hﬂ)(u, ¢(§h+1))] 7
(7.29)
where VD (7, (<P is equal to RV (7, 4p(Sh+D) if the subtree 7; contains
more than one end-point, or if it contains one end-point but it is not a trivial
subtree; it is equal to RV (7;, (S if 7; is a trivial subtree;
i) if s = 1, then VW (7,9(=M) is equal to L, [RVBHD (1, (SN if 71 is not a
trivial subtree; it is equal to &L, [RVO (D) — RYO (p(SP] if 71 is a trivial
subtree.
Repeating step by step the discussion leading to eqns(6.31), (6.34) and (6.35),
and using analogous definitions, we find that
VO (7, P) Z/dxvo (P )W L (x,) = S VO P.T), (7.30)

TeT TeT

Wep,r(Xy,) [lﬁ[ ] : (7.31)
{ H /dPT,, ) det G To (¢ [H B it O o 90 (x l_yl)]pl_ﬁ}}'

leT,
In the eqn(7.31): v}, i =1,...,n, are the endpoints of ; Kq()f_f")(xvr) is the kernel
of one of the monomials contributing to RV (1(<h)); GMT is a matrix with

elements
h,T
G = tii/é‘w;,w;réa'lf,of [ggll) (Xz] —Yiy )]p Pz s (732)

ij,1' g’
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Once again, it is important to note that G*7 is a Gram matrix, i.e., defining
e; = e = (1,0) and e- = e, = (0,1), the matrix elements in (7.32) can be

written in terms of scalar products:

tirG ot O ot 198 (Xij = Wit ), = (7.33)

Wrw W wy
= (ui e, ®e,- A - (x5 — ), uy ® e+ ®et ® Bp?‘(xi’j’ — )) = (f..85)

where

1 —ik’x N s
[AP(X)]Z = mklz € K fh(k) 5z,p )

By,
1 iK% — -1
B(x)i= 0 > e KV Fn(K) [An 1w (K)] (7.34)
Bl |k/eB;L e
The symbol (-,-) denotes the inner product, i.e.,

(0, Re, Re, R@A(x—),uy ey e, By (X' —+)) =
= (ui : ui’) (ew : ew’) (ea : ea’) ' /dZAT<X - Z)B<X/ - Z) ) (735)

and the vectors f,, gz are implicitely defined by (7.33). As we already saw in the
previous sections, the usefulness of the representation (7.33) is that, by the Gram-
Hadamard inequality, | det(f,, gs)| < 1o ||fall|lgal]- In our case, ||f,|| < C2%h/2
and ||g.|| < C2"2. Therefore, ||fall ||gal] < C2%, uniformly in a, so that the
Gram determinant can be bounded by CP22"? where D is the dimension of G*7 .
The main result of this section is summarized in the following theorem, which

is the analogue of Lemma 6.1 and which easily implies Theorem 2.1.

Theorem 7.1 There exists a constants Uy > 0, independent of M, B and L, such
that the kernels Wéﬁ;,w(xl, ..y Xg) in (7.11), h < —1, are analytic functions of
U in the complex domain |U| < Uy, satisfying, for any 0 < 0 < 1 and a suitable
constant Cy > 0 (independent of M, 3, L), the following estimates:

1
AT / dxy -+ dxar|[ Wi, (%1, )| < 2037250 (Cy U ]ymer=D - (7.36)

Moreover, the constants e, and ey, defined by (7.18) and (7.27) are analytic func-
tions of U in the same domain |U| < Uy, and there they satisfy the estimate
len] + len] < ColU2CH0).

Proof of Theorem 2. Let us preliminarily assume that, for A’ < h < —1,
and for suitable constants ¢, ¢,,, the corrections zy,, d5, 05 (k’) and 7,,(k’) defined in
(7.14) and (7.16), satisfy the following estimates:

max {|zp|, [0n]} < U2, (7.37)
sup {10k on (K], 0% mhe (K[} < U220 20070

2h’—1§|k/‘§2h’+1
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Using (7.37) we inductively see that the running coupling functions ¢, vy, s5 (k')
and t5,(k’) satisfy similar estimates:

max {|¢y — 1], [vn — vo|} < c[U], (7.38)
sup {3 sn (K|, 1|08 (tho(K') = tou(K))[[} < U220 12000
2h,*1§|k’\§2h/+1
Now, using the definition of g™, see (7.25) and (7.19), we get, after integration
by parts, for any N > 0,

22h

(h) <
[19° Ger, x2)], 0| < Oy e~ )Y (7.39)

where Cly is a suitable constant and ||x; — Xs|| is the distance on the torus.
Using the tree expansion described above, we find that the L.h.s. of (7.36) can
be bounded from above by

ZE:E:z/Hdmy{HWhm

n>11€T;,. PETT TeT" leT*

[ Pyg [=21
1
[T st el TT 20— ol

] : (7.40)

v not e.p. Sy: leTy
where || - || is the spectral norm and where T™* is a tree graph obtained from 7" =
U,Ty, by adding in a suitable (obvious) way, for each endpoint v}, i = 1,...,n,

one or more lines connecting the space-time points belonging to x,:.
An application of the Gram—Hadamard inequality, combined with the dimen-
sional bound on ¢ (x) given by (7.39), see the remark after (7.32), implies that

|detG™ T (t,)] < (Const')zfgl |Pog =1 Pol=2(s0=1) | 9ho (3072, |Po; | =|Pol=2(sv-1)) (7.41)

By the decay properties of g\®(x) given by (7.39), it also follows that

o M dba =30 86 = sl < 1T

v not e.p. LeT, v not e.p.

1
nghv“v*l) . (7.42)

The bound (6.11) on the kernels produced by the ultraviolet integration implies
that

ER (7.43)

[ I -y IIES ) < L O
i=1 i=1

1€T*\Uy T

where p; = |P,x|. Combining the previous bounds, we find that (7.40) can be

bounded from above by

1 Sv n p;
E E E E cr I | 72}1”(2 :7;:1 IPUZ"_|PU‘_3(S’U_1)) | I Cri\U -1
’fLZl TE77L,'VL \Pl?e?\:—f% TeT |:’U not e.p. Sv' :| |:7,:1 :|
v 1=

(7.44)
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Let us recall that n(v) = 3,5, 1 is the number of endpoints following v on 7,
that ¢’ is the non trivial vertex immediately preceding v on 7 and that |,]| is
the number of field labels associated to the endpoints following v on 7 (note that
|I,| > 4n(v)). Using the fact that

Z [(SZU|PM'|)_|PU”:|Ivo|_|on|a

v not e.p. i=1

Y (ss—1)=n-1, (7.45)

v not e.p.

> h—h[zw — Pl = X (h—ho)(|LI - P)

v not e.p. v not e.p.

Z (hv_h)(sv_ ): Z (hv_hv’)(n(v)_l)a

v not e.p. v not e.p.

we find that (7.44) can be bounded above by

Z Z Z Z Cth(37|Pﬂo|+|Iv0|73n) .

n>17€Th n EEPT TeT

|Pug =21
1 n
_ L o(hu—hy)(B3=|Ps|+|1s|—3n(v)) i [7] 2!
I 2 J[TTemo1Z7] . (7.46)
v not e.p. °V*
Using the identities
| | B4
v not e.p. v e.p.

2h‘IU0| H 2(h1’_h1)/)|IU| — H 2hv’u“| , (747)

v not e.p. v e.p.

we obtain

1
ﬁ|A|/dX1 . dXQl‘WQ(ZL;’g(Xl, - 7X2l)| < Z Z Z Z On2h(37|PUO|) )

n>17€7Ty, ,, PEPr TeT
| Pug |=21

1

[ H ;2—(hv—h (1Pu]— 3“ H 9hur (11o| = 3“1‘[0}%

v not e.p. “U* v e.p. i=1

Note that, if v is not an endpoint, |P,| —3 > 1 by the definition of R. Moreover,

if v is an endpoint, |I,| — 3 > 1; in particular, we get

H 2hv/(|fv|73) S 2%71 7 (749)

v e.p.

Ul=

=1 (7.48)

with h the highest scale label of the tree. Now note that the number of terms
in Y per can be bounded by C" [, ot ep. Sv!- Using also that |P,| —3 > 1 and
|P,| —3 > |P,|/4, we find that the Lh.s. of (7.48) can be bounded as

1 —
M / dxq - 'dX2l|W2(lIg,g(X1a o Xy)| < ’Yh(g_‘P“O‘) Z c" Z oh=1. (7.50)

n>1 T€Th,n

( H 9=0(hv—=hy1)9=(1=0)(hv—h, Z H 9—(1- G\Pv\/S Hsz

v not e.p. IIfETTQ v not e.p.
vo
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Proceeding as in the previous section, we get:

Z ( H 9—(1- G\PvI/S Hcpz

PePr v not e.p.
[ Pyq [=21

Finally, using that v [] 2= 0(hv=hy) < 200 and that, for 0 < 0 < 1,

v not e.p.

Z H 2—(1—9)(hv—hvl)/2 S CTL 7

TETh,n U DOt €.p.

as it follows by the fact that the number of non trivial vertices in 7 is smaller than
n — 1 and that the number of trees in 7;,, is bounded by const”, and collecting
all the previous bounds, we obtain

1/dx1 x| WA (X4, xgy)| < 2P PR HO ST omgn - (7.51)
BIA| B n>1
which is the desired result.

We now need to prove the assumption (7.37). We proceed by induction. The
assumption is valid for A = 0, as it follows by (6.11) and by the discussion in the
previous section. Now, assume that (7.37) is valid for all h > k + 1, and let us
prove it for k — 1. The functions —izzko + oy (k') and 6 (ik] — wk)) + 7, (K')
admit a representation in terms of W;g(w’w) (x,y). In particular,

1
max{ |z, [6]} < B|A|/dx1dxg|]x WY oy () (7.52)
and

sup  {[Oor(K)], [0 (K[} <

2h/—1§|k/|<2h’+1
22h’
<

BIAl

The same proof leading to (7.51) shows that the r.h.s. of (7.52) can be bounded by

the r.h.s. of (7.51) times 2% (that is the dimensional estimate for ||x —y||), and

that the r.h.s. of (7.52) can be bounded by the r.h.s. of (7.51) times 22" 2~ (+2)k
(where 27%("+2) ig the dimensional estimate for ||x — y||["*?).

[ dxdxalx =yl AW L (3] (7.53)

It remains to prove the estimates on ey, €,. The bound on €, is an imme-
diate corollary of the discussion above, simply because €, can be bounded by
(7.40) with [ = 0. Finally, remember that e, is given by (7.18): an explicit
computation of Ahw(k’)WQP(ww (k') and the use of (7.37)-(7.38) imply that
||Ahw(k’)W2p(ww (K)|| < C|UJ2°", from which: |ey| < C'2%"Y, 5, (C|U|2")",
as desired. ]
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As already mentioned above, Theorem 7.1 immediately implies the analyticity of
the specific free energy f3(U) and of its zero temperature limit e(U). In fact, by
construction, fz(U) = Fy + Z?L:hﬁ(eh +€p,), with Fy an analytic function of U,
see the discussion after (6.10) and in previous section. This concludes the proof
of Theorem 2.1.

8. CONCLUSIONS

We presented a self-contained proof of the analyticity of the specific free energy
and ground state energy of the 2D Hubbard model on the honeycomb lattice.
The proof is based on rigorous fermionic RG methods and can be extend to
the construction of the interacting correlations, i.e., the off-diagonal elements of
the reduced density matrices of the system. The construction shows that the
interacting correlations decay to zero at infinity with the same decay exponents
as those of the non-interacting case. The “only” effect of the interactions is to
change by a finite amount the quasi-particle weight Z~! at the Fermi surface and
the fermi velocity v.

The example presented here is the only known example of a realistic 2D in-
teracting Fermi system for which the ground state (including the correlations)
can be constructed. The main difference with respect to other more standard
2D Fermi systems is the fact that here, at half-filling, the Fermi surface reduces
to a set of two isolated points. This fact dramatically improves the infrared
scaling properties of the theory: the four-fermions interaction, rather than being
marginal, as in many other similar cases, is irrelevant; this is the technical fact
that makes the construction of the ground state possible and “relatively easy”.

It is natural to ask how the system behaves in the presence of Coulomb in-
teractions among the fermions, which is he case of interest for applications to
real graphene samples. In the latter case, the system has many analogies with
(2 4+ 1)-dimensional QED. The four-fermions interaction, rather than being irrel-
evant, is marginal, and the fixed point of the theory is expected to be non-trivial.
The long distance decay of correlations is expected to be described in terms of
anomalous critical exponents and the effective Fermi velocity is expected to grow
up to the maximal possible value, i.e., the speed of light. All these claims have
been proved so far order by order in renormalized perturbation theory, but a full

construction of the theory is still missing.
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Appendix A: Truncated expectations and determinants

In this Appendix we prove eqn(5.3).
Given s set of indices Py, ..., P,, consider the quantity ET()(P)), ..., U (P,)).
Define
Pr={fep : e(f) ==} (A1)
and set f = (j,4) for f € P, with i = 1,...,|Pji|. Note that Y5, |Pj| =
>5-1|P; |, otherwise the considered truncated expectation is vanishing.

Define

20 = T[T & mnonll IT @]+ (A2)

J=1 fepf fepP:
s PP

W)=Y XY Y i (A-3)

7.J'=11=1 /=1
+ RS- - : o s +|
where ¥ 5 = Ui o) 06 a0, =305 ‘Pj ‘ =

n X n matrix with entries

GGty = oo (i) oGy w(ran) (X (5, 1) — x5, 7)) - (A.4)

Then one has

£ (1_1 J(g)) = detG = /W exp [— (vF, Gu)] . (A.5)

Setting X :={1,...,s} and
IPCI1P

JJ' - Z Z 1/) i’ ')Gﬂ) (4"4") ¢(j,z‘) ) (A.6)

=1 i'=1

we write

= > Vir=> Vir, (A7)

Ji'eX J<y’
so defining the quantity V;; as
V“/ : f P ) :
Vip=15 I (A.8)
ij/+Vj/j, ifj<yg.
then eqn(A.5) can be written as

£ (H J(Pﬂ) — det G = /Dw eV (A.9)

We now want to express the last expression in terms of the functions Wy, defined
as follows:
Wx(X1,..., Xty ..oty ZHtk Y Ve, (A.10)
¢ k=1
where:
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1. X} are subsets of X with |X}| = k, inductively defined as:

X1 D Xy,

2. ¢ = (jj') is a pair of elements j,j" € X and the sum in eqn(A.10) is over
all the possible pairs (jj'),

3. the functions t;(¢) are defined as follows:

t if ¢ ~0X
tk(£>_{k) 1 k

= A12
1, otherwise |, ( )

where ¢ ~ X} means that ¢ = (jj’) “intersects the boundary” of Xj,
i.e.connects a point in P;, j € Xy, to a point in Py, j' ¢ X;. See Fig.
4.

.\' 2

X3

FIG. 4. Graphical representation of the sets x;, k=1,2,3. In the example x;={1}, Xo={1,2}

and x3={1,2,3}. The ¢=(13) intersects the boundaries of x; and of Xx,.

From definition eqn(A.10 it follows:

Wx(Xi;t) = Zthlj+V11+ Z Vi =1—t1) [V(Xq) + V(X \ Xq)]+t:1V(X)
j=2 1<5'<j

(A.13)
so that

e V(X) — /1 dty i e~ Wx(Xut) | | o= Wx(X150)
0 3751

- _ Z Vi, /1 dt, e~ Wx(Xut1) | o=Wx(X1;0) (A.14)
Gi~OXy 0

Again by definition we have:

Wx (X1, X3 t1, 1) =
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:V11+t1V12+t1t2ZV1j+V22+t22V2j+ Z Virg = (A.15)

j=3 =3 2<j'<j

Vir +t1Vig + Voo + Z Viig| =

2<G'<y

=t1t2ZV1j+t2V11+t2 Z Virg + (1 —ta)

j=2 1<y'<j

= tQWX(Xl; tl) + (1 — tg) [WXQ(Xl; tl) + V(X \ Xz)]
If we define X, := X; U/, i.e., X5 = {1, point connected by ¢; with 1}, then:

efo(X1;t1) _/ dtz iefWX(Xl,Xg;tl,tz) _|_6*WX(X17X2¢170) (A.lﬁ)
Oty
Z WQ/ dty ty €2) —Wx (X1,X2;t1,t2) _{_G—WX(Xl,XQ;tl,O) ‘
lo~OD X2

Substituting (A.16) into (A.14) we get:
Z Z / dtl/ dtg ‘/el WQ t1(£2) —Wx (X1,X25t1,t2)

l1~0X1 lo~0X2

+ ¥ /dtl 1)V, e WxXaXaiti0) o= Wx(X10) | (A.17)

l1~0X1

A relation generalizing eqn(A.15) holds:

Wx(Xl, ce ,Xp+1;t1, ce 7tp+1) = tp+1WX<X1, ce ,Xp; tl, ce ,tp> +

(1= tper) Wyt (X0, Xt t) + VX X)) (A.18)
where p < s. In fact in the sum over £ in eqn(A.10 we can distinguish two cases:
either ¢ ~ X1 or £ 4 X, ;. In the former case V} is necessarily multiplied by
tpr1 and, if £ = (5'5), /' <p+1, j > p+1; in the latter case V; is not multiplied
by t,+1 and either 5/, 7 <p+1or j',7 > p+ 1. Then, clearly:

Wx(Xl, . ,Xp+1;t1, e ,tp+1) = tp+1 {Wx(Xl, e ,Xp;tl, . ,tp)

W, (X1, Xt t) = Wi, (X1, Xt o )] (ALL9)
+WXP+1(X17 e ,Xp;tl, e ,tp) —|— WX\XHI(XI’ e ,Xp;tl, . ,tp)

that is equivalent to eqn(A.18). We can iterate the procedure followed to get
eqn(A.14) and eqn(A.17). In the general case we find:

,V(X):’f T /dtl /dt Y Vi, ... Ve,

Sy SR s
r—1
(H t1 (Crgr) - - -tk(fkﬂ)) e WX (Xt Xrgaitt,tr0) (A.20)

where the meaningless factors must be replaced by 1. Moreover, from eqn(A.18)

we soon realize that
WX(X17 [N ,Xs;tl, e ,t571,0> == Wx<X1, e ,Xsfl;tl, Cee 7t571) (A21)
WX(Xl, e ,Xr;tl, Cee 7t7~_1,0> - WXT(le e 7Xr—1;t17 e 7tr—1) + V(X\XT) .
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The last equation holds for r > 1. If r = 1:
Wx(X1;0) = V(X1) + V(X \ Xy) (A.22)
Let T be a tree graph connecting X, ..., X,, such that:

1. forall k = 1,...,r, T is “anchored” to some point (j,), i.e.T contains a
line incident with (j,4), where j € X} and i € {1,..., |Pji|},

2. each line ¢ € T intersects at least one boundary 90Xy,
3. the lines /1, /5, ... are ordered in such a way that ¢; ~ 0X1, 0y ~ 0Xs,. . .,
4. for each ¢ € T there exist two indexes n(¢) and n'(¢) defined as follows:
n(l) = max{k : { ~ Xy},
n'(€) = min{k : £ ~ 0Xy} . (A.23)
We shall say that T"is an anchored tree.

Using the definitions above, we can rewrite eqn(A.20) as

o VX) Z Z Z Z )yt Hw (A.24)

r=1X,CX X2..X,_1 TonX, LeT

—1
/dt1 /dtr ) [Tz t(€) oW (X1 X131t o1) o=V (X\X,)
ZET tn(e)

where “T" on X,” means that 7" is an anchored tree for the clusters P; with
Jje X,
Let us define

KOG = 3 3 TV (A.25)

..Xr—1 Ton X, LeT

-1
/ dtl / dtr " k ltk(g) €7WXT(X1 ..... Xr—13t1,eestr—1) ’
EET tn(o)

so that eqn(A.24) can be rewritten as

e VX) Z (_1)|Y|—1 K(Y) e~ V(X\Y) ’ (A.26)

YCX
Y>{1}

and, iterating,

VX)) — Z (-1 \Xl ﬁ . (A.27)

The sets Q1, . . ., Q. in eqn(A.27) are disjoint subsets of X, such that U™, Q; =
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Substituting eqn(A.27) into eqn(A.9), we find

S(H&uw)z/bw O IIEQ) . (A2s)
j=1 (Ql 7777 Qm) q:1
where the sum is over the partitions (Q1, ..., Q) of X. It is easy to realize that

in the last equation K(Q,) (already defined in eqn(A.25)) can be rewritten as

K@= % IIVif dn [ dogr

Ton@Q X2, X‘Q|_1 LeET
fixed T

. H(tn’(ﬁ) e tn(ﬂ)—1>ei ZzeQthn/(Z)'"tnM)Vé _ (A29)

LeT

Moreover, we can also rewrite eqn(A.28) as:
£ (H &(Pj)) = X )T e, K(Q). (A.30)
j=1 g=1

_ + - o
where Dvg, = Tleq, | Hrert AU o(7).000)) | TTrens Qs o o) and (=1)7 is
the sign of the permutation leading from the ordering of the fields in D to the
ones in [[, Dy, .

Let us now consider the well known relation:

s(ﬁ&u@)z (A.31)

- Z (_1)05T (&(Pju)v”'aw(Pqul\D LLET (¢(ij1>7"'7w(ij\Qm|>> )
(Q1,-,Qm)
where the sum is over the partitions of {1,...s}, Qq = {Jjg1, .-, Jgo, } and (=1)7
is the parity of the permutation leading to the ordering on the r.h.s. from the
one on the Lh.s. (note that o is the same as in equ(A.30)). Comparing eqn(A.31)
with eqn(A.30) we get:

ET(W(P), ..., 0(P)) = (—1)** 3 /ngHW/dPT(t)e_v(t), (A.32)

TonX LeT

where we defined:

dPr(t) = > TI (tw - ta-1) ]:[1 dt, (A.33)

Xg... Xs_1 LET
fixed T

and

leXxX



44

If in eqn(A.32) we integrate the Grassman fields appearing in the product

[Mvi= II (Vis+Vii) (A.35)

LeT (437)eT

we obtain

ET(H(P),- . B(P)) = (<1 3 ar [[Gppe [ D (@) [aPr(t)e ™,
TonP LeT
(A.36)
where P = U; P;, the sum ) ., p denotes the sum over the graphs whose elements
are lines connecting pairs of distinct points x(f), f € P such that, if we identify
all the points in the clusters P;, j = 1,...,s, then T is a tree graph on Xj;

moreover ap is a suitable sign,

* e(f) *
i i

and f}, f? are the two field labels associated to the two (entering and exiting)
half-lines contracted into ¢. The term

/ D (o)) / dPp(t) eV ® (A.38)

in eqn(A.36) is (modulo a sign) the determinant of a suitable matrix G7 (t), with

elements

where ¢ = (j(f)i(f"), j(f) € X isst. f € Pjy and Gyp was defined in
eqn(A.4). So eqn(5.3) is proven, with ¢; ;1 = t,(jr) - - - ta(jj)-

In order to complete the proof of the claims following eqn(5.3) we must prove
that dPr(t) is a normalized, positive and c—additive measure, so it can be inter-
preted as a probability measure in t = (¢1,...,%,_1); and that, moreover, we can
find a family of unit vectors u; € R® such that ¢; = u; - uy.

So, let us conclude this Appendix by proving the following Lemma.

Lemma A1.1 dPr(t) is a normalized, positive and o—additive measure on the
natural o-algebra of [0,1]*~. Moreover there exists a set of unit vectors u; € R¥,
j=1,...,s, such that t; = u; - u;.

Proof. Let us denote by b, the number of lines ¢ € T exiting from the points
x(j,1), j € Xy, such that ¢ ~ Xj. Let us consider the integral

1 1
S [t [ty T (b tao1) = 1, (A.40)
Xo.. Xg_1 0 0

LeT
T fixed
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and note that, by construction, the parameter t; inside the integral in the l.h.s.
appears at the power by — 1. In fact any line intersecting 0X} contributes by a
factor ty, except for the line connecting X with the point in Xy, \ X%. See Fig.
5.

X, L

A

Ay

FIG. 5. The sets Xi,...,Xs, the anchored tree T and the lines ¢,....¢5s belonging to 7. In

the example, the coefficients b,...,bs are respectively equal to: 2,1,3,2,1.

Then .
H (tn’(i) ce tn(f)—l) - H tz:k_l ; (A41)
k=1

LeT
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and in eqn(A.40) the s — 1 integrations are independent. One has:

1 1 s—1 1 b1 s—1
/0 dtl.../o dte s [T (tn,(g)...tn(@_l) =11 (/0 dt to > =1 —. (A42)
k=1

)
15 i1 Ok
which is well defined, since b, > 1, k= 1,...,m — 2. Moreover we can write:
S -y Y .x (A43)
Xo.. Xg_1 Xy X3 Xg_q
T fixed T,X7 fixed T,Xq1,Xo fixed T,X1,.s Xg_o fixed

where the number of possible choices in summing over Xj, once that 7' and
the sets Xy,..., X1 are fixed, is exactly b,_;. In fact, if from X, _; there are
b,_1 exiting lines, then X} is obtained by adding to X, _; one of the by_; points
connected to X _; through the tree lines. Then:

> 1=bi...bs s, (A.44)

Xo...Xg_1
T fixed

and, recalling that b, 1 = 1,

1 1 -2
3 / dtl.../ dts 1 [ (tn/(g)...tn(g)_l) b
X9...X 1 0 0

= — (A.45)
eT k=1 bk

T fixed

yielding to [dPr(t) = 1. The positivity and o—addivity of dPr(t) is obvious by
definition.

We are left with proving that we can find unit vectors u; € R® such that
b =uj - uyr.

To this aim, let us introduce a family of unit vectors in R® defined as follows:

u; = Vv,
{Uj:tj1Uj1+Vj1/1—tj2~1 s j:2,...78, (A46)

where {v;};_, is an orthonormal basis. Let us rename the sets P;, i=1,...,s
in such a way that X; = {1}, Xo{1,2}, ..., X;-1 = {1,...,s — 1}. Then, for a
given line (jj’), we have:

tj7j/ - tn/(]]/) e tn(]]/) - t] P t]/_l (A.47)
From eqn(A.46) it follows that
u; - uy = tj .. -tj’—l R (A48)

as desired. m
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Appendix B: Symmetry properties

Consider the partition function =y 41 == [ Py(di))e —V¥), Tt is important to
note that both the Gaussian integration Pps(di) and the interaction V(¢) are
invariant under the action of a number of remarkable symmetry transformations,
which will be preserved by the subsequent iterative integration procedure and
will guarantee the vanishing of some running coupling constants (see below for
details). Let us collect in the following lemma all the symmetry properties we
will need in the following.

Lemma B.1. For any choice of M, 3, A, both the quadratic Grassmann mea-
sure Py(dy) and the quartic Grassmann interaction V() are invariant under
the following tmnsformations
(1) spin exchcmge wkap<—>1/1k —ops
(2) global U(1): WE op e’m“wk”, with o, € R independent of k;

(3) spin SO(2): <Zk¢p> Ry <Q@;»Tvﬂ>, with Ry = < cos Sme) and

,ip klp —sinf cosf
0 € T independent of k;

Fik(33—81)(p—1), )t : =
(4) discrete spatial rotations: s FoRyop € (ho ToF).0p” with T2 -
Ryr/3%; mote that in real space this transformation simply reads aao,f)ﬁ —
at and b . bjE ;
(z0,T1Z),0 a:o,Tla:) o

(5) complex conjugatwn 1/1kap = pF
appearing in Py (di) and/or in V(¢);
(6.a) horizontal reflections: 5 (ko 1 o), Jl<—>w(k0 k)02

(6.b) vertical reflections: ¢ (o, k1,k2),ap w(ko,kh ko) op

:F
(7) particle-hole: s o Rop (o).

+
(8) inversion: w(ko,l%),a,p — (= )pl/J(_kO,IS),

Kopr € c*, where c is a generic constant

Proor. A moment’s thought shows that the invariance of V(1)) under the above
symmetries is obvious, and so is the invariance of Pys(dv)) under (1)-(2)-(3). Let
us then prove the invariance of Py (dy) under (4)-(5)-(6.a)-(6.b)-(7)-(8). More
precisely, let us consider the term

Z z&lta,- glzlrl?;l;o,- =—1 Z zﬁltcr,lkoz[}l;ogl (Bl)
k
_Zr&lio,lvﬂ 1&1{0’2 Z¢k02UQ ékal ZzkaQkowkUQ
k

n (4.8), and let us prove its invariance under the transformations (4)-(5)-(6.a)-

(6.b)-(7)-(8).
Under the transformation (4), the first and fourth term in the second line of

(B.1) are obviously invariant, while the sum of the second and third is changed
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into

_ i+ * (TN, +ik(63—61),7
zk: [¢(ko,T1E),U,1vQ (k)e o ¢(k0 T1K),0,2 - (B.2)

+
+,l/} (Ko, T1k:) 026

= Z [wkolvﬁ*( 1k> +Zk 51 62)w o‘2+¢k026 i 176) ( 1k)wkcrl} .
k

Using that Q(T7'k) = eiE(gl_gQ)Q(lg), as it follows by the definition Q(k) =
(2/3) Xic123 eF0i=0) e find that the last line of (B.2) is equal to the sum
of the second and third term in (B.1), as desired.

The invariance of (B.1) under the transformation (5) is very simple, if one
notes that Q(—k) = Q*(k), as it follows by the definition of Q(k).

Under the transformation (6.a), the sum of the first and fourth term in the
second line of (B.1) is obviously invariant, while the sum of the second and third

is changed into
- Z ¢(J;c0,—k1,k2),a,21’9*(k)¢ ko,—ki1,k2), Z w (ko,—k1,k2),0, k)Y, (ko,—k1,k2),0
k

= _Z’l/;ltUQUQ* ((=Fk1, ka) wkol Zwkava klka))wk,a,Q' (B.3)
k

Noting that Q((—kq, k2)) = Q*(k), one sees that this is the same as the sum of
the second and third term in (B.1), as desired.

Similarly, noting that Q((k1, —k2)) = Q(k), one finds that (B.1) is invariant
under the transformation (6.b).

Under the transformation (7), the sum of the first and fourth term in (B.1) is
obviously invariant, while the sum of the second and third term is changed into

-,

= * I+ _

+ zk: w(kzo,—l;'),a,lyQ (k —k),0,2 + Z w ( ) (ko,—k),0,1

= - Z ’&IJ(F,U,QUQ*( wk o,1 Z wk o, IUQ )wk,oﬂ : <B4)
k

Using, again, that Q(—Fk) = Q*(k), we see that the latter sum is the same as the
sum of the second and third term in (B.1), as desired.

Finally, under the transformation (8), all the terms in the right hand side of
(B.1) are separately invariant, and the proof of Lemma B.1 is concluded. =

Let us now discuss the proof of Lemma 6.2.

Proof of Lemma 6.2 As remarked after (6.10), P(dy™)) and P(d")) are
separately invariant under the symmetry properties listed in Lemma 1. Therefore
V(1) is also invariant under the same symmetries, and so is the quadratic part
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of V(¢), that is

(BIAD 2302 00) [y T s Waa () + iy O o Wan () +

o k,p
O Wha(K) + O O W (k) (B.5)

Recall that, as assumed in the lines preceding (6.2), the support of zﬂ(i'r') consists
of two disjoint regions around p}. and P, respectively; in particular, we assumed
that 2agy < 47/3 — 47/(3v/3). Under this condition, it is easy to realize that
if both k and p + k belong to the support of 1)), then lp| < 47/3. As a
consequence, in (6.11), the only non zero contributions correspond to the terms
with p = 0 (in fact, if p is # 0 and belongs to the support of 6(p), then |p| >
47 /3, which means that either k or k+ p is outside the support of 1@(”'), and the
corresponding term in the sum is identically zero). This means that the sum

S [T T Waa(k) + U m ) W (k) +
o,k
s Bl Waa (k) + O BT W (k)] (B.6)
is invariant under the symmetries (1)—(7) listed in Lemma 1.
Invariance under symmetry (4) implies that:

-

Waa(kba
Wab(k(]a

) = Waa<k07 1k> Wbb(ko, k) Wbb(ko, k) (B.7)

k
k) = ek 52)Wab(k:0,Tf1E), Wa(ko, k) = e O80T (ko TR ;

invariance under (5) implies that:

Waa(k) = Waa(_k)* ) Wbb(k) = Wbb(_k)* ; (B8)
Wab(k) = Wab(_k)* ) Wba(k) = Wba<_k)* )

invariance under (6.a) implies that:
Waa(ko, k1, ko) = Wip(ko, —k1, k2) , Wap(ko, k1, k2) = Wi (ko, —ki1, k2) ; (B.9)
invariance under (6.b) implies that:

Waa(ko, k1, ka) = Waa(ko, k1, —k2) , Wip(ko, k1, k2) = Wi (ko, k1, —k2) (B.10)
Wab(k()u klu k2> = Wab(k(b k17 _k2) ) Wba(k()u klu k2) = Wba(k(b k17 _k2) ;

invariance under (7) implies that:

Waa<k07 E) = Waa(kOa _E) 5 Wbb(kOa E) = Wbb(kOa _E) ; (Bll)
Wab(km E) = Wba(kba _E) )
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Finally, invariance under (8) implies that:

_’) = _Waa(_km E) ) Wbb(kOa ]g) - _Wbb<_k07 E) 3 (B12)

—, —.

W, (k:o =
) = Wa(—ko, k), Wialko, k) = Wia(—ko, k) ;

a(ko, k
W (Ko, k

Now, combining the first of (B.9), the second of (B.10) and the second of
(B.11), we find that W,,(k) = Wy,(k). Combining the third of (B.8), the third
of (B.11) and the last of (B.12), we find that W,,(k) = W,,(k)*. This concludes
the proof of item (i).

The first of (B.12) implies that, as 5 — oo, W,,(0, E) = 0, and this proves, in
particular, that W,, (0, p%) = 0 and that, in the limit [A| = oo, 0;W,4(0, p%) = 0.

Using that pY is invariant under the action of 77, we see that the third of (B.7)
implies that (1 — eP#1=02) Y)W, (ko, ) = 0. Since P#1-52) — _¢wr/3 £ | thig
identity proves, in particular, that W,,(0,p%) = 0, and Og, W4 (0, p%) = 0. This
concludes the proof of item (ii).

Now, combining the first of (B.8) with the first of (B.11), we find that

- -,

Waa(ko, k) = Waa(—ko, k)*, which implies, in particular, that
Re{ 0k Waa (0, 55)} = 0 .

Finally, let W,,(0, 7% + k') ~ o%k} + a5k}, modulo higher order terms in k.

—1/2 3/2
Using that 77 ' = <_\/§{/2 \_/;§2> in the third of (B.7), we find that

SR, + agkh = e g (K /2 — V3K /2) + 0f (V3K /2 + K5/2)] . (B.13)

which implies of = —iwa$. Moreover, using the third of (B.8) we find that
a¥ = —(o;¥)*, and using the third of (B.10) we find that o = —a5*. Therefore,
af = —ay” = —(ay®)*, and we see that o4 is real and odd in w, that is a5 = wa,
for some real constant a. Therefore, af = —iwa$ = —ia, and this concludes the

proof of item (iii). =
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