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Quantum pumps
Charge quantum mechanically transferred between leads due
to parametric operations, e.g. changing gate voltages.
Idealized:

X

1

k

jn

2

pump properchannels

Sjk

• independent electrons (e = +1)
• each channel filled up to Fermi energy µ with incoming
electrons
• S = S(X ) = (Sjk ) scattering n × n matrix at energy µ given
the pump configuration X (w.r.t. to reference configuration X0)
• At fixed X : no net current



Charge transport

(Büttiker, Thomas, Prêtre) Under a slow change X → X + dX ,
and hence S → S + dS, a net charge

d-Qj =
i

2π
((dS)S∗)jj

leaves the pump through channel j

Remarks

• d-Qj =
i

2π
((dS)S∗)jj

is a thermodynamic formula: exchanged charge d-Qj expressed
through static quantities S(X ) (& their variation) accessible
from the outside, (cf. work d-W = −pdV );∫ B

A d-Qj depends on path, but not on its time parameterization.
•

∮
d-Qj $= 0: it is a pump!



• Kirchhoff’s law does not hold:
n∑

j=1

d-Qj =
i

2π
tr((dS)S∗) =

i
2π

d log det S

=− dξ $= 0

where “ξ(µ) = Tr(P(µ, X )− P(µ, X0))” is the Krein spectral shift
and P(µ, X ) = θ(µ− H(X )) is the spectral projection for the
Hamiltonian H(X ).
= is Friedel sum rule/Birman-Krein formula

det S = e2πiξ(µ)

• But ∮ n∑

j=1

d-Qj = 0



A semiclassical/adiabatic picture

E ∈ [0,∞): 1-particle energy spectrum in a channel
ρ(E): occupation of incoming states, e.g.

ρ(E) = θ(µ− E) (at temperature β−1 = 0)
or ρ(E) = (1 + eβ(E−µ))−1

S(E , t) = S(E , X (t)): static scattering matrix
S(E , X ) at energy E along
slowly varying X = X (t).

out state: channel j , energy E , time of passage t at fiducial
point under X0
T (E , t) = −i ∂S

∂E S∗: Eisenbud-Wigner time delay:
t − Tjj time of passage of in state correspon-

ding to same out state under X (t).
E(E , t) = i∂S

∂t S∗: Martin-Sassoli energy shift:
E − Ejj energy of in state under X (t).



Incoming charge during [0, T ] in lead j

1
2π

∫ T

0
dt

∫ ∞

0
dEρ(E)

(2π = size of phase space cell of a quantum state)
Outgoing charge

1
2π

∫ T

0
dt ′

∫ ∞

0
dE ′ρ(E)

where
(E ′, t ′) '→ (E , t) = (E ′ − Ejj(E ′, t ′), t ′ − Tjj(E ′, t ′))
maps outgoing to incoming data
Net charge (linearize in E)

Qj = − 1
2π

∫ T

0
dt

∫ ∞

0
dEρ′(E)Ejj(E , t)

For ρ(E) = θ(µ− E) this equals Qj =
∫ T

0 dtQ̇j(t) with

Q̇j(t) =
1

2π
Ejj(µ, t) =

i
2π

(
∂S
∂t

S∗)jj

(cf. BPT)



What’s behind: Adiabatic evolution in absence of gap
! Adiabatic evolution

H = Hs, s = εt

i
d
ds

Uε(s, s0) = ε−1HsUε(s, s0), Uε(s0, s0) = 1

in the limit ε → 0. Assume dHs/ds compact operator
(device).

! Initial state (1-particle density matrix) at s0: spectral
projection

Ps0 = θ(µ− Hs0)

with µ Fermi energy.
! State at s

Pε(s) = Uε(s, s0)Ps0Uε(s, s0)
∗ ($= Ps)

! Current operator at distance a from the device: Ij(a)



Theorem. For s > s0,

lim
a→∞

lim
ε↓0

ε−1tr(Pε(s)Ij(a)) =
i

2π

(dS
ds

(s, µ)S(s, µ)∗
)

jj

Remarks.
! Order of limits: Ammeter is many wavelengths away from

the pump, but reached within ( ε−1 (adiabatic time).
! Generalization to positive temperature.
! Most adiabatic theorems discuss

Uε(s, s0)PUε(s, s0)
∗

where P is the spectral projection of Hs0 onto (i) an isolated
part of its spectrum or (ii) an embedded eigenvalue. Here
(iii) P = θ(µ− Hs0) corresponds to a gapless part of
continuous spectrum.

(i)

(iii)

(ii)



An idea from the proof

! Scattering is about comparing two dynamics:

scattering matrix = UI(+∞,−∞)

UI(t ′, t): propagator in the interaction picture.
! Answer in terms of static scattering matrix: generators

(Hs′ , Hs) ! S(s′, s).
At s′ = s: may replace (dS/ds)S∗ ! dS/ds

! Starting point is non-autonomous dynamics Hεt , hence
dynamic scattering matrix: generators (Hs+εt , Hs) ! S(s).
Then
ρ(Hs) incoming 1-pdm (e.g. ρ(Hs) = θ(µ− Hs))
S(s)ρ(Hs)S∗(s) outgoing 1-pdm



An idea from the proof: S(s′, s) vs. S(s)
! Linearize Hs+εt = Hs + εḢst + . . .. Scattering operator

(dynamic) in Born approximation

S(s) = 1− iε
∫ ∞

−∞
dt eiHst(Ḣst)e−iHst + . . .

≡ 1 + εS(1)(s) + . . .

whence

Sρ(Hs)S∗ = ρ(Hs) + ε[S(1)(s), ρ(Hs)] + . . .

! Linearize for s′ → s

Hs′ = Hs + (s′ − s)Ḣs + . . .

Scattering operator (static) in Born approximation

S(s′, s) = 1− i(s′ − s)

∫ ∞

−∞
dt eiHst Ḣse−iHst + . . .

≡ 1 + (s′ − s)∂s′S(s′, s)|s′=s + . . .



An idea from the proof (cont.)

S(1)(s) = −i
∫ ∞

−∞
dt eiHst Ḣste−iHst

∂s′S(s′, s)|s′=s = −i
∫ ∞

−∞
dt eiHst Ḣse−iHst

Claim:
[S(1)(s), ρ(Hs)] = −i∂s′S(s′, s)

∣∣
s′=sρ

′(Hs)

Remark: relates dynamic → static, ρ → ρ′.
Proof immediate for ρ(λ) = e−iλτ , −iρ′(λ) = −τe−iλτ :

S(1)(s)e−iHsτ = e−iHsτ (−i)
∫ ∞

−∞
dt eiHst Ḣs · (t − τ)e−iHst

= e−iHsτ
(
S(1)(s)− τ∂s′S(s′, s)|s′=s

)
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Further transport properties
! Noise

〈〈n2
j 〉〉 =

1
(2π)2

∫ ∞

−∞

∫ T

0

1− |(S(t)S∗(t ′))jj |2

(t − t ′)2 dt dt ′

! Energy dissipated to reservoirs

reservoir 2reservoir 1

point contact

〈Ej〉︸︷︷︸
energy delivered

to reservoir j

− µ〈nj〉︸ ︷︷ ︸
can be reclaimed

from reservoir

=
1

4π

∫ T

0
(E2)jj dt

Remark (dissipation inequality): For any source

〈Ė〉 − µ〈ṅ〉 ≥ π〈ṅ〉2

! related to P = RI2 with R ≥ π = (1/2)(h/e2) (point contact
resistance; e = ! = 1)

! for pumps: (E2)jj ≥ (Ejj)2



Theorem: Optimal pump processes

Hypotheses: • cyclic process: X (0) = X (T ) • fix a lead, j

The following are equivalent:
! Dissipation inequality is saturated (minimal dissipation)
! No noise: 〈〈n2

j 〉〉 = 0
! The charge transported in a cycle is quantized:

nj = 〈nj〉 ∈ Z

Note: holds for arbitrary number number of leads n (instead of
2)

The content is geometric



The Hopf map

Unit sphere S2n−1 ⊂ Cn preserved by circle action |ψ〉 '→ eiθ|ψ〉

S2n−1/ ∼= PCn−1

i|ψ〉
S2n−1 (fibre bundle)

|ψ̇〉

PCn−1 (base space)
Hopf map π

|ψ(t)〉

|ψ̇〉V connection 1-form
|ψ̇〉H 〈iψ|ψ̇〉 = −i〈ψ|ψ̇〉



Geometric interpretation of optimality

Recall: E = iṠS∗ = −iSṠ∗

Let 〈ψ(t)| = j-th row of S(t) (incoming state feeding channel j)

〈ψ(t)|ψ(t)〉 = 1

i(ṠS∗)jj = Ejj = −i〈ψ|ψ̇〉

Charge transport 〈nj〉 = (2π)−1 ∮
Ejj dt is holonomy (Berry

phase).

If process proceeds along fiber, |ψ(t)〉 = eiθ(t)|ψ(0)〉, then
! Ejj = θ̇ and (2π)−1 ∮

θ̇dt is the winding number
! |(S(t)S∗(t ′))jj |2 = |〈ψ(t)|ψ(t ′)〉|2 = 1: no noise
! (E2)jj = 〈ψ̇|ψ̇〉 = 〈ψ̇|ψ〉〈ψ|ψ̇〉 = (Ejj)

2: minimal dissipation



Quantized transport

1 2X (t)

Cyclic process: X (0) = X (T )

Theorem. The charge transported in a cycle is quantized

nj = 〈nj〉 ∈ Z (j = 1, 2)

iff scattering matrix S(t) is of the form

S(t) =

(
eiϕ1(t) 0

0 eiϕ2(t)

)
S0

Then nj is the winding number of ϕj(t), (j = 1, 2)



Quantized transport (cont.)

Generalization to many channels:

k

n1

2

n1 + n2

RL
1 n1 + 1

i
Sik

In a cycle, the charge delivered to the Left (resp. Right)
channels as a whole is quantized iff

S(t) =

(
U1(t) 0

0 U2(t)

)
S0

with Uj(t) unitary nj × nj -matrices (j = 1, 2). The charge is the
winding number of det Uj(t).
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Some examples



The setup of the topological approach

Infinitely extended 1-dimensional system

H(s) = − d2

dx2 + V (s, x) on L2(Rx)

depending on parameter s, real. Potential V doubly periodic

V (s, x + L) = V (s, x), V (s + 2π, x) = V (s, x)

Change s slowly with time t .

Hypothesis. The Fermi energy lies in a spectral gap for all s.

Theorem (Thouless 1983). The charge transported (as
determined by Kubo’s formula) during a period and across a
reference point is an integer, C.

(What’s behind: Adiabatic evolution in presence of gap)



The integer as a Chern number

ψnks(x): n-th Bloch solution of quasi-momentum k ∈ [0, 2π/L]
(Brillouin zone), normalized over x ∈ [0, L] (unique up to
phase).

C =
∑

n
Cn ≡

∑

n

i
2π

∫

T

(
〈∂ψnks

∂s
|∂ψnks

∂k
〉 − 〈∂ψnks

∂k
|∂ψnks

∂s
〉
)

ds dk

! sum extends over filled bands n
! integral over torus T = [0, 2π]× [0, 2π/L]

! as a rule, phase can be chosen such that |ψnks〉 is smooth
only locally T

! integrand (curvature) is smooth globally
! Cn is Chern number, obstruction to global section |ψnks〉



Generalizations
1) n channels:

H(s) = − d2

dx2 + V (s, x) on L2(Rx , Cn)

with V (s, x) = V ∗(s, x) ∈ Mn(C).

2) Time, but not space periodicity is essential. Sufficient: Fermi
energy lies in a spectral gap for all s. What about C?
Let z /∈ σ(H(s)) and ψ(x), χ(x) ∈ Mn(C) with

(H(s)− z)ψ(x) = 0, ψ(x) → 0 (x → +∞)

χ(x)(H(s)− z) = 0, χ(x) → 0 (x → −∞)

with ψ(x), χ(x) regular for some x ∈ R. Wronskian

W (χ, ψ; x) = χ(x)ψ′(x)− χ′(x)ψ(x) ∈ Mn(C)

is independent of x for solutions ψ, χ. Normalize:
W (χ, ψ; x) = 1.



Theorem. The transported charge is

C =
i

2π

∫

T
tr
(

W (
∂χ

∂s
,
∂ψ

∂z
; x)−W (

∂χ

∂z
,
∂ψ

∂s
; x)

)
ds dz

(any x). This is the Chern number of the bundle of solutions ψ
on (s, z) ∈ T = [0, 2π]× γ.

0z
γ

s

1z

0

2π

σ(H(s))
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A comparison
Are Thouless’ and Büttiker’s approaches incompatible?

! Topological approach: Fermi energy µ in gap: no states
there

µ

Charge transport attributed to energies way below µ

! Scattering approach: Depends on scattering at Fermi
energy

µ

Charge transport attributed to states at energy µ

Truncate potential V to interval [0, L]

H(s) = − d2

dx2 + V (s, x)χ[0,L](x) on L2(Rx , Cn)

Gap closes.



A comparison (cont.)

Scattering matrix

SL(s) =

(
RL T ′

L
TL R′

L

)

exists at Fermi energy.

Theorem
! As L →∞,

SL(s) →
(

R(s) 0
0 R′(s)

)

exponentially fast, with R, R′ unitary. Hence: conditions for
quantized transport attained in the limit.

! Charge transport in both descriptions agree: Winding
number of det R is Chern number C.



Sketch of proof

! Solution ψz,s(x) for (z, s) ∈ T
! ψz,s(x) or ψ′

z,s(x) regular at any x ∈ R
! ψz,s(x = 0) regular except for (z = µ, s) at discrete values

s∗ of s.
! Except for these critical points, there is a global section ψz,s

(e.g. ψz,s(0) = 1)

0z

s

1z

0

2π

µ

s∗



Sketch of proof (cont.)

! Near a given critical point (z = µ, s = s∗) let ψz,s be a local
section, analytic in z (e.g. ψ′z,s(0) = 1)

L(z, s) := ψ′∗z̄,s(0)ψz,s(0)

is analytic with L(z, s) = L(z̄, s)∗

! Generically, L(z, s) has a simple eigenvalue λ(z, s)
vanishing to first order at (µ, s∗); λ(z, s) ∈ R for z ∈ R

!

C = −
∑

s∗
winding number of λ(z, s) around (µ, s∗)

=
∑

s∗
sgn

(∂λ

∂z
∂λ

∂s
)∣∣∣

(z=µ,s=s∗)
= −

∑

s∗
sgn

(∂λ

∂s
)∣∣∣

(z=µ,s=s∗)

! ∂λ/∂z < 0 for z ∈ R (Sturm oscillation)



Sketch of proof (cont.)
! Matching condition at x = 0 yields (L →∞)

R(s) = (i
√

µψµ,s(0)− ψ′µ,s(0))(i
√

µψµ,s(0) + ψ′µ,s(0))−1

R(s) has eigenvalue −1 iff ψµ,s(0) is singular

−1 s = 0, 2π

s
s∗

σ(R(s))

! Eigenvalue crossing is counterclockwise iff
∂λ/∂s|(z=µ,s=s∗) < 0

! Together:

C = # eigenvalue crossings of R at z = −1
= winding number of det R

"



Summary

! Scattering approach: gapless systems, finite scatterer;
transport based on scattering matrix and attributed to
states, both at Fermi energy; quantized in special cases
only

! Topological approach: gapped systems, infinite device;
transport attributed to states way below Fermi energy;
quantized

! A comparison has been obtained.
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Noises

R resistance

1. Equilibrium noise: • no voltage applied; • temperature β−1

Q: charge flowed during time T

〈Q〉 = 0
〈Q2〉

T︸ ︷︷ ︸
fluctuation

=
2

βR︸︷︷︸
dissipation

(Johnson, Nyquist 1928)

2. Non-equilibrium noise: • voltage V ; • zero temperature

〈Q〉
T

=
V
R

(Ohm)

〈〈Q2〉〉 := 〈Q2〉 − 〈Q〉2 (shot noise . . . )



Classical shot noise

〈〈Q2〉〉 = e〈Q〉 (Schottky 1918)

(e electron charge)

Interpretation. Poisson distribution (parameter λ)

n : number of electrons

pn = e−λ λn

n!
〈n〉 = λ, 〈〈n2〉〉 = λ

Charge: Q = en
〈〈Q2〉〉 = e2λ = e〈Q〉



Quantum shot noise

r
t ′

r ′
p = |t |2 transmission probability
q = 1− |t |2 reflection probability

t

〈〈Q2〉〉 = e〈Q〉(1− |t |2) (Khlus 1987, Lesovik 1989)

Interpretation. Binomial distribution with N attempts

pn =

(
N
n

)
pnqN−n

〈n〉 = Np, 〈〈n2〉〉 = Np(1− p)

Besides: For bias V the semi-classical count is N = VT/(2π).



The generating function of counting statistics

pn probability of transfer of n electrons

χ(λ) =
∑

n∈Z
pneiλn = 〈eiλ∆Q〉 moment generating function:

〈nk 〉 = (−id/dλ)kχ(λ)|λ=0

log χ(λ) cumulant generating function

! For binomial statistics:

log χ(λ, t) =
Vt
2π

log((1− T ) + eiλT )

! For a random variable with outcomes αn:

χ(λ) =
∑

n∈Z
pneiλαn



Quantum mechanics and measurement
Hilbert space with vectors |ψ〉 (pure states) and operators,
representing
• mixed state: ρ ≥ 0, trρ = 1; pure if indecomposable, i.e.
ρ = |ψ〉〈ψ| is rank 1 projection.
• observable A∗ = A =

∑
i αiPi (spectral decomposition)

• evolution U unitary; ρ '→ UρU∗

Measurement of A:

ρ '→
∑

i

PiρPi (“collapse of the state”)

with tr(PiρPi) = tr(ρPi) probability of outcome αi .

Two measurements of A, with evolution U in between.

ρ '→
∑

i,j

PjUPiρPiU∗Pj

with tr(U∗PjUPiρPi) probability of history (αi , αj)



Quantum mechanics and measurement (cont.)

Moment generating function for difference of outcomes

χ(λ) =
∑

i,j

tr(U∗PjUPiρPi)eiλ(αj−αi ) =
∑

i

tr(U∗eiλAUPiρPi)e−iλαi

If [A, ρ] = 0, then: PiρPi = Piρ (no collapse at 1st
measurement) and

χ(λ) = tr(U∗eiλAUe−iλAρ)



Charge and current

Consider the operators (on the appropriate Hilbert space of the
system)

Q(t) charge on the Right lead
I(t) = i[H, Q(t)] current through the junction

Q(t)−Q(0) =

∫ t

0
dt ′I(t ′)



∆Q in quantum mechanics

Q(t)−Q(0) =

∫ t

0
dt ′I(t ′)

Single (?) measurement (Levitov, Lesovik 1992)

∆Q = Q(t)−Q(0)

χ(λ, t) = 〈eiλ(Q(t)−Q(0))〉

〈〈(∆Q)k 〉〉 =

∫ t

0
dk t〈〈I(t1) . . . I(tk )〉〉

(dk t = dt1 . . . dtk )
But: Q(t), Q(0) are based at different times; have integer
spectrum, while Q(t)−Q(0) does not. (This protocol not
pursued.)



∆Q in quantum mechanics (cont.)

Q(t)−Q(0) =

∫ t

0
dt ′I(t ′)

Two measurements (Levitov, Lesovik 1993)
! Measure charge Q(0) in R at time t = 0 and so prepare

initial state 〈·〉
! Wait till t
! Measure charge Q(t) in R
! Transferred ∆Q is difference of the two measurements.
! ∆Q is an integer!



∆Q in quantum mechanics (cont.)

Generating function:

χ(λ, t) = 〈eiHteiλQe−iHte−iλQ〉 ≡ 〈eiλQ(t)e−iλQ〉

Proof. χ(λ, t) = 〈eiλQ(t)〉e−iλq with q: eigenvalue of Q = Q(0) in
〈·〉 "
Relation to current: If [Q, I] = 0

〈〈(∆Q)k 〉〉 =

∫ t

0
dk t〈〈T (I(t1) . . . I(tk ))〉〉

Proof. χ(λ, t) = 〈eiHte−iH(λ)t〉 with

H(λ) = eiλQHe−iλQ

= H − iλ[H, Q] = H − λI

Dyson expansion for eiHte−iH(λ)t "
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Second quantization: from one to many particles
1-particle: Hilbert space H, operator A

many particles (fermions): Hilbert space

F(H) =
∞⊕

n=0

n∧
H (Fock space)

Operator, acting on
∧n H

Γ(A) = A⊗ . . .⊗ A (for independent evolutions)

dΓ(A) =
n∑

i=1

1⊗ . . .⊗ A⊗ . . .⊗ 1 (for additive observables)

For a trace class operator A

TrF(H) Γ(A) = detH(1 + A)

(Fredholm determinant)



Second quantization (cont.)
0 ≤ N ≤ 1 1-particle density matrix; N|ψ〉 = ν|ψ〉 means

“the 1-particle state |ψ〉 is occupied with
probability ν in the many-particle state ρ”

Quasi-free state: Uncorrelated many-particle state determined
by 1-particle density matrix N

ρ =
Γ(M)

Z
(Z = Tr Γ(M))

with N = M(1 + M)−1, resp. M = N(1− N)−1.
In fact, on F [|ν〉] = ⊕1

n=0 ∧n [|ν〉],

10 + ν
ν′11

1 + ν
ν′

= ν ′10 + ν11 (ν ′ = 1− ν)

Example:
M = e−βH , N = (1 + eβH)−1.

Remark: [N, A] = 0 implies [ρ, dΓ(A)] = 0.



Main formula (Levitov, Lesovik)

Hypothesis: [Q, N] = 0; means “state does not collapse under
1st measurement”.
Then

χ(λ) = det(1− N + eiλU∗QUNe−iλQ)

Derivation:

χ(λ) = Tr
(
Γ(U)∗eiλdΓ(Q)Γ(U)eiλdΓ(Q)ρ

)

=
Tr Γ(U∗eiλQUe−iλQM)

Tr Γ(M)
=

det(1 + U∗eiλQUe−iλQM)

det(1 + M)

= det(1− N + U∗eiλQUe−iλQN)



A consequence

〈n〉 = −iχ′(0) = tr(U∗QU −Q︸ ︷︷ ︸
∆Q: transmitted charge

)N

〈〈n2〉〉 = −(log χ)′′(0)

= tr(N(∆Q)(1− N)∆Q)

= tr(N(1− N)(∆Q)2)︸ ︷︷ ︸
thermal noise ∝β−1

+
1
2

tr(i[∆Q, N])2

︸ ︷︷ ︸
shot noise

thermal noise: fluctuation in the source of particles
shot noise: fluctuation in the transmission of particles
(cf. Büttiker)



Questions

Is the determinant Fredholm?

χ(λ) = det(1− N + eiλU∗QUNe−iλQ)

Is Z < ∞?

Yes, if both • leads and • energy range are finite.

But: Bounds on these quantities are physically irrelevant,
because

! transport is across the dot (compact in space)
! transport occurs near the Fermi energy (compact in

energy)
Hence: Such bounds ought not to be necessary
mathematically.



A quick fix

χ(λ) = det(1− N + eiλU∗QUNe−iλQ) = det(N ′ + eiλQU Ne−iλQ)

with N ′ := 1− N occupation of hole states;
QU := U∗QU (Heisenberg) evolution of Q.

Multiply determinant by

” det(e−iλNUQU ) · det(eiλNQ) = eiλtr(QN−QUNU) = 1 ”

Result: regularized determinant

χ(λ) = det(e−iλNUQU N ′eiλNQ + eiλN′
UQU Ne−iλN′Q)

! Particle-hole symmetry: (N, λ) ↔ (N ′,−λ)
! Determinant is Fredholm under reasonable assumptions
! Analogy with det2(1 + A) = det(1 + A)e−trA (A Hilbert-

Schmidt).



An illustrative example
log χ(λ) ! log χ(λ) + iλtr(QN −QUNU): Only 1st cumulant
affected.

Example: free particles in a lead.
p

x

N = NUp

Q

pF−pFEF

E

QU

+

−

dispersion relation phase space

Before regularization: 〈n〉 = tr(QU −Q)N
! trace vanishes by compensation between + and −
! trace class norm (∝ area of ±) diverges as pF →∞

After regularization:

〈n〉 = tr(QU −Q)N + tr(QN −QUNU) = trQU(N − NU)

! vanishes as operator.



A more fundamental approach
for systems with infinitely many degrees of freedom

Algebraic approach to quantum theory
! observables A: elements of C∗-algebra A
! (mixed) states ω: positive, normalized linear functionals on
A

ω(A) : expectation of A in ω

The GNS construction: Given a state ω there are
! a Hilbert space Hω

! a representation πω of A
! a cyclic vector Ωω ∈ Hω

such that
ω(A) = (Ωω, πω(A)Ωω)

Note: also mixed states are realized as vectors; then

πω(A)︸ ︷︷ ︸
von Neumann algebra

(observables)

" B(Hω)︸ ︷︷ ︸
bounded operators



CAR-Algebra

(Recall: H 1-particle Hilbert space with operators U, Q, N)
! Algebra A(H) generated by a∗(f ), a(f ), (f ∈ H) with

canonical anticommutation relations

{a(f ), a∗(g)} = 〈f |g〉, {a(f ), a(g)} = 0

! States: 0 ≤ N ≤ 1 defines a quasi-free state ω by

ω(a∗(f )a(g)) = 〈g|N|f 〉 (& Wick’s lemma)

Note: the states in the example
N = 0 vacuum
N = θ(−H) Fermi sea
N = (1 + eβH)−1 Fermi-Dirac distribution

cannot be realized in each other’s GNS space.
E.g. for N = 0: Hω

∼= F(H)



A theorem

(Recall: H 1-particle Hilbert space with operators U, Q, N)
Under suitable and reasonable assumptions
1. The algebra automorphisms a∗(f ) '→ a∗(Uf ) and
a∗(f ) '→ a(eiλQf ) are unitarily implementable: There exists
(non-unique) Û and eiλQ̂ on Hω such that

Ûπω(a∗(f )) = πω(a∗(Uf ))Û etc.

2. Q̂ ∈ πω(A) (observable meaning: renormalized charge)
3. The moment generating function

χ(λ) := (Ωω, Û∗eiλQ̂Ûe−iλQ̂Ωω)

(not affected by the above non-uniqueness) is given by the
regularized determinant seen before.

Methods: Shale-Stinespring, Araki, Jaksic-Pillet



Outline

Quantum pumps: The scattering approach

Quantization of charge transport

Quantum pumps: The topological approach

A comparison

Counting statistics

The determinant for independent particles

Application to tunnel junction



The essential description

r
t ′

r ′
p = |t |2 transmission probability
q = 1− |t |2 reflection probability

t

Energy independent scattering matrix

S =

(
r t′

t r′

)

for fermions with linear dispersion relation (left, right movers)
and Fermi energies µL, µR.



A discrepancy about the third cumulant

! For single-step measurement of ∆Q:

〈〈(∆Q)3〉〉 =

∫ t

0
d3t〈〈I(t1) . . . I(t3)〉〉 = −2T 2(1−T )·(Vt/2π)

! For two-step measurement: 〈〈(∆Q)3〉〉 equals
! (Lesovik, Chtchelkatchev 2003)

∫ t

0
d3t〈〈T (I(t1) . . . I(t3))〉〉 = −2T 2(1− T ) · (Vt/2π)

! Based on determinant (Lesovik, Levitov): Binomial result

T (1− T )(1− 2T ) · (Vt/2π)

Same with the above regularization; same by (Salo,
Hekking, Pekola 2006) by different means.



Experimental data (Reznikov et al. 2005)

I = T · V/2π

Result is for T small. Sign of slope is consistent with binomial
alternative.



Discussion of hypotheses

Recall: the computation by means of T (I(t1) . . . I(tk )) relies on
[Q, I] = 0. Typical Hamiltonian for particles with linear
dispersion:

H = pσz + V (x) on L2(R; C2)

(V = V ∗). Then

i[H, x ] = σz

Q = θ(x)1, I = i[H, Q] = σzδ(x)

Hence [Q, I] = 0.

But the Hamiltonian underlying the essential description is not
typical!



Reconstructing the Hamiltonian

in

out

L R

in

in

out

out

L R

x = 0

out

in

x = 0

R

outout

in in
L

S S

S =

(
r t′

t r′

)

H defined on L2(R; C2) through either
! (“shift and scatter”)

(e−iHtψ)(x) = (1 + (S − 1)θ(0 < x < t))ψ(x − t) (t > 0)

! (Falkensteiner, Grosse 1987) H = p with boundary
condition ψ(0+) = Sψ(0−)

! (Albeverio, Kurasov 1997)

H = p + 2i
S − 1
S + 1

δ(x) (δ = (δ+ + δ−)/2)



Discussion of hypotheses (cont.)

With
Q =

(
0 0
0 1

)
I = i[H, Q]

one has

[Q(t), I(t)] = ([Q, S∗QS]θ(−x) + [SQS∗, Q]θ(x))δ(x + t) $= 0

The hypothesis is not satisfied!



Back to the starting point

χ(λ, t) = 〈eiHteiλQe−iHte−iλQ〉 = 〈eiλQ(t)e−iλQ〉 = 〈T eiλ(Q(t)−Q)〉

Thus

〈(∆Q)k 〉 = 〈T (Q(t)−Q)k 〉
= T ((Q(t1)−Q) . . . (Q(tk )−Q))

∣∣
t1=...=tk=t

=

∫ t

0
dt1

∂

∂t1
〈T ((Q(t1)−Q) . . . (Q(tk )−Q))〉

∣∣
t2=...=tk=t

=

∫ t

0
dk t

∂

∂tk
. . .

∂

∂t1
〈T ((Q(t1)−Q) . . . (Q(tk )−Q))〉

=

∫ t

0
dk t

∂

∂tk
. . .

∂

∂t1
〈T (Q(t1) . . . Q(tk ))〉



Another time ordering

! Hence

〈〈(∆Q)k 〉〉 =

∫ t

0
dk t 〈〈T ∗(I(t1) . . . I(tk ))〉〉

with T ∗: Matthews’ time ordering: time-derivative outside
of the T -ordering (no assumption on [Q, I]).

!

T ∗(I(t1) . . . I(tk )) =T (I(t1) . . . I(tk ))

+ contact terms supported at ti = tj



The discrepancy solved

In the context of the model Hamiltonian the expansion in
contact terms of the third cumulant is

〈〈(∆Q)3〉〉 =
∫ t

0
d3t 〈〈T Î1̂I2̂I3〉〉+3

∫ t

0
d2t 〈〈T Î1[Q̂2, Î2]〉〉+

∫ t

0
dt1 〈[Q̂1, [Q̂1, Î1]]〉

(with ̂ reminding of second quantization).
It takes the form

〈〈(∆Q)3〉〉 = (−2T 2(1− T ) + 0 + T (1− T )) · (Vt/2π)

= T (1− T )(1− 2T ) · (Vt/2π)

Binomial result!



Computation of a contact term

! Initial state: fermionic, quasi-free with single-particle
density matrix

ρ =

(
θ(µL − p) 0

0 θ(µR − p)

)
(V = µL − µR)

Since ρ = ρ2, the many-particle state 〈·〉 is pure.
Since [Q, ρ] = 0, the 〈·〉 is an eigenstate of Q̂.

! Second quantization based the GNS space of 〈·〉:

A '→ Â

for [A, ρ] ∈ Hilbert-Schmidt (Shale-Stinespring). One has
〈Â〉 = 0 (vacuum substraction)



Computation of a contact term (cont.)

! In the Fock representation (ρ = 0): Â = dΓ(A)

[Â, B̂] = [dΓ(A), dΓ(B)] = dΓ([A, B]) = [̂A, B]

! In general, corrections by Schwinger terms

[Â, B̂] = [̂A, B] + s(A, B)1
s(A, B) = tr([ρ, A]ρ′[B, ρ])− tr([ρ, B]ρ′[A, ρ])

= tr(ρAρ′Bρ)− tr(ρ′AρBρ′)
(ρ′ = 1− ρ)

In particular:
〈[Â, B̂]〉 = s(A, B)

! Â(t) = Â(t) + i
∫ t

0 dt ′ s(H, A(t ′))1



Computation of a contact term (cont.)

In our case
∫ t

0
dt1 〈[Q̂(t1), [Q̂(t1), Î(t1)]]〉 =

∫ t

0
dt1 〈[Q̂(t1), [Q̂(t1), Î(t1)]]〉

=

∫ t

0
dt1 s(Q(t1), [Q(t1), I(t1)])

= T (1− T ) · (Vt/2π)

as announced



Summary

! The correct time ordering for the cumulants of charge
ordering is T ∗

〈〈(∆Q)k 〉〉 =

∫ t

0
dk t 〈〈T ∗(I(t1) . . . I(tk ))〉〉

! In many cases the ∗ can be omitted. It can not in the
simplest case of energy-independent, instantaneous
scattering. The difference to the T ordering consists in
contact (Schwinger) terms.


