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Quantum pumps: The scattering approach



Quantum pumps

Charge quantum mechanically transferred between leads due
to parametric operations, e.g. changing gate voltages.
Idealized:

channels pump proper

e independent electrons (e = +1)

e each channel filled up to Fermi energy ;. with incoming
electrons

e S = 5(X) = (Sj) scattering n x n matrix at energy ;. given
the pump configuration X (w.r.t. to reference configuration Xp)
e At fixed X: no net current



Charge transport

(Buttiker, Thomas, Prétre) Under a slow change X — X + dX,
and hence S — S + dS, a net charge

i

aq; o

((aS)S%);
leaves the pump through channel j

Remarks

i

° dOj o

((dS)S%);

is a thermodynamic formula: exchanged charge d Q; expressed
through static quantities S(X) (& their variation) accessible
from the outside, (cf. work dW = —pdV);

ff d Q) depends on path, but not on its time parameterization.
e $dQ; # 0: itis a pump!



e Kirchhoff’s law does not hold:

ZﬁQ_——cﬁﬁﬂ—7ﬂbmmS

= - de#0
where “¢(u) = Tr(P(p, X) — P(u, Xp))” is the Krein spectral shift

and P(u, X) = 6(n — H(X)) is the spectral projection for the
Hamiltonian H(X).

= is Friedel sum rule/Birman-Krein formula

det S = e2mi(K)

e But

n
$3 99 -0
y <



A semiclassical/adiabatic picture

E € [0, 00): 1-particle energy spectrum in a channel
p(E): occupation of incoming states, e.g.
p(E) = 6(n — E) (at temperature 5~ = 0)
or p(E) = (1 + *E-#)~1
S(E.t) = S(E, X(t)): static scattering matrix
S(E, X) at energy E along
slowly varying X = X(1).
out state: channel j, energy E, time of passage t at fiducial
point under Xj
T(E.t) = —i92 S*: Eisenbud-Wigner time delay:
t—17; time of passage of in state correspon-
ding to same out state under X(t).
E(E,t) = 1% S*: Martin-Sassoli energy shift:
E —&; energy of in state under X(t).



Incoming charge during [0, T]inlead j

— dl‘/ dEp(E

(27 = size of phase space cell of a quantum state)
Outgoing charge

— dt/ / dEp(
where

(E' )= (E,t)=(E' = g(E' V), —T;(E', 1))
maps outgoing to incoming data
Net charge (linearize in &)

T 00
Q= LI / dEp'(E)E;(E, 1)
27T 0 0
For p(E) = 0(u — E) this equals Q; = [, dtQj(t) with

- 1 aS .
Q) = 5-&(n ) = 5 (57"

(cf. BPT)



What'’s behind: Adiabatic evolution in absence of gap

» Adiabatic evolution
H = Hs, S == €t

istE(s, so) = e "HsU.(s, sp), U-(so, So) = 1

in the limit e — 0. Assume dHs/ds compact operator
(device).
» Initial state (1-particle density matrix) at sq: spectral
projection
Psy = 0(1 — Hs,)
with 1 Fermi energy.
» State at s

P-(s) = U(s, 80)Ps, U-(5, 0)" (# Ps)

» Current operator at distance a from the device: /;(a)



Theorem. For s > sg,

as

lim lime~"tr(P(s)l,(a)) 45 (51)8(s, 1))

i
a—ce|0 - E(
Remarks.
» Order of limits: Ammeter is many wavelengths away from
the pump, but reached within < ¢~ (adiabatic time).
» Generalization to positive temperature.
» Most adiabatic theorems discuss

U-(s, s0)PU:(s, sp)*

where P is the spectral projection of Hs, onto (i) an isolated
part of its spectrum or (ii) an embedded eigenvalue. Here
(iii) P = 6(n — Hs,) corresponds to a gapless part of
continuous spectrum.

0] (ii)

— — — ———

(i)



An idea from the proof

» Scattering is about comparing two dynamics:
scattering matrix = U,(+o0, —00)

U(t', t): propagator in the interaction picture.

» Answer in terms of static scattering matrix: generators
(Hs', Hs) ~~ S(8, 8).
At s’ = s: may replace (dS/ds)S* ~ dS/ds

» Starting point is non-autonomous dynamics H.;, hence
dynamic scattering matrix: generators (Hs..t, Hs) ~> S(S).
Then
p(Hs) incoming 1-pdm (e.g. p(Hs) = 0(u — Hs))
S(s)p(Hs)S*(s) outgoing 1-pdm



An idea from the proof: S(s', s) vs. S(5)

» Linearize Hgy .t = Hs + eHst + . . .. Scattering operator
(dynamic) in Born approximation

S(s)=1—ie / dt el (Hgt)e st 4
=1+80(s)+...

whence

Sp(Hs)S* = p(Hs) +e[SM(s), p(Hs)] + . ..

» Linearize fors’ — s
HS/ :Hs—i—(S,—S)Hs“'—
Scattering operator (static) in Born approximation
S(s,8) = 1-i(s'~8) [ ot i .

=1+ (8 —8)0sS(5,8)|s=s + - ..



An idea from the proof (cont.)

S(s) = —i/ dt eiffst Hgte—iHst
83/ S(S/7 S)|S’:S = —1/ dteiHstHse*iHsl'

Claim:
[S0)(s), p(Hs)] = —~i0s S(s', 5)

Remark: relates dynamic — static, p — p'. _
Proof immediate for p(\) = e 77, —ip/(\) = —re™":

S/:sp/(HS)

S0 (g)e~iHsm — e—iHs’r(_i)/ dt sty - (1 — r)e—He!

_ o iHsT (5(1)(5) — 783/3(3/, 3)|s’:s)
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Quantization of charge transport



Further transport properties
» Noise

{(nf) 27r / /T1 1> S*(t/))” dt dt’

» Energy dissipated to reservoirs

_point contact

reservoir 1 reservoir 2

1 T

E) - pm) =4 [ (€%t
~— —~— ™ Jo

energy delivered  can be reclaimed
to reservoir j from reservoir

Remark (dissipation inequality): For any source
(E) — p(h) = m(n)?

» related to P = RI? with R > 7 = (1/2)(h/€?) (point contact
resistance; e=h = 1)
» for pumps: (£2); > (&;)?



Theorem: Optimal pump processes

Hypotheses: e cyclic process: X(0) = X(T) e fix a lead, j

The following are equivalent:
» Dissipation inequality is saturated (minimal dissipation)
> No noise: ((n?)) =0
» The charge transported in a cycle is quantized:

ny=(n;) €Z

Note: holds for arbitrary number number of leads n (instead of
2)

The content is geometric



The Hopf map

Unit sphere S2"=1 c C" preserved by circle action |)) — ¢!’|¢)

SZn—1/ ~— P(Cn_1

b(t
L)“d%» $2n=1 (fibre bundle)

. } .
W <~V [¥)v] connection 1-form

W | (i) = —i(W[)

Hopf map =
¢ PC"' (base space)




Geometric interpretation of optimality

Recall: £ = iSS* = —iSS*
Let (¢ (t)| = j-th row of S(t) (incoming state feeding channel j)

((O)|p(t) =1
i(SS*)jj = 5/'/' = _1<¢W’>

Charge transport (nj) = (2r)~" § &;at is holonomy (Berry
phase).
If process proceeds along fiber, |1/(1)) = e?(D]¢(0)), then

» & =0 and (2r)~" § ddt is the winding number

> [(S(8)S* ()17 = [(w(t)|(t'))[? = 1: no noise
> (£3)) = (¥l¥) = (|v) (] = () minimal dissipation



Quantized transport

""" 1 @ 2

Cyclic process: X(0) = X(T)

Theorem. The charge transported in a cycle is quantized
np=(ny) €% (j=1,2)

iff scattering matrix S(t) is of the form

eiﬂm(t) 0
3(’):< 0 eiwz(f)> So

Then n; is the winding number of ¢;(t), (j = 1,2)



Quantized transport (cont.)

Generalization to many channels:

=)

In a cycle, the charge delivered to the Left (resp. Right)
channels as a whole is quantized iff

_(Ui(t) 0
S(”‘< 0 U2(T)>SO

with U;(t) unitary n; x n;-matrices (j = 1,2). The charge is the
winding number of det U;(t).

I'l1+1

m+ n
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Quantum pumps: The topological approach



Some examples

constriction

2DEG

surface gate

depleted
region




The setup of the topological approach

Infinitely extended 1-dimensional system
a2
H(s) = 5T V(s, x) on L2(Ry)
depending on parameter s, real. Potential V doubly periodic

V(s,x+L)= V(s x), V(s+2m, x) = V(s,x)

Change s slowly with time t.
Hypothesis. The Fermi energy lies in a spectral gap for all s.

Theorem (Thouless 1983). The charge transported (as
determined by Kubo’s formula) during a period and across a
reference point is an integer, C.

(What’s behind: Adiabatic evolution in presence of gap)



The integer as a Chern number

Ynks(X): n-th Bloch solution of quasi-momentum k € [0, 27 /L]
(Brillouin zone), normalized over x € [0, L] (unique up to
phase).

8wnks 61/}nks 8wnks awnks
C= ZC”Zzw/< as ok ' ok Tas ))ds dk

sum extends over filled bands n
integral over torus T = [0, 27] x [0, 27 /L]

as a rule, phase can be chosen such that |is) is smooth
only locally T

integrand (curvature) is smooth globally
Cp is Chern number, obstruction to global section |iks)

v

v

v

v

v



Generalizations
1) n channels:

2
T T
with V(s, x) = V*(s, x) € Mp(C).

2) Time, but not space periodicity is essential. Sufficient: Fermi
energy lies in a spectral gap for all s. What about C?
Let z ¢ o(H(s)) and ¥(x), x(x) € My(C) with

H(s) = V(s, X) on L2(Ry, C")

(H(s) = 2)(x) =0,  #(x) =0 (X = +o0)
X(x)(H(s)=2) =0,  x(x) = 0 (x — —o0)

with ¥ (x), x(x) regular for some x € R. Wronskian
W(x, i x) = x(X)¢'(x) = X'(X)¥(x) € Mn(C)

is independent of x for solutions v, x. Normalize:
W(x,¢; x) = 1.



Theorem. The transported charge is
i ox oy ox 0v.
0_27T/Ttr(W(8 i) = WSS S x))dsdz

(any x). This is the Chern number of the bundle of solutions
on(s,z) € T =10,27] x 7.
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A comparison



A comparison
Are Thouless’ and Biittiker's approaches incompatible?

» Topological approach: Fermi energy p in gap: no states
there

|
Ju

Charge transport attributed to energies way below p

» Scattering approach: Depends on scattering at Fermi
energy

0
Charge transport attributed to states at energy

Truncate potential V to interval [0, L]

d2
H(s) = T dx® + V(s, X)x0,9(X) on L3(Ry,C")

Gap closes.



A comparison (cont.)

Scattering matrix
R, T’>
S.(s) = L
L( ) (TL R/L

exists at Fermi energy.

Theorem
» As L — oo,

- (%1 1)

exponentially fast, with R, R’ unitary. Hence: conditions for
quantized transport attained in the limit.

» Charge transport in both descriptions agree: Winding
number of det R is Chern number C.



Sketch of proof

» Solution ¢z s(x) for (z,s8) € T
> z,s(x) or 7 s(x) regular at any x € R
» 1, s(x = 0) regular except for (z = p, s) at discrete values
s* of s.
» Except for these critical points, there is a global section ¢, s
(e.g. '(/Jz,s(o) - 1)




Sketch of proof (cont.)

» Near a given critical point (z = p, s = s*) let ¢, s be a local
section, analytic in z (e.g. 7 5(0) = 1)

L(z,s) = 71}/2fs(0)¢z,s(0)

is analytic with L(z,s) = L(z, s)*
» Generically, L(z, s) has a simple eigenvalue \(z, s)
vanishing to first order at (u, $*); A(z,5) e Rforz € R

— Zwinding number of A(z, s) around (u, %)

3/\ 3/\ o\
- Z 82 83 (z=ps=s") ngn(%)

» 0\/0z < 0 for z € R (Sturm oscillation)




Sketch of proof (cont.)
» Matching condition at x = 0 yields (L — oo)
R(8) = (ivithu,s(0) — ¥}, 5(0)) (iv/iithys(0) + ¢, 5(0)) ™"
R(s) has eigenvalue —1 iff v, s(0) is singular

S
N

Il s=0,2r7

a(R(s))

» Eigenvalue crossing is counterclockwise iff
ON/0S|(z=p,s=s7) < 0
» Together:
C = # eigenvalue crossings of Rat z = —1
= winding number of det R



Summary

» Scattering approach: gapless systems, finite scatterer;
transport based on scattering matrix and attributed to
states, both at Fermi energy; quantized in special cases
only

» Topological approach: gapped systems, infinite device;
transport attributed to states way below Fermi energy;
quantized

» A comparison has been obtained.
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Counting statistics



Noises
e

R resistance

1. Equilibrium noise: e no voltage applied; o temperature 5~

Q: charge flowed during time T

(@ =0

2
<Q_,_> = % (Johnson, Nyquist 1928)
~—~— ﬁ/

fluctuation  gjssipation

2. Non-equilibrium noise: e voltage V; e zero temperature

(@P) == (@Q®?) — (Q)*>  (shot noise ...)



Classical shot noise

(@%) =e(Q)  (Schottky 1918)
(e electron charge)
Interpretation. Poisson distribution (parameter X)

n : number of electrons

)\n
A
Pn=¢"7%

(m=2x (M) =2x

Charge: Q =en
(@%) = €A = e(Q)



Quantum shot noise

—
t = |t| transm|SS|on probability
D r q =1 —|t|? reflection probability
t/

(@%) =e(Q)(1 —[t]?)  (Khlus 1987, Lesovik 1989)

Interpretation. Binomial distribution with N attempts

Pn = <N>p”qN "
(n)=Np,  {(n))=Np(1-p)

Besides: For bias V the semi-classical countis N = VT /(2r).



The generating function of counting statistics

Pn probability of transfer of n electrons
X(A) = pre*” = (e*29)  moment generating function:

ez () = (=id/dN) x(N)rmo
log x(A) cumulant generating function

» For binomial statistics:
4 iA
log x(\, t) = o log((1—T)+¢e"'T)
» For a random variable with outcomes ap:

X()\) — anei)\an

nez



Quantum mechanics and measurement

Hilbert space with vectors |¢)) (pure states) and operators,
representing

e mixed state: p > 0, trp = 1; pure if indecomposable, i.e.
p = |¥)(y| is rank 1 projection.

e observable A* = A =", ;P; (spectral decomposition)
e evolution U unitary; p — UpU*

Measurement of A:

p Z PipP; (“collapse of the state”)
i

with tr(PipP;) = tr(pP;) probability of outcome «;.
Two measurements of A, with evolution U in between.
pr D PUPpPU P,
ij

with tr(U* P;UP;pP;) probability of history («;, ;)



Quantum mechanics and measurement (cont.)

Moment generating function for difference of outcomes

X = (U PUP;pPy)e M=) = " (UM UP; pPy)e ™A
if i

If [A, p] = 0, then: PjpP; = P;p (no collapse at 1st
measurement) and

X()\) _ tI'( U*ei/\A Ue—i/\Ap)



Charge and current

Consider the operators (on the appropriate Hilbert space of the

system)
Q(1) charge on the Right lead
I(t) = i[H, Q(1)] current through the junction

Q(t) — Q(0) = /0 LI



AQ in quantum mechanics

t
om-qm—/mnm
0
Single (?) measurement (Levitov, Lesovik 1992)

AQ = Q(t) — Q(0)

O 1) = (N@-C0))
t
(AQ)F)) = / It - I(t))
0

(dkt = dt; ... dt)

But: Q(t), Q(0) are based at different times; have integer
spectrum, while Q(t) — Q(0) does not. (This protocol not
pursued.)



AQ in quantum mechanics (cont.)

Q(t) - Q(0) = /O L)

Two measurements (Levitov, Lesovik 1993)
» Measure charge Q(0) in R attime t = 0 and so prepare
initial state (-)
» Wait till ¢
» Measure charge Q(t) in R
» Transferred AQ is difference of the two measurements.
» AQis an integer!



AQ in quantum mechanics (cont.)
Generating function:
X()\? t) _ <ethei)\Oefthefi)\Q> = <ei/\Q(t)efi)\Q>
Proof. x(\, t) = (e*@)e~1Aa with g: eigenvalue of Q = Q(0) in

() O
Relation to current: If [Q, /] =0

t
(aay)) :/0 d“t{(T(I(t) - (1))

Proof. y(\, t) = (eite=1HY) with

H()\) _ ei)\QHe—i)\Q
— H—i\H, Q] = H=

Dyson expansion for eiffe—1H(\)t 0



Outline

The determinant for independent particles



Second quantization: from one to many particles

1-particle: Hilbert space H, operator A
many particles (fermions): Hilbert space

F(H) = é /\H  (Fock space)

Operator, acting on \" H

rMA)=A®...0A (for independent evolutions)

n
=> 1®..0A®...01 (for additive observables)

For a trace class operator A

(Fredholm determinant)



Second quantization (cont.)
0 <N <1 1-particle density matrix; N|) = v|¢)) means
“the 1-particle state |¢) is occupied with
probability » in the many-particle state p”
Quasi-free state: Uncorrelated many-particle state determined
by 1-particle density matrix N

p=—m  (Z=TeT(M))

with N = M(1 + M)~1, resp. M= N(1 — N)~".
In fact, on Fl|v)] = @} _q A" V)],

10+ 41
70111/51 =119 +v14 (V' =1-v)
Example:
M =ePH N =(1+eH)=1.

Remark: [N, A] = 0 implies [p, dI'(A)] = 0.



Main formula (Levitov, Lesovik)

Hypothesis: [Q, N] = 0; means “state does not collapse under
1st measurement”.
Then

X(A) = det(1 — N+ V" UNe Q)

Derivation:

() = Tr([—(U)*eiAdr(o)r(U)eiAdr(O)p)
T F(U*erQUe=AAM) ~ det(1 + U*e*QUe= QM)
Trr (M) det(1 + M)
= det(1 — N + Ue?QUe CN)




A consequence

(n) = —ix/(0) = (U QU — Q)N
AQ: transmitted charge
((n?)) = —(log x)"(0)
=tr(N(AQ)(1 — N)AQ)

= u(N(1 — N)(AQ)?) + %tr(i[AQ N])?

————’
shot noise

thermal noise «c3—1

thermal noise: fluctuation in the source of particles
shot noise: fluctuation in the transmission of particles
(cf. Bittiker)



Questions

Is the determinant Fredholm?
x(A) = det(1 — N + PV QUN—1AQ)

Is Z < 00?
Yes, if both e leads and e energy range are finite.
But: Bounds on these quantities are physically irrelevant,
because
» transport is across the dot (compact in space)
» transport occurs near the Fermi energy (compact in
energy)

Hence: Such bounds ought not to be necessary
mathematically.



A quick fix

X(A) = det(1 — N+ " UNe Q) = det(N' + e WUNe )

with N := 1 — N occupation of hole states;
Qu := U*QU (Heisenberg) evolution of Q.
Multiply determinant by

” det(e—i)\NUou) . det(ei)\NQ) — ei)\tr(QN—QuNU) -1

Result: regularized determinant

X()\) — det(e_iANUOUNIeD\NO + ei)\NbouNe—i)\N/O)

» Particle-hole symmetry: (N, \) < (N, =X)
» Determinant is Fredholm under reasonable assumptions

» Analogy with dety(1 + A) = det(1 + A)e " (A Hilbert-
Schmidt).



An illustrative example
log x(A) ~ log x(A) + iAtr(QN — QyNy): Only 1st cumulant
affected.

Example: free particles in a lead.

L~

\LQU

dispersion relation phase space

T
Q

Before regularization: (n) = tr(Qy — Q)N
» trace vanishes by compensation between + and —
» trace class norm (x area of +) diverges as pr —

After regularization:

(ny =tr(Qu — Q)N + tr(QN — QuNy) = trQuy(N — Ny)
» vanishes as operator.



A more fundamental approach
for systems with infinitely many degrees of freedom

Algebraic approach to quantum theory
» observables A: elements of C*-algebra A
» (mixed) states w: positive, normalized linear functionals on
A

w(A) : expectation of Ain w

The GNS construction: Given a state w there are
» a Hilbert space H,,
» arepresentation 7, of A
» a cyclic vector Q, € H,,
such that
w(A) = (Qu, mu(A)L)
Note: also mixed states are realized as vectors; then
Tw(A) - B(H.)
~—— ~——

von Neumann algebra  bounded operators
(observables)



CAR-Algebra

(Recall: H 1-particle Hilbert space with operators U, Q, N)

» Algebra A(H) generated by a*(f), a(f), (f € H) with
canonical anticommutation relations

{a(f),a’(g)} = (flg),  {a(f),a(9)} =0
» States: 0 < N < 1 defines a quasi-free state w by
w(a*(f)a(g)) = (g|N|f) (& Wick’s lemma)

Note: the states in the example

N=0 vacuum

N = 0(—H) Fermi sea

N = (1 +¢°H)=1  Fermi-Dirac distribution
cannot be realized in each other’s GNS space.
E.g. for N =0: H, = F(H)



A theorem

(Recall: H 1-particle Hilbert space with operators U, Q, N)
Under suitable and reasonable assumptions

1. The algebra automorphisms a*(f) — a*(Uf) and

a*(f) — a(e™qf) are unitarily implementable: There exists
(non-unique) U and 2 on H,, such that

Un,(a*(f)) = mo(a*(U))U  etc.

2.Q¢ 7.(A) (observable meaning: renormalized charge)
3. The moment generating function

YO = (Qu, Ure*CUe 100, )

(not affected by the above non-uniqueness) is given by the
regularized determinant seen before.

Methods: Shale-Stinespring, Araki, Jaksic-Pillet



Outline

Application to tunnel junction



The essential description

—
t p= \t| transm|SS|on probability
D o q =1 — |t|? reflection probability
t
Energy independent scattering matrix

v t
s=(1v)

for fermions with linear dispersion relation (left, right movers)
and Fermi energies py, ug.




A discrepancy about the third cumulant
» For single-step measurement of AQ:

{((AQ)®)) /d3 (I(t) ... I(t))) = —2T?(1=T)-(Vt/2r)

» For two-step measurement: (((AQ)3)) equals
» (Lesovik, Chtchelkatchev 2003)

t
/0 ABtUTU(H) ... [(k)))) = —2T3(1 — T) - (Vt/2n)
» Based on determinant (Lesovik, Levitov): Binomial result
T —-T)1 —2T)-(Vt/2x)

Same with the above regularization; same by (Salo,
Hekking, Pekola 2006) by different means.



Experimental data (Reznikov et al. 2005)

I=T-V/2r

bin number

10 20

1) Upper
carection: 1

Result is for T small. Sign of slope is consistent with binomial
alternative.



Discussion of hypotheses

Recall: the computation by means of T(/(ty).../(t)) relies on
[Q, I] = 0. Typical Hamiltonian for particles with linear
dispersion:

H=po,+ V(x) onL3R;C?)
(V = V*). Then
ilH,x] =02
Q=00)1, I=i[H,Q] = 0:8(x)
Hence [Q, /] = 0.

But the Hamiltonian underlying the essential description is not
typical!



Reconstructing the Hamiltonian

in out out | out
|
L S R L R
|
out ! in in ! in
x=0

vt
s=(1 )

H defined on L2(R; C?) through either
» (“shift and scatter”)

(e ) (x) = (1 +(S—1)0(0 < x < t))p(x — t)

out out
|
|
S | x=0
|
|
' R
in in
(t>0)

» (Falkensteiner, Grosse 1987) H = p with boundary

condition ¢(0+) = Sy(0—)
» (Albeverio, Kurasov 1997)

Hept2i2= 065 (6=(0, +5.)/2)

S+1



Discussion of hypotheses (cont.)

With

o o

Q
Il
—
- O
~

I =i[H, Q]
one has
[Q(1), I(1)] = (]Q, S*QS]O(—x) + [SQS*, Q]O(x))o(x + t) # 0

The hypothesis is not satisfied!



Back to the starting point

X()\’ t) _ <ethei)\Qefthefi)\Q> < 1)\Q(t) 1)\Q> <Tel)\( (t)fQ)>

Thus

(AQ)4) = (T(Q(t) - B)F)

- 7w -0y ..<o(tk>—0>>»ﬁ:,,,:tk:,
/ dt; 2 aﬁ at) - Q). (Qt) — AN, _,_,
= [t mk...;; (T((@Qt) - Q). (Qt) - Q)

= [l 2@ at)



Another time ordering

» Hence

t
«mmwzldMmewwmm

with T*: Matthews’ time ordering: time-derivative outside
of the T-ordering (no assumption on [Q, /]).

>

T(I(t)... I(t)) =T(I(t). .. I(t))
+ contact terms supported at f; = ;



The discrepancy solved

In the context of the model Hamiltonian the expansion in
contact terms of the third cumulant is

(AQ)%) =

t PN t PPN -t P
/ Bt Tk +3 / Pt ((Th[Qe b)) + / oty ([Or, [Or, 1)
0 0 0

(with reminding of second quantization).
It takes the form

{(AQ)®) = (—2T?(1 = T)+ 0+ T(1 —T)) - (Vt/2n)
=T(1—-T)1 —2T)-(Vt/2n)

Binomial result!



Computation of a contact term

» Initial state: fermionic, quasi-free with single-particle
density matrix

_(%u-p) 0 _

Since p = p?, the many-particle state (-) is pure.
Since [Q, p] = 0, the (-) is an eigenstate of Q.
» Second quantization based the GNS space of (-):

A A

for [A, p] € Hilbert-Schmidt (Shale-Stinespring). One has
(A) = 0 (vacuum substraction)



Computation of a contact term (cont.)

~

» In the Fock representation (p = 0): A= dl'(A)
[A, B = [dT(A), dT(B)] = dI (1A, B]) = [A, B]
» In general, corrections by Schwinger terms

[A, B] = [A, B] + s(A. B)1
(A, B) = te([p, Alp'[B, p]) — tr([p, B]o[A, p])
= tr(pAp'Bp) — tr(p'ApBp')

In particular:

(0" =1-p)

([A, B]) = s(A, B)
> A(t) = A(t) +i [} dt' s(H. A(t))1



Computation of a contact term (cont.)

In our case
/dﬁthQH Tt /dnwm[QM(mm

:Amﬁomuqmwmn
=T(1—T) (Vt/2r)

as announced



Summary

» The correct time ordering for the cumulants of charge
ordering is T*

t
(((aay) :/o d“t ((T"(I(t) ... I(t))))

» In many cases the x can be omitted. It can not in the
simplest case of energy-independent, instantaneous
scattering. The difference to the T ordering consists in
contact (Schwinger) terms.



