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§0. Overview The goal of these lectures is to present a mathematical
approach to the spectral analysis of random band matrices H = H∗ using
the supersymmetric formalism. The random band matrices Hij we study are
indexed by vertices i,j of a lattice. Their matrix elements are small for large
|i− j| and hence reflect the geometry of the lattice. The ultimate aim is to
describe the statistical properties of their eigenvalues and eigenvectors. This
information is contained in averages of Green’s functions. Green’s functions
of random matrices may be expressed in terms of correlations of certain sta-
tistical mechanics ensembles. For each lattice site, the field or spin of such
models contains both commuting and anti-commuting or Grassmann com-
ponents. Because of the symmetry between the commuting and Grassman
variables these systems are referred to as supersymmetric-SUSY.

The SUSY formalism has its origins in the work of Franz Wegner who
formulated a bosonic sigma model with hyperbolic symmetry in the early
eighties [Weg 1, Weg2]. Inspired by this work, Konstantin Efetov developed
the SUSY formalism [Efe1] which gives an exact identity relating average
Green’s functions to correlations in SUSY field models.

For many years, I resisted the SUSY formalism in favor of renormalized
perturbation theory. My first real exposure to SUSY came from reading the
initial sections of Mirlin’s review [Mir] which I recommend to both mathe-
maticians and physicists. It was already clear from Mirlin’s treatment of the
density of states for GUE that SUSY could explain features of GUE that
were very difficult to see or control perturbatively. In [DPS] we followed the
GUE strategy in [Mir] to obtain results on the average Greens function for a
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random band matrix indexed by Z3. For a recent overview of developments
in SUSY and localization see the article by Efetov [Ef2].

The SUSY lattice field model provides a dual representation which en-
ables us to integrate over the disorder or randomness of the Green’s function.
This is most conveniently achieved for Gaussian disorder. In this case the
disorder average produces a lattice SUSY field model with quartic interac-
tions. After making suitable Hubbard Stratonovich transformations, these
representations have the advantage that many spectral properties of random
band matrices can be formally seen from an analysis of the saddle point
or saddle manifold. For example, universality of the local energy-energy
correlation can be understood from the stability of a saddle manifold - a ho-
mogeneous space determined by symmetry. In addition, various symmetries
and collective coordinates become evident. The main mathematical problem
is to establish control of fluctuations about the saddle.

The main idea behind SUSY lattice field models is that the Green’s func-
tion can be expressed as a ratio of determinants using Cramer’s rule. Aver-
ages of the determinant of the Green’s matrix (Eε −H)−1 can be expressed
using commuting or bosonic variables To get compute the average of the
determinant of (Eε − H) it is very convenient to introduce anticommuting
Grassmann variables. See the appendix for a brief review of Grassmann
integration.

These lectures begin with a discussion of the density of states for the
N×N Gaussian Unitary ensemble - GUE. In this simple but instructive case,
we shall reduce the average Green’s function to an SUSY model consisting of
two real variables. (The Grassmann variables can be traced out). The size of
the matrix N appears only as a parameter. For large N there is a saddle point
which becomes dominant. This saddle point will govern the famous Wigner
semicircle distribution. There is a second saddle point for GUE which gives
highly non trivial oscillatory corrections to Wigners semicircle law. See (3.6).
The contributions of this second saddle cannot be seen perturbatively. We
shall then generalize these methods to obtain detailed information about
the density of states for random band matrices indexed by lattice sites in
Z3 following [CFGK, DPS]. Such models can be analyzed with the help of
cluster expansions. I will closely follow [Dis, Mir] for the GUE case.

To obtain information about the eigenvectors of random matrices we
must analyze < |G(Eε; j, k)|2 >, where G is the Green’s function at en-
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ergy E − iε, ε > 0. The resulting lattice field model has a formal hyperbolic
SU(1, 1|2) symmetry and is more difficult to study. This means that for
the bosonic variables there exists a hyperbolic symmetry U(1, 1) preserving
an indefinite Hermitian form on C2, and the Grassmann variables are gov-
erned by a compact U(2) symmetry. Moreover, there exist odd symmetries
mixing Grassmann and bosonic variables. This lattice field model may have
Goldstone or zero energy modes related to the SU(1, 1|2) symmetry.

In a one dimensional chain of length L, the SUSY sigma model version
has an appealing expression first found in [Ef3]. The Grassmann variables
can be traced out and the resulting model is a nearest neighbor spin model
with positive weights given as follows. Let hj and σj denote spins with values
in a hyperboloid and the sphere S2 respectively. The Gibbs weight is then
proportional to

L∏

j=0

(hj · hj+1 + σj · σj+1)e
β(σj ·σj+1−hj ·hj+1). (0.1)

More precisely hj = (xj, yj, zj) satisfy the constraint z2j − x2
j − y2j = 1. The

dot product for the σ spins is Euclidean and the σ is the spin for the classical
Heisenberg model. On the other hand the dot product for the h spins is
hyperbolic: h ·h′ = zz′−xx′− yy′. It is very convenient to parameterize this
hyperboloid with horospherical coordinates s, t ∈ R:

z = cosh t+ s2et/2, y = sinh t− s2et/2, x = set. (0.2)

The integration measure in σ is the uniform measure over the sphere and the
measure over hj has the density

∏
etjdsjdtj. At the end points of the chain we

have set s0 = sL = t0 = tL = 0 . Thus we have nearest neighbor hyperbolic
spins (Boson-Boson sector) and Heisenberg spins (Fermion- Fermion sector)
coupled via the Fermion-Boson determinant. It is this coupling which is in
general quite complicated. However in 1D is given by

∏
j(hj ·hj+1+σj ·σj+1).

The factor of β depends on energy E, through the density of states, and on
the band width defined in the next section.

In general, sigma models have spins taking values in a symmetric space.
The interaction between adjacent spins respects the metric on the target
space. The Ising model, and the rotator are two well known sigma models
where the spin sj takes values in R1, R2 respectively with the constraint
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|s2j | = 1. Thus they take values in the groups Z2 and S1. It is expected that
sigma models capture the qualitative physics of more complicated models
with the same symmetry. For example the Ising model in 2 or 3 dimensions
is expected to have the same critical exponents as the scalar φ4 model with
a Z2 symmetry.

Although the SUSY sigma models are widely used in physics to make de-
tailed predictions about eigenfunctions, energy spacings and quantum trans-
port, there is as yet no rigorous analysis of the SU(1, 1|2) models described
above in 2 or more dimensions. Even in one dimension, where the problem
can be reduced to a transfer matrix, rigorous results are restricted to the
sigma model mentioned above. A key difficulty arises from the fact SUSY
lattice field models are not expected to have positive weights, moreover, they
have massless Goldstone modes.

However, in recent work with Disertori and Zirnbauer [DSZ, DS] we have
established the analog of a phase transition for a simpler SUSY hyperbolic
sigma model in 3 dimensions. We shall refer to this model as the H2|2 model.
The notation refers to the fact that the field takes values in hyperbolic 2
space augmented with 2 Grassmann variables to make it supersymmetric.
This model, introduced by Zirnbauer in 1991, is expected to reflect the qual-
itative behavior of random band matrices - namely localization and diffusion
- in any dimension. The great advantage of the H2|2 model is that the Grass-
mann variables can be traced out producing a statistical mechanics model
with positive but nonlocal weights. (The nonlocality arises from a determi-
nant produced by integrating out the Grassmann fields.) This means that
probabilistic tools can be applied. In fact we shall see that quantum local-
ization and diffusion will be closely related to the motion of a random walk
in a highly correlated random environment.

The aim of the latter part of these lectures will be to describe the H2|2

model and establish a phase transition as β(E) > 0 goes from small to large
values. Small values of β will correspond to localization - exponential decay
of correlations and lack of conductance. In three dimensions, we shall see that
large values of β correspond to quantum diffusion and extended states. The
proof of this transition relies heavily on Ward identities arising from SUSY
symmetries of the model. The simplest expression of these Ward identities
is reflected by the fact that the partition function is identically one for all
parameter values. The SUSY model is nevertheless highly non trivial because
observables break SUSY and produce interesting correlations.

4



Although the H2|2 is motivated by quantum disordered systems, eg the
spectral theory of random band matrices, it appears to be related to a history
dependent walk called edge reinforced random walk ERRW. This walk favors
moving along edges it has visited in the past. It can also be expressed as
random walk in a random environment. As in the case of the H2|2 model
the environment is highly nonlocal and it has Ward identities which reflect
conservation of probability. In one dimension the ERRW is localized - that is
the probability long excursions of length % is exponentially small in % [MR].
It is natural to conjecture that the ERRW is also localized in 2D even for
weak edge reinforcement.

§1. RBM - Random Band Matrices

The goal of these lectures is to study the spectral properties of a class of
Gaussian Hermitian random matrices H = H∗. This will include the GUE
- Gaussian Unitary ensemble, Wegner’s n-orbital models, and random band
matrices - RBM. These models seem to be best suited to SUSY methods.

Let us start with the well known N ×N , Gaussian Unitary ensemble . In
this case the matrix entries Hij are mean zero independent random variables
for i ≤ j and 1 ≤ i, j ≤ N . Since H has a Gaussian distribution it suffices to
specify its covariance:

< HijH̄i′j′ >=< HijHj′i′ >= δ(ii′)δ(jj′)/N (1.1)

The average over the randomness or disorder is denoted by < · > and H̄
denotes the complex conjugate of H. The density for this ensemble is given
by

1/ZN e−NtrH2/2
∏

dHii

∏

i<j

dHRe
ij dHIm

ij .

The factor of 1/ZN ensures that the integral is 1. It is clear thatH and U∗HU
have identical distrubtions for any fixed unitary matrix U. This invariance
is a crucial feature in the classical analysis of such matrices via orthogonal
polynomials. However, non Gaussian matrices studied by Erdos et al and
RBM do not have unitarily invariant distributions and new methods are
needed to obtain the desired spectral information.

Random band matrices with Gaussian distribution are defined in a similar
fashion except that we shall let i and j range over a periodic box Λ ⊂ Zd

< HijH̄i′j′ >=< HijHj′i′ >= δ(ii′)δ(jj′)Jij (1.2)
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Here Jij is a symmetric function which is small for large |i − j|. We shall
assume that for fixed i,

∑
j Jij = 1. With this normalization the spectrum of

H is concentrated the interval [−2, 2] with high probability. One especially
convenient choice of J is given by the lattice Green’s function

Jjk = (−W 2∆+ 1)−1(j, k) (1.3)

where ∆ is the discrete Laplacian on Λ with suitable boundary conditions

∆f(j) =
∑

|j′−j|=1

(f(j′)− f(j)).

Note that with this choice of J, the variance of the matrix elements is expo-
nentially small when |i−j| & W . In fact in one dimension Jij ≈ e−|i−j|/W/W
Hence W will be referred to as the width of the band.

Let us now compare discrete random Schrödinger operators on Zd given
by

HRS = −∆+ λvj

and RBM (1.2) of width W on Zd. Above, vj are assumed to be independent
identically distributed Gaussian random variables of mean 0 and variance
< v2j >= 1. The potential v acts diagonally. The parameter λ > 0 measures
the strength of the disorder. Although these models look quite different,
they are both local, that is their matrix elements j, k are small (or zero ) if
|j − k| is large. The rough correspondence is expected to be that λ ≈ W−1.
For example, eigenvectors for RS are known to decay exponentially fast in
one dimension with a localization length proportional to λ−2. On the other
hand for 1D RBM the localization length is known to be finite [Sch] and is
expected to be W 2.

Unlike the band matrices, GUE matrices have no spatial or geometric
structure. They are essentially mean field models. Nevertheless, the local
eigenvalue statistics of these simple models are expected to be universal in
a sense to be made more precise later. In fact the local eigenvalue statistics
of GUE are mysteriously connected to the statistics of zeros of the Riemann
zeta function. This goes back to work by H. Montgomery, F. Dyson and A.
Odylzko. The SUSY analysis of GUE also provides the foundation for the
more complicated RBM models described later.

For an N ×N Hermitian matrix H, define the inverse matrix:

G(Eε) = (Eε −H)−1 where Eε = E − iε. (1.4)
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This a bounded matrix provided that E is real and ε > 0 and the Green’s
function denoted, G(Eε; k, j), are its matrix elements.

Let z = (z1, z2, ..., zN) with zj = xj + iyj denote an element of CN and
define the quadratic form

[z;Hz] =
∑

i,j

z̄kHkjzj. (1.5)

Then we can calculate the following Gaussian integrals:

∫
e−i[z,(Eε−H)z] Dz = det(Eε −H)−1, Dz ≡

∏

j

dxjdyj/π (1.6)

and
∫

e−i[z,(Eε−H)z]zkz̄j Dz = det(Eε −H)−1 G(Eε; k, j). (1.7)

It is important to note that the integrals above are convergent provided
that ε > 0. The quadratic form [z;(E-H)z] is real so its contribution only
oscillates. The factor of i =

√
−1 in the exponent is needed because the

matrix H − E has an indefinite signature when E is in the spectrum of H.
If we had integrated over real fields then we would obtain the square root of
the inverse determinant.

There is a similar identity in which the complex commuting variables z
are replaced by anticommuting Grassmann variables ψj, ψ̄j, j = 1, 2 ... N.
Let A be an N ×N matrix

[ψ;Aψ] =
∑

ψ̄kAkjψj

then ∫
e−[ψ;Aψ]Dψ = detA. (1.8)

See the appendix for a brief review of Grassmann integration. The Grass-
mann integral is introduced so that we can cancel the unwanted determinant
in (1.7). Thus we obtain a SUSY representation for the Green’s function:

G(Eε; k, j) =

∫
e−i[z,(Eε−H)z]e−i[ψ,(Eε−H)ψ]zkz̄j DzDψ. (1.9)
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Equation (1.9) is the starting point for all SUSY formulas. We shall
discuss integration over Grassmann variables in the appendix. Notice that
if H has a Gaussian distribution the expectation < · >H , of (1.9) can be
explicitly performed since H appears linearly. We obtain:

< G(Eε; k, j) >=

∫
e−iEε([z,z]+[ψ,ψ])e−

1
2<{[z;Hz]+[ψ;Hψ]}2> zkz̄j DzDψ. (1.10)

The minus sign above comes from i2 = −1. The resulting lattice field
model will be quartic in the z and ψ fields. If the observable zkz̄j were
absent, then the determinants would cancel and the integral would be 1.
Thus in SUSY systems, the usual partition function is identically 1.

§2 Averaging Det(Eε −H)−1

Before using Grassmann variables we shall first illustrate how to use (1.6)
to calculate the average of the inverse determinant over the Gaussian disor-
der. Although this average has no physical significance, it is a useful exercise.

First consider the simplest case: H is an N × N , GUE matrix. Let us
apply (1) to calculate

< det(Eε −H)−1 >=<

∫
e−i[z,(Eε−H)z] Dz > . (2.1)

Interchange the order of integration and use (1.1) and the Gaussian identity

< e−i[z,Hz] >GUE= e−1/2<[z,Hz]2> = e−
1

2N [z,z]2 . (2.2)

The most direct way to estimate the remaining integral over the z vari-
ables is to introduce a new coordinate r = [z, z] =

∑
|zj|2. Then we have

< det(Eε −H)−1 >= CN

∫ ∞

0

e−
1

2N r2−iEεrrN dr

where CN is an explicit constant related to the volume of the sphere in 2N
dimensions. It is convenient to rescale r → Nr and obtain an integral of the
form ∫ ∞

0

e−N(r2/2−ln r−iEεr)dr.

The method of steepest descent can now be applied. We deform our integra-
tion over r so that it passes through the saddle point. The saddle point rs is
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obtained by setting the derivative of the exponent to 0: rs − 1/rs − iEε = 0
This is a quadratic equation with a solution rs = iE/2±

√
1− (E/2)2. The

contour must be chosen so that the absolute value of the integrand is domi-
nated by the saddle point.

Exercise: Derive Stirling’s formula:

N ! =

∫ ∞

0

e−ttNdt ≈ NNe−N
√
2Nπ.

Let t = Ns and expand to quadratic order about the saddle point s = 1. The
square root arises from the identity N

∫
e−Ns2/2ds =

√
2Nπ.

Remark: For other ensembles, radial coordinates do not suffice and
one must compute the Jacobian for the new collective variables. There are
several tricks for computing the Jacobian. In the mathematical literature
this is done with the help of the coarea formula. It can also be computed
using manipulation of delta functions. See the discuusion in §4.

An alternate way to compute < det(Eε − H)−1 > uses the Hubbard-
Stratonovich transform. In its simplest form, introduce a real auxiliary vari-
able a to unravel the quartic expression in z as follows:

e−
1

2N [z,z]2 =
√
N/2π

∫
e−Na2/2eia[z,z]da. (2.3)

The z variables now appear quadratically and we can integrate over them.
This is particularly simple because we have a product integral on the right
side of (2.1). The integral over the zj, 1 ≤ j ≤ N in (2.1) produces a factor
(Eε − a)−N , hence :

< det(Eε −H)−1 >= CN

∫
e−Na2/2 (Eε − a)−Nda = CN

∫
e−Nf(a)da. (2.4)

We deform our path a → a + as where as is the complex saddle point. The
saddle point is obtained by setting f ′(as) = 0. The gives a quadratic equation
whose solution is

as = E/2 + i
√

1− (E/2)2. (2.5)

Note |as| = 1 and that we have chosen the + sign so that the pole of
(Eε − a)−N has not been crossed. Along this contour one checks that for
E satisfying |E| ≤ 2 − δ the maximum modulus of the integrand occurs at
the saddle as. In particular this deformation of contour avoids the small

9



denominator Eε − a occurring when a ≈ E. Note that the Hessian at the
saddle is

f ′′(as) = 1− a2s = 1− (E/2)2 − i
E

2

√
1− (E/2)2 (2.6)

has a positive real part for |E| ≤ 2− δ.

Now let us consider the more general case when H is a Gaussian random
band matrix with covariance given by (1.3). Then we have

< e−i[z,Hz] >= e−1/2<[z,Hz]2> = e−1/2
∑

|zi|2Jij |zj |2 . (2.7)

In order to average over the the z variables we introduce real auxiliary fields
aj with covariance Jij so that

e−1/2
∑

ij |zi|2Jij |zj |2 =< e−i
∑

aj |zj |2 >J (2.8)

We can now average over the z’s since they appear quadratically. By com-
bining (15) and (16)

< det(Eε −H)−1 >=<

∫
e−i[z,(Eε−H)z] Dz >

=<

∫
ei[z;(Eε−a)z]Dz >J=<

∏

j

(Eε − aj)
−1 >J (2.9)

By using the (3), and the definition of < · >J , (17) is proportional to:
∫

e−
1
2

∑
j(W

2(∇a)2j+a2j )
∏

j

(Eε − aj)
−1 dajdbj. (2.10)

The large parameter W is related to N . It tends to make the aj fields
constant over a large range of lattice sites, hence the product in (2.10) is
roughly (Eε − a)−W . The saddle point can again be calculated as it was for
GUE and we find that it is independent of the lattice site j and is given by
(2.6). The Hessian at the saddle is now a large matrix which can be shown
to have exponential decay. For this case a standard cluster expansion over
blocks of side W controls the integral (2.10).

Thus we have transformed band matrices of the form (1.3) into a nearest
neighbor interaction. We shall see that the same is true for the averages of
Green’s functions. However, in the SUSY formalism the variables will also
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have Grassmann components. In one dimension, (2.10) shows that we can
calculate the < det(Eε −H)−1 > using a nearest neighbor transfer matrix.

§3 The average of the density of states for GUE

The average integrated density of states for an N ×N Hermitian matrix
H is denoted n(E) =

∫ E
dρ(E ′) is the fraction of eigenvalues less than E and

ρ(E) denotes the density of states. The average of the density of states is
given by the expression

< ρε(E) >=
1

N
tr < δε(H − E) >=

1

Nπ
tr Im < G(Eε) > (3.1)

as ε ↓ 0. Here we are using the well known fact that

δε(x− E) ≡ 1

π

ε

(x− E)2 + ε2
=

1

π
Im(Eε − x)−1

is an approximate delta function at E as ε → 0.

Remarks: The famous Wigner semicircle distribution asserts that that
the density of states of a GUE matrix is given by π−1

√
1− (E/2)2. Such

results can be proved for many ensembles including RBM by first fixing ε
and then letting N, or W → ∞. Note that the parameter ε is the scale at
which we can resolve different energies. So for a system of size of size N we
would like to understand the case ε ≈ 1/N . On the other hand, the analysis
of Green’s functions becomes more difficult as ε gets small. In [CFGK, DPS]
estimates on the density of states for a special class of band matrices are
uniform in the ε and the size of the box for fixed W ≥ W0.

We now present an identity for the average GUE Green’s function starting
from equation (2.10). Note that

−1

2
< ([z;Hz] + [ψ;Hψ])2 >GUE= − 1

2N
{[z, z]2 − [ψ, ψ]2 − 2[ψ, z][z;ψ]}.

Let us introduce another real auxiliary variable b ∈ R1 and apply the Hubbard-
Stratonovich transform to decouple the Grassmann variables. As in (2.3) we
use the identity

e[ψ,ψ]
2/2N =

∫
db e−Nb2/2 eb[ψ,ψ].

There are also cross terms. In this case, if we expand the exponential of
the cross terms, it terminates after on step because [ψ, z]2 = 0. Then as in
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the case of the z variables we can integrate over the ψ fields and obtain an
expression given by:

<
1

N
tr G(Eε) >= N/2π

∫
dadb (Eε − a)−1 e−N(a2+b2)/2 (Eε − ib)N(Eε − a)−N

× [1− N + 1

N
(Eε − a)−1(Eε − ib)−1] ≡< (Eε − a)−1 >SUSY . (3.2)

The first factor of (Eε − a)−1 on the right hand side corresponds to the
trace of the Greens function. Without this factor, the integral is 1 for all
values of the parameter. More precisely we have

1 ≡ N/2π

∫
dadb e−N(a2+b2)/2(Eε− ib)N(Eε−a)−N [1− (Eε−a)−1(Eε− ib)−1]

for all values of E , ε and N. This is due to the fact that if there is no ob-
servable the determinants cancel. The last factor in (3.2) arises from the
crossterms. For band matrices it is useful to introduce auxilliary dual Grass-
mann variables to treat the cross terms. See [Mir, Dis, DPS].

Notice that the a and the b variables are independent except for the last
factor which couples them. This factor, some times referred to as the fermion
boson (FB) contribution. It represents the coupling between the averaged
determinants. These features are typical of many more complicated SUSY
field models.

The study of ρ(E) is reduces to the analysis of the saddle points of the
integrand. As we have explained there is precisely one saddle point

as(E) = E/2 + i
√
1− (E/2)2 (3.3)

in the a field. Note that |as| = 1. However, there are two saddle points
ibs = as, and ib

′
s = ās corresponding to the b field. Hence, both saddle

points (as, bs) and (as, b
′
s) will contribute to (3.2).

Let us briefly analyze the fluctuations about the saddles as we did in
(2.5-2.7). The first saddle gives the Wigner semicircle law. To see this note
that the action at as, bs takes the value 1. The imaginary part of the the
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observable gives us the Wigner semicircle law. The integral of quadratic
fluctuations about the saddle,

N

∫
e−N(1−a2s)(a

2+b2)dadb (3.4)

is exactly cancelled by the F-B contribution at (as, bs). Thus to a high level
of accuracy we can simply replace the observable in the SUSY expectation
(3.2) by its value at the saddle. This gives us Wigner’s semicircle law:

ρ(E) =
1

πN
Im tr < G(Eε) >= π−1 < ((Eε − a)−1 >SUSY

≈ π−1Im(Eε − as)
−1 = π−1

√
1− (E/2)2 (3.5)

It is easy to check that the second saddle vanishes when inserted into
the FB factor. Thus to leading order it does not contribute to the density
of states and hence (3.5) holds. However, the second saddle will contribute
highly oscillatory corrections proportional to

1

N
(
ās
as
)Ne−N/2(a2s−ā2s). (3.6)

If we take derivatives in E, this makes a big contribution which is not easily
seen in perturbation theory. I believe this is a compelling example nonper-
turbative power of the SUSY method.

Remark: We have implicitly assumed that the energy E is inside the
bulk ie |E| < 2. Near the edge of the spectrum the Hessian at the saddle
point vanishes and a more delicate analysis is called for. The density of states
near E = ±2 then governed by an Airy function. We refer the Disertori’s
review of GUE for more details.

§4. Hyperbolic symmetry

Let us analyze the average of | det(Eε − H)|−2 with H a GUE matrix.
We study this average to illustrate the emergence of hyperbolic symmetry
when analyzing the average of |G(Eε; j, k)|2. To begin with let us contrast
the < G > and < |G|2 > for N=1. In the first case we can see that∫
e−H2

(Eε −H)−1dH is finite by shifting the contour of intergration off the
real axis H → H + iδ with δ > 0 so that the pole is not crossed. On the
other hand, if one takes the absolute value squared, we cannot deform the
contour integral and it will diverge like ε−1.
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Let z, w ∈ CN . As in (1.6) we can write:

| det(Eε −H)|−2 = det(Eε −H)× det(E−ε −H)

=

∫
e−i[z,(Eε−H)z] Dz ×

∫
ei[w,(E−ε−H)w] Dw. (4.1)

Note that the two factors are complex conjugates of each other. The factor
of i has been reversed in the w integral to guarantee the convergence of the
integral. This sign change is responsible for the hyperbolic symmetry. The
Gaussian average over H is

< e−i([zHz]−[w,Hw]) >= e−1/2<([z,Hz]−[w,Hw])2> (4.2)

Note that

< ([z,Hz]− [w,Hw])2 >=< [
∑

Hkj(z̄kzj − w̄kzj)]
2 > . (4.3)

For GUE the right side is computed using (1)

< ([z,Hz]− [w,Hw])2 >= 1/N([z, z]2 + [w,w]2 − 2[z, w][w, z]). (4.4)

Following Fyodorov, [Fy1], introduce the 2× 2 positive matrix:

M(z, w) =

(
[z, z] [z, w]
[w, z] [w,w]

)
. (4.5)

and let
L = diag(1,−1). (4.6)

Then we see that

< | det(Eε −H)|−2 >=

∫
e−

1
2N tr(ML)2−iEtr(ML)+εtrMDzDw. (4.7)

For a positve 2× 2 matrix P consider the the delta function δ(P −M(z, w))
and integrate over z and w. We claim that

∫
δ(P −M(z, w))DzDw = (detP )N−2. (4.8)

Assuming this holds we can now write the right side in terms of the new
collective coordinate P.
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< | det(Eε −H)|−2 >= CN

∫

P>0

e−
1

2N tr(PL)2e−iEtr(PL)−εtrPdetPN−2dP. (4.9)

After rescaling P → NP we have

< | det(Eε −H)|−2 >= C ′
N

∫

P>0

e−N{tr(PL)2/2+iEtr(PL)+εtrP}detPN−2 (4.10)

In order to compute the integral we shall again change variables and integrate
over PL. First note that for P > 0, PL has two real eigenvalues of opposite
sign. This is because PL has the same eigenvalues as P 1/2LP 1/2 which is self
adjoint with a negative determinant. Moreover, it can be shown that

PL = TDT−1 (4.11)

where T belongs the the non compact group SU(1, 1), that is

T ∗LT = L → T ∈ SU(1, 1) (4.12)

and D = diag(p1,−p2) with p1, p2 positive. The proof is similar to that for
Hermitian matrices. We shall regard PL as our new integration variable.
All expressions can be written in terms of p1, p2 except for ε tr P which will
involve the integral over SU(1, 1).

Converting to the new coordinate system our measure becomes

(p1 + p2)
2dp1dp2dµ(T ) (4.13)

where dµ(T ) the Haar measure on U(1,1). For large N, the p variables are
approximately given by the complex saddle point

p1 = −iE/2 + ρ(E), p2 = −iE/2− ρ(E) where ρ(E) =
√

1− (E/2)2.
(4.14)

However, there still remains the integral over dµ(T ). The p variables
fluctuate only slightly while the T matrix ranges over the symmetric space
SU(1, 1)/U(1) and produces a singularity for small ε. With the p1, p2 set as
above the only remaining integral is over SU(1, 1). Thus from (4.11) we have

Q ≡ PL ≈ ρ(E) TLT−1 + iE/2I
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This is the basis for the sigma model. The second term above is independent
of T so it is dropped. The band version or N orbital version of such hyperbolic

sigma models was studied in [SZ]. For each lattice site j ∈ Λ ⊂ Zd we define
a new spin variable given by

Sj = T−1
j LTj and PjL ≈ ρ(E) Sj. (4.15)

Note that S2
j = 1 and Sj naturally belongs to SU(1, 1)/U(1). This symmetric

space is isomorphic to the hyperbolic upper half plane. In the last equation
we have used the form of the pi given as above. The imaginary part of
the p1 and p2 are equal so that T and T−1 cancel producing only a trivial
contribution. Note that the explicit dependence on E only appears through
ρ(E).

There is a similar picture for the average determinant using Grassmann in-
tegration. We can integrate out the Grassmann fields and in the sigma model
approximation obtain an integral over the symmetric space SU(2)/U(1) =
S2. This is the classical Heisenberg model.

The action of the hyperbolic sigma model on the lattice is

A(S) = β
∑

j∼j′

trSjSj′ + ε
∑

j

trLSj. (4.16)

The notation j ∼ j′ denotes nearest neighbor vertices on the lattice. The
Gibbs weight is proportional to e−A(S)dµ(T ). The integration over SU(1, 1)
is divergent unless ε > 0. The last term above is symmetry breaking term
analogous to a magnetic field. For RBM β ≈ W 2ρ(E)2.

To parametrize the integral over SU(1,1) we use horospherical coordinates
(sj, tj) ∈ R2 given by (0.2). In this coordinate system, described in the first
section, the action takes the form:

A(s, t) = β
∑

j∼j′

[cosh(tj − tj′) +
1

2
(sj − sj′)

2e(tj+tj′ )] (4.17)

We have ommitted the symmetry breaking term proportional to ε. In this
coordinate system the s variables appear quadratically. Let us define the
quadratic form associated to the s variables above:

[v ;Dβ,ε(t) v]Λ = β
∑

(ij)
eti+tj(vi − vj)

2 + ε
∑

k∈Λ
etkv2k (4.18)
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Here we have included the symmetry breaking term. After integrating out
the s variables, we get Det−1/2(Dβ,ε(t)).

By the matrix tree theorem, Det(Dβ,ε(t)) is a convex function of the t
variables. Thus the effective action is convex. The sigma model can now be
analyzed using Brascamp-Lieb inequalities. Its convexity will imply that this
model does not have a phase transition in 3 dimensions. Note that in these
coordinates there is a formal symmetry tj → tj + γ and sj → sje−γ which is
responsible for a Goldstone mode.

Theorem (Brascamp-Lieb) Let A(t) be a real convex function of tj, j ∈ Λ
and vj be a real vector. If the Hessian of the action A is convexA”(t) ≥ K > 0
then

< e[v;t] >A≤ e<[v;t]>Ae
1
2 [v;K

−1v]. (4.19)

Here <>A denotes the expectation with respect to e−A(t)Dt and K is a pos-
itive matrix independent of t. Note if A is quadratic in t this is an identity.

Thus both the hyperbolic and Heisenberg models are reasonably well un-
derstood. In 3D the Heisenberg model has a phase transition in 3D by using
infrared bounds. The remaining mathematical challenge is to understand
the coupling between them via the Fermion - Boson factors. The SUSY
hyperbolic sigma model, H2|2 will be a step in this direction.

§5 The Average Green’s function for RBM

In this section show how to get the semicircle law and its corrections for
RBM when W is large. We start with perturbation theory then compare
these calculations to the mathematical results obtained using SUSY formal-
ism. As mentioned above, the SUSY methods are closely related to the GUE
analysis described earlier.

Consider Hermitian RBM with Gaussian distribution and J given by
(1.3). The perturbation scheme described here is very closely related to the
one used for Random Schrödinger operators.

To calculate the density of states write:

G(Eε) = [Eε −H]−1 = [Ẽ −H + (Eε − Ẽ)]−1 (5.1)

where Ẽ = Ẽ(E, ε) I is to be determined and I is the identity matrix. We
shall perturb about Ẽ−1 ≡ G0

〈G(Eε)(i, i)〉 = G0 + 〈G0HiiG0〉+
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+
∑

j

〈G0HijG0HjiG0〉 −G0(Eε − Ẽ)G0 + ... (5.2)

We shall define Ẽ so that the third and fourth terms on the right side of (2)
cancel. The second term vanishes because 〈H〉 = 0. Since

∑

j

〈HijHji〉 =
∑

j

Jij = 1

the third and fourth terms cancel when

G0 = Ẽ−1 = Eε − Ẽ hence, G0 = asI. (5.3)

The imaginary part of G0 gives Wigner’s semicircle law for the density
of states. Of course, this expansion has been done only to second order
in H. If we calculate to fourth order, we will see that the correction is
O(W−1). The reason that higher order averages are smaller is that ad-
jacent factors Hjk G0 Hkj′ appearing in the expansion about G0 with j =
j′ are canceled by Eε − Ẽ to leading order as above. Thus in Hermi-
tian case,

∑
j Hij1Hj1j2Hj2j3Hj3i has only terms with (i, j1) = (j3, j2) and

(i, j3) = (j1, j2) which contributes after averaging. Hence we get a contribu-
tion J2

i,i ≤ W−2. Proceeding beyond fourth order one must re sum classes
of graphs. This can be done by grouping together diagrams according to
their ”genus”. Roughly speaking diagrams contributing with higher genus
are suppressed by powers of W−1.

It is also instructive to calculate

〈G(Eε; 0, x)G(Eε; x, 0)〉 (5.4)

to leading order and see how exponential decay emerges. Assume that we are
in a periodic box and J is defined by (3). Let us expandG(Eε; 0, x) , G(Eε; x, 0)
about G0 as above. This expansion will have terms of the form

G0 H0,j1 G0 Hj1,j2 ...Hjn,x G0, G0 Hx,kn G0 Hkn,kn−1 ...Hk1,0 G0. (5.5)

The leading contribution to the average of this expression occurs when we
pair ji = ki producing the average

∑

j

G2
0J0,j1G

2
0Jj1,j2 ...Jjn,xG

2
0 = (G2

0J)
n
0,xG

2
0 (5.6)
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endequation here Jn denotes the n-fold convolution of J. Summing the geo-
metric series over n and defining J by (1.3) we get

[G−2
0 − (−W 2∆+ 1)]−1 = −[(−W 2∆+ 1)− a2s]

−1 (5.6)

This is the analog of the summation of ladder diagrams. If G0 = as were
replaced by |G0| = 1 we would have diffusive propagator (W 2∆)−1. However
since G2

0 is complex the propagator above decays exponentially fast.
Mathematical control of the above perturbation scheme for small ε seems

to be difficult to achieve for E inside [-2,2] unless the SUSY approach is
used. Part of the reason is that the sum of all higher order contributions
to the above series is divergent. If the perturbation theory is terminated
at some stage, we have not been able to estimate the error. Perhaps the
reason that such estimates are difficult is that the second saddle is invisible
perturbatively but is estimated naturally in the SUSY approach.

The SUSY weight for RBM is expressed in terms of aj, bj with j ∈ Λ ⊂ Zd

after the Grassmann variables have been integrated out. When J is given by
(1.3) get :

exp[−1

2

∑

j

{W 2(∇aj)
2 +W 2(∇bj)

2 + a2j + b2j}]
∏

j

Eε − ibj
Eε − aj

× det{−W 2∆+1 − δij(Eε − aj)
−1(Eε − ibj)

−1}DaDb (5.7)

A rigorous analysis the perturbation theory is provided by the analysis of
the above expression. One again it is shown that the dominant contribution
comes from the saddle point. However as in GUE one must take into account
the second saddle.

Theorem (DPS) Let d=3, J given by (3) and |E| ≤ 1.8 For W ≥ W0 the
average < G(Eε, j, j) > for RBM is unifomly bounded in ε and Λ. Moreover
we have

| 〈G(Eε; 0, x)G(Eε; x, 0)〉 | ≤ e−m|x|

for m ≈ W−1.
Note that for random band < G(Eε; 0, x) >= 0 for x 2= 0. The resumed

expression (7) above is equal to the inverse of the Hessian of the action at the
saddle point as, bs given by (−W 2∆+1−a2s)

−1 of the SUSY model for RBM.
Thus the SUSY approach automatically resums the leading contribution in
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perturbation theory. Recall (2.6) that for GUE the Hessian is proportional
to 1− a2s.

Remark The lattice random Schrödinger Green’s function< G(Eε, 0, x) >
is expected to decay exponentially fast. This can be seen from a simple modi-
fication of perturbation theory described above. However, the corresponding
SUSY model is more difficult to analyze in this case because of oscillations
arising from the Laplacian.

§6 The SUSY Hyperbolic sigma model

In this section we study a simpler version of the Efetov sigma models due
to Zirnbauer [Zirn91]. This model is the H2|2 model described in the intro-
duction. This model is expected to qualitatively reflect the phenomenology
of Anderson’s tight binding model. The great advantage of this model is that
the Grassmann degrees of freedom can be explicitly integrated out to pro-
duce a real effective action in bosonic variables. Thus probabilistic methods
can be applied. In 3D we shall prove that this model has the analog of the
Anderson transition.

Remark: I have copied this section from [Sp2] - some of the numbering
is off.

In order to define the H2|2 sigma model, let uj be a vector at each lat-
tice point j ∈ Λ ⊂ Zd with three bosonic components and two fermionic
components

uj = (zj, xj, yj, ξj, ηj) ,

where ξ, η are odd elements and z, x, y are even elements of a real Grassmann
algebra. The scalar product is defined by

(u, u′) = −zz′ + xx′ + yy′ + ξη′ − ηξ′ , (u, u) = −z2 + x2 + y2 + 2ξη

and the action is obtained by summing over nearest neighbors j, j′

S[u] = 1

2

∑

(j,j′)∈Λ

β(uj − uj′ , uj − uj′) +
∑

j∈Λ

εj(zj − 1) . (6.1)

The sigma model constraint, (uj, uj) = −1, is imposed so that the field lies
on a SUSY hyperboloid, H2|2.
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We choose the branch of the hyperboloid so that zj ≥ 1 for each j. It is
very useful to parametrize this manifold in horospherical coordinates:

x = sinh t− et
(
1
2s

2 + ψ̄ψ
)
, y = set, ξ = ψ̄et , η = ψet,

and
z = cosh t+ et

(
1
2s

2 + ψ̄ψ
)

where t and s are even elements and ψ̄, ψ are odd elements of a real Grass-
mann algebra.

In these coordinates, the sigma model action is given by

S[t, s, ψ, ψ̄] =
∑

(ij)∈Λ

β(cosh(ti − tj)− 1)

+1
2 [s;Dβ,εs] + [ψ̄Dβ,εψ] +

∑

j∈Λ

εj(cosh tj − 1) (6.2)

Note that the action is quadratic in the Grassmann and s variables. Here
Dβ,ε = Dβ,ε(t) is the generator of a random walk in random environment,
given by the quadratic form

[v ;Dβ,ε(t) v]Λ ≡ β
∑

(jj′)
etj+tj′ (vj − vj′)

2 +
∑

k∈Λ
εk e

tkv2k . (6.3)

The weights, etj+tj′ , are the local conductances across an nearest neighbor
edge j, j′. The εj etj term is a killing rate for the walk at j.

After integrating over the Grassmann variables ψ, ψ̄ and the variables sj ∈
R we get the effective bosonic field theory with action Sβ,ε(t) and partition
function

ZΛ(β, ε) =

∫
e−Sβ,ε(t)

∏
e−tjdtj

=

∫
e−βL(t) · [ det Dβ,ε(t)]

1/2
∏

j

e−tj
dtj√
2π

. (6.4)

where

L(t) =
∑

j∼j′

[ cosh(tj − tj′)− 1] +
∑

j

εj
β
[(cosh(tj − 1))− 1]. (6.5)
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Note that the determinant is a positive but nonlocal functional of the tj
hence the effective action, S, is also nonlocal. The additional factor of e−tj

in (6.4) arises from a Jacobian. Because of the internal supersymmetry, we
know that for all values of β, ε the partition function

Z(β, ε) ≡ 1. (6.6)

This identity holds even if β is edge dependent.
The analog of the Green’s function < |G(Eε; 0, x)|2 > of the Anderson

model is the average of the Green’s function of Dβ,ε,

< s0e
t0sxe

tx > (β, ε) =< e(t0+tx)Dβ,ε(t)
−1(0, x) > (β, ε) ≡ Gβ,ε(0, x) (6.7)

where the expectation is with respect to the SUSY statistical mechanics
weight defined above. The parameter β = β(E) is roughly the bare conduc-
tance across an edge and we shall usually set ε = εj for all j. In addition to
the identity Z(β, ε) ≡ 1 there are additional Ward identities

< etj >≡ 1, ε
∑

x

Gβ,ε(0, x) = 1 (6.8)

which hold for all values of β and ε.
Note that if the |tj| ≤ Const, then the conductances are uniformly

bounded from above and below and

Dβ,ε(t)
−1(0, x) ≈ (−β∆+ ε)−1(0, x)

is the diffusion propagator. Thus the Anderson transition can only occur due
to the large deviations of the t field.

An alternative Schrödinger like representation of (6.7) is given by

Gβ,ε(0, x) =< D̃−1
β,ε(t)(0, x) > (6.9)

where
e−tDβ,ε(t)e

−t ≡ D̃β,ε(t) = −β∆+ βV (t) + ε e−t , (6.10)

and V (t) is a diagonal matrix (or ‘potential’) given by

Vjj(t) =
∑

|i−j|=1
(eti−tj − 1).

In this representation, the potential is highly correlated and D̃ ≥ 0 as a
quadratic form.
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Some insight into the transition for the H2|2 model can be obtained by
finding the configuration tj = t∗ which minimizes that action Sβ,ε(t) appear-
ing in (6.4). It is shown in [DSZ] that this configuration is unique and does
not depend on j. For large β

1D: ε e−t∗ 3 β−1, 2D: ε e−t∗ 3 e−β 3D: t∗ 3 0 . (6.11)

Note that in one and two dimensions, t∗ depends sensitively on ε and that
negative values of tj are favored as ε → 0. This means that at t∗ a mass εe−t∗

in (6.11) appears even as ε → 0. Another interpretation is that the classical
conductance etj+tj′ should be small in some sense. This is a somewhat subtle
point. Due to large deviations of the t field in 1D and 2D, < etj+tj′ > is
expected to diverge, whereas < etj/2 > should become small as ε → 0.

When β is small, εe−t∗ 3 1 in any dimension. Thus the saddle point
t∗ suggests localization occurs in both 1D and 2D for all β and in 3D for
small β. In 2D, this agrees with the predictions of localization by Abrahams,
Anderson, Licciardello and Ramakrishnan [Abra79] at any nonzero disorder.
Although the saddle point analysis has some appeal, it does not account for
the large deviations away from t∗ and seems incompatible with the sum rule
< etj >= 1. In 3D, large deviations away from t∗ = 0 are controlled for large
β. See the discussion below.

For later discussion it is interesting to consider the case in which ε0 = 1
but εj = 0 otherwise. This corresponds to a random walk starting at O with
no killing. In this case the saddle point is not translation invariant. In one
and two dimensions we have et

∗
j goes to 0 exponentially fast for large |j|.

Thus the conductance becomes small as we move away from 0. We expect
that this implies < etj/2 >→ 0 exponentially fast in 1D and 2D producing
localization.

The main theorem established in [DSZ] states that in 3D fluctuations
around t∗ = 0 are rare. Let G0 = (−β∆ + ε)−1 be the Green’s function for
the Laplacian.

Theorem 3 If d ≥ 3, and the volume Λ → Zd, there is a β̄ ≥ 0 such that
for β ≥ β̄ then for all j,

< cosh8(tj) >≤ Const (6.12)

where the constant is uniform in ε. This implies quasi-diffusion: Let G be
given by (6.7) or (6.9). There is a constant K so that we have the quadratic
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form bound

1

K
[f̃ ;G0f̃ ] ≤

∑

x,y

Gβ,ε(x, y) f(x)f(y) ≤ K[f ;G0f ] , (6.13)

where f(x) is nonnegative function and f̃(x) = (1 + |x|)−αf(x). The
constant α > 0 is small for large β.

Remarks: The power 8 can be increased by making β larger. The lower
bound is not sharp, (α should be 0), and one expects point wise diffusive
bounds on Gβ,ε(x, y) to hold. However, in order to prove this one needs to
show that the set (j : |tj| ≥ M >> 0) does not percolate. This is expected
to be true but has not yet been mathematically established partly because
of the high degree of correlation in the t field.

The next theorem establishes localization for small β in any dimension.
See [DS].

Theorem 4 Let εx > 0, εy > 0 and
∑

j∈Λ εj ≤ 1. Then for all 0 <
β < βc (βc defined below) the correlation function Gβ,ε(x, y), (6.9), decays
exponentially with the distance |x− y|. More precisely:

Gβ,ε(x, y) = 〈D̃−1
β,ε(t)(x, y)〉 ≤ C0

(
ε−1
x + ε−1

y

) [
Iβ e

β(cd−1) cd
]|x−y|

(6.14)

where cd = 2d− 1, C0 is a constant and

Iβ =
√

β

∫ ∞

−∞

dt√
2π

e−β(cosh t−1) .

Finally βc is defined so that:
[
Iβ e

β(cd−1) cd
]

<
[
Iβce

βc(cd−1)cd
]

= 1 ∀β < βc.

These estimates hold uniformly in the volume.

Remarks: The first proof of localization for the H2|2 model in 1D was
given by Zirnbauer in [Zirn91]. Note that in 1D, cd − 1 = 0 and inequality
holds for any βc ≥ 0. The above estimate is sharp in 1D. Thus the decay for
small β is proportional to |

√
β lnβ||x−y| rather than β|x−y| which is typical

for lattice sigma models with compact targets. The divergence of ε−1 is
compatible with the sum rule (1.27) and is a signal of localization.

The proof of the above theorem relies heavily on the supersymmetric
nature of the action. It is known that a purely hyperbolic sigma model
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of the kind studied in [SZ] cannot have a phase transition. The action for
the purely hyperbolic case looks like that of the H2|2 model except that
[DetDβ,ε(t)]1/2 is replaced by [DetDβ,ε(t)]−1/2. D. Brydges has pointed out
that since the logarithm of DetDβ,ε(t) is convex as a functional of t, the
action for the hyperbolic sigma model is always convex and therefore no
transition can occur. See [DSZ] for details. In Wegner’s hyperbolic model
the replica number must be 0 in order to see localization.

Role of Ward identities in the Proof.

The proof of Theorems 3 and 4 above rely heavily on Ward identities.
For Theorem 3 we use Ward identities to bound fluctuations of the t field by
getting bounds in 3D on < coshm(ti−tj) >. One these bounds or established
we can control This is done by induction on the distance |i−j|. For Theorem
4 we use the fact that for any region Λ the partition function ZΛ = 1.

If a function S of the variables x, y, z, ψ, ψ̄ is supersymmetric, i.e., it is
invariant under transformations preserving

xixj + yiyj + ψ̄iψj − ψiψ̄j

then
∫
S = S(0). In horospherical coordinates the function Sij given by

Sij = Bij + eti+tj(ψ̄i − ψ̄j)(ψi − ψj)) (6.15)

where

Bij = cosh(ti − tj) +
1

2
eti+tj(si − sj)

2 (6.16)

is supersymmetric. If i and j are nearest neighbors, Sij − 1 is a term in the
action and it follows that the partition function ZΛ(β, ε) ≡ 1. More generally
for each m we have

(1) < Sm
ij >=< Bm

ij [1−mB−1
ij eti+tj(ψ̄i − ψ̄j)(ψi − ψj)] >≡ 1.

The integration over the Grassmann variables above is explicitly given by

(2) Gij =
eti+tj

Bxy

[
(δi − δj); Dβ,ε(t)

−1(δi − δj)
]
Λ

since the action is quadratic in ψ̄, ψ. Thus we have the identity

(3) < Bm
ij (1−mGij) >≡ 1.
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Note that 0 ≤ coshm(ti − tj) ≤ Bm
ij . From the definition of Dβ,ε given in

(1.24) we see that for large β, G is typically proportional to 1/β in 3D.
However, there are rare configurations where tk ≈ −∞ for k on a closed
surface ⊂ Z3 separating i and j for which Gij can diverge as ε → 0. If this
surface is of finite volume enclosing i, then there is a finite volume 0 mode
producing a divergence in Dβ,ε(t)−1(i, i). If i, j are nearest neighbors then
it is easy to show that Gij is less than β−1 for all t configurations. Thus
if m/β ≤ 1/2 then (1.39) implies that 0 ≤ coshm(ti − tj) ≤ 2. In general,
there is no uniform bound on Gij and we must use induction on |i − j| to
prove that configurations for which 1/2 ≤ mGij are rare for large β in 3D.
In this way fluctuations of the t field can be controlled and quasi-diffusion is
established, see [DSZ].

The proof of the localized phase is technically simpler than the proof of
Theorem 3. Nevertheless, it is of some interest because it shows that H2|2

sigma model reflects the localized as well as the extended states phase in 3D.
The main idea relies on the following lemma. Let M be an invertible matrix
indexed by sites of Λ and let γ denote a self avoiding path starting at i and
ending at j. Let M−1

ij be matrix elements of the inverse and let Mγc be the
matrix obtained from M by striking out all rows and columns indexed by the
vertices covered by γ.

Lemma Let M and Mγc be as above, then

∂

∂Mji
detM = [M−1

ij detM ] =
∑

γij

[(−Mij1)(−Mj1j2) · · · (−Mjmj)] detMγc

where the sum ranges over all self-avoiding paths γ connecting i and j, γij =
(i, j1, . . . jm, j), with m ≥ 0.

Apply this lemma to

(4) M = e−tDβ,ε(t)e
−t ≡ D̃β,ε(t) = −β∆+ βV (t) + ε e−t

and notice that with this choice of M, for all non-zero contributions, γ are
nearest neighbor self-avoiding paths and that each step contributes a factor
of β. The proof of (1.40) comes from the fact the determinant of M can be
expressed as a gas of non overlapping cycles covering Λ. The derivative with
respect to Mji selects the cycle containing j and i and produces the path γij.
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The other loops contribute to detMγc . By (1.28) and (1.41) we have

(5) Gβ,ε(x, y) =< M−1
xy >=

∫
e−βL(t)M−1

xy [ detM ]1/2
∏

j

dtj√
2π

.

Note the factors of e−tj appearing in (1.25) have been absorbed into the
determinant. Now write

M−1
xy [ detM ]1/2 =

√
M−1

xy

√
M−1

xy detM.

The first factor on the right hand side is bounded by ε−1/2
x etx/2+ εy −1/2ety/2.

For the second factor, we use the lemma. Let L = Lγ + Lγc + Lγ,γc where
Lγ denotes the restriction of L to γ. Then using the fact that

∫
e−βLγc [ detMγc ]1/2

∏

j

dtj√
2π

≡ 1

we can bound

0 ≤ Gβ,ε(x, y) ≤
∑

γxy

√
β
|γxy |

∫
e−βLγ+βLγ,γc [ε−1/2

x etx/2 + εy
−1/2ety/2]

∏

j

dtj√
2π

where |γxy| is the length of the self-avoiding path from x to y. The proof of
Theorem 4 follows from the fact that the integral along γ is one dimensional
and can be estimated as a product. See [DS] for further details.

Edge Reinforced Random Walk and Localization

Linearly edge reinforced random walk (ERRW) is a history-dependent
walk which prefers to visit edges it has visited more frequently in the past.
Consider a discrete time walk on Zd starting at the origin and let n(e, t)
denote the number of times the walk has visited the edge e up to time t.
Then the probability P (v, v′, t + 1) that the walk at vertex v will visit a
neighboring edge e = (v, v′) at time t+ 1 is given by

P (v, v′, t+ 1) = (β + n(e, t))/Sβ(v, t)

where S is the sum of β + n(e′, t) over all the edges e′ touching v. The
parameter β is analogous to β in the H2|2 model . Note that if β is large, the
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reinforcement is weak. This process was defined by Diaconis and is partially
exchangeable which means that any two paths with the same stating point
and same values of n(e,t) have the same probability. Thus the order in
which the edges were visited is irrelevant. Such processes can be expressed
as a superposition of Markov processes [Diac80]. In fact Coppersmith and
Diaconis proved that this ERRW can be expressed as a random walk in
a random environment. There is an explicit formula for the Gibbs weight
of the local conductances across each edge, see [Diac88, Kean00, Merk06]
which is quite close to that for H2|2 model with εj = 0 except at 0 where
ε0 = 1. It is nonlocal and also expressed in terms of a square root of a
determinant. Moreover the partition function can be explicitly computed
and there are identities similar to Ward identities (1.27). These presumably
reflect conservation of probability.

In 1D and 1D strips, ERRW is localized for any value of β > 0. This
means that the probability of finding an ERRW, W (t), at a distance r from
the origin at fixed time t is exponentially small in r, thus

Prob [|W (t)| ≥ r] ≤ Ce−mr.

Merkl and Rolles [Merk09] established this result by proving that the con-
ductance across an edge goes to zero exponentially fast with the distance
of the edge to the origin. More precisely they show that the conductance c
satisfies

< c1/4jj′ >≤ Ce−m|j|.

The local conductance cjj′ corresponds to etj+tj′ hence the decay of < c1/4jj′ >

should be closely related to that of < etj/2 > in the H2|2 model. See the
discussion just before Theorem 3. Note that the factor 1/2 is important,
otherwise we have < etj >≡ 1. Their argument is based on a Mermin-
Wagner like deformation of the Gibbs measure. It also shows that in 2D,
< c1/4jj′ >→ 0. In 3D, there are no rigorous theorems for ERRW. However,
by analogy with Theorem 2, localization is expected to occur for strong
reinforcement, i.e., for β small. It is natural to conjecture that in 2D ERRW
is always exponentially localized for all values of reinforcement. On the Bethe
lattice Pemantle [Pema88a] proved that ERRW has a phase transition. For
β & 1 the walk is weakly reinforced and transient whereas for 0 < β 5 1
the walk is recurrent. It is an open question whether ERRW has the analog
of the Anderson transition in 3D. See [Pema07, Merk06] for reviews of this
subject.
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Appendix on Integration

Complex Gaussian Integrals

Let z = x + iy with x, y ∈ R. Let dz = dxdy/π and suppose Re a >
0, a ∈ C. Then

∫
e−az̄zdz = π−1

∫∫
e−ar2rdrdθ = a−1. A.1

Also
1√
2π

∫
e−ax2/2dx = a−1/2.

In the multi-dimensional case let z = (z1, z2, ...zn), z∗ = z̄t . For an n×n
matrix A with ReA > 0

∫
e−z∗AzDz = (detA)−1 where Dz =

n∏

1

dxidyi/π A.2

We also use the notation [z;Az] ≡
∑

z̄jAijzj = z∗Az. The pair correlation

< zj z̄k >≡ det(A)

∫
e−z∗Az zj z̄k Dz = A−1

jk . A.3

Note that < zjzk >=< z̄j z̄k >= 0. This is because the integral is invariant
under the global transform z → eiφz, z̄ → e−iφz̄. The generating function is
given by

< ez
∗v+w∗z >= ew

∗A−1v = e[w;A−1z]

For real variables x = (x1, ...xn) and A is symmetric

∫
e−[x;Ax]/2 Dx = (detA)−1/2 where Dx =

n∏

i

dxi/
√
2π. A.4

Its generating function is < e[x;y] >= e [y;A−1y]/2.

There are similar formulas for integration over N ×N matrices:
∫

e−NTrH2/2eiT rMH DH = e−TrM2/2N

∫
e−NTrH2/2DH A.5

For the case of Band matrices the generating function is
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< eiT rHM >= e−<(trHM)2)/2> = e−1/2
∑

JijMjiMij = e−1/2Tr(M
√
J)2 A.6

Grassmann integration

Grassmann variables ψi, ψ̄j are anticommunting variables 1 ≤ i, j ≤ N
satifying ψ2

j = ψ̄2
j = 0, and ψ̄jψi = −ψiψ̄j. Also

ψjψi = −ψiψj, ψ̄jψ̄i = −ψ̄iψ̄j. A.7

The ψ̄j is simply convenient notation for another independent family of
Grassmann variables. Even monomials in the Grassmann variables and com-
plex numbers commute with Grassmann variables. The polynomials in the
Grassann variables form a Z2 graded algebra, with the even and odd poly-
nomials belong to the even and odd gradings respectively.

The Grassman integral, defined below, plays an important role in many
aspects of physics. It is an extremely efficient and useful notation analysis of
interacting Fermi systems, Ising models (Free Fermions), and SUSY. Athough
most of the time we shall eliminate the Grassmann variables by integrating
them out, they are nevertheless an essential tool for obtaining the identities
we shall analyze. See [Ab1, FKT, Mir, Sal] for more details about Grassmann
integration.

We define integration over

Dψ ≡
N∏

dψ̄jdψj A.8

as follows. For N=1
∫

(aψ1ψ̄1 + bψ1 + cψ̄1 + d)Dψ = a.

The general rule is that the integral of a polynomial in 2N variables with
respect to Dψ is by coefficent of the top monomial of degree 2N ordered as∏N ψjψ̄j. Note that since the factors in the product are even, their order
does not matter. Any element of the Grassmann alagebra can be expressed
as a polynomial and the top monomial can always be rearranged using the
anticommutation rules so that it coincides with

∏N ψjψ̄j.
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To differentiate a Grassmann monomial, use the rule ∂
∂ψj

ψk = δjk and
that the derivative anticommutes with other Grassmann variables. We have

∂

∂ψj
ψj

∏
ψk =

∏
ψk.

To differentiate a general monomial in ψj, use the anticommutation relations
so that it is of the above form. If ψj is not a factor the derivative is 0.

For any N ×N matrix A we have the following analog of Gaussian inte-
gration

∫
e−[ψ;Aψ] Dψ = detA where [ψ;Aψ] =

∑
ψ̄iAijψj. A.9

Moreover,

< ψiψ̄j >≡ detA−1

∫
ψiψ̄j e

−[ψ;Aψ]Dψ = A−1
ij . A.10

This formula can be proved by integration by parts and using the fact that
∫

∂

∂ψk
F (ψ, ψ̄)Dψ = 0 with F = ψie

−[ψ;Aψ]

Let us work out a very simple example:
∫

e−aψ̄1ψ1Dψ =

∫
(1− aψ̄1ψ1)Dψ = a

∫
ψ1ψ̄1Dψ = a.

Exercise: Show that if A is a 2× 2 matrix, A.9 holds.

To prove the general case note that the exponential can be written as a
product

∏
i(1−

∑
j Aijψ̄iψj) and we look at the terms:

∑
A1j1A2j2 ...AN,jN

∫
ψ̄1ψj1 ψ̄2ψj2 ...ψ̄NψjN Dψ.

The ji are distinct and hence are a permutation of 1...N . The integral then
is the sign of the permutation and thus we obtain the determinant. The
generating function is given by

< e ρ̄tψ+ψ̄tρ >= detA−1

∫
e−[ψ;Aψ] e ρ̄tψ+ψ̄tρDψ = e ρ̄tA−1ρ A.11
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where ρ, ρ̄ are independent Grassmann variables.
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