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Lecture 1: History of Universality and Main Results

Basic question: consider a large matrix whose elements are
random variables with a given probability law. What can be said
about the statistical properties of the eigenvalues of the matrix?

Gaussian unitary ensemble: H = (h;;)1<; <y hermitian with

1 , 2
and where z;, y;x,Jj > k, and z;; are independent centered Gaus-
sian random variables with variance 1/2.

Classical ensembles: Gaussian unitary ensemble (GUE), Gaus-
sian orthogonal ensemble (GOE), Gaussian symplectic ensem-
ble(GSE), sample covariance ensembles



Probability density of eigenvalues (w.r.t. Lebesgue measure)

pn(z1, ..., zN)

Correlation function for two eigenvalues:

P (a1,20) = |

RN_Q pN(x17 x27 ceey xN)dajs...da:N

Density of states:

pn(x) = /RNle(fC,UCQ, ey TN )T dT N



Eigenvalues: A\ < > <. ... AN, ANi41 — A~ 1/N.

Global statistics: Density of state p(x) follows the Wigner semi-
circle law for GUE, GOE and GSE

Sample covariance ensembles, matrix of the form AT A: Marchenko-
Pastur law



Gaudin, Mehta, Wigner, Dyson: level correlation for local
statistics
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Edge Universality
Ay the largest eigenvalue of a random matrix.

The probability distribution functions of Ay for the classical
Gaussian ensembles are identified by Tracy-Widom to be
lim P(N2/3(\y —2) <t) = Fz(t)
N—00
where FB can be computed in terms of Painleve equations and
B =1,2,4 corresponds to the standard classical ensembles.

Edge universality is less universal than the bulk. TW distribu-
tion appears in random interfaces, random corners and random
processes.



History, Applications and Conjectures

e Nuclear Physics: the excitation spectra of heavy nuclei are
expected to have the same |local statistical properties as the
eigenvalues of GOE (Wigner, 1955).

e Quantum Chaos Conjecture (Bohigas-Giannoni-Schmit 1984,
Berry-Tabor, 1977 )

e Riemann (-function: Gap distribution of zeros of ¢ function
is given by GUE (Montgomery, 1973).

e Anderson Model (1958): V, random potential.

random Schrodinger operator: Hpa = —A + AV,

the eigenvalue distributions of H in the delocalization regime
(A small) are given by GOE.

Frohlich-Spencer, Disertori-Spencer-Zirnbauer, Supersymmetry
etc



KNOWN RESULTS FOR UNITARY ENSEMBLES

Unitary ensemble: Hermitian matrices with density
P(HYAH ~ e~ TWNVUD g

Invariant under H — UHU 1 for any unitary U (GUE)
Joint density function of the eigenvalues is explicitly known

p(ﬂfl, .. ,:IjN) — const. H (:IJZ _ CCj)Be_ Zj NV(xj)
i<j
classical ensembles 8 =1,2,4 GOE, GUE, GSE.

large N asymptotic of orthogonal polynomials

Mehta-Gaudin (1960- ), Dyson (1962-76), via Hermite poly-
nomials and general cases by Deift-Its-Zhou (1997), Pastur-
Schcherbina (1997), Bleher-Its (1999), Deift-et al (1999-2009),
Lubinsky (2008) ...



Universality of Generalized Wigher Ensembles

H = (hkj)lgk,jSNv hjz' = hij independent

Ehij =0, E|hzj|2 = O'%, ZO’% =1, g4j ~ N~1/2,
i
§ < Cipp = inf {Noj3} < sSup{Noj;} = Csup < 61 (A)
Nyi,j N.,i,j
sub-exponential decay: EelVNhi;I° < 00 (B)

If h;; are i.i.d. then it is called Wigner ensembles.

Wigner ensembles are completely different from the invariant
ensembles due to the lack of explicit formula for the eigenvalue
distribution. Only Gaussian are Wigner and invariant.

(A) rules out the band and sparse matrices, but some estimates
of the proof are valid for these two ensembles.



Theorem [Erdoes-Schlein-Y-Yin, 2009-2010] The bulk univer-
sality holds for generalized Wigner ensembles satisfying (A) and

(B), i.e.,, for -2 < E<?2

b b
lim (p}’,fj)v—pgf}\,)<E+—1,...,E+—k> 0

N—00 N N
F v
generalized symmetric matrices GOE
generalized hermitian GUE
generalized self-dual quaternion GSE
real covariance real Gaussian Wishart
complex covariance complex Gaussian Wishart

Edge universality: Two generalized Wigner ensembles have the
same edge distributions if the first two moments of the two

ensembles are the same.

Earlier results for edge universality: Soshnikov, Sodin (moment
methods and generalization). Tao-Vu: Wigner ensembles with

vanishing third moments.
10



Three Steps to the Universality of Random Matrices

Step 1. Local Semicircle Law, LSC (valid for more general class
of ensembles)

Step 2. Universality of Gaussian divisible ensembles

H = Hg + V1V, t>0, Hpyis Wigner V is GUE

i.e., the matrix entries have a substantial Gaussian component.
2a. Asymptotic analysis of explicit formulas (Johansson, Brezin-
Hikami) for correlation functions for eigenvalues: valid only for
Hermitian matrices

2b. Local ergodicity of Dyson Brownian motion

Gaussian convolution matrix

H=e12Hy+ (1 — e H)V2V ~ Hy + VIV

11



Step 3. Approximation by Gaussian divisible ensembles
(A density argument via perturbation expansion)

3a. Reverse heat flow (Need smoothness)

3b. Green function comparison theorem

Approach of this lecture: LSC + DBM -+ Green fn comparison on
the bulk for generalized Wigner ensembles, all symmetry classes.

LSC + Green fn comparison on the edges (Surprising fact: Green
function methods are good both on the bulk and on the edges!)

Tao-Vu's result: four moment theorem.

(1): LSCH Johansson+ 4-moments —= universality for Wigner
Hermitian ensembles for distribution whose support contains at
least three points (Bernoulli excluded).

(2) LSCH+ 4-moments = universality for Wigner ensembles with
the first four moments matched (three moments on the edges).
No Johansson result for symmetric or quaternion case.
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Outline of lectures

1. Statement of uniform local semicircle law and applications
to rigidity of eigenvalues, eigenfunction delocalization estimates.
Idea of proof of uniform local semicircle law.

2. Local ergodicity of DBM

3. Green function comparison theorem and universality.

4. Dyson’s conjecture on local relaxation time of DBM.

Pseudo-equilibrium measures, local relaxation flow, logarithmic
Sobolev inequality, entropy estimates.

13



Step 1: Strong Local semicircle law

Theorem [Erdds-Schlein-Y-Yin, 2010] Suppose assumptions (A)
and (B) hold. Then for any z = E+inwith |[E| <5, N~1 < n <10
we have

1 _
IP)(miax |Gii(2) — msc(2)| > W) K NT™

1
Pl max |G, —) N—°

B(Im(2) = mae(2)] > 1) < N7

where Gz'j = ﬁ(z,]) and m(z) = %TI’G = %ZZ Gi;.

o(x)dx

r — =z

Stieltjes transform: m(z) =/

These estimates are optimal and are first results on matrix ele-

ments of Green functions.
14



Corollary [Rigidity of Eigenvalues] Let v; be the classical location
of the j-th eigenvalue, i.e.

8] '
/ ’ Qgc(aj)daj e %

— 00

Then

L “13 o3
IP’(EIj: [Aj—;| = (log N) [min (j,N—j—|—1)] N2/ )<<N_OO
All estimates are optimal (up to log corrections)

Tao-Vu: For Wigner matrices with vanishing third moment:

]_1/3]\,—1/6—50

(E“)‘j —’Yj|2D1/2 < [min (j,N—j + 1)

with some small positive ¢g
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From Stieltjes transform to counting function

Helffer-Sjostrand formula: Let f € C1(R). Let x(y) be a cutoff
function in [—1,1]. Define the quasianalytic extension of f as

flz+iy) = (f(z) + iy f (2)x(v),
then

TJR2 AN—x — 1y

_ Ll @MW) + U@+l @ON W,
T 21 JR2 A—T — 'I:y v
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Detour: Similar results without Assumption (A)

Theorem [Erdos-Yau-Yin, 2010] Let Eh;; = 0, E|h;|? = agj and
Assumption (B) holds. Define M := (max;; o5 —1. Then for any

2= E+in with Mn>> 1 and ||E| - 2| > kg > O:

1
P(Max [Gii(2) - mae(2)| > 1) < N7
/]

v Mmn
1
P max |G, —) N~
( 12 G (2)] > i <K
N€
Ve P(|m(z) — mse(2)]| > ) U\ e
Mmn

Eigenfn. delocalization estimate Denote the eigenfunction by
va = (va(l),...,va(N)). Then sup,|va(j)|? < Clog N/M with
very high probability.

Disertori—Pinson-Spencer: Density of states for Gaussian band
matrices. Related work on supersymmetric models
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LLocal semicircle law

H( denotes the (N — 1) x (N — 1) minor of H after removing
the i-th column/row and similarly for H(J) etc. Let a’ be the

-th column. The Green functions are:
G=_" ¢ =__ 1
H — 2 HG@) — 4

Then by inverting 2 x 2 matrix we have

6= (1) = .
“\H-2/)ii hy—z—al-GWal

zg:<haj, heC, accN-1 Bec(N-Dx(N-1)

1
h—z—a-(B—z)la

(H—2)"11,1) =

18



Crudest local semicircle law (for o2 = 1)
1

hii — 2 — ]Ei al - G(Z)az — Zz'

Gy =
Z; = al . GWal — E; at . GWa!

simple computation:  E;a’- Gat = m (D)

By the interlacing property of the eigenvalues of H and H(%),
1

m(x) -mO@I< 5 n=1mz
1 1
::>Gii—_z_m<z)+9ia Qi—hii_Zi‘|‘O(N—n>
1 1 1
M L @ TN G meR T

The main error term is in terms of >, 7,

19



1
—z—m(z) +

1
Q; = hiy — Z; +O(N—n)

G =

Expand and sum up, with €2 = max; 2; <1
1

= = O(2

m(2) e+ m(2) + O(Q2)
Large deviation (CLT) estimate: |Z;| < Imm()  Imm
- T VN VN

1 Imm

m(z) = — + o<—)
z 4+ m(z) VN7
By the stability analysis of this equation, and mgsc = _z+]7-77/$c'
1
|m—msc|§0— ’|E|_2‘>O

\/Nn’
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Formulas relating Green functions:

Gi; = —G;:GYK,

79 Kzg = hZ] — Z5zg — ai . G(”)aj

GijGji G,._G(k) 4 GikG;
Gjj Gk

Rule of thumb: Gy ~ O(1), G;; is small.

Gy =GY) + i. ik, different

Lemma For any even number p and away from the edges, we
have

p
1 N C
Bl Zi <o

for sufficiently large N, i.e., with high probability:

1 N )
N > Z; < (Nn)~
i—1
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Step 2: Local Ergodicity of Dyson Brownian Motion

Gaussian convolution matrix H = e t/2Hgy 4+ (1 — e )1/2V where
V is a GUE matrix can be obtained by evolving matrix elements
_1d? =xd

by an OU process: e =L , L=——F5———
Y " () ut(2) 2dz? 2dx

Denote the probability density of the eigenvalues by f;(x)u(dx).
N
GUE : pu= Ce NHX)gx, H(x) = > $22/2 — N1 > log |z —
. i=1 ey
Orft = Z [y, /fodu = ﬁ/ |Vf|2du, gradient flow of GUE

BM of matrix elements — DBM on eigenvalues.
Johansson (essentially): local equilibrium is reached t = O(1).
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(SDE) dxizid3i+(—lxi+iz L )dt

Derivation of DBM (for BM case, h;; = N~1/2B;; for simplicity):

s = Ua(1)ualk), Ol — A : A
BFEa " T

Oy O ug(£)ua(j)ug(i)

EOW 1
— us(L)ua(1)us(2)uq(k) + c.c.
Shaydh, 5% e OLAOLAOIIO

dAa = \/_Zua(z)ua(k)dek—l— > Z — )\Buﬁ(i)ﬁa(k)ﬁﬁ(i)ua(l@)dt

ik 57504
1 1 1
=~ dBa+—- % dt

where one can check that ;. ua(i)ua(k)dB;, are independent

white noises for different o’'s.
24



Assumption III. There exists an € > 0 such that

sup [ — > (zj —v)? fe(dx)pu(dx) < CN 120
tZN—QCl N]:]_

with a constant C uniformly in V.

The typical spacing between neighboring points is of order 1/N
away from the spectral edges. Assumption III guarantees that
typically the random points z; remain in the N—1/2=0 vicinity of
their classical location. (The notation of eigenvalues are changed
to z;).

25



Theorem [Erdds-Schlein-Y-Yin, 2009] Suppose that Assump-
tion III hold for the solution of 0fy = £ f;. Let |E| <2 and b > 0.
Then V6 > 0, Vk > 2 we have

E+b dE
im lim  sup /
b—0 N—00 > y—2a+5 JE-b 2b
(k) (k))( / a1 / e7? )
X — E Y ) » 0
(Pl — ik T No(B) T No(B)

where a > 0 is the exponent from Assumption III.
Explicit error estimates were obtained.

Strong local semicircle law == a = 1/2 — ¢ == l|ocal relaxation
time to DBM is N—11¢ (Dyson’s conjecture).

t < N~ 1 then the eigenvalue does not move on the scale of N1,

26



Once Step 2 is completed, the matrices fall into the universality
class are in some sense dense. T hus we need a density argument.

Step 3 Approximation by Gaussian divisible ensembles:

Reverse heat flow: Given a smooth distribution u(x)dxz, choose

(—tA)?
2|

gt=(1—tA—|- —|—...)u%e_tAu

then

tA
€ gt

will have a Gaussian component and will be very close to u since
t ~ N—¢ is small.

27



3¢ [Erdos-Y-Yin '10] (Green Function Comparison theorem) Sup-
pose that the first four moments of v;; and w;; for two random
matrices almost match. Let ¢; = E; +in,j = 1,2 with |E;| < 2
and n > N—1-¢. Then we have

(o) (), (&) 2

(2) (2) a1 a2y
= (12 -nh) (B+ G E+F) =0
Bulk universality: For any matrix ensemble H, find another ma-

trix ensembles Hgy such that the first four moments of H and
Hp + vtV are the same.

28



Proof

1 1 1 1
E—Tr —E—Tr
(v) — » N HW) _ 4
N2
1 1 1 1
= > |E=Tr —E—Tr
SN Hy-z N Hy -2
H._1 with H differ only in the (i,5) and (j,%) matrix elements:
1
H, 1=Q+ \/—NV’ V= v le;)(e;] + vjile;) (e
1 .

Qi =Qj; =0

29



resolvent identity:

1 1 1 1 1 1 1
z—Q—A_z—Q+z—QAz—Q+z—QAz—QAz—Q+'”

Power counting: A ~ h;; ~ N™1/2. So four moments matching
implies a factor of N—2-0 provided that all green functions in the
resolvent expansions are finite. This is guaranteed by the LSC.
Without LSC up to n ~ N—1, this expansion could be badly
divergent.

Edge universality: Power counting changes due to the density
on the edge is N—2/3.

30



3b Four-Moment Theorem [Tao-Vu 2009]: If the first four mo-
ments of the single entry distribution of two Wignher matrices
match, then the local e.v. statistics coincide.

Inputs:
1. Local semicircle law (ESY, no smoothness asumption)
2. eigenfunction estimates (ESY, no smoothness assumption)

3. Level repulsion (ESY proof needs smoothness, TV's estimate
IS much weaker but sufficient for their purpose and they removed
the smoothness assumption.)

Main Difficulty: Overlaps of singularities in the perturbation of
eigenvalues and eigenfunctions.
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logarithmic Sobolev inequality and convexity

Recall entropy of a probability density f w.r.t a measure u:

S(ulw) = S(N) = [ flog fau, p=e")z
Suppose o:ft = Z fr and u is invariant, i.e., [ Zfidu = 0.

A
25 = [(Lfi)10a fidu+ [ ft—ftd,u

__/ (Vft)2

= -4D(hy), = \/fy

D(\/f1) = —%/(Vh)(v?%)wl _ %/Z (az-jh _ (8ih)}fajh)>2,
ij

Bakry-Emery: V2K > 1= 8tDM(\/ﬁ) < —T_lD,u(\/ﬁ)

= LS S(fulu) < 7Du(\/F),  S(fenln) < e CYTS(foulw).

32



For DBM: V2K > 1(from a:JQ-) relaxation time is O(1)
Global equilibrium is reached in time scale of O(1) .

Local equilibrium is believed to be reached in O(N—1).
F. Dyson on approach to equilibrium of DBM (1962):

The picture of the gas coming into equilibrium in two well-
separated stages, with microscopic and macroscopic time scales,
IS suggested with the help of physical intuition. A rigorous proof
that this picture is accurate would require a much deeper math-
ematical analysis.

33



Now we compute 9;D(+/ft). Let h := +/f for simplicity, then

Oih; = —ah _ L g2 oy —Vh2
thy = 5, 0hi = 5, Zhi ¢+ (Vhy)

In the last step we used that Lh? = (Vh)2 + 2h$h that can be
seen directly from ¥ = 5 — §(VJ{)V.

34



We compute (dropping the t subscript for brevity and [ = [du)
1
aD(/1) = S0 [(Vh)2du

2
— / (Vh)(V.Lh) +% / (vh) vV

2(0;h)0;0;h  (0jh)20;h
-

=/(Vh)[v,$]h+/(w)$(vm —|—%/%;8ih[

1 2 1 9.h)2
_ _5/(Vh)(v J{)Vh—if%:(azagh)

1 2(0:h)(9;R)0;:h  (8:h)2(8;h)?
+§/%[]h]_3h2 ]

_ %/(Vh)(vzj'f)vh _ %/%: (@jh _ (aih)h(ajh))za

where we used the commutator

[V, %] = —%(VQJ{)V.
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Approach to equilibrium: V2K > +—1

oS(fulp) = —Du(\/fr),  &Du(Jf) < =7 Du(y/f2)

= S(fiulp) < e VTS (foulw).

T~ 1 for DBM and there is no room to improve.

Key Idea: Pseudo equilibrium measure w = ¢u is almost an
equilibrium. Then

S (fip|w) = 0iS(grw|w) = —Dw(/9t) + 2, gt = fr/¢

where €2; is the error term due to that w is non-equilibrium.
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Choose w so that

(1) w is more convex than u so that the LSI w.r.t. w improves.
(2) the error €; is still not too large.

(3) w and p have almost identical local equilibrium.

This implies that Dy(4/g:) is small provided €2; is small. Thus
ft ~w and we can deduce the local statistics of f; from w.

Note: We never compared two dynamics! We estimate the

Dirichlet form of f; w.r.t. the pseudo equilibrium measure w
with f; given by DBM.
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Local relaxation flow

pseudo equilibrium measure, w~e N H =H 4+ W,

N 1
W = Z Wj(a:j), Wj(mj) — 2—7(373' - 7j)27

1=1
LLocal relaxation flow:

Orur = gut, (density of system at time t) = wz w

—~ 1 > L :
—/féffdw = 2N/Wﬂ dw := Dy,(f) gradient flow w.r.t. w

F=2-Ybo; b=W) =", )
J

V2H > 7—1 == relaxation time of £ is .
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Let w = ¢¥Yu and define f; = g+ so that fiu = grw. We will call w
pseudo equilibrium measure. 2 is time independent.

Theorem: [Relative Entropy w.r.t pseudo equilibrium measure]
Let g+ = fi/v. Assume that Su,(gp) < CN™ with some fixed m.
Then we have

8:Sw(gt) < —Dw(\/gi) + CNQT 2 < —C1718,(g1) + CNQr 2

Hence we obtain the estimates:

Sw(gr) < CNT71Q, Dw(y/97) < CNT2Q.

where

—supZ/(w — )2 frdp.

t>0
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General relative entropy calculation

O / hfrdp = / (ZLh) frdp = / (ZLh)grdw = / h 4,5 gtdw

0gy
7t = ¥
Ot w3t

© 8o = [(Zia(l0g gr) de

dt
= [ (o) Z(10g g¢) dp
_ _% / Y (gib) V(10g g¢) dps

= —%[/m(Vgt)Q/gt dp + /(Vgt)(v%)du}

40



2 Ti—
8tSW(gt) — _NZ/(aj\/E)de—I—Z/b]ajgt dw, bj = VW] — J J
J J
From the Schwarz inequality
OSw(gt) < —Duw(/gt) + CNZ/bJQ-gt dw < =Dy (/g7) + CNQT 2
J

Together with LSI, we have

8:5.,(gr) < —Ct 18u(g) + CNQT 2

which, after integrating it from ¢t = 0 to 7 (actually slightly bigger
than 7 so that the initial entropy disappears) proves the bound
on S,(gr).

The estimate for D follows from integration from 7 to 27.
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Theorem [Relaxation of the local relaxation flow] Fact:

oy 2 (v; — ’Uj)2 N
(v, V2HEOV) >~ vIP + 3 ., verV.
’L<] (z; — 33])
Consider the forward equation
drqr = ZLat, t >0,
with initial condition qog = g and with reversible measure w. Then
(Oiv/@ = 95/30)°

D) < 2DV — s [ S

i =1 (z; — x])Q -

, 2
2N2/ dS/ Z (Oin/s = Oj/) dw < Dw(\/4q)

ij=1 (z; _xj)z

and the logarithmic Sobolev inequality holds

Sw(CI) < CTDw(\/a)
Thus the time to equilibrium is of order T:

Sw(ar) < e 7S, (q0).
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Theorem [ Gap distribution-Dirichlet form estimate ] Let ¢ be a
probability density w.r.t. w and G is bounded smooth function
with compact support. Then we have

‘/%ZG(N(:CZ' — :E7;+1))[q — 1}dw‘ < C<Dw(]\\[/a)7> Ve (*)

where 7 is the time to equilibrium for 78
(The estimate (*) is time independent !)

As a comparison we show what entropy control alone can reach:

Theorem: We have, for any |E;| < 2

'%;/G(N(xz — Ei))[q— 1]dw' < C\/m
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Recall

=2 L=5u5[A- vV (1)
Duy(y/gr) < CNT—2Q, Q:=supy / (2j — )2 frdu < N=2 (2)
‘/%;G(N(xi - a:z'+1))[q — l}dw‘ < C(DW(]\\[/@T) v (3)

Choose q = gr = fr/¢. Then

‘/%ZG(N("% — 2 41)) |97 — l]dw| < C(Dw(]\\/fg_r)T)l/Q

@ C : 2a
gc\ggm—m, if N1 — o0

1 1
/NZG(N(xi—a;i_l_l))deu:/NZG(...)dw, indep. of initial data
1 1
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Proof.
[ X 6 @) |a-1]de = [ 1360 [(-a)+(a-1)] o

For the second term use entropy,

[ 5160 llar — 1dw < OyfSulan) < OySul)e /7

For the first term, integrate its derivative

/%ZG(. (g — qr)dw = /Otds/%ZG(. ) Bsqsdw
— /Otds/%Z(c‘?qu) 0; [%ZG(N(%' —CL’@+1))]
; j
— /Otds/%Z(ﬁiCIs — 37;_|_1qs) G,(N(Q%' - 5’72'—1—1))

— /Otd,s/%;(ai\@ — 0;114/95) Va5 G'(N(z; — z4.1))
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After a Schwarz

|/%ZG(N(%'—-’L‘z'+1))[q—qt}dw‘
— ‘/()tds/%Z(ﬁi@—ﬁi+1@) @G/(N(fﬁz‘—a?i+1))|

<

t 10i7/@5 = O 1vas) | 172
/OdS/ZL: NQ(ZUZ _:Ui_|_1)2 dw

X |:/Otd8/§i:G’(N(xZ- — xi—l—l))Q(xi o mi—|—1)QQde] 1/2

t 0, o 2 t

<| o JEPEG e

0 i 7 N=(x; — x;) N
The first term is estimated by Dy (,/q) from the additional term
in entropy dissipation term. L]
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Three Steps to the Universality of Random Matrices
Step 1. Local Semicircle Law
Step 2. Strong local ergodicity of Dyson Brownian motion
Step 3. Approximation via the Green function comparison thm

e Universality comes from the local ergodicity of DBM — model
independent and involves no explicit formula.

e Universality holds for all classical ensembles; the variances are
allowed to be different (but bounded). The only condition on the
distribution is subexponential decay (which can be weakened).

e Step 2 and 3 are now very simple and completely general. Only
Step 1 may be model dependent.
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Main Open Problems

Universality for band matrices, random Schrodinger, non-classical
B-ensembles.

Random band matrices: H is symmetric with independent but
not identically distributed entries with mean zero and variance

E Why® = e F=H/W

Narrow band, W < /N — localization, Poisson statistics
Broad band, W > VN — delocalization, GOE statistics

Even the Gaussian case is open.
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Lemma [Large Deviation Estimates] Let a; be (1 < i < N)
independent random complex variables with mean zero, variance
o2 and are subexponential decay. Let A;, B;; € C. Then

> > > 1/2]
Y " a;Bja; — E " 0“Bii| >0 ( E | Bl ) » <CN—°°
—1 i=1 i=1

A3
|

From the Lemma: FEZ? < 5 > |G(7’) G —
k,j7#1

/

5 N\ 1/2]
E aiBijCLj >0 ( E |B?,j| ) s <CN™°°,
7] 7] )

1
HG) — 4

1
identity: |G|? = ZImG, |G]? = GG*
n

1 .
Z |G(Z) < —Im m(z),
N? kl#i N

Since m{) ~m ~ O(1), we have Q ~ |Z;| <

W\
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