Homework 1

due November $2^{\text {nd }}, 2009$, at the beginning of class.

1. Turing machine. Construct a Turing machine that calculates the function $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}, n \mapsto n+1$.
2.Boolean expressions. Find a Boolean expression for the following network in the variables x_{1}, \ldots, x_{8}, where $x_{i}=1$ if switch i makes a contact and $x_{i}=0$ if it breaks the connection.

2. NAND-Gatter Show that the NAND gate, defined by x NAND $y=(x y)^{\prime}$, is a basis for Boolean networks.
3. Gauss elimination. Use Gauss elimination to transform the following matrices to upper triangular form. Calculate the determinant. Are these matrices invertible?

$$
A=\left(\begin{array}{llll}
1 & 0 & 4 & 2 \\
3 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 2 & 3 & 4
\end{array}\right) \quad B=\left(\begin{array}{rrrr}
2 & 1 & 0 & -1 \\
-1 & 2 & 2 & 2 \\
1 & 0 & 1 & -2 \\
0 & 3 & 1 & 3
\end{array}\right)
$$

