Homework 1

due November 2nd, 2009, at the beginning of class.

1. Turing machine. Construct a Turing machine that calculates the function $f : \mathbb{N}_0 \to \mathbb{N}_0, \ n \mapsto n+1.$

2.Boolean expressions. Find a Boolean expression for the following network in the variables x_1, \ldots, x_8 , where $x_i = 1$ if switch *i* makes a contact and $x_i = 0$ if it breaks the connection.

3. NAND–Gatter Show that the NAND gate, defined by x NAND y = (xy)', is a basis for Boolean networks.

4. Gauss elimination. Use Gauss elimination to transform the following matrices to upper triangular form. Calculate the determinant. Are these matrices invertible ?

	(1	0	4	2		1	2	1	0	-1
A =	3	1	0	0	B =		-1	2	2	2
	1	1	1	1			1	0	1	-2
	0	2	3	4)		(0	3	1	3 /