Homework 2

due November $9^{\text {nd }}, 2009$, at the beginning of class.

1. Vectors and matrices. Let A and B be the following matrices:

$$
A=\left(\begin{array}{ccc}
1+i & 1 & -1+i \\
1 & 1-i & 1+i \\
-1+i & 1+i & -1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
2+i & 4 i & -2-i \\
2 & 3+2 i & 3+2 i \\
-3 i & 1 & 5
\end{array}\right)
$$

a. Calculate $A^{*} B$ and $B^{*} A$ (where $\left(A^{*}\right)_{i j}=\overline{A_{j i}}$ and ${ }^{-}$denotes the complex conjugation) .
b. Solve the system of equations $A x=v$ for $v=\left(\begin{array}{c}-2-2 i \\ -1+2 i \\ 1-3 i\end{array}\right)$.

2. Wave equation.

a. Verify that the functions

$$
\sin (\mathbf{k} \cdot \mathbf{x}-\omega t), \quad \cos (\mathbf{k} \cdot \mathbf{x}-\omega t), \quad e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}
$$

are solutions of the wave equation $\left(\frac{1}{v^{2}} \frac{\partial}{\partial t^{2}}-\Delta\right) f(t, \mathbf{x})=0$. Is there an additional requirement for them to be a solution ?
b. Show that if f and g solve the wave equation, and $\alpha, \beta \in \mathbb{C}$, then $\alpha f+\beta g$ also solves the wave equation.
c. Show that if f and g solve the Schrödinger equation with Hamiltonian $H=-\frac{\hbar^{2}}{2 m} \Delta+V(x)$, and $\alpha, \beta \in \mathbb{C}$, then $\alpha f+\beta g$ also solves the Schrödinger equation.
3. Orders of magnitude. Calculate the de Broglie wavelength of an electron with energy 1000 eV and that of a flower pot (mass 500 g) that falls freely from 20 m above ground, at the moment of impact.

