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Chapter 1

Introduction

1.1 Particle field duality

From classical physics we know both particles and fields/waves. These are
two different concepts with different characteristics. But some experiments
show, that there exists a duality between both.

1. ’ electromagnetic waves ‘

waves <> photons (photoelectric effect, F = hv = hw)
fields are quantized, consisting of particles called photons.

2. (e.g. electrons) may exhibit interference phenomena, like

waves. Thus, particles must be described by a wavefunction . How-
ever, this has a probabilistic interpretation, it is not like an electro-
magnetic field.

The latter leads to quantum mechanics (QM), the former to quantum
field theory (QFT). QM is nonrelativistic, and describes systems with fixed
particle number. The quantization of the electromagnetic field requires
quantum field theory, but is based on the same principles as quantum me-
chanics.

1.2 Short repetition of QM

QM cannot be derived from mechanics; rather, mechanics should follow from
QM. But in obtaining appropriate Hamiltonians in QM, the correspondence
principle, which substitutes quantities from mechanics by quantum mechan-
ical operators, plays a key role.
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1.2.1 Mechanics

In the Lagrangian formulation of mechanics, we substitute the equations of
motion by an extremal postulate for an action functional

S|L] = /t dtL (1.1)

to

of the Lagrange function L(g;, ¢;), where the g; are the (finitely many) gener-
alized coordinates in the specific problem. Postulating 65 = 0 for variations
in the ¢;(t) and keeping the endpoints fixed, we obtain the Lagrange equa-
tions

oL doL_

dq;  dtog;
Here, 0L/0q; = p; are the generalized canonical momenta. The Hamiltonian
H (p;,q;) is the Legendre transform of L:

(1.2)

H=> Gp—L (1.3)

and the Hamiltonian equations in phase space follow:

OH . OH

)i = — G = 1.4
P 901 = o, (1.4)

The Poisson bracket of two functions f(p;, q:), g(ps, q;) in phase space is
defined as

of g 0f 9y
i qi), iy 41 oisson — a . T A 1.5
{f(pi,q:). 9(piv i)} p z; (8]% S0~ B0 On: (1.5)
We have
{pi7 Qj}Poisson = 51']' (16)
and the Hamiltonian equations can be generalized to
d
— (i, @) = {H. f}Poisson (1.7)

dt

In case of explicitly time-dependent f we have f (pisqi) = {H, [} Poisson +
0f/ot. For these formal aspects see e.g. F. Scheck, “Mechanik”.

Continuum mechanics can be obtained by taking the number of coordi-
nates N to infinity, as will be seen in a specific example in QM.

1.2.2 QM States

States are described by Hilbert space (ket) vectors |1)) € §) (or by the density
matrix p; see below) with the following properties:
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1. representation space: ¥ (Z) = (Z|¢) are functions in the Lo Hilbert
space §). These are coordinates in the (Z|-basis.

2. probabilistic interpretation:

e |¢(£)|? d3z is the probability to find the particle in the state |¢)
in volume element d3z.

o (plY) = [ A3z ¢* () ¥(T) = [ d3p ¢*(p) ¥(p) is called the inner
product of ¢ and ¢

o | {p|) |? is the probability to find the state [+)) in |¢), and vice
versa.
1.2.3 Observables

Observables are described by self-adjoint linear operators A in $: A = Af
and def(A) = def(AT).

The eigenstates of A are orthogonal and form a complete basis, and the
eigenvalues are real. The expectation value of an observable A in a state

|Y) is given by
(A) = (V[Aly)
More generally, one can introduce a density matriz p, and obtain
(A) = Tr(Ap)
with
p: pt=p, p>0, Tr(p)=1

for general mixed states, and

for pure states.

1.2.4 Position and momentum

Position X and momentum P fulfill the canonical (Heisenberg) commutation
relations

[X},ﬁ@ — il (1.8)
in accordance with the general quantization rule

—ih{A, B} p,isson = [A, B] (1.9)

where the Poisson bracket for f(x,p), g(z,p) is defined in eq. (1.5).
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1.2.5 Hamilton-Operator

The correspondence principle relates mechanics to QM:

o= 4V
mechanics{ F = ih% QM in x-space
T = T
So: > b
P - h°v S
H = — H = —
o +V(@) = o + V(2),

and similarly for other operators corresponding to observables.

Time development (without measurement!)

5(0) = exp (i3 [6(0) (1.10)
—_—

=U

This is the representation of time development in the Schrédinger pic-
ture. The exponential function is a unitary operator (UT = U™1).

In the Schridinger picture, the states are time-dependent, and operators
are time-independent (except when explicitly time-dependent). In contrast,
in the Heisenberg picture the states are time-independent, and the operators
are time-dependent. The expectation values are the same:

WOAsh(0) = ($OUASUR(0)) = W(O0)[Aulp(0)) = (YulAnlvn)

where the Hamilton operator H is the same as above. The (Heisenberg)
equation for time development is given by
d i

—Ap(t) = 5

dt [Hv Ay (t)]

(with an additional term QA /0t in case of explicit time dependence in

A).
In the Heisenberg picture,

(@, 1) = (Xslus(t)) = (XslUb(0)) = (Rurlvu(0))

The actions of the operators XS and X g are as follows:

Xglrs) = &slvs) (1.11)
U'XgU U zg) = 22U |zg)

Xu ) & |zr)
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Remark

In QM, multiparticle states can be represented, in spaces like

DI RHNI...0 NN

which describe the whole space as a tensor product of the individual
spaces of each of the N particles. This representation is used to describe
e.g. atomic structure, nuclear shells, or solid state physics, but the particle
number N is always fixed!

1.3 The need for QFT

QFT is the quantum theory of fields, the main difference to QM being the
huge number of degrees of freedom (— o). The principles, however, are the
same as those of QM. There is a (multiparticle) Hilbert space, called Fock
space, and a probability interpretation, all as we know them from QM. So
don’t worry!

The electromagnetic wave equation is the prototype of a relativistic field
equation:

o 107

It can be solved by a wave ansatz, which leads to:

2 w —i(wt—kX)
2 k :

With p'= Bk and E = hw we get the dispersion relation for photons in
the particle language:

w? E?
<k2_02) P =0 (1.14)

Note that the wave equation is not a kind of Schrodinger equation for the
probability amplitude of photons. In this case it would be an equation for the
probability amplitude of a single photon, which would lead to contradictions.
Consider the physics:

e [t is very easy to produce ”soft” or ”colinear” quanta
“soft”: E ~ p ~ small
L P
“colinear”: —2- with p'= pi + p2 and p'|| p1 || P2

P)
P2
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e We want to measure x with precision Az. Assume Az < Apeproglie =
h/p. Multiplying with Ap and using the uncertainity relation we ob-
tain Az Ap > h — Ap > p. This means that new particles may be
produced, because E? = p?c? for massless (highly relativistic) parti-
cles.

More formally: the wave equation contains second derivatives with re-
spect to time, which means that a probability interpretation like the one for
the Schrodinger equation fails (1/m?2c? 4 p? is nonlocal).

Remarks

e The same problems arise for massive relativistic particles (e.g. pion
70, ¢e): we want to measure x with precision Az < % = ACompton
Again using Az Ap > h, we now obtain

Ap > mc
With the relativistic relation
E? =p?’® +m?* — 2EAE = 2pApc?
we see that
AFE = vAp 2 mcv

This allows particle production for v — ¢. Thus, a particle can not be
localized without allowing for the production of further particles.

e (%, t) assumes that one can measure & arbitrarily exactly, but we have
just seen that then the particle number is not conserved. QM emerges
for non-relativistic massive particles in the limit of neglegible particle
production (i.e., it is a special case of QFT). However, also for very
slow massive particles there are quantum field theoretical corrections:
an example is the uncertainity relation AEAt > kA, which leads to
tunneling and particle production. For small times At a very high
energy AF is possible, i.e. at small time scales we cannot exclude
particle production.
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AN

Figure 1.1: Particle production

In short

Relativistic field equations require to be treated in the framework of QFT,
where particles can be produced and annihilated. Their interpretation is
different from that of the Schrodinger equation. The electromagnetic field
has nothing to do with the localization probability of a single photon.

Still: The principles of QM remain true!

Other relativistic field equations are the Klein-Gordon equation and the
Dirac equation. The Dirac equation, which contains only first order time
derivatives, allows for a one particle interpretation in the nonrelativistic
limit, although not without further ado, as will be seen later.

We will first discuss free particles, and later their interactions, almost
exclusively in the context of perturbation theory. Particularly interesting are
gauge theories (electrodynamics, chromodynamics, flavordynamics).

This might give the impression that QFT was made exclusively for fun-
damental theories, for elementary particle physics. However, it is also very
important in statistical mechanics and solid state physics (see e.g. the role
of path integrals and their relation to the partition function); and of course
historically, the connection between QFT and relativity was very important!

1.4 History

1.5 Harmonic oscillator, coherent states

1.5.1 Classical mechanics

In classical mechanics, we know the Hamiltonian of the harmonic oscillator:

1 mw?
H=— 2 2
om? T2 "
with the equations of motion
. O0H p . OH 9
T=——== = —— = —nmwr
dp m P ox



8 CHAPTER 1. INTRODUCTION

(see Hamilton equations, sec. 1.2.1)
By a canonical transformation, we obtain the holomorphic representa-
tion:

i = (\/@xn%\/%)/\/i

i = (W:E—I—i\/%)/\@ (1.15)

Z,p — a,ia”

In terms of these new variables, the Hamiltonian becomes:

H= % (@*a + aa*)
The equations of motion are:
. OH
a = — %% —wa* (1.16)
- oH -
@ = 3 ) = —iwa

These are first order differential equations, allowing us to solve for a, a*:

e ™ a(0) (1.17)
a‘(t) = e“"a*(o)

IS}
—~
~
~—

|

1.5.2 Quantization

We use the quantization rule known from QM: | Poisson-Bracket — %x commutator

For example:

{p.atp=1=5[P,X]=1

fla) = g+ Lo .51, = fx )

1

- H. /]

0

When we quantize the harmonic oscillator, we promote a and a* to
operators:

a,a* = a,al
which obey the usual commutation relation:

%[ié*,a] —1
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In QM we will often find /& included in a. So we can set i = 1, or define
a new a, to make the equations look nicer:

a: = [a,aqzl

" Vh

1
—H = hw (aTa—l-aaT) = H=hh (aTa+ 2)
N——
ata+1

The occupation number operator N is defined as
N:=ala
and has eigenvalues
Nin)=n|n) n=0,1,..

|0) is the ground state. In this setting a and af are the annihilation and
creation operators, and have the following actions:

aln) = nln—1) (1.18)
alln) = Vn+1jn+1) (1.19)

1.5.3 Coherent states

The states |n) do not correspond to quasiclassical states. The closest ap-
proximations to classical states are called coherent states, which, in the
Heisenberg picture, which we will use most frequently, are defined as fol-
lows:

IA) = NerDal(t) o) (1.20)

From

iﬁgtaT = — [H,aq = —alhw

we obtain ' '
— al(t) = e™al(0) — A(t) = e “IN(0)

which, if plugged into the definition of a coherent state, gives:

Aatm AT
A =N E =N E —_—

n=0

To determine the normalization N, we take the inner product of |\) with
itself:
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YR 2 |
AIX) = INJ? Z T ‘N‘%P\I =1
n=0 ’

= N=e P2 (1.21)
If we now apply the annihilation operator a to such a coherent state, we

obtain:

o A (0)yn
a\A)-N;m|n—1) = A\ (1.22)

We can also use this as a definition of coherent states. From the above,
it follows that the expectation values of a and a' are given by

(MalA) = A <A|aT|A> — )
and

<A|aTa\A> — A2

Analogously, we can calculate af |\), which gives

af ) = d% ) (1.23)

i.e., a and ia’ act on coherent states as \ and idd—)\.

For coherent states, the sum of the variances of X and P is minimal, i.e.
|A) comes closest to classical motion.

For the variance in the occupation number N, we have:

(AN)* = (A(N—(N))?]n)
= (AINZ]A) = (AIN|A)?
<)\|aTaaTa|)\> = 4P
<)\]aTa]/\> — AP
SAN? = P =(N)
_ 2\][\;: <1N> (1.24)

The relative variance goes to 0 for large N.
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Remarks

e Introducing coherent states:

In the Heisenberg picture, we have
al\) = A|\)
IA) = e~ P72 A0 aT(0) g
e—twt
In the Schrédinger picture, this becomes:
ANs = e tHIM Ry
—  NeA®2l(0) 10)

e Coherent states are not orthogonal:

<)\|)\/> — e|)\—)\/|2/2ei$(>\*>\/) (125)

e The completeness relation holds for coherent states:

/ ANy =1 (1.26)

211

We can obtain this relation by expanding an inner product (n|m) in
the A-basis and integrating:

[ S b ) = [ BN S A — b = (al)

where in the second step we have used

)\*m
vm!

e The following normalization is often used in the literature:

(Alm) = ¥m(A") = N

() = e

In this case, the completeness relation changes:

/d)\d)\ X3 = 1

2T
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e The representation of an arbitrary operator A in the A-basis is as

follows:
Af) = 271m,/<AyA|x><X\f> AN AN
A N)
ANSX) = (An) (n|Alm) (m|X')
= A (A*)nﬂe_|’\|2/2e_|)‘/‘2/2 (with summing convention)
"Vl Vml
with A = K,pa' a™ (“normal ordered”)
Knm (W5 X)) = Ky AP
= ANN) = e WPHIVRI2E (N )

e Applying this to a and af, we plug in K,,, = 0 except for n = 1,
m = 0 for af, and n = 0, m = 1 for a, in which cases K = 1. This
giVGS aT()\*)\’) — 6_(‘>\|2+‘N|2)/2>\* and a(}\*’)\/) — 6_(|>\‘2+|>\/|2)/2A,

e Canonical transformations in phase space are symplectic (see e.g. F.
Scheck, “Mechanik”). A general phase space vector

- o T Llyeeey TN = Z1y.--32N
ZPh = = _
b P1y-.-3PN = ZN+15---5 22N

has the following Hamilton equation:

dZpn 5 OH
dt " 9Zpy

with
J = 0 1 (a “metric in phase space”, J ! = —J)
-1 0 ’

A canonical transformation Z — Z’ preserves the Hamilton equation:

0z

Maﬂ = aizlﬁ Oé,ﬁ:l,2N
M} o= %

B 0zp
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o 0% 02,02 0z , O _ .., OH Oz, , OH
CT Ot 0y 0t 9z 0z P02 92, 002
—1 -1
Maﬁ Mﬁ’y
(1.27)

= M 5, MT S = Jus

= J=MJMT (1.28)

M is a symplectic matriz (the M form a group)!

e The Poisson bracket

of dg

{f7 g}Poisson (Z) - _%Jaﬁ 82@

is invariant under canonical (symplectic) transformations.

1.6 The closed oscillator chain

1.6.1 The classical system

Figure 1.2: The closed oscillator chain

Let us consider a circular chain of radius R, with IV masses m, connected
by springs with spring constant D. Let the ¢th mass be at a displacement
q; = RO; from some rest position, and let us impose the periodic boundary
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condition gy = ¢y for convenience of writing. The distance between the
masses when they are at rest is a = 2rR/N.
The Lagrangian for this system is:

N Tm D
N\ .92 ) ) 2
L(g,q) = Z [2 Y (gj+1 — a5)
Jj=1
Varying q;, we get the equation of motion

md+ D (@ — q-1— (@141 — @) =0
which is solved by the ansatz
q(t) = D (fot)
leading to

mw?+ D (2 — etk _ e“k) =0
~~

ma?

-2k
4 sin 5

Because of the periodic boundary condition gy = qg, we get Nk = 2mn
withn =0,...,N—1orn=—-N/2,...,+#N/2 — 1 (for even N), and we
obtain for the oscillator modes

w;, = — sin® — (1.29)

402

Superposition of modes gives the general solution for real ¢;(t):

1

Qj(t) _ ﬁ Z [Cnei(anj/N—wnt) + C;kle—i(27rnj/N—wnt)] (1.30)

n=—N/2

(note that this is a Fourier expansion).
The Hamiltonian is then given by:

N [ p2
H(q,p) =) [;]n + g (¢; — %—1)2] ,

J=1
where p; = mg;, and the corresponding equations of motion are

, __oH . _OH
pj aq]? QJ ap]

To ensure that the the transformation (gj,p;) — (cn,c;,) is canonical,
we normalize ¢, and ¢}, by defining the new canonical variables a,, and ia},
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through a, = /2mw,cpe”“nt (cf. harmonic oscillator, sec. 1.5.1). These
variables are canonical:
{an?ia;kn}Poisson = —0Onm, {aa a} = {a’*7 a’*} =0

The new Hamiltonian is
1 * *
H = Z iwn(anan + anpa)
n

Note that this transformation is still classical. It is preferable, however,
to discuss this in the already quantized version.

1.6.2 Quantization

The procedure is exactly the same as it was for the harmonic oscillator:

b, — P,L,A
1
{f(pa Q)a g(pa Q)}Poisson - 73 [fa g}

* -
Qn, CLn —  Ap, ail

Then the a,, iéil fulfill the usual commutation relation
[an,ajn] = ihdnm

and the Hamiltonian looks like this:
1
H=> w,(ala,+
4 w (ana + 2h)

Exercise: obtain the commutator [p;,q;] from [a,, al] = ihdp, and
derive the Hamiltonian above (use ZnNz_Ol e2min(G=1"/N = N 8jj)-

In the following we will often use units where A = 1. We will sometimes
reinsert the factors of A, in cases with experimental relevance; the same goes
for setting ¢ = 1.

Defining a,(nj) = \/ﬁég), the Hamiltonian becomes:

1
H=> hoy, <a;an + 2) (1.31)
n

After quantization each mode n has an excitation number (the “occupa-
tion number” of some quasiparticle-mode), as we have already seen in the
case of the harmonic oscillator. This begs the question whether, as a physi-
cist, one can distiguish these modes (called phonons if they live in crystals)
from “real” particles.
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If one can see the “lattice” (e.g. a solid state crystal), the answer is yes,
because a real particle should exist independently of the medium it lives
in. One can not always see this medium, however, in particular when the
continuum limit has been taken. Then, the “lattice” has become some sort
of “ether”, which is not necessarily visible to the physicist, and might not
be needed anymore.

An interesting case is fundamental (super)string theory, where particles
are modes of strings.

The states on which the operators defined above act live in a Fock space
FT=91R0H...R Hy, where H; the Hilbert space of i-th mode. The
“vacuum” state is denoted by |0), and has a,, |0) = 0 for all m.

General states

|ni,ng,...,nN) = |0)

are normalized eigenstates of H and have energy
F= Z hwp, | 7, + E
- — m m 2

Note: Elastic binding to lattice, mimicking a crystal, at x; = j2rR/N
gives a term —(m/2)Q2qJ2 in L which shifts the w? in eq. (1.29) by +Q?;
there is no zero mode.

One can rewrite eq. (1.30) by substituting —n for n in the second term:

N/2—1

g= Y exmini/y

n=—N/2

N/2-1
_ Z 2mmiINQ,

n=—N/2

a,+al,

2mwn,

Similarly, one can introduce

mwy, .
P, = 5 “i(ay +al )

Check the following relations:

[P—na Ql] = _idnl

and

1 1
n

with P,, = P}, and Q,, = Q},
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1.6.3 Continuum limit

In the continuum limit, we take N to infinity and a to zero while keeping
2rR = Na fixed. The index j becomes a continuous variable, leading to:

qi(t) = q(z,t), z=a-j (1.32)

Note that in the “closed string” case discussed above, one does not have
elastic binding to the lattice like one has for a crystal, and x is defined up
to an overall translation.

Now, we make the following translations:

(g — ;1) — a2<5qgt>>

2TtR
1
> -y
, a
J 0
Further, we postulate
m = pa with finite mass density p
o
D=— with finite string density o
a

and obtain the following Lagrangian:

S da(e, )\ (Og(x,1)\?
Jcon :20/(13;[,)( - > a( - >] (1.33)

The equations of motion

82 2
q(z,t) 08 q(z,t) _0
ot? Ox?
can be read off from the discontinous case. Later, we will obtain them
directly from eq. (1.33).

Now, with ¢ = /o /p we can rewrite the above equation as:

%  ,0%

— —c = =0 1.34

o2~ ¢ a2 (1.34)
Note: introducing elastic binding (cf. note in section 1.6.2) gives an

additional mass term —% 027rR drpQ2¢?(x,t) in eq. (1.33), and —Q2¢ in eq.

(1.34), which then has the form of a Klein-Gordon equation to be discussed
in the next chapter.

Now, we can just translate our “discrete” solution to the continuum case,
or we can make the following ansatz (from electrodynamics):
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q(z,t) = Aeikw—wt)
Plugging this into eq. (1.34) gives
w? = Pk?
Imposing periodic boundary conditions ¢(0,t) = q(27 R, t) leads to

kn:% (n=0,+1,+2,..)

which, in combination with w? = ¢2k?, gives

[nfe

=R

Note that in the finite N case, the continuum w,, is only approximately
valid. We have to use the formula from the discrete case:

4D . (7|n|
W= 1] sin (T 1.
w sm< N > (1.36)

(1.35)

m

We expand this for small n, using the linear approximation for the sine:

[4D ww|n|  2cm|n|  ¢|n|
Wh N~ _— = —
" m N alN R

(remember D = ¢*m/a® and a = 2rR/N). This approximation is only

allowed when % < 7; then, we have:

c N
wp < —=— =uw 1.37
<l =w (1.37)
Note that in the above discussion, ¢ does not always have to be the speed
of light; it may also be a characteristic speed for the medium in which our

phonons are living.

=24

-N/2 o] N/2

Figure 1.3: Validity range for the linear approximation
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1.6.4 Ground state energy

Fuwn, = In|c
By=Y "n_ i 1.
=25 72;2R (1.38)

In the continuum limit the ground state energy is divergent! We will ob-
serve such divergences more often in QFT; they are related to the continuum
limit and to interaction at a point, and require physical discussion.

In the finite N case:

Ey = h N/il EEsin (71']71)
2 S R N
1/2 )
R~ g / dx%?sin(ﬂxb (use x ~ %)
—1/2
By b, 1 N
2R 2 m wR-2nR
he N2 2hc . N2 21\ 2
= %wp:mzwmm:<a>

The absolute value of Ey does not have a physical meaning (except in
general relativity, where it appears on the right hand side of the Einstein
equation), but we can compare ground state energy in two different physical
situations; in doing so, we can observe the Casimir effect.



Summary of chapter 1:

Start with the action formulated as an
integral over the Lagrangian density

v

Variation with respect to the fields
(with partial integral over fixed
boundary conditions)

v

Canonical momentum field I'T

)

Euler-Lagrange-equations-of-
motion
(L taylored to get the right equation)

Field equation
+ solution via Fourier-transformation
(canonical transformation)

Hamiltonian formalism

(via Legendre-tranformation of L)

v

Poisson-bracket as classical
commutation-relation

Field operator equation

+ solution via generalized F.T.

Equal time QM-Commutation-
Relations

Hamiltonian
(symmetrization in complicated
cases)

v

aand a’ (annihilators & generators)

< Heisenberg-equations-of-motion

v

Fock space

SuoIle[nNo|e? |esIsse|)

suone[noes NO
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