
Chapter 3

The Schrödinger equation in
the language of QFT

3.1 Second Quantization

For radiative transitions, the electromagnetic field is described by an oper-
ator in Fock space, whereas the atom retains its ‘old’ QM description, i.e.
with an ei~k~X, where the position is the operator ~X.

Now, the following question comes up: can we treat the Schrödinger
equation, written down according to the rules of the correspondence prin-
ciple, in its x-space form, like an ordinary field equation and quantize it?
This sounds odd, since it is already quantized; why do it again? The point
is that we want QM to be a special case of QFT, as mentioned in chapter
1, and therefore, it should be possible to express it in the language of QFT.
This is called second quantization.

Note that we are not looking for new physics: QM has been tested
thoroughly, and looks far too nice to throw away.

3.1.1 Schrödinger equation

In classical mechanics, we have E = ~p2/2m+V (~x); following the correspon-
dence principle, this gives

i~
∂

∂t
ψ(~(x), t) =

[(
−~2~∇2

2m

)
+ V (~x)

]
︸ ︷︷ ︸

HSchr

ψ(~x, t) (3.1)

This has stationary solutions ψn = φn(~x)e−iEnt/~; we will also use
En/~ = ωn. General solutions, obtained from a generalized Fourier trans-
form, are

ψ(~x, t) =
∑
n

an(t)φn(~x) (3.2)
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where an(t) ∝ e−iωnt and the {φn} form a complete set of orthonormal
functions.

In the QFT quantization, the functions an(t) are promoted to operators
an(t); as usual, we are in the Heisenberg picture. The final result of this
second quantization will be:

H =
∫
d3xψ†

op(~x, t)HSchrψop(~x, t) (3.3)

which is an operator in Fock space. In terms of an, we have

H =
∑
n

Ena†nan (3.4)

where the an and ia†n are canonically conjugate operators in the Hamiltonian
formalism. Let us now consider in detail how we get this result.

3.1.2 Lagrange formalism for the Schrödinger equation

In order to quantize the Schrödinger equation, we will treat it as an ordinary
field equation, for which we will first develop the Lagrange formalism. The
Lagrangian density is:

L = i~ψ∗ψ̇ − ~2~∇ψ∗ · ~∇ψ
2m

− V (~x)ψ∗ψ (3.5)

Following the usual procedure, we obtain the momentum fields:

Πψ =
∂L
∂ψ̇

= i~ψ∗; Πψ∗ = 0 (3.6)

We could obtain our field equation by varying L with respect to the real
and imaginary parts of ψ, but we can also vary with respect to ψ∗ and ψ,
since these are complex conjugates. This gives:

i~ψ̇ +
~∇ · ~∇ψ

2m
− V (~x)ψ = 0 (3.7)

which is the Schrödinger equation, as we had hoped. Now, our Hamiltonian
density (as used in eq. (3.3)) is given by

H = i~ψ∗ψ̇ − L = ~2
~∇ψ∗ · ~∇ψ

2m
+ V (~x)ψ∗ψ (3.8)

Here, ψ and i~ψ∗ are canonical conjugates. In this equation, we could also
introduce electromagnetic coupling.

Note that we could also have taken a more symmetric Lagrangian density,
i~
2 (ψ∗ψ̇ − ψ̇∗ψ) to obtain this result.
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3.1.3 Canonical quantization

The canonical quantization relation, where the ψ and ψ∗ are promoted to
ψop and ψ†

op, is given by

[ψop(~x, t), i~ψ†
op(~x

′, t)] = i~δ3(~x− ~x′) (3.9)

Note that the factor i~ appears on both sides of the equation, and hence
cancels. In terms of the a(†)

n , we have∑
n,n′

[an,a
†
n′ ]φn(~x)φn′(~x′) = δ3(~x− ~x′) (3.10)

where the generation and annihilation operators fulfill their usual commu-
tation rule

[an,a
†
n′ ] = δn,n′ (3.11)

This gives the completeness relation: the φn(~x) form a complete basis.
The Hamiltonian operator H =

∫
d3xH is, as discussed in chapter 1,

given by
H =

∑
n

Ena†nan (3.12)

Using eq. (3.11), we find the Heisenberg equations for the an and a†n:

d

dt
an(t) =

i

~
[H,an] = −iωnan(t) (3.13)

d

dt
a†n(t) =

−i
~

[H,a†n] = iωna†n(t) (3.14)

For the ψop and ψ†
op, we have:

i~
d

dt
ψop(~x, t) = − [H, ψop(~x, t)] (3.15)

i~
d

dt
ψ†
op(~x, t) = [H, ψ†

op(~x, t)] (3.16)

The energy states in Fock space are obtained as usually, by applying a†n to
the vacuum. The action of an and a†n on a state is given by

an |. . . , Nn, . . . 〉 =
√
Nn |. . . , Nn − 1, . . . 〉

a†n |. . . , Nn, . . . 〉 =
√
Nn + 1 |. . . , Nn + 1, . . . 〉

Letting the ψ(†)
op (~x, t) act on the vacuum gives:

ψop(~x, t) |0〉 = 0, (3.17)
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since ψop contains only annihilators, and

ψ†
op(~x, t) |0〉 = ~|X〉H (3.18)

which is a state with sharp position. The position ~X is fixed, but described
by time-varying Hilbert space vectors, which is where the time dependence
comes into the picture.

Exercise: prove eq. (3.18). Hint: use the Schrödinger equation for
ψ(~x, t) = 〈X|ψH〉, or write ~XH(t) =

∫
d3x′ψ†

op(~x′, t)~x′ψop(~x, t) and show
that ~XH

~|X〉H = ~X |X〉H .
For the particle number density, we have:

n(~x, t) = ψ†
op(~x, t)ψop(~x, t) (3.19)

n(~x′, t)ψ†
op(~x

′, t) |0〉 = δ(~x− ~x′)ψ†
op(~x, t) |0〉︸ ︷︷ ︸
localized

(3.20)

The total particle number N should be conserved, since we are dealing with
normal QM systems, where particle production is forbidden. Indeed, using
eq. (3.19) and the Heisenberg equation, we find that∫

d3xn(~x, t) = N

is conserved.

Quite generally, for any Schrödinger operator AS(XS ,PS), we have an
associated (Heisenberg) operator AF (ock) acting on the Fock space of the
one-particle state:

AF (t) =
∫
d3xψ†

op(~x, t)ASψop(~x, t) (3.21)

Using the commutator [ψop, ψ
†
op] = δ3, the fact that double annihilation on a

one-particle state gives zero (ψopψop |1 part.〉 = 0), and the definition above,
we see that commutation relations of the form

[AS ,BS ] = CS

translate to

[AF ,BF ] = CF

(the notation AH is also used for AF ).
An example of the above correspondence is the momentum operator,

which generates translations. It is defined by U~a = e−i
~PF ·~a/~, where now

~PF acts on states in the Fock space. Applying it to a state |~x〉 gives
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U~a ψ
†
op(~x, t) |0〉︸ ︷︷ ︸

=|~x〉

= U~aψ
†
op(~x, t)U

†
~aU~a |0〉︸ ︷︷ ︸

=|0〉

Using the fact that |0〉 is invariant under translations, this becomes:

|~x+ ~a〉 = ψ†
op(~x+ ~a, t) |0〉

For infinitesimal translations, we have[
~PF , ψ

(†)
op

]
=

~
i
~∇ψ(†)

op

For rotations, generated by the angular momentum operator ~JF , we have
the same procedure: U~ω = e−i

~JF ·~ω/~, where ~JF is given by

~JF =
∫
d3xψ†

op(~x, t)
(
~XS ×

~
i
~∇
)
ψop(~x, t)

And again, for infinitesimal rotations:[
~JF , ψ(†)

op

]
=
(
~XS ×

~
i
~∇
)
ψ(†)
op

3.2 Multiparticle Schrödinger equation

3.2.1 Bosonic multiparticle space

The description of systems consisting of more than one identical particles
is a nice application of the new QFT-inspired formalism obtained from the
second quantization. Note again that we are still talking about QM as we
know it; only the language has changed.

Consider a system of N identical particles, which can be in states like∣∣∣n~k1n~k2 . . . n~kl

〉
=
∣∣∣n~k1〉⊗ ∣∣∣n~k2〉⊗ · · · ⊗

∣∣∣n~kl

〉
where the possibility of polarization has been left out to avoid drowning

in indices. The states
∣∣n~k〉 are given by

∣∣n~k〉 =
(a†~k)

n~k√
n~k!

|0〉 (3.22)

General states (still without polarization) look like this:

∞∑
l=1

∑
{~k1...~kl}

f(n~k1
~k1, . . . , n~kl

~kl)
∣∣∣n~k1 . . . n~kl

〉
(3.23)
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Here, the order of the ~ki is arbitrary, since the a†~ki
commute. The total

particle number is given by N =
∑l

i=1 n~ki
. These states live in a Fock space

obtained by a direct product of harmonic oscillator Hilbert spaces:

F =
∏
l=1

⊗Hosc
~kl

They obviously inherit the linear structure of their constituents. Simi-
larly, the inner product between two such states is obtained by taking the
inner product in each H~k separately.

Another way of obtaining F is summing spaces with fixed particle num-
bers:

F = H(0) ⊕ H(1) ⊕ · · · ⊕ H(l) =
∑
N

⊕H(n)

where

H(i) =
∏
i

⊗H(1) symmetrized

is the Hilbert space for i identical particles.

|~xi . . . ~xl〉H = Nsψ
†
op(~x1, t) . . . ψ†

op(~xl, t) |0〉 (3.24)

The ψ†
op generate identical particles, and hence commute. They are defined

as follows:

ψ†
op(~xj , t) =


∑
~k

N~ka
†
~k
(t)e−i~k·~x for free particles∑

~k

a†n(t)φ∗n(~xj) j = 1, . . . , l for bound particles
(3.25)

Because of the fact that the ψ†
op commute, we obtain l! terms with the same

set of ~ki in the free particles-case. This gives rise to a factor of l! in the
inner product of a state with itself. This factor is always the same (exercise:
show this), even if some of the ~k are identical. Examples are the case where
all ~k are different and the case of m identical ~k: in the first case, the norm
squared of the state gets a factor l!, as just mentioned, and in the second,
it is a factor (

l
m

)
·m!(l −m)! = l!

So, we set the normalization coefficient in eq. (3.24) Ns = 1/
√
l!.

Exercise: show, using the normalization coefficient derived above, that
the following identity holds for a function fsym that is symmetric in the xl:∫

d3x′1 . . . d
3x′l
〈
~x1 . . . ~xl|~x′1 . . . ~x′l

〉
fsym(~x′1 . . . ~x

′
l) = fsym(~x1 . . . ~xl)
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3.2.2 Interactions

The total Hamiltonian can be split up into the parts concerning the individ-
ual particles, parts resulting from interactions between two particles, etc.:

H = H(1) +H(2) + . . . (3.26)

The parts H(i) are defined as follows:

H(1) =
∫
d3xψ†

op(~x, t)
(
−~∇2

2m
+ V (~x

)
ψop(~x, t) (3.27)

H(2) =
∫
d3xd3x′ψ†

op(~x, t)ψ
†
op(~x′, t)V (~x, ~x′)ψop(~x, t)ψop(~x′, t)(3.28)

The interaction potential V (~x, ~x′) = V ∗(~x, ~x′) is self-adjoint, e.g. e2/|~x−~x′|
for the interaction between two electrons.

Exercise: using [ψop(~x, t), ψ
†
op(~x′, t)] = δ3(~x− ~x′), show that

i~
∂

∂t
ψ(~x1, . . . , ~xl, t)︸ ︷︷ ︸
=H〈~x1...~xl|ψ〉H

= i~
∂

∂t
〈0| ψop(~x1, t) . . . ψop(~xl, 1)√

l!
|ψ〉H

= 〈0| − [H(1) +H(2),
ψop(~x1, t) . . . ψop(~xl, t)√

l!
|ψ〉

!= 〈0|
l∑

i=1

H(1)
S (~xi,

~
i
~∇i) +

1
2

l∑
i,j=1,i6=j

V (~xi, ~xj)


×ψop(~x1, t) . . . ψop(~x1, t)√

l!
|ψ〉

= (H(1)
S +H

(2)
S )ψ(~x1, . . . , ~xl, t)

Given that we are dealing with two-body interactions here, instead of the
single particles discussed so far, one could think that the commutation rela-
tion between ψop and ψ†

op might not be the same as before. However, since
the canonical momentum remains unchanged, we know that the old relation
must still hold.

We started with the linear Schrödinger equation, but we could also have
started with a nonlinear equation, such as the Gross-Pitaevsky equation
for Bose-gasses. In this case, we would have to give up the superposition
principle for probability amplitudes. Since we are doing nonrelativistic QM
here, we prefer taking into account nonlinear parts only in H(2) and higher
orders. Of course, one can also apply ordinary perturbative QFT, as will be
discussed later on.
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Remark

With the results obtained above, we can write any interaction completely in
quantized fields. The electromagnetic interaction, with ~A(x), is, as we will
see later on, obtained by minimal gauge coupling:

~
i
~∇ → ~

i
~∇− e

c
~A

H0 =
∫
d3xψ†

op(~x, t)

{
1

2m

(
~
i
~∇
)2

+ V (~x)

}
ψop(~x, t) +

1
8π

∫
d3x( ~E2 + ~B2)

HI = H(2) +
∫
d3xψ†

op(~x, t)
[
− e~
imc

~A · ~∇+
e2

2mc2
~A2

]
ψop(~x, t)

where ψ, ψ† and ~A are now quantum fields.

3.2.3 Fermions

We know from QM that we need the Pauli exclusion principle for electrons,
protons, and other particles with half-integer spin. Later on, this will appear
as a necessary consequence of QFT; we will see this in our discussion of the
Dirac equation. Here, only the results will be given: fermionic fields are
quantized by substituting anti-commutators, rather than commutators, for
the Poisson bracket. We postulate:

[cn, c
†
n′ ]+ = cnc

†
n′ + c†n′cn = δnn′ (3.29)

[cn, cn′ ]+ = [c†n, c
†
n′ ]+ = 0 (3.30)

(the notation {·, ·} is often used as an alternative for [·, ·]+.)
Let us investigate the consequences of postulating anticommutating cre-

ation and annihilation operators. A striking result is that is immediately
obvious is that c2

n = c†2n = 0. Now, consider the action of the occupation
number operator N = c†c, N |n〉 = n |n〉. Let it act on a state c |n〉:

Nc |n〉 = c† cc︸︷︷︸
=0

|n〉 = 0 =

= (−cc† + 1)c |n〉 = (−cN + c) |n〉 = (−n+ 1)c |n〉 = 0

So, either n = 1 or c |n〉 = 0. Now, let it act on a state c†:

Nc† |n〉 = c†cc† |n〉 = c†(−c†︸ ︷︷ ︸
=0

c + 1) |n〉 = c† |n〉 = (−n+ 1)c† |n〉
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So, either n = 0 or c† |n〉 = 0, giving the following relations:

c† |1〉 = 0, c |0〉 = 0 (3.31)
c† |0〉 = |1〉 , c |1〉 = |0〉 (3.32)

In other words, the only occupation numbers are 0 and 1, as we wanted for
fermions. The normalization is as follows:

〈0|0〉 = 1 (3.33)
〈1|1〉 = 〈0| c†c |0〉 = 〈0| − cc† + 1 |0〉 = 〈0|0〉 = 1 (3.34)

A general fermion state is:

∑
{~k1...~kl}

l∏
i=1

f(~k1 . . .~kl)c
†
~ki
|0〉 (3.35)

with n~ki
= 1. Since the c†~ki

anticommute,
∏

c†~ki
is totally antisymmetric,

which means that only the totally antisymmetric part of f is interesting.
In x-space, states look like this:

|~x1(t) . . . ~xl(t)〉 =
1√
l!
ψ†
op(~x1, t) . . . ψ†

op(~x1, t) |0〉 (3.36)

where the ψ†
op are, as usual, general solutions of the field equations:

ψ†
op(~x, t) =

∑
n

c†nφ
∗
n(~x) (3.37)

A state with l different oscillators occupied is given by:

1√
l!

∑
{1,...,l}P

(−1)Pφ∗kp1
(~x1) . . . φ∗kpl

(~xl)c
†
k1
. . . c†kl

|0〉 =

1√
l!

∣∣∣∣∣∣∣∣∣
φ∗k1(~x1) . . . φ∗kl

(~x1)
φ∗k1(~x2) . . . φ∗kl

(~x2)
...

...
φ∗k1(~xl) . . . φ∗kl

(~xl)

∣∣∣∣∣∣∣∣∣× c†k1 . . . c
†
kl
|0〉 (3.38)

The determinant is called Slater -determinant, and gives rise to antisymmet-
ric wave functions. It arises from the permutations which are summed over
with changing sign (the part

∑
{1,...,l}P

(−1)P in the left hand side).
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