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Chapter 8

Path integral formulation of
QFT

So far, we have studied QFT in the canonical formalism with operator-valued
fields, in the Heisenberg representation. Richard Feynman has formulated
another representation of both QM and QFT, which is very intuitive and
does not use operators. Its mathematical status, however, is still in develop-
ment. This method is particularly powerful if one wants to quantize gauge
theories - this is why it is necessary to discuss it - and it also allows one
to derive the Feynman rules very easily, and to discuss problems beyond
perturbation theory, although we will not go into the latter here.

8.1 Path integrals in QM

The path integral formulation of QM centers around the transition ampli-
tude for a QM particle from a position x(t) at a time t to a position x′(t′)
at time t′. It starts from the Heisenberg picture, where the time dependent
operators X(t) and P(t) have their respective eigenvectors |x(t)〉 and |p(t)〉,
with time developments

X(t) = eiH(t−t0)/~X(t0)e−iH(t−t0)/~ (8.1)

|x(t)〉 = eiH(t−t0)/~ |x(t0)〉 (8.2)

and similarly for P and p. The factors of ~ have been reinserted here for
clarity. Note that the sign in eq. (8.2) is opposite to that of the Schrödinger
equation. Note also that this equation describes a transition in time, while
the position does not change. Finally, in eq. (8.1), X(t0) = XS; in the
Schrödinger picture, t0 is usually taken to be 0.

Let us start at the end of our discussion of the path integral formulation,
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94 CHAPTER 8. PATH INTEGRAL FORMULATION OF QFT

with the result:

〈
x′(t′)|x(t)

〉
=
∫
DxDp exp

[
i

∫ t′

t
dτ

{
p(τ)

dx

dτ
−H(p, x)

}
/~

]
(8.3)

Here,
∫
Dx is a path integral, in mathematical circles know as functional

integral, an integral over all possible paths x(τ) connecting x and x′, with
x(t) = x and x(t′) = x′.

Figure 8.1: Integrate over all possible paths

∫
Dp does not have boundary conditions, since the problem asks for the

transition amplitude between positions, but not between momenta. (As a
small aside: note that the exponent is just the classical action times i/~.)

After discretization of the time integral, it becomes a product of integrals
at τ1, τ2, . . . over x(τ1), x(τ2), . . . :

Figure 8.2: Discretization of the time integral

∫
Dx exp

(∫
dτ . . .

)
→
∏

i

∫ ∞

−∞
dx(τi)

Defining δτ := τi−τi−1, one eventually has to take the limit δτ → 0, which is
mathematically demanding. Obviously, the integral over Dx does not need
to be evaluated at the endpoints, since these are fixed.
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Now, let us derive this result. From the canonical formalism, we have
the following formula:〈

x′(t′)|x(t)
〉

=
〈
x′
∣∣ e−iH(t′−t)/~ |x〉 (8.4)

where |x〉 is a Schrödinger state. Decomposing the interval into N bits,
t′ − t = Nε, gives

〈xN | e−iHε/~ |xN−1〉 〈xN−1| e−iHε/~ |xN−2〉 〈xN−2| . . .
. . . |x1〉 〈x1| e−iHε/~ |x0〉

where xN = x′ and x0 = x, and H = P2

2m + V (X). Consider one of these
matrix elements, to order ε:

〈xk+1| e−iHε/~ |xk〉 = 〈xk+1| 1−
iH
~

ε + . . . |xk〉 =

〈xk+1|xk〉 − iε

∫
dpk

2π~

{
V

(
xk+1 + xk

2

)
〈xk+1|pk〉 〈pk|xk〉+

〈xk+1|pk〉
〈

pk

∣∣∣∣P2

2m

∣∣∣∣xk

〉}
+ · · · = (8.5)∫

dpk

2π~

[
1− iε

~

(
p2

k

2m
+ V

(
xk+1 + xk

2

))]
exp

(
ipk

~
(xk+1 − xk)

)
+ . . .

Note: for more complicated X/P-mixed operators one needs Weyl or-
dering, a symmetrization of the operator sequence in X/P; see Peskin
& Schröder, p. 281 for more on this topic. Note that the argument in
V (xn+1+xn

2 ) is written like this for cosmetic reasons; we could just as well
have written xn, since in the end, the limit N → ∞ will be taken. Contin-
uing our derivation, let us define

θ(ε) =
∫

dpk

2π~
exp

(
− iε

~

(
p2

k

2m
+ V

(
xk + xk+1

2

)
− pk

xk+1 − xk

ε

))
(8.6)

which is the right hand side of eq. (8.5) to order O(ε). Multiplying all θ’s
and taking the limit ε → 0, we have

〈
x′(t′)|x(t)

〉
=
∫
DxDp exp

[
i

∫ t′

t
dt

(
pẋ−H(p, q)

~

)]
(8.7)

with x(t) = x and x(t′) = x′. This limit is of course accompanied by some
higher-level mathematics. The näıve expression, however, has to be based
on the discretized version we started from. Concretely, for physicists, this
means that in QFT, numerical lattice calculations are an adequate way to
approach this integral. Note that the continuous and differentiable functions
are a dense set of measure zero in the functional integral.
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The dpk-integration in eq. (8.6) can be performed: it is just a Gaussian
integral, here restricted to one dimension for simplicity. It is solved by
completing the square:

−
p2

kε

2m
+ pk(xk − xk+1) =

− 1
2

[
p2

k

m
ε− 2pk(xk − xk+1) +

(xk − xk−1)2

ε
m

]
+

1
2
m

(xk − xk−1)2

ε
=

−
p′k

2

2
ε

m
+

1
2
m

(xk − xk−1)2

ε

with p′k := pk
m − xk−xk+1

ε . Using the standard Gaussian integral,∫ ∞

−∞
dxe−αx2

=
(π

α

)1/2
(8.8)

we can perform the p′k-integral. The first part becomes∫ ∞

−∞

dp′k
2π~

exp
(
−1

2
iε

~m
p
′2
k

)
=

1
2π~

∫ ∞

−∞
dye−y2/2 =

1
2π~

√
2π~m

iε

where y = p′k
√

iε/~m. Note that due to the presence of
√

i in the conver-
sion from p′k to y, this substitution constitutes a 45-degree rotation of the
integration path:

So, the final result, the product of all the separate integrals, is

N−1∏
j=1

∫
dxj

(√
m

iε~2π

)N

exp

(
i

N∑
i=1

ε

{
m

2
(xi − xi−1)2

ε2
− V (xi)

}
/~

)

which, after taking ε to zero and N to infinity, becomes:

〈
x(t)|x′(t′)

〉
=
∫
Dx exp

(
i

∫ t′

t
dτL(x, ẋ)/~

)
(8.9)
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with singular integration measure (∼ ε−N/2) and Lagrangian density L =
mẋ2

2 − V (x).
The x-space path integral is less general (namely only for H quadratic

in p) than the first version, but for our purpose, we can settle for this one.

Remarks

• For 〈x′(t′)|T(O1(t1)O2(t2) . . . ) |x(t)〉, the operators O1,O2, . . . act
in the time slices around t1, t2, . . . . Then, 〈x(t1)|O1(t1) |x(t′1)〉 =
O1(x(t1))δ(t1 − t′1) where O1 is a function. Thus, we obtain time-
ordering in the path integral, which is decomposed into time slices.
This remark is also important if the potential has the shape of a ma-
trix in more complicated settings.

• The oscillating behaviour of the Feynman exponential, which makes
the convergence of the integral a more subtle affair, can be avoided if
we go to imaginary, or Euclidean, time (t = x0 = −ix4 = −itE). This
so-called Wick rotation helps us to define certain expressions properly.
Of course, one has to rotate back at the end of the calculation .

8.1.1 Vacuum expectation values

When going to QFT, we will be interested in vacuum expectation values (cf.
correlation functions in statistical physics). Let us briefly investigate them
here:

〈0|T(x(t1) . . .x(tn)) |0〉 =?

Let us start from

〈xT (T )|T(x(t1) . . .x(tn)) |x−T (−T )〉 =
∫ xT

x−T

Dxx(t1) . . . x(tn)× (8.10)

exp
(
−
∫

dτe

(
mẋ2

2
+ V (x)

))
where τe stands for Euclidean (Wick-rotated) time. Now,

|x−T (−T )〉 = e(−T )H |x−T (0)〉 =
∑

n

|n〉 〈n|x−T 〉 e−EnT

where |x−T (0)〉 is also written |x−T 〉, and is a Schrödinger vector, which at
t = 0 coincides with the corresponding Heisenberg vector. When T is large,
only the ground state contributes. Then, eq. (8.10) becomes

= 〈xT (0)|0〉 〈0|T(x(t1) . . .x(tn)) |0〉 〈0|x−T (0)〉 e−2E0T

Dividing by 〈xT (T )|x−T (−T )〉, like in the Gell-Mann-Low formula, removes
the outer parts, leaving

〈0|T(x(t1) . . .x(tn)) |0〉 = lim
T→∞

ZT

∫ xT

x−T

Dxx(t1) . . . x(tn)e−S (8.11)
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where ZT =
∫ xT

x−T
Dx e−S and S =

∫
dτe(mẋ2

2 + V (x)).

Remarks

• Note the similarity with the thermal average in statistical mechanics
with the Boltzmann weight e−βH .

• x±∞ is in general not a fixed value; taking the Gell-Mann-Low quo-
tient, the final result should not depend on it.

• The Feynman-Kac formula: limT→∞ log 〈xT (T )|x−T (−T )〉 /(−2T ) =
E0. Exercise: derive this result.

8.2 Path integrals in QFT

8.2.1 Framework

Consider real scalar field theory, with L = 1
2∂µΦ∂µΦ − V (Φ), where V (Φ)

could for example be m2

2 Φ2 + λ
4Φ4. Now, Φ(~x, t) substitutes xi(t) as we go

to infinitely many degrees of freedom. The following correspondences hold:

QM QFT

• Xi(t) (Heisenberg picture)

• |xi(t)〉 state vectors with
Xi(t) |xi(t)〉 = xi(t) |xi(t)〉

• boundary conditions

• Φ(~x, t) Heisenberg operator

• Fock space (Φ-eigenvector
states; coherent states)

• vacuum state |0〉 for t →
±∞

|0〉 is unique only without outer fields (“currents”). With outer fields (or
“currents”), as we have seen before in the generating functional Z(j), we
have an extra term Lj in the Lagrangian density: Lj = j(x)Φ(x), where
j → 0 for large ~x and t. This implies that |Ωt→−∞〉 6= |Ωt→∞〉 and |0〉out 6=
|0〉in.

Going from xi to Φ, our path integral will run over fields Φ, and mo-
mentum fields Π, where the latter are given by

Π(x) =
∂L

∂(∂0Φ)
= ∂0Φ = ∂tΦ (8.12)

Now, the Φ- and Π-integrals become:∫
DΦ → lim

∫ ∏
i,j

dΦ(~xi, τj) = lim
∫ ∏

k

dΦk
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DΠ → lim

∫ ∏
k

dΠk

where the index k represents a 4-dimensional lattice (the limit ε → 0 will be
taken in the end). Of these,

∫
DΠ can be performed like in the QM case,

and starting at the end again, we obtain:

〈0|T(Φ(x1) . . .Φ(xn)) |0〉 = (8.13)∫
DΦ exp

{
i
∫

d4x
(

1
2∂µΦ∂µΦ− V (Φ(x))

)
Φ(x1) . . .Φ(xn)

}∫
DΦ exp(. . . )

(~ has been set equal to 1 again).
Now, we can sum over all fields with Φ(~x, t) → 0 as |~x|, |t| → ∞. (In

the quotient, this condition should drop out; strictly speaking, one has to
calculate the Fock space vacuum in x-space. See the exercises.) The integrals
are, like in QM, well defined after Wick rotation (x0 → −ix4 substitution
and 90-degree rotation in the x4-plane) to imaginary time; another option is
inserting a term 1

2(m2−iε)Φ2(x) in the potential. The Wick rotation results
in:

∂µΦ∂µΦ− V (Φ(x)) → −∂µΦ∂µΦ− V (Φ(xE)) (8.14)∫
d4x → −i

∫
d4xE (8.15)

Figure 8.3: Wick rotation

Eq. (8.13) is very similar to the Gell-Mann-Low formula. It can also be
written with the help of a source j(x),

Z(j) =
∫
DΦ exp

(
i

∫
d4x(L+ jΦ)

)
(8.16)
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which gives

〈0|T(Φ(x1) . . .Φ(xn)) |0〉 =
1

(i)nZ(0)
δnZ(j)

δj(x1) . . . δj(xn)

∣∣∣∣
j=0

(8.17)

where the variational derivative provides factors iΦ(xi). Note: the normal-
ization of

∫
DΦ is often chosen to give Z(0) = 1.

8.2.2 QFT path integral calculations

Deriving eq. (8.13) in a discretized version, like we did for the QM case,
involves a multi-component version of the standard Gaussian integral, eq.
(8.8):

I(A, b) =
N∏

i=1

∫ ∞

−∞
dΦi exp

(
−1

2
ΦiAikΦk + biΦi

)
(8.18)

We diagonalize A by an orthogonal transformation O, whose Jacobi-determinant
is 1. Then, we have

I(a, b′) =
N∏

i=1

∫ ∞

−∞
dΦ′i exp

(
−1

2
Φ′iaiiΦ′i + b′iΦ

′
i

)

Completing the square, we rewrite −1
2Φ′iaiΦ′i + b′iΦ

′
i into −1

2ai(Φ′i −
b′i
ai

)2 +
1
2b′i

1
ai

b′i, which gives

I(a, b′) =
N∏

i=1

√
2π

ai
exp

(
1
2
b′i

1
ai

b′i

)
= (2π)N/2 1

(detA)1/2
exp

(
1
2
bT A−1b

)
where the second step is the result of rotating back. So, in the end, we are
left with

I(A, b) =
(2π)N/2

(detA)1/2
exp

(
1
2
bT A−1b

)
= I(A, 0) exp

(
1
2
bT A−1b

)
(8.19)

Observe that (2π)N/2

(det A)1/2 = I(A, 0).
Differentiation with respect to bi produces vacuum expectation values:

∂

∂bi

∂

∂bk
I(A, b)

∣∣∣∣
b=0

= I(A, 0)× (A−1)ik︸ ︷︷ ︸
2-point function

(8.20)

Let us apply this to the Z(j) from above, at first without interaction:

L = ∂µΦ∂µΦ +
m2

2
Φ2 (8.21)



8.2. PATH INTEGRALS IN QFT 101

Note that this is the Euclidean, i.e. rotated, form. With this L,

ZE
0 (j) = ZE

0 (0) exp
(

1
2

∫
j(x)(−∂2

E + m2)−1
xx′j(x

′)d4xEd4x′E
)

(8.22)

For comparison: in the Minkowski metric, it looks like this:

Z0(j) =Z0(0) exp
(
− 1

2i

∫
j(x)(∂2 + m2 − iε)−1

xx′j(x
′)d4xd4x′

)
=

Z0(0) exp
(
−1

2

∫
j(x)DF(x− x′)j(x′)d4xd4x′

)
In the Euclidean metric, the calculation is easier due to the absence of the
i-factors. It is easy to check that

〈0|T(Φ(x1)Φ(x2)) |0〉 =
1
i2

δ2Z(j)
δj(x1)δj(x2)

∣∣∣∣
Z(0)

= DF(x1 − x2)

Remarks

• This can also be performed in the Fourier transformed form:

SE
0 =

1
2

∫
d4p

(2π)4
(
Φ̃(p)(p2 + m2)Φ̃(−p)− j̃(p)Φ̃(−p)− j̃(−p)Φ̃(p)

)
with j̃(−p) = j∗(p) and Φ̃(−p) = Φ̃∗(p), since j̃ and Φ are real. Re-
defining

Φ̃(p) = Φ̃′(p) + (p2 + m2)−1j̃(p)

(i.e., completing the square) gives

ZE
0 (j) = ZE

0 (0) exp

(
1
2

∫
d4p

(2π)4
j̃(p)j̃(−p)
p2 + m2

)

• With
W0(j) =

1
2

∫
dxdx′j(x)(iDF)j(x′)

we obtain the following relation for Z and W :

Z0(j)
Z0(0)

= eiW0(j)
(
= e−WE(j)

)
where the factor iDF generates the connected 2-point functions; this
will be generalized later on. This relation resembles the one between
the partition function and the free energy in thermodynamics. Note,
by the way, that Z and W have been exchanged in the text by Ramond
(see literature list).
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8.2.3 Perturbation theory

The perturbative approach to path integrals will, again, be introduced in
the Euclidean notation. We will be dealing with a potential V (Φ), which
can be written as

VE(Φ) → VE

(
δ

δj

)
(8.23)

where the differentiation is acting on the generating functional ZE
0 (j). (For

example, λ
4!Φ

4 → λ
4!

(
δ

δj(x)

)4
.) Let us start with

〈0|T(Φ(x1) . . .Φ(xn)) |0〉 =
1

Z(0)
δnZ(j)

δj(x1) . . . δj(xn)

∣∣∣∣
j=0

(8.24)

Now, expand the exponential in the path integral for Z(j) in powers of V (Φ)
and act on Z0(j) with V ( δ

δj ) as discussed before. Note that also the δ
δj(xi)

in eq. (8.24) act on Z0(j). The δ
δj of the outer Φ and vertex Φ pairwise

remove the j-legs of exp(1
2

∫
jDFj). Division by Z(0) eliminates the vacuum

graphs (n.b.: Z0(0) is not the same as Z(0)). For example, a vertex with
V = λ

4!Φ
4 requires 4 propagators (permutation gives the factor of 4!). Also,

several vertices, each with their factor of 1
n! , can be permuted and require

a combinatorial factor. From all this, the usual rules for Feynman graphs
emerge again:

(i) only graphs with outer lines (no vacuum graphs)

(ii) DF for inner and outer propagators

(iii) λ and
∫

d4y for each vertex

(iv) combinatorial factors

Exercise: complex scalar fields:

Z(j, j̄) =
∫
DΦ exp(−Φ†AΦ + V (Φ)− j̄Φ− Φ†j)

Here, Φ is a complex vector (with index x). Rewriting it as Φ = (Φ1 +
iΦ2)/

√
2 reduces the problem to two real fields Φ1,2. DΦ = DΦ1DΦ2, or,

more elegantly, DΦDΦ† with independent Φ,Φ†. A = −∂2
E + m2 in case of

the free complex Klein-Gordom field, and Z0(j, j̄) = exp−j̄A−1j). Derive
the Feynman rules for V (Φ) = λ (Φ†Φ)2

4 .
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Recapitulation

In the path integral formulation of QFT, vacuum expectation values of time
ordered products of operators are calculated with the following formula:

〈0|T(Φ(x1) . . .Φ(xn)) |0〉 =
1

Z(0)
δnZ(j)

δj(x1) . . . δj(xn)

∣∣∣∣
j=0

(8.25)

where

Z(j) = e
−V ( δ

δj
)
Z0(j) and

Z0(j) = Z0(0) exp
(

1
2

∫
dxdx′j(x)DF(x− x′)j(x′))

)
(8.26)

• Z0(0) drops out in eq. (8.25).

• Vacuum diagrams are cancelled by the division by Z(0).

• The Feynman rules are the same as those obtained in the framework
of canonical quantization.
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