Chapter 11

Feyman rules for theories
with fermions

11.1 Bilinear Covariants

The Lagrange density is a Lorentz scalar, which has to be constructed to
include fermions. The algebra of Dirac matrices has 16 elements, which are
linearly independent 4x4 matrices:

; .
1" oty = 5 [V v* = iy 0y ly?y3; AP (11.1)

(Check: there are 1 +4 46 4+ 1+ 4 = 16 of them and they are linearly
independent.) Remember that a spinor transforms like

U (2') = Sap(A)¥s(x) (11.2)
Its barred conjugate transforms like
U (2") = Ug(2)S8a with S = 05740 (11.3)

From S™1(A)y”S(A) = AV, A" it follows that S = S~!. Using this, we can
see that UW is a Lorentz scalar:

Uy, (2) W () = Wo () ST, (a') = Wp(x) Us(x) (11.4)
Similarly, we obtain
U (2" )"V (2) = US4 ST = AVH\TJ(J/‘)’)/“\I/({E) (11.5)

That is, ¥(x)y”¥(x) is a Lorentz vector. More generally, if we denote the
16 Dirac matrices by '), then W(z)I'®W¥(z) is a tensor with the indices
of the sandwiched Dirac matrix. Indeed, oV is a symmetric, traceless
tensor of rank 2.
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With the transformation properties of 4° under proper Lorentz transfor-
mations and space inversion

STHANS(A) =
STHIYSA) = =47 (S() =1")
(exercise: check this; remember that > = 4%6,\W07>‘7“7V7“) we see that
e U~V is a pseudoscalar
o U~2y1U is a pseudovector

This will be very important for constructing the coupling terms in the La-
grangian. For example, in the electromagnetic case we have

LME = W (iy(9), +ieA,) —m)¥ (11.6)
(minimal coupling) with as a possible additional coupling
LM = W' VE,

Another possibility is Yukawa coupling of a Dirac field to scalars and pseu-
doscalars, respectively. The latter one can, for example, be found in T NN
coupling.

Ly = —f¥(2)¥(2)p(z) (1L.7)

int —

L = —fU(x)y ¥(2)d(z) (11.8)

int

Note that in both, ¢ may be real or complex valued.

11.2 LSZ reduction

To calculate S-matrix elements with fermions one has to apply the LSZ
reduction again. To this end, similar to the scalar case, one can use:

a;, (k) = /d3xus(kz) exp(ikz) ' Uiy (z)

bi (k) = /d?’xvs(k) exp(—ikz) ' Uiy (2) (11.9)

The reduction formula for n incoming particles (u(k;)), n’ incoming antipar-
ticles (o(k})), m outgoing particles (u(g;)) and m’ outgoing antiparticles
(v(q))) then reads

(0] bout(}) - - - Gout(q1) - - - al (k1) ...b% (K})...|0) =
(—izy /2y ntm) (g 72y (' m) / d*zy ... dY, (11.10)

exp {— Z(k x+ k-2 —qy—q - y/)} u(q1)(idy, —m) ... @(kl)(@'ax,l —m)
O T {T(Wh) ... W(y)P(ar) ... U(@)} [0) (—i G oy — m)ulky)... (_Z”Eyi —mu(q

/
1

)
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where the disconnected part has been left out like before. Dirac and spin
indices have been suppressed in this formula, to improve the legibility. Be
careful: anticommutations in the T-product will produce minus signs!

Remark

For photons, we have

(B: b € outlin) = (—i)(Zs)~1/2 / b exp(ikz) (Bout| €j(x) i) (11.11)
with  92AH = j+ (11.12)

Here, further reduction requires a redefinition of the T-product (called T*-
product), adding distributions (# 0 for z = y) in order to obtain covariant
expressions.

11.3 Feynman rules

Here we can be rather short:

(i) One derives the Gell-Mann-Low formula again, this time formulated
in UM and " fields.

(ii) The analogous Wick theorem for fermionic fields leads to “contrac-
tions” of the spinor fields. Since the Dirac theory is similar to that of
complex scalars, it is pretty obvious (exercise: check this) that only
the propagator

(O] T (Wa(z)Ws(y)) 10)

is not zero

Note
Fermions can also be treated in the path integral formalism very elegantly.
We will come back to this in chapter 13.
11.3.1 The Dirac propagator
Let us start off by defining
Sras(z —y) = (0| T (Ya(z)Pps(y)) |0) (11.13)

where « and 3 are spinor indices. It is often notated as Sp(z,y), and fulfills
the equation

(19 = M)a) o (S¥(2,9)) gy = 10ay8" (x — y) (11.14)
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We can check that Sp(z —y) = (ig + m),Dp(x — y) is the solution with
Feynman boundary conditions using

(i —m) (ig + m) = —0% — m* = —(8* + m?) (11.15)
The Fourier transform turns out to be
i(f+m)
S =" 11.16
F(p) p% —m?2 + ie ( )

Of course, this propagator has direction, and the corresponding propagator
line has an arrow, since V¥ is a complex field.

Note

In the time ordering of the LLSZ reduction formula for Dirac fermions com-
mutations cause minus signs. Similarly, in the Wick formula, contraction
can only be done after commuting through the field in between and thereby
picking up minus signs. There are u, %, v, v in the LSZ-formula corresponing
to ingoing and outgoing particles and ingoing and outgoing antiparticles.
The vacuum graphs again cancel. Inserting the vacuum expectation value
into the LSZ formula the outer propagators are cancelled, which is also re-
ferred to as “truncated”, and we are left with a V'Z factor. This will be
important for loop calculations later on.

Later, we will see that in the dressed propagator for fermions, the “self-
energy” insertions also have the Dirac structure:

i( + mo)

P2+ i et

iZo(P+m)
I o= 2
+ SF(p, mO) SF(]% mO) + p2 —m2 + je

We then obtain the Feynman rules for S-matrix elements (in momentum
space):

For Yukawa theory
(i
(i

) Dirac propagator (eq. (11.16), instead of the scalar propagator before)

)
(iii) statistical factors

)

)

—if or —if~ys, for scalar and pseudoscalar vertices, respectively

(iv) vertex integration

(v

u® for incoming particles, u® for outgoing particles, v* for outgoing
antiparticles, ©® for incoming antiparticles

(vi) V/Z for outer scalar, \/Z, for outer fermion fields
(vii) —1 for closed (inner) fermion lines (to be explained later)

Note: fermion propagator lines end in outer particles or are closed, but do
not cross each other.
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_if y

—iey”

Figure 11.1: Yukawa scalar and QED vertices

For quantum electrodynamics

The rules will just be given here, in the Lorentz gauge (0*A, = 0). The
derivation will come later, in the context of the fermionic path integral.

The interaction Hamiltonian is
Hiy = —eQU(2)y* ¥ (x) A, () (11.17)

(Q is the charge number, e.g. —1 for electrons). The rules are:

. . —iguv
(i) photon propagator: i

pears, since m = 0 for photons); Dirac propagator as before

(the "—m’-term in the denominator disap-

(ii) tey"@ for vertices
(iii) statistical factors
(iv) vertex integration
(v) u®, u®, v®, v° as before
(vi) /Z3 for outer photons

(vii) —1 for fermion loops

Note

Spin averaging over incoming particles and spin summation over outgoing
particles are often required when calculating cross sections. This gives, for
example,
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% > " a (po)ysu (g2) (@ (p2) 15 (g2))" =

s,s’

5> w2 (@) (@) () =

8,8’

T <us(p2)u8(pz)75 @2;”%5) -
1, (Zfz +m_g+m > -
o v V5

2 om  ° 2m -

%tr((ﬂz +m)(—¢a +m)) = 2(=p2 - g2 +m?)

(the factor of % comes from spin averaging).

11.4 Simple example in Yukawa theory

Let us consider “nucleon scattering” with pion-exchange as force mediator
as an example (between quotes because, of course, we know nowadays that
nucleons are composite objects). The interaction Hamiltonian density is

given by

Hint = fUy; TP (11.18)
N-N scattering
7" F23
N
N
N N
q[ qZ

Figure 11.2: ¢-channel exchange

This is t-channel exchange: t = (p1—q1)?. The expression corresponding
to the diagram (see figure) is the following:

)
—q1)? —m? +iex
(Z2)?(2m)* 6 (o1 +p2 — @1 — q2) =
iM(2m) 6% (p1 +p2 — 1 — 2) (11.19)

(—if)*u(p1) vsu(qr)u(p2)ysu(qe) (
P
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There is a second diagram for N-N scattering, where the two outgoing lines
are exchanged. According to the above recipe, this will give a minus sign;
this can also be derived from a careful evaluation of the LSZ-formula.

Figure 11.3: u-channel exchange

The Z-factors are not of great interest here; they will become important
in the discussion of renormalization. The propagator 1/(p; — q1)?> — m? in
the t-channel gives, after Fourier transformation of the evaluated iM (the

amplitude), the Yukawa potential, which is well known in nuclear physics.

N-N scattering

/N

=
<l

N N
Ui P

Figure 11.4: s-channel exchange

This is s-channel exchange: s = (q; + p2)2. The diagram is the same,

except for the exchange of p; and ¢o. The corresponding expression is

1
X
p1—q1)? +m? + e
(Z2)?(2m)*6*(p1 + p2 — 1 — @2) (11.20)

(—if)?*o(—p1) 75U(q1)ﬁ(p2)75v(—q2)(
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Another diagram that represents this type of scattering is shown below,
and has the following expression:
i

(—if)*a(pr)ysular)o(—p2)150(—q2) oo (11.21)

rs

4

Notes
e In Peskin & Schroder, in the spirit of time-ordered perturbation theory,
outer one-particle states are directly contracted with vertex-fields:

,f‘ -
(P1g2| ‘1’75\1"1’75|\1’_|,(J1p2>
L =

The required permutations give rise to extra minus signs, which include
signs related to the fermion statistics of the outer states. Altogether,
this gives the u,u,v and v as above.

e A closed fermion loop gives a minus sign, as mentioned above:

(O] T((21) W (1) (22)¥(22)) |0) —
- I‘I’(ﬂfl)}I’(u’@)l‘I’(%z)‘i’(ﬂﬂl

~—

Figure 11.5: Closed fermion loop

Feynman approach vs. time-ordered perturbation theory

In the Feynman approach the propagators are off-shell and one has 4-
momentum conservation at the vertices.
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Figure 11.6: Cases («) (left) and (3) (right)

In time-ordered perturbation theory, on the other hand, one has the
well-known energy denominators, like in QM, and, which is new in field
theory, 3-momentum conservation at the vertices. Of course the incoming
and outgoing particles have the same total energy, but in between, energy
is not conserved, as a consequence of the energy-time uncertainty relation.
The intermediate particles are on shell in this approach.

For tree-level diagrams, the relation between the two approaches can be
seen by decomposing the propagator:

1 1

p2—m2+ie  pi—p2 —m2+ie

In the Feynman case, one rewrites this as

1 1 1
(po— P? 4+ m? + ie po—i—\/ﬁz—}—mz—ie) 2po,+

In the time-ordered perturbation theory, one has the following denominators:

By + VP2 +m?+ By — By — By = —po + V/p? +m? ()
Er+ VPP +m? + By — By — By = po + Vp? + m? (8)

These are the same as the ones from the Feynman case.
For loop integrals, the Feynman approach has

/ d*k 1 1
(2m)% (p — k)2 —m? +ie k? — m? +ie
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Time-ordered perturbation theory has

[ e
energy denominators

Here, the connection between the two approaches can be seen by doing
the dk’-integration using Cauchy’s theorem (the residue theorem), closing
the integration contour in one of the two halfplanes. One gets poles in ko,
yielding the required energy denominator in the residue.

For example, in ®3 scalar theory, for the graph in figure 11.6, one has

d*k
(—iA)? / L =
(2m)4 k2 —m2 +ie (p — k)% — m? + ie

d*k 1 1 1
(—i)\)2/ — _ _ _ S0 <
CrP\R —VE2 +m24ie KO+ VE2+m2 —ie) 2K

1 1

X

(P° = k0) = [ (F— k) +m? +ie (0 = kO) +\/(F— k)? +m? — ic
_
2(p” — KO)*

(This is a rough calculation, just to see the principle; we will not worry about
infinities here.) Closing the integration contour in the lower half plane and
applying the residue theorem gives

: d®k L1 1
(z)\)Z/ (2ﬁ)4(—2m)2k07+ 50— R0 X
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