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Chapter 8

Path integral formulation of
QFT

So far, we have studied QFT in the canonical formalism with operator-valued
fields, in the Heisenberg representation. Richard Feynman has formulated
another representation of both QM and QFT, which is very intuitive and
does not use operators. Its mathematical status, however, is still in develop-
ment. This method is particularly powerful if one wants to quantize gauge
theories - this is why it is necessary to discuss it - and it also allows one
to derive the Feynman rules very easily, and to discuss problems beyond
turbation theory, although we will not go into the latter here.

@

8.1 Path integrals in QM

The path integral formulation of QM centers around the transition ampli-
tude for a QM particle from a position z(t) at a time ¢ to a position z'(¢)
at time #'. It starts from the Heisenberg picture, where the time dependent
operators X (t) and P(t) have their respective eigenvectors |z(t)) and |p(t)),
with time developments

X(t) = eiH(t—to)/ﬁX(to)e—iH(t*to)/h (8.1)
|z(t)) = ™1/ | (20)) (8.2)

and similarly for P and p. The factors of & have been reinserted here for
clarity. Note that the sign in eq. (8.2) is opposite to that of the Schrédinger
equation. Note also that this equation describes a transition in time, while
the position does not change. Finally, in eq. (8.1), X(¢9) = Xg; in the
Schrodinger picture, tg is usually taken to be 0.

Let us start at the end of our discussion of the path integral formulation,
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with the result:

(@ ()]e(®)) = / DrDp exp {z /t Car {p(T)‘;—f _ H(p,x)} /n} (8.3)

Here, [Dz is a path integral, in mathematical circles know%s functional
integral, an integral over all possible paths z(7) connecting = and z’, with
z(t) =z and z(¢') = ',

T

Figure 8.1: Integrate over all possible paths

J Dp does not have boundary conditions, since the problem asks for the
transition amplitude between positions, but not between momenta. (As a
small aside: note that the exponent is just the classical action times /A.)

After discretization of the time integral, it becomes a product of integrals
at 71,72,... over (7 ), z(72),...:

P

NN T
T3

Figure 8.2: Discretization of the time integral

/Dxexp </d¢> —al?[/_idz(n—)

Defining §7 := 7, ~7;—1, one eventually has to take the limit 67 — 0, which is
mathematically demanding. Obviously, the integral over Dz does not need
to be evaluated at the endpoints, since these are fixed.
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Now, let us derive this result. From the canonical formalism, we have
the following formula:

<x’(t')|x(t)> — <$/’ e—iH(t'_t)/FLI:r) (8.4)
where |z) is a Schrddinger state. Decomposing the interval into N bits,
t' — t = Neg, gives

—iHe/R —iHe/R

l.’L‘N_g) <$N—2I .
) (] e Rz

(znle lzn—1) {Tn-1]€

where zy = z’ and 75 = z, and H = % + V(X). Consider one of these
matrix elements, to order €:

. ;
(@er1] €T |z) = (zpga|1 - <t =
(wsalon) — e [ 2L Ly (BELEDY (0 oy (pufae) +
k+1|Tk omh 5 k+11Pk) \Pk{Tk

(zk+1lPK) <:Dk 2—;; $k>} = (8.5)

dpy, ie [ P2 Tht1 + Tk ik
/27rh{1_5<5{7€+v 5 )| @) )

Note: for more complicated X /P-mixed operators one needs Weyl or-
dering, a symmetrization of the operator sequence in X/P; see Peskin
& Schréder, p. 281 for more on this topic. Note that the argument in
V(f"—“z—”li"—) is written like this for cosmetic reasons; we could just as well
have written z,, since in the end, the limit N — oo will be taken. Contin-
uing our derivation, let us define

d i€ 2 T+ z -z
0= [ o (5 (G v (522) -m22)) 9

which is the right hand side of eq. (8.5) to order O(¢). Multiplying all 8’s
and taking the limit € — 0, we have

(' (t)|z(t)) = /D:ch exp [z /ttl dt <?i:—jhi(—&-q—)>} (8.7)

with z(t) = = and z(¢') = z’. This limit 1s of course accompanied by some
higher-level mathematics. The naive expression, however, has to be based
on the discretized version we started from. Concretely, for physicists, this
means that in QFT, numerical lattice calculations are an adequate way to
approach this integral. Note that the continuous and differentiable functions
are a dense set of measure zero in the functional integral.

X Tho‘Hi: .egmi &q
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; we can perform the pj-integral. ’I‘he(ﬁr;»part becomes
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The dpy-integration in eq. (8.6) can be performed: it is just a Gaussian
integral, here restricted to one dimension for simplicity. It is solved by
completing the square:

pk

- % + P (Tk — Tht1) =
2 2
- 1 (zg—=
~3 {%kf — 2pk (2 — Tha1) + (T — Tri1)” :k*l) mJ + §m———————( k - eh)”
! 2 _ 2
_pe 1 (m o)
2 m 2 €
with pf, = 2 — Zk=%k+1 MJsing the standard Gaussian integral,
o 1/2
/ L] d:ce""‘“’z = <E) / (88)
—oo a

2 ﬁmpk 2mh 27h i€

where y = pj +/te/hm. Note that due to the presence of V1 in the conver-
sion from p} to y, this substitution constitutes a 45-degree rotation of the
integration path:

P

35° /

So, the final result, the product of all the separate integrals, is

J\f[ll/dxj (\/;E)Nexp <1'2N:e{_72.71($_i—§i_—1)_2_v(:ci)}/ﬁ>
= ;

=1

which, after taking € to zero and N to infinity, becomes:

(=)' (#)) = / Dz exp <2 /t t dTﬁ(:ﬂ,:i:)/h) (8.9)

® SCM%Q o) = P G“Y‘L
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with singular integration measure (~ ¢ 7V/2) and Lagrangian density £ =
m§—2 - V(z).

The x-space path integral is less general (namely only for H quadratic
in p) than the first version, but for our purpose, we can settle for this one.

Remarks
e For (x’(t’)\T(Ol(ti)Og(tg)...)Ix(t)), the operators O1,0s,... act
in the time slices around ti,1s,.... Then, (z(t1)| O1(t1) |z(t1)) =

O1(z(t1))8(t1 — t}) where O is a function. Thus, we obtain time-
ordering in the path integral, which is decomposed into time slices.
This remark is also important if the potential has the shape of a ma-
trix in more complicated settings.

e The oscillating behaviour of the Feynman exponential, which makes
the convergence of the integral a more subtle affair, can be avoided if
we go to imaginary, or Euclidean, time (t = z° = —iz? = —itg). This
so-called Wick rotation helps us to define certain expressions properly.
Of course, one has Lo rotate back at the end of the calculation .

8.1.1 Vacuum expectation values

WheNgoing to QFT, we will be interested in vacuum expectation values (cf.
correlatdyn functions in statistical physics). Let us briefly, investigate them
here:

O] T(x(t1) ... x(tn)) |0) =7
Let us start fro

Dividing b (z7(T)|z-7(=T)), like in the Gell-Mann-Low fortayla, removes
the out

O] T(x(t1) ... x(t))|0) = Tl:rréo Zr /:T Dz z(ty)...z(ta)e™>  (8.11)
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