3. ÜBUNGSBLATT ZUR VORLESUNG THEORETISCHE PHYSIK III (QUANTENMECHANIK)

Abgabe der Lösungen und Besprechung der Präsenzaufgabe: in den Übungen der 4. Semesterwoche (9.11.07)

Präsenzaufgabe P3: Hermitesche Polynome

(3 Punkte)

Die Hermiteschen Polynome H_n sind definiert durch

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}.$$

- a) Geben Sie $H_n(x)$ für $0 \le n \le 3$ explizit an.
- b) Zeigen Sie: Die Hermiteschen Polynome erfüllen

$$\left. \frac{\partial^n}{\partial t^n} e^{2xt - t^2} \right|_{t=0} = H_n(x),$$

bzw. äquivalent

$$e^{2xt-t^2} = \sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!}.$$
 \bigcirc

Aufgabe H4: Hermitesche Funktionen

(5 Punkte)

Die Hermiteschen Funktionen Ψ_n sind mit Hilfe der Hermiteschen Polynome aus Aufgabe P3 definiert:

$$\Psi_n(x) = (n! \, 2^n \sqrt{\pi})^{-1/2} e^{-x^2/2} H_n(x).$$

a) Zeigen Sie: Die Hermiteschen Polynome H_n lösen die Hermitesche Differenzialgleichung

$$H_n''(x) - 2xH_n'(x) + 2nH_n(x) = 0.$$

Hinweis: Wenden Sie den Operator $\frac{\partial^2}{\partial x^2} - 2x \frac{\partial}{\partial x} + 2t \frac{\partial}{\partial t}$ auf beide Seiten von Gleichung \odot an.

b) Zeigen Sie damit: $\psi_n(x) \equiv \Psi_n(\sqrt{m\omega/\hbar} x)$ erfüllt die Schrödingergleichung des harmonischen Oszillators,

$$-\frac{\hbar^2}{2m}\psi_n''(x) + \frac{m\omega^2}{2}x^2\psi_n(x) = E_n\psi_n(x) \qquad \text{mit } E_n = \hbar\omega\left(n + \frac{1}{2}\right).$$

Betrachten Sie den eindimensionalen harmonischen Oszillator mit Frequenz ω aus der Vorlesung. Wir bezeichnen den n-ten angeregten Zustand mit $|n\rangle$.

a) Zeigen Sie, dass für $\alpha \in \mathbb{C}$ der Zustand

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

ein normierter Eigenzustand zum Absteigeoperator a mit Eigenwert α ist. Solche Zustände werden kohärente oder quasiklassische Zustände genannt.

- b) Berechnen Sie die Erwartungswerte $\langle X \rangle$, $\langle X^2 \rangle$, $\langle P \rangle$, $\langle P^2 \rangle$ und $\langle H \rangle$ im Zustand $|\alpha\rangle$. Berechnen Sie die Schwankungsquadrate $(\Delta X)^2$ und $(\Delta P)^2$, und zeigen Sie, dass $(\Delta X)(\Delta P) = \hbar/2$.
 - *Hinweis:* Drücken Sie die Operatoren X, P und H durch die Auf- und Absteigeoperatoren a^{\dagger} und a aus.
- c) Angenommen, der Oszillator sei zur Zeit t=0 im Zustand $|\alpha_0\rangle$ mit $\alpha_0=\rho e^{i\phi}$ (wobei $\phi\in\mathbb{R},\ \rho\in\mathbb{R}_+$). Zeigen Sie, dass der Zustand für beliebige t ebenfalls ein kohärenter Zustand ist, der als $e^{-i\omega t/2}|\alpha(t)\rangle$ geschrieben werden kann. Bestimmen Sie $\alpha(t)$ in Abhängigkeit von ρ,ϕ,ω und t.
- d) Berechnen Sie die Zeitentwicklung der Erwartungswerte $\langle X \rangle$ und $\langle P \rangle$. Erklären Sie damit die Bezeichnung "quasiklassischer Zustand".