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Solutions to be handed in in the tutorials of Week 10 (21st December ’07)

Ex. H16: Translation operator (3 points)

The translation operator 7'(a) is defined by

where a € R3 and P = (P}, P, %) is the momentum operator in three dimensions.
a) Show that T'(a)T'(b) = T'(a+ b).
b) Show that, given the position operator X = (Xj, Xs, X3), the following holds:

T(a)' X T(a) = X +al.

Ex. H17: Optical theorem (5 points)

Prove the optical theorem of scattering theory:
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Here oy, is the total (integrated) cross-section, k is the wavenumber and f is the
scattering amplitude.

Instructions: Integrate the continuity equation for the probability current over a
sphere of radius r around the scattering centre, and consider the limit r — oc.
Note furthermore that f(6, ¢) is not dependent on ¢ for cosf = 1.

Ex. H18: Partial wave expansion (8 points)

Consider the scattering of an incident plane wave travelling in the positive z-direction
on a spherically symmetric, short-ranged potential. The aim of the exercise is to
expand the scattering amplitude f(6) in spherical harmonics (due to the spherical
symmetry f is not dependent on ¢) and to represent it in the following form:

F(6) = (21 +1)fiPi(cosb). ©

=0



Here P, is the Ith Legendre polynomial given by P, = P with the associated Legend-
re function P already familiar from Ex. P4. The coefficient f; (the so-called partial
wave amplitude) may be calculated from the phase shift §, between the incident
plane wave and the outgoing spherical wave.

a) Start by considering the expansion of a general ¢-independent solution of the
Schrodinger equation:
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Show that, for r — oo, the radial part of the wavefunction u;(r) can be written
in the following form:

1 l
w(r) = z sin (kr — g + 51) :

Here the value of §; depends on [, and we have chosen to split off the constant
% from each of the terms (without loss of generality).

b) Show that §, = 0 for an incident plane wave travelling in the positive z-
direction with wavenumber k, und determine the corresponding coefficients
aj.

Hint: The following identity holds
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with the spherical Bessel functions ji(x), that are related to the usual Bessel
functions by ji(x) = \/7/2x Ji41/2(x). The asymptotic behaviour of J, is

Jo(2) =~ \/gcos (m — % — %) (x — 00).

¢) Show that, for the complete scattering solution, the partial wave amplitudes
in the decomposition (Z) are given by
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d) Show that the total cross-section oy, can be described as follows:

At & .
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Hint: Use the orthogonality of the Legendre polynomials:
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