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General outline

I Lattice QCD: Sign problem at finite chemical potential

I Define effective theory by integrating out spatial degrees of
freedom

I Effective theory can be simulated very fast by different
algorithms

I No solution to the sign problem, but a huge reduction of its
severity

I Disadvantage: Expansion starts from the unphysical strong
coupling and infinite quark mass region



Starting point: QCD with Wilsons Action

I Partition function

Z =

∫
[dU0][dUi ]e

S S = Sg + Sq

I Gauge part:

Sg =
β

3

∑
p

ReTrUp

I Quark part after Grassmann integration (per flavor and
omitting spin and color indices):

eSq = det

[
δxy − κ

∑
±ν

(1 + γν)Uν(x) δx ,y−ν̂

]

I Finite T: Compact temporal extent with (a)pbcs

I Chemical potential: Additional factor e±µ for temporal links



The effective action

I Integrate out spatial link variables

Z =

∫
[dU0][dUi ]e

S ≡
∫

[dU0]eSeff

I Crucial point: Seff depends only on Polyakov loops
→ (3+1)d theory can be reduced to effective 3d theory

I Dofs: Complex numbers instead of group elements
I Disadvantages:

I Need in principal infinite number of effective interaction terms
and effective couplings

I Couplings only known to some order in strong coupling and
hopping parameter expansion

I Nevertheless: Leading interaction terms and orders in β and κ
can be calculated without too much effort



Leading order effective theory
Quark part

I Neglect spatial plaquettes and spatial quark hops
→ The spatial integrations can be calculated exactly

I The quark part has no spatial link dependence at all

eSq = det
[
δxy − κeµ(1 + γ0)U0(x) δx ,y−0̂

]
∗ det

[
δxy − κe−µ(1− γ0)U†0(x) δx ,y+0̂

]
=

∏
~x

det
[
1 + h1W (~x)

]2[
1 + h1W

†(~x)
]2

I Effective coupling: h1(µ) = (2κeµ)Nτ = h1(−µ)

I Polyakov loop:

TrW (~x) = Tr

Nτ∏
τ=1

U0(τ, ~x) = L(~x)



Leading order effective theory
Gauge part

I Character expansion

eSg =
∏
tp

[
1 +

∑
r

drar (β)χr (Up)

]
χr (U) = TrDr (U)

I Spatial links: At most two plaquettes in nontrivial
representations r and s

I Then: Use character orthogonality at each spatial link∫
dU Dr

ij(U)Ds
kl(U

†) =
δrs

dr
δilδjk

I Surviving terms: Chains of Nτ plaquettes in the same rep.
[Polonyi, Szlachanyi (1982)]



Leading order effective theory
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Leading order effective theory

I The gauge part then reads∫
[dUi ]e

Sg =
∏
~x ,i

[
1 +

∑
r

aNτ
r χr

(
W~x

)
χr

(
W †
~x+~ei

)]
I Higher representations are suppressed: E.g. in SU(2)

r =
1

2
, 1 ,

3

2
, . . . ar (β) ∼ β2r + . . .

I Defining u = af (β) and λ1 = uNτ :∫
[dUi ]e

Sg =
∏
~x ,i

[
1 +

∑
r

λ1

(
L~xL

∗
~x+~ei

+ L∗~xL~x+~ei

)]



Leading order effective theory: Remarks

Z =

∫
[dW ]

∏
i

det
[
1 + h1Wi

]2[
1 + h1W

†
i

]2 ∏
<ij>

[
1 + 2λ1Re LiL

∗
j

]

I Simulation yields critical hc1 and λc1 → βc and κc

I The well-known SU(N) spin model is the first order
approximation to this
[DeGrand, DeTar (1983), Green, Karsch (1984), Aarts, James
[2011], Delgado, Gattringer (2012)]

I Pure gauge: Next-to-nearest neighbor interactions are due to
the inclusion of spatial plaquettes

I Spatial plaquettes and quark hops contribute higher orders to
the leading couplings and introduce new interaction terms



Full effective theory

I Including corrections effective theory may be written as:

Z =

∫
[dW ]

∏
n

[
1 + λn∆s

n

]∏
m

[
1 + hm∆a

m

][
1 + hm∆a,†

m

]
I Z (N)-symmetric terms ∆s and asymmetric terms ∆a

I Generic leading orders of the effective couplings:

λn(u, κ,Nτ ) ∼ urnNτ

[
1 + . . .

]
+ (2κ)snNτ

[
1 + . . .

]
hm(u, κ, µ,Nτ ) ∼ (2κeµ)tmNτ

[
1 + . . .

]
= hm(u, κ,−µ,Nτ )

rn, sn, tm ∈ N

I Corrections in brackets depend on (u, κ,Nτ ) only:
µ-dependence of hm completely determined by tm



Gauge corrections
Corrections to the leading coupling λ1

I Proper treatment: Cluster expansion, see e.g. textbook of
Montvay/Münster

I Essence: Starting with leading order graph and attach an
increasing number of plaquettes

I Example ∼ uNτ
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Montvay/Münster

I Essence: Starting with leading order graph and attach an
increasing number of plaquettes

I Example ∼ Nτu
Nτ+6



Gauge corrections
Corrections to the leading coupling λ1

I Proper treatment: Cluster expansion, see e.g. textbook of
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Montvay/Münster

I Essence: Starting with leading order graph and attach an
increasing number of plaquettes

I Example ∼ Nτu
Nτ+10



Gauge corrections
Corrections to the leading coupling λ1

I Proper treatment: Cluster expansion, see e.g. textbook of
Montvay/Münster

I Essence: Starting with leading order graph and attach an
increasing number of plaquettes

I Example ∼ 1
2N

2
τ u

Nτ+8



Gauge corrections
Corrections to the leading coupling λ1

I Repetitions of these decorations exponentiate

λ1(u,Nτ ) = uNτ exp

[
Nτ
(
PNτ (u)

)]
I For large enough Nτ after truncating in u:

PNτ (u) = PN∗
τ (u)
≡ P(u) ∀ Nτ > N∗τ

I E.g. SU(2) up to O(u12): N∗τ = 6 and

P(u) = 4u4 − 4u6 +
140

3
u8 − 37664

405
u10 +

863524

1215
u12

I λ1(u,Nτ < 6) also known to this order

I Details in [Langelage, Lottini, Philipsen (2010)]



Deconfinement transition
Evolution of βc(Nτ ) for different truncations and SU(2)
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Deconfinement transition
Evolution of βc(Nτ ) for different truncations and SU(2)
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Comparison with full simulations
SU(2)

Nτ 3d Eff. Th. 4d YM

2 2.1929(13) 2.1768(30)
4 2.3102(08) 2.2991(02)
6 2.4297(05) 2.4265(30)
8 2.4836(03) 2.5104(02)

12 2.5341(02) 2.6355(10)
16 2.5582(02) 2.7310(20)

4d Monte Carlo results taken from [Fingberg et al. (1992),
Bogolubsky et al. (2004) and Velytsky (2007)]



Comparison with full simulations
SU(3)

Nτ 3d Eff. Th 4d YM

2 5.1839(2) 5.10(5)
4 6.09871(7) 5.6925(2)
6 6.32625(4) 5.8941(5)
8 6.43045(3) 6.001(25)

12 6.52875(2) 6.268(12)
16 6.57588(1) 6.45(5)

4d Monte Carlo results taken from [Fingberg et al. (1992)]



Fermionic corrections

I Terms from the hopping expansions fall into two classes:
Winding number i) n = 0 or ii) n > 0

I i) The leading contribution of these graphs for large quark
masses comes from a κ4-plaquette (4 quark hops). We absorb
this effect in a shift of β

u(β) → u
(
β + 48Nf κ

4
)

I ii) These terms contribute higher orders to the effective
coupling h1 or give rise to new interaction terms. In the latter
case they have n > 1 and wind at at least two different spatial
sites

I Details in [Fromm, Langelage, Lottini, Philipsen (2011)]



Fermionic corrections: Examples

I Corrections to the leading coupling: O(κNτ+2u)

−→ Deconfinement transition

I New interaction terms: O(κ2Nτ+2)

−→ Cold, dense matter



Deconfinement transition: µ = 0

I Use the leading order effective theory and h1 = h1

Z =

∫
[dW ]

∏
i

det
[
1 + h1Wi

]2[
1 + h1W

†
i

]2 ∏
<ij>

[
1 + 2λ1Re LiL

∗
j

]

I With increasing h1,
the transition turns
from first order to
crossover at a second
order endpoint

I Corrections of higher
interaction terms
negligible  0.1855
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Deconfinement transition: µ = 0
Comparison with other approaches

I Comparison with 4d simulations

I Conversion to quark masses via κ = 1
2e
−aMq

Nf Mc/T κc(Nτ = 4) κc(4), Ref. [1] κc(4), Ref. [2]

1 7.22(5) 0.0822(11) 0.0783(4) ∼ 0.08
2 7.91(5) 0.0691( 9) 0.0658(3) –
3 8.32(5) 0.0625( 9) 0.0595(3) –

Table : Location of the critical point for µ = 0 and Nτ = 4. The first two
columns report our results, the last two compare with existing literature
([1] Saito et al. (2011), [2] Alexandrou et al (1998)).



Deconfinement transition: µ 6= 0

Z =

∫
[dW ]

∏
i

[
1 + h1 Li

]2[
1 + h1 L

∗
i

]2 ∏
<ij>

[
1 + 2λ1Re LiL

∗
j

]
I Metropolis algorithm: Mild sign problem
I Worm algorithm: No sign problem

Comparison of the two
algorithms: Quark
number density for
µ
T = 1; 2
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Deconfinement transistion: µ 6= 0
Critical M

T
for all chemical potentials
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Deconfinement transition: µ 6= 0
3d columbia plot
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Cold and dense matter

I T ' 0 is at finite a realized by large Nτ

λ1(β = 5.7,Nτ = 115) ∼ 10−27

I ⇒ Effective gauge part can be neglected

I Not to be confused with strong coupling limit:
λ1 is small, not β

I Effective theory then reads:

Z =

∫
[dW ]

∏
i

det
[
1 + h1Wi

]2[
1 + h1W

†
i

]2
I No interactions, single-site problem: Can be solved analytically

I [Fromm, Langelage, Lottini, Neuman, Philipsen (2012)]



Cold and dense matter
Static limit: Nf = 1

I Analytic solution
(
M = h1h1, B = h31

)
:

Z1 =
[
1 + 4M + 10M2 + 20M3 + 10M4 + 4M5 + M6

]
+

[
4 + 6M + 6M2 + 4M3

][
B + B

]
+ B2 + B

2

I Free gas of mesons and baryons ⇒ Hadron Resonance Gas

I Holds also for Nf > 1 with much more terms

I Dense system: Neglect negative µ contributions

Z1 = 1 + 4B + B2 = 1 + 4h31 + h61

I Baryon density for T = 0:

lim
T→0

a3nB =

{
0, µB < mB

2Nc , µB > mB



Cold and dense matter
Interactions

I Leading interaction term:

I This graph alone spoils baryon saturation at large densities:
Need to resum all winding numbers



Cold and dense matter
Interactions

I After resummation the new interaction term reads:

∆a
2 = Tr

cWi

1 + cWi
Tr

cWj

1 + cWj

h2 = − κ
2

Nc

[
1 + 2

u − uNτ

1− u

]

I Here: c = (2κeµ)Nτ equals the leading order of h1
I Term goes to a constant for µ→∞, i.e. no additional

contribution to nB = −∂µf
I Drawback: No worm formulation and Metropolis inefficient for

large volumes

I → Use Complex Langevin



Cold and dense matter
Results:

I Transition to nuclear matter:
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I Not yet clear, if this happens at T = 0 or T > 0 (as in nature)

I → Include higher order corrections



Conclusions

I Constructed effective theory with much milder sign problem

I In good agreement with full simulations, where comparison is
possible (heavy quarks)

I Gauge part seems to be under control

I Fermionic sector needs further developments: Higher order
expansions or even nonperturbatively determined couplings

I Main advantage: Dependence of the couplings on chemical
potential is trivial, determination at µ = 0 suffices



Outlook

I For fermions κ4 corrections have been computed and are
currently simulated with CLE

I Cold, dense region: Combination κ2Nτ seems to be the proper
expansion parameter → Try to resum all powers (κ2Nτ )n

I Measure correlation functions (of Polyakov loops) and
compare with full simulations

I Extract effective couplings nonperturbatively

I Apply method to other theories (QC2D, Z (2), . . . )


