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General outline

» Lattice QCD: Sign problem at finite chemical potential

» Define effective theory by integrating out spatial degrees of
freedom

» Effective theory can be simulated very fast by different
algorithms

» No solution to the sign problem, but a huge reduction of its
severity

» Disadvantage: Expansion starts from the unphysical strong
coupling and infinite quark mass region



Starting point: QCD with Wilsons Action

» Partition function

Z= / [dUo][dUile> S =Sz + S,

v

Gauge part:

Sg = gZReTr Uy
p

v

Quark part after Grassmann integration (per flavor and
omitting spin and color indices):

eSq = det 6Xy — ,%Z(]. —+ ’}/V)UV(X) 6X,y—19
+v

v

Finite T: Compact temporal extent with (a)pbcs

Chemical potential: Additional factor e™* for temporal links

v



The effective action

v

Integrate out spatial link variables

Z = / [dUg][dUi]e® = / [dUp]e>f

v

Crucial point: S.¢ depends only on Polyakov loops
— (3+41)d theory can be reduced to effective 3d theory

v

Dofs: Complex numbers instead of group elements

v

Disadvantages:

» Need in principal infinite number of effective interaction terms
and effective couplings

» Couplings only known to some order in strong coupling and
hopping parameter expansion

v

Nevertheless: Leading interaction terms and orders in 8 and &
can be calculated without too much effort



Leading order effective theory
Quark part

> Neglect spatial plaquettes and spatial quark hops
— The spatial integrations can be calculated exactly

» The quark part has no spatial link dependence at all

> = det {5xy — ke (1 +0)Uo(x) 5X’y*6}

*

det |:5xy - ’iei‘u(l - VO)U(J)F(X) 5x,y+6]

= JJdet [1 +hy W(;’)}2 [1 + WT(X’)T

» Effective coupling: hi(u) = (2ke*)Nr = hy(—p)
> Polyakov loop:

TrW(X) = Tr [ Uo(, %) = L(X



Leading order effective theory
Gauge part

» Character expansion

5 =]

tp

1+ Z drar(ﬁ)Xr(Up)] xr(U) = TrD"(U)

» Spatial links: At most two plaquettes in nontrivial
representations r and s

» Then: Use character orthogonality at each spatial link
5!’5
/dU Dj(U) Dy (UY) = ?r&iléjk

» Surviving terms: Chains of N, plaquettes in the same rep.
[Polonyi, Szlachanyi (1982)]



Leading order effective theory




Leading order effective theory

» The gauge part then reads
/[dU]eSg = [1 +Za"’fxr( )X (Wjﬁ)}

» Higher representations are suppressed: E.g. in SU(2)

2r
357"' a,(ﬁ)wﬁ +

» Defining u = ar(B3) and \; = u"7:

/[dU]eSg = [1 + ZAI(L Lo+ L;L;+é)]



Leading order effective theory: Remarks

Z= /[dW]Hdet [1 + W,-ﬁl +h W,-Tr 11 [1 +2MRelLiL;
; <ij>

» Simulation yields critical h{ and A\f — 3¢ and &€

» The well-known SU(N) spin model is the first order
approximation to this
[DeGrand, DeTar (1983), Green, Karsch (1984), Aarts, James
[2011], Delgado, Gattringer (2012)]

» Pure gauge: Next-to-nearest neighbor interactions are due to
the inclusion of spatial plaquettes

» Spatial plaquettes and quark hops contribute higher orders to
the leading couplings and introduce new interaction terms



Full effective theory

» Including corrections effective theory may be written as:

Z= / [aw1]] [1 + )\nAf,] 11 {1 + h,,,A,"”n] [1 - hmA;’,;T]

m

» Z(N)-symmetric terms A and asymmetric terms A?

» Generic leading orders of the effective couplings:

Ao, i, Np)  ~ ™l {1 +} + (2r)5 N [1 +}

hm(u, Ky i, Np) -~ (2’€eu)tmNT [1 +.. ] = Em(u’ Ky — i, Nr)
fnySn,tm € N

» Corrections in brackets depend on (u, k, N;) only:
u-dependence of h,, completely determined by t,,



Gauge corrections

Corrections to the leading coupling A1

» Proper treatment: Cluster expansion, see e.g. textbook of
Montvay/Miinster

» Essence: Starting with leading order graph and attach an
increasing number of plaquettes

» Example ~ uNr
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Gauge corrections

Corrections to the leading coupling A1

» Proper treatment: Cluster expansion, see e.g. textbook of
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Gauge corrections

Corrections to the leading coupling A1

» Proper treatment: Cluster expansion, see e.g. textbook of
Montvay/Miinster

» Essence: Starting with leading order graph and attach an
increasing number of plaquettes

> Example ~ 1 N2yN-+8




Gauge corrections

Corrections to the leading coupling A1

> Repetitions of these decorations exponentiate

ulu ) = o exp [ (P ()]

v

For large enough N after truncating in u:

P, (1) = Py = P(u) voON, > N

v

E.g. SU(2) up to O(u*?): N =6 and

140 5 37664 ;, 863524 1

Pu) = 4u* — 4+ —= 3 405 " 1215

v

A1(u, N < 6) also known to this order
Details in [Langelage, Lottini, Philipsen (2010)]

v



Deconfinement transition
Evolution of 5°(N,) for different truncations and SU(2)

B.(N,) for various truncations in u
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Deconfinement transition
Evolution of 5°(N,) for different truncations and SU(2)
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Comparison with full simulations
SU(2)

N, [ 3d Eff. Th. || 4d YM
2 |[ 2.1929(13) || 2.1768(30)
4 || 2.3102(08) || 2.2991(02)
6 || 2.4297(05) || 2.4265(30)
8 || 2.4836(03) || 2.5104(02)
12 || 2.5341(02) | 2.6355(10)
16 || 2.5582(02) | 2.7310(20)

4d Monte Carlo results taken from [Fingberg et al. (1992),
Bogolubsky et al. (2004) and Velytsky (2007)]



Comparison with full simulations
SU(3)

3d Eff. Th | 4d YM
5.1839(2) | 5.10(5)
6.00871(7) | 5.6925(2)
6.32625(4) || 5.8941(5)
6.43045(3) || 6.001(25)
6.52875(2) || 6.268(12)
6.57588(1) | 6.45(5)

=
SR oo s

N N N S

4d Monte Carlo results taken from [Fingberg et al. (1992)]



Fermionic corrections

» Terms from the hopping expansions fall into two classes:
Winding number i) n=0orii) n >0

» i) The leading contribution of these graphs for large quark
masses comes from a k*-plaquette (4 quark hops). We absorb
this effect in a shift of 8

ulf) — u<ﬁ+48Nm4)

» ii) These terms contribute higher orders to the effective
coupling hy or give rise to new interaction terms. In the latter
case they have n > 1 and wind at at least two different spatial
sites

» Details in [Fromm, Langelage, Lottini, Philipsen (2011)]



Fermionic corrections: Examples

» Corrections to the leading coupling: (’)(,QNT+2U)

— Deconfinement transition

» New interaction terms: O(K2N7+2)

— Cold, dense matter



Deconfinement transition: y =0

» Use the leading order effective theory and h; = hy

z- /[dW]Hdet (14 W,-]z[1+h1 Wﬂz [T [1 +2uRe it

<ij>
» With increasing hy, o188 . ‘ Lin}t;%r(?ii — ]
the transition turns Critical point -
. 0.1875 |
from first order to
crossover at a second 0187y Te
. N
order endpoint 0.1865 | N
» Corrections of higher 0486 | ]
interaction terms
ligibl 0.1855 : - : .
negligible 0 00003 00006 0.0009 0.0012

h



Deconfinement transition: y =0

Comparison with other approaches

» Comparison with 4d simulations

» Conversion to quark masses via Kk = %e

Ne | Mc/T | re(Ny = 4) || kc(4), Ref. [1] | kc(4), Ref. [2]
1 | 7.22(5) | 0.0822(11) | 0.0783(4) ~ 0.08

2 | 7.91(5) | 0.0691( 9) | 0.0658(3) -

3 [8.32(5) | 0.0625( 9) | 0.0595(3) -

Table : Location of the critical point for 4 = 0 and N, = 4. The first two
columns report our results, the last two compare with existing literature
([1] Saito et al. (2011), [2] Alexandrou et al (1998)).



Deconfinement transition: p # 0

Z:/[dW]H [1+h1 L,-r[l +hy L;f]z I1 [1+2)\1ReL,~LJ’-‘

<ij>

» Metropolis algorithm: Mild sign problem
» Worm algorithm: No sign problem

Comparison of the two
algorithms: Quark
number density for
£=12

x107°

—s—Metrop.,u /T =1, h = 0.00048
—8— WOrim

Metrop.,u /T = 2, h = 0.0002
—_—— WOrm

0.186 0.1865 0.187




Deconfinement transistion: p # 0

Critical ¥ for all chemical potentials
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Deconfinement transition: p # 0
3d columbia plot

o 5 = = E DA



Cold and dense matter

» T ~ 0 is at finite a realized by large N,

M(8 =5.7,N, =115) ~ 10~%

v

= Effective gauge part can be neglected

v

Not to be confused with strong coupling limit:
A1 is small, not 3

v

Effective theory then reads:

Z:/[dW]Hdet [1+h1 W,-ﬁl + W,Tr

v

No interactions, single-site problem: Can be solved analytically

v

[Fromm, Langelage, Lottini, Neuman, Philipsen (2012)]



Cold and dense matter
Static limit: Nf =1

> Analytic solution (M = hihy, B = h%):

Z = [1 1 4M + 10M? + 20M3 + 10M* + 4M5 + MO

n [4+6M+6M2+4M3} [B+E} + B2+ B

v

Free gas of mesons and baryons = Hadron Resonance Gas

v

Holds also for N¢ > 1 with much more terms

v

Dense system: Neglect negative u contributions

Z1=1+4B+ B> =1+4h} 4+ hd

v

Baryon density for T = 0:

3 { 0, wup<mg

lim a°ng =
T—0 2Ne, ug > mp



Cold and dense matter

Interactions

» Leading interaction term:

» This graph alone spoils baryon saturation at large densities:
Need to resum all winding numbers




Cold and dense matter

Interactions

» After resummation the new interaction term reads:
cW; cW;
A3 = Tr — Tr 4
1+cW; 1+ cW
2 N.
K u—u'tT
hy = ——|1+2——
2 N 1—u ]
» Here: ¢ = (2re")N7 equals the leading order of hy
» Term goes to a constant for ;4 — oo, i.e. no additional
contribution to ng = —0,f
» Drawback: No worm formulation and Metropolis inefficient for
large volumes
» — Use Complex Langevin



Cold and dense matter

Results:

» Transition to nuclear matter:

0.003 :
T= 20 MeV
T= 10 MoV wrres
00025 | T= 5MeV
T-25MeV
0.002 |
(]
o
E 00015 |
a5}
j=
0.001 |
0.0005 |
o L ‘
0.994 0.996 0.998 1 1.002

Mg/ Mg

» Not yet clear, if this happensat T =0or T > 0 (as in nature)

» — Include higher order corrections



Conclusions

» Constructed effective theory with much milder sign problem

> In good agreement with full simulations, where comparison is
possible (heavy quarks)

» Gauge part seems to be under control

» Fermionic sector needs further developments: Higher order
expansions or even nonperturbatively determined couplings

» Main advantage: Dependence of the couplings on chemical
potential is trivial, determination at u = 0 suffices



Outlook

» For fermions x* corrections have been computed and are

currently simulated with CLE

» Cold, dense region: Combination 2N, seems to be the proper
expansion parameter — Try to resum all powers (k2N )"

» Measure correlation functions (of Polyakov loops) and
compare with full simulations

» Extract effective couplings nonperturbatively
» Apply method to other theories (QC2D, Z(2), ...)



