ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Effective theory for thermal lattice QCD with heavy quarks
 Jens Langelage

ETH Zürich

in collaboration with:
Michael Fromm, Stefano Lottini, Mathias Neuman, Owe Philipsen Georg Bergner, Wolfgang Unger

General outline

- Lattice QCD: Sign problem at finite chemical potential
- Define effective theory by integrating out spatial degrees of freedom
- Effective theory can be simulated very fast by different algorithms
- No solution to the sign problem, but a huge reduction of its severity
- Disadvantage: Expansion starts from the unphysical strong coupling and infinite quark mass region

Starting point: QCD with Wilsons Action

- Partition function

$$
Z=\int\left[d U_{0}\right]\left[d U_{i}\right] e^{s} \quad S=S_{g}+S_{q}
$$

- Gauge part:

$$
S_{g}=\frac{\beta}{3} \sum_{p} \operatorname{Re} \operatorname{Tr} U_{p}
$$

- Quark part after Grassmann integration (per flavor and omitting spin and color indices):

$$
e^{S_{q}}=\operatorname{det}\left[\delta_{x y}-\kappa \sum_{ \pm \nu}\left(1+\gamma_{\nu}\right) U_{\nu}(x) \delta_{x, y-\hat{\nu}}\right]
$$

- Finite T: Compact temporal extent with (a)pbcs
- Chemical potential: Additional factor $e^{ \pm \mu}$ for temporal links

The effective action

- Integrate out spatial link variables

$$
Z=\int\left[d U_{0}\right]\left[d U_{i}\right] e^{S} \equiv \int\left[d U_{0}\right] e^{S_{\mathrm{eff}}}
$$

- Crucial point: $S_{\text {eff }}$ depends only on Polyakov loops $\rightarrow(3+1)$ d theory can be reduced to effective 3d theory
- Dofs: Complex numbers instead of group elements
- Disadvantages:
- Need in principal infinite number of effective interaction terms and effective couplings
- Couplings only known to some order in strong coupling and hopping parameter expansion
- Nevertheless: Leading interaction terms and orders in β and κ can be calculated without too much effort

Leading order effective theory

Quark part

- Neglect spatial plaquettes and spatial quark hops
\rightarrow The spatial integrations can be calculated exactly
- The quark part has no spatial link dependence at all

$$
\begin{aligned}
e^{S_{q}} & =\operatorname{det}\left[\delta_{x y}-\kappa e^{\mu}\left(1+\gamma_{0}\right) U_{0}(x) \delta_{x, y-\hat{0}}\right] \\
& * \operatorname{det}\left[\delta_{x y}-\kappa e^{-\mu}\left(1-\gamma_{0}\right) U_{0}^{\dagger}(x) \delta_{x, y+\hat{0}}\right] \\
& =\prod_{\vec{x}} \operatorname{det}\left[1+h_{1} W(\vec{x})\right]^{2}\left[1+\bar{h}_{1} W^{\dagger}(\vec{x})\right]^{2}
\end{aligned}
$$

- Effective coupling: $h_{1}(\mu)=\left(2 \kappa e^{\mu}\right)^{N_{\tau}}=\bar{h}_{1}(-\mu)$
- Polyakov loop:

$$
\operatorname{Tr} W(\vec{x})=\operatorname{Tr} \prod_{\tau=1}^{N_{\tau}} U_{0}(\tau, \vec{x})=L(\vec{x})
$$

Leading order effective theory

Gauge part

- Character expansion

$$
e^{S_{g}}=\prod_{t p}\left[1+\sum_{r} d_{r} a_{r}(\beta) \chi_{r}\left(U_{p}\right)\right] \quad \chi_{r}(U)=\operatorname{Tr} D^{r}(U)
$$

- Spatial links: At most two plaquettes in nontrivial representations r and s
- Then: Use character orthogonality at each spatial link

$$
\int d U D_{i j}^{r}(U) D_{k l}^{s}\left(U^{\dagger}\right)=\frac{\delta^{r s}}{d_{r}} \delta_{i l} \delta_{j k}
$$

- Surviving terms: Chains of N_{τ} plaquettes in the same rep.
[Polonyi, Szlachanyi (1982)]

Leading order effective theory

Leading order effective theory

- The gauge part then reads

$$
\int\left[d U_{i}\right] e^{S_{g}}=\prod_{\vec{x}, i}\left[1+\sum_{r} a_{r}^{N_{\tau}} \chi_{r}\left(W_{\vec{x}}\right) \chi_{r}\left(W_{\vec{x}+\vec{e}_{i}}^{\dagger}\right)\right]
$$

- Higher representations are suppressed: E.g. in SU(2)

$$
r=\frac{1}{2}, 1, \frac{3}{2}, \ldots \quad a_{r}(\beta) \sim \beta^{2 r}+\ldots
$$

- Defining $u=a_{f}(\beta)$ and $\lambda_{1}=u^{N_{\tau}}$:

$$
\int\left[d U_{i}\right] e^{S_{g}}=\prod_{\vec{x}, i}\left[1+\sum_{r} \lambda_{1}\left(L_{\vec{x}} L_{\vec{x}+\vec{e}_{i}}^{*}+L_{\vec{x}}^{*} L_{\vec{x}+\vec{e}_{i}}\right)\right]
$$

Leading order effective theory: Remarks

$$
Z=\int[d W] \prod_{i} \operatorname{det}\left[1+h_{1} W_{i}\right]^{2}\left[1+\bar{h}_{1} W_{i}^{\dagger}\right]^{2} \prod_{<i j\rangle}\left[1+2 \lambda_{1} \operatorname{Re} L_{i} L_{j}^{*}\right]
$$

- Simulation yields critical h_{1}^{c} and $\lambda_{1}^{c} \quad \rightarrow \quad \beta^{c}$ and κ^{c}
- The well-known $S U(N)$ spin model is the first order approximation to this [DeGrand, DeTar (1983), Green, Karsch (1984), Aarts, James [2011], Delgado, Gattringer (2012)]
- Pure gauge: Next-to-nearest neighbor interactions are due to the inclusion of spatial plaquettes
- Spatial plaquettes and quark hops contribute higher orders to the leading couplings and introduce new interaction terms

Full effective theory

- Including corrections effective theory may be written as:

$$
Z=\int[d W] \prod_{n}\left[1+\lambda_{n} \Delta_{n}^{s}\right] \prod_{m}\left[1+h_{m} \Delta_{m}^{a}\right]\left[1+\bar{h}_{m} \Delta_{m}^{a, \dagger}\right]
$$

- $Z(N)$-symmetric terms Δ^{s} and asymmetric terms Δ^{a}
- Generic leading orders of the effective couplings:

$$
\begin{aligned}
\lambda_{n}\left(u, \kappa, N_{\tau}\right) & \sim u^{r_{n} N_{\tau}}[1+\ldots]+(2 \kappa)^{s_{n} N_{\tau}}[1+\ldots] \\
h_{m}\left(u, \kappa, \mu, N_{\tau}\right) & \sim\left(2 \kappa e^{\mu}\right)^{t_{m} N_{\tau}}[1+\ldots]=\bar{h}_{m}\left(u, \kappa,-\mu, N_{\tau}\right) \\
r_{n}, s_{n}, t_{m} & \in N
\end{aligned}
$$

- Corrections in brackets depend on (u, κ, N_{τ}) only: μ-dependence of h_{m} completely determined by t_{m}

Gauge corrections

Corrections to the leading coupling λ_{1}

- Proper treatment: Cluster expansion, see e.g. textbook of Montvay/Münster
- Essence: Starting with leading order graph and attach an increasing number of plaquettes
- Example $\sim u^{N_{\tau}}$

Gauge corrections

Corrections to the leading coupling λ_{1}

- Proper treatment: Cluster expansion, see e.g. textbook of Montvay/Münster
- Essence: Starting with leading order graph and attach an increasing number of plaquettes
- Example $\sim N_{\tau} u^{N_{\tau}+4}$

Gauge corrections

Corrections to the leading coupling λ_{1}

- Proper treatment: Cluster expansion, see e.g. textbook of Montvay/Münster
- Essence: Starting with leading order graph and attach an increasing number of plaquettes
- Example $\sim N_{\tau} u^{N_{\tau}+6}$

Gauge corrections

Corrections to the leading coupling λ_{1}

- Proper treatment: Cluster expansion, see e.g. textbook of Montvay/Münster
- Essence: Starting with leading order graph and attach an increasing number of plaquettes
- Example $\sim N_{\tau} u^{N_{\tau}+8}$

Gauge corrections

Corrections to the leading coupling λ_{1}

- Proper treatment: Cluster expansion, see e.g. textbook of Montvay/Münster
- Essence: Starting with leading order graph and attach an increasing number of plaquettes
- Example $\sim N_{\tau} u^{N_{\tau}+10}$

Gauge corrections

Corrections to the leading coupling λ_{1}

- Proper treatment: Cluster expansion, see e.g. textbook of Montvay/Münster
- Essence: Starting with leading order graph and attach an increasing number of plaquettes
- Example $\sim \frac{1}{2} N_{\tau}^{2} u^{N_{\tau}+8}$

Gauge corrections

Corrections to the leading coupling λ_{1}

- Repetitions of these decorations exponentiate

$$
\lambda_{1}\left(u, N_{\tau}\right)=u^{N_{\tau}} \exp \left[N_{\tau}\left(P_{N_{\tau}}(u)\right)\right]
$$

- For large enough N_{τ} after truncating in u :

$$
P_{N_{\tau}}(u)=P_{N_{\tau}^{*}(u)} \equiv P(u) \quad \forall \quad N_{\tau}>N_{\tau}^{*}
$$

- E.g. $S U(2)$ up to $\mathcal{O}\left(u^{12}\right): N_{\tau}^{*}=6$ and

$$
P(u)=4 u^{4}-4 u^{6}+\frac{140}{3} u^{8}-\frac{37664}{405} u^{10}+\frac{863524}{1215} u^{12}
$$

- $\lambda_{1}\left(u, N_{\tau}<6\right)$ also known to this order
- Details in [Langelage, Lottini, Philipsen (2010)]

Deconfinement transition

Evolution of $\beta^{c}\left(N_{\tau}\right)$ for different truncations and $S U(2)$

Deconfinement transition

Evolution of $\beta^{c}\left(N_{\tau}\right)$ for different truncations and $S U(2)$

Comparison with full simulations

SU(2)

N_{τ}	3d Eff. Th.	4d YM
2	$2.1929(13)$	$2.1768(30)$
4	$2.3102(08)$	$2.2991(02)$
6	$2.4297(05)$	$2.4265(30)$
8	$2.4836(03)$	$2.5104(02)$
12	$2.5341(02)$	$2.6355(10)$
16	$2.5582(02)$	$2.7310(20)$

4d Monte Carlo results taken from [Fingberg et al. (1992), Bogolubsky et al. (2004) and Velytsky (2007)]

Comparison with full simulations

SU(3)

N_{τ}	3d Eff. Th	4d YM
2	$5.1839(2)$	$5.10(5)$
4	$6.09871(7)$	$5.6925(2)$
6	$6.32625(4)$	$5.8941(5)$
8	$6.43045(3)$	$6.001(25)$
12	$6.52875(2)$	$6.268(12)$
16	$6.57588(1)$	$6.45(5)$

4d Monte Carlo results taken from [Fingberg et al. (1992)]

Fermionic corrections

- Terms from the hopping expansions fall into two classes: Winding number i) $n=0$ or ii) $n>0$
- i) The leading contribution of these graphs for large quark masses comes from a κ^{4}-plaquette (4 quark hops). We absorb this effect in a shift of β

$$
u(\beta) \quad \rightarrow \quad u\left(\beta+48 N_{f} \kappa^{4}\right)
$$

- ii) These terms contribute higher orders to the effective coupling h_{1} or give rise to new interaction terms. In the latter case they have $n>1$ and wind at at least two different spatial sites
- Details in [Fromm, Langelage, Lottini, Philipsen (2011)]

Fermionic corrections: Examples

- Corrections to the leading coupling: $\mathcal{O}\left(\kappa^{N_{\tau}+2} u\right)$

\longrightarrow Deconfinement transition
- New interaction terms: $\mathcal{O}\left(\kappa^{2 N_{\tau}+2}\right)$

\longrightarrow Cold, dense matter

Deconfinement transition: $\mu=0$

- Use the leading order effective theory and $\bar{h}_{1}=h_{1}$

$$
Z=\int[d W] \prod_{i} \operatorname{det}\left[1+h_{1} W_{i}\right]^{2}\left[1+h_{1} W_{i}^{\dagger}\right]^{2} \prod_{\langle i j\rangle}\left[1+2 \lambda_{1} \operatorname{Re} L_{i} L_{j}^{*}\right]
$$

- With increasing h_{1}, the transition turns from first order to crossover at a second order endpoint
- Corrections of higher interaction terms negligible

Deconfinement transition: $\mu=0$

Comparison with other approaches

- Comparison with 4d simulations
- Conversion to quark masses via $\kappa=\frac{1}{2} e^{-a M_{q}}$

N_{f}	M_{c} / T	$\kappa_{c}\left(N_{\tau}=4\right)$	$\kappa_{c}(4)$, Ref. [1]	$\kappa_{c}(4)$, Ref. [2]
1	$7.22(5)$	$0.0822(11)$	$0.0783(4)$	~ 0.08
2	$7.91(5)$	$0.0691(9)$	$0.0658(3)$	-
3	$8.32(5)$	$0.0625(9)$	$0.0595(3)$	-

Table: Location of the critical point for $\mu=0$ and $N_{\tau}=4$. The first two columns report our results, the last two compare with existing literature ([1] Saito et al. (2011), [2] Alexandrou et al (1998)).

Deconfinement transition: $\mu \neq 0$

$$
Z=\int[d W] \prod_{i}\left[1+h_{1} L_{i}\right]^{2}\left[1+\bar{h}_{1} L_{i}^{*}\right]^{2} \prod_{\langle i j\rangle}\left[1+2 \lambda_{1} \operatorname{Re} L_{i} L_{j}^{*}\right]
$$

- Metropolis algorithm: Mild sign problem
- Worm algorithm: No sign problem

Comparison of the two algorithms: Quark number density for $\frac{\mu}{T}=1 ; 2$

Deconfinement transistion: $\mu \neq 0$

Critical $\frac{M}{T}$ for all chemical potentials

Deconfinement transition: $\mu \neq 0$

3d columbia plot

Cold and dense matter

- $T \simeq 0$ is at finite a realized by large N_{τ}

$$
\lambda_{1}\left(\beta=5.7, N_{\tau}=115\right) \sim 10^{-27}
$$

- \Rightarrow Effective gauge part can be neglected
- Not to be confused with strong coupling limit: λ_{1} is small, $\operatorname{not} \beta$
- Effective theory then reads:

$$
Z=\int[d W] \prod_{i} \operatorname{det}\left[1+h_{1} W_{i}\right]^{2}\left[1+\bar{h}_{1} W_{i}^{\dagger}\right]^{2}
$$

- No interactions, single-site problem: Can be solved analytically
- [Fromm, Langelage, Lottini, Neuman, Philipsen (2012)]

Cold and dense matter

Static limit: $N_{f}=1$

- Analytic solution $\left(M=h_{1} \bar{h}_{1}, B=h_{1}^{3}\right)$:

$$
\begin{aligned}
Z_{1} & =\left[1+4 M+10 M^{2}+20 M^{3}+10 M^{4}+4 M^{5}+M^{6}\right] \\
& +\left[4+6 M+6 M^{2}+4 M^{3}\right][B+\bar{B}]+B^{2}+\bar{B}^{2}
\end{aligned}
$$

- Free gas of mesons and baryons \Rightarrow Hadron Resonance Gas
- Holds also for $N_{f}>1$ with much more terms
- Dense system: Neglect negative μ contributions

$$
Z_{1}=1+4 B+B^{2}=1+4 h_{1}^{3}+h_{1}^{6}
$$

- Baryon density for $T=0$:

$$
\lim _{T \rightarrow 0} a^{3} n_{B}=\left\{\begin{array}{cc}
0, & \mu_{B}<m_{B} \\
2 N_{c}, & \mu_{B}>m_{B}
\end{array}\right.
$$

Cold and dense matter

Interactions

- Leading interaction term:

- This graph alone spoils baryon saturation at large densities: Need to resum all winding numbers

Cold and dense matter

Interactions

- After resummation the new interaction term reads:

$$
\begin{aligned}
\Delta_{2}^{a} & =\operatorname{Tr} \frac{c W_{i}}{1+c W_{i}} \operatorname{Tr} \frac{c W_{j}}{1+c W_{j}} \\
h_{2} & =-\frac{\kappa^{2}}{N_{c}}\left[1+2 \frac{u-u^{N_{\tau}}}{1-u}\right]
\end{aligned}
$$

- Here: $c=\left(2 \kappa e^{\mu}\right)^{N_{\tau}}$ equals the leading order of h_{1}
- Term goes to a constant for $\mu \rightarrow \infty$, i.e. no additional contribution to $n_{B}=-\partial_{\mu} f$
- Drawback: No worm formulation and Metropolis inefficient for large volumes
- \rightarrow Use Complex Langevin

Cold and dense matter

Results:

- Transition to nuclear matter:

- Not yet clear, if this happens at $T=0$ or $T>0$ (as in nature)
- \rightarrow Include higher order corrections

Conclusions

- Constructed effective theory with much milder sign problem
- In good agreement with full simulations, where comparison is possible (heavy quarks)
- Gauge part seems to be under control
- Fermionic sector needs further developments: Higher order expansions or even nonperturbatively determined couplings
- Main advantage: Dependence of the couplings on chemical potential is trivial, determination at $\mu=0$ suffices

Outlook

- For fermions κ^{4} corrections have been computed and are currently simulated with CLE
- Cold, dense region: Combination $\kappa^{2} N_{\tau}$ seems to be the proper expansion parameter \rightarrow Try to resum all powers $\left(\kappa^{2} N_{\tau}\right)^{n}$
- Measure correlation functions (of Polyakov loops) and compare with full simulations
- Extract effective couplings nonperturbatively
- Apply method to other theories $\left(Q C_{2} D, Z(2), \ldots\right)$

