Turbulence in the Early Universe

I. Tkachev

Institute for Nuclear Research, Moscow

22 June 2012, Heidelberg

Outline

Relaxation, Turbulence, and Non-Equilibrium Dynamics of Matter Fields in the Early Universe after Inflation

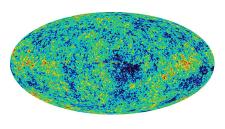
Puzzles of classical cosmology

WHY THE UNIVERSE

- is so old, big and flat ? $t > 10^{10}$ years
- homogeneous and isotropic? $\delta T/T \sim 10^{-5}$
- contains so much entropy? $S > 10^{90}$
- does not contain unwanted relics?
 (e.g. magnetic monopoles)

can be solved with hypothesis of Inflation

Predictive power of Inflation



Fluctuations in inflaton field

CMBR anisotropy 379,000 years after

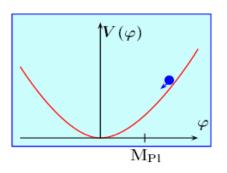
Large-scale structure 13.7 billions years after

Chaotic Inflation

Equation of motion

$$\ddot{\varphi} + 3H\dot{\varphi} + rac{dV}{darphi} = 0$$

If $H \gg m$ the field rolls down slowly



$$arphi > M_{
m Pl}$$
 Inflation $arphi < M_{
m Pl}$ Reheating

During Inflation the Universe is empty, in a vacuum state.

How vacuum was turned into radiation?

Particle physicist

Cosmologist

Initial linear stage

During Inflation the Universe is "empty". But small fluctuations obey

$$\ddot{u}_k + [k^2 + m_{\text{eff}}^2(\tau)] u_k = 0$$

and it is not possible to keep fluctuations in vacuum if $m_{
m eff}$ is time dependent

Initial linear stage

During Inflation the Universe is "empty". But small fluctuations obey

$$\ddot{u}_k + [k^2 + m_{\text{eff}}^2(\tau)] u_k = 0$$

and it is not possible to keep fluctuations in vacuum if $m_{
m eff}$ is time dependent

The source for $m_{\rm eff}=m_{\rm eff}(au)$ is time-dependence of classical backgrounds:

- ullet Expansion of space-time, a(au)
- Evolution of the inflaton field, $\phi(\tau)$

Coupling to the inflaton

Scalar X Fermion
$$\psi$$
 $m_{
m eff}^2=m_X^2+g^2\phi^2(t)$ $m_{
m eff}=m_\psi+g\phi(t)$

$$\ddot{u}_k + \left[k^2 + m_{\text{eff}}^2\right] u_k = \mathbf{0}$$

Coupling to the inflaton

Scalar X

Fermion ψ

$$m_{\rm eff}^2 = m_X^2 + g^2 \phi^2(t)$$

$$m_{\rm eff} = m_{\psi} + g\phi(t)$$

$$\ddot{u}_k + \left[k^2 + m_{\text{eff}}^2\right] u_k = \mathbf{0}$$

Relevant parameter:

$$g^2 \rightarrow q \equiv \frac{g^2 \phi^2}{4m_\phi^2}$$

Note: q can be very large since

$$rac{\phi^2}{m_\phi^2}pprox 10^{12}$$

Kofman, Linde & Starobinsky (94)

Bose versus Fermi:

Scalar X

$$m_{\rm eff}^2=m_X^2+g^2\phi^2(t)$$

Bose stimulation. Occupation numbers grow, $n = e^{\mu t}$

Explosive decay of the inflaton

Fermion ψ

$$m_{\rm eff} = m_{\psi} + g\phi(t)$$

Pauli blocking. Occupation numbers n < 1

Particles are massless at $\phi(t) = -m_\psi/g$

Bose versus Fermi:

Scalar X

$$m_{\rm eff}^2=m_X^2+g^2\phi^2(t)$$

Bose stimulation. Occupation numbers grow, $n=e^{\mu t}$

Explosive decay of the inflaton

Fermion ψ

$$m_{\rm eff} = m_{\psi} + g\phi(t)$$

Pauli blocking. Occupation numbers n < 1

Particles are massless at $\phi(t) = -m_{\psi}/g$

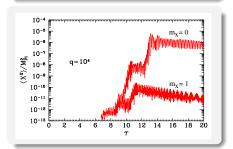
Bose versus Fermi:

Scalar X

$$m_{\rm eff}^2 = m_X^2 + g^2 \phi^2(t)$$

Bose stimulation. Occupation numbers grow, $n=e^{\mu t}$

Explosive decay of the inflaton

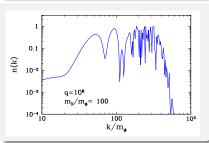


Fermion ψ

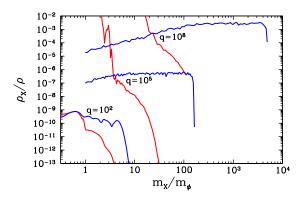
$$m_{\rm eff} = m_{\psi} + g\phi(t)$$

Pauli blocking. Occupation numbers n < 1

Particles are massless at $\phi(t) = -m_{\psi}/g$



Matter creation: Bose versus Fermi



 $\phi \propto \sin(mt)$

Particle production at the end of inflation in the model with inflaton potential

$$V(\phi) = m^2 \phi^2$$

Red lines: fraction of produced Bosons
Blue lines: fraction of produced Fermions

Thermalization after Inflation

Questions:

- How system approaches equilibrium?
- When? What is thermalization temperature?

Are of general interest and important for practical applications. It influences:

- Inflationary predictions
- Baryogenesis
- Abundance of gravitino and dark matter relics
- Primordial fluctuations

Thermalization after Inflation

To solve the problem one needs to understand the non-linear dynamics.

 At large occupation numbers it is possible to map quantum evolution into classical:

```
quantum density matrix \Rightarrow classical density matrix
```

Khlebnikov, I.T. (1996)

- This allows numerical modelling on the lattice
 - starting from vacuum
 - through "parametric resonance", then through preheating
 - and down to physical effects in question

Approach:

 Lattice simulations (as a guidance)

Kinetic theory (weak wave turbulence)

Falkovich & Shafarenko (1991) Zakharov, L'vov, Falkovich (1992) Various quantities can be measured as functions of time:

- Zero mode, $\phi_0 = \langle \phi \rangle$
- Variance, $\langle \phi^2 \rangle$ ϕ_0^2
- ullet Particle number, $n_k = \langle a^\dagger(k) a(k)
 angle$
- Correlators, $\langle aa \rangle$, $\langle a^{\dagger}a^{\dagger}aa \rangle$, $\langle \pi^2 \rangle$, ...

Compare to lattice results and extrapolate.

Micha & I.T. (2004)

Approach:

 Lattice simulations (as a guidance)

Kinetic theory (weak wave turbulence)

Falkovich & Shafarenko (1991) Zakharov, L'vov, Falkovich (1992) Various quantities can be measured as functions of time:

- Zero mode, $\phi_0 = \langle \phi \rangle$
- Variance, $\langle \phi^2 \rangle$ ϕ_0^2
- ullet Particle number, $n_k = \langle a^\dagger(k) a(k)
 angle$
- Correlators, $\langle aa \rangle$, $\langle a^\dagger a^\dagger aa \rangle$, $\langle \pi^2 \rangle$, ...

Compare to lattice results and extrapolate.

Micha & I.T. (2004)

Weak wave turbulence

Theory. Steps and assumptions involved:

- Energy conservation in momentum space
 - Constant flux for stationary driven turbulence
- Self-similarity
 - Appears both in free and driven turbulence
- Bits of kinetic theory
 - Gives scaling exponents of collision integral

The model

Consider simplest $\lambda \varphi^4$ model.

In conformal frame, $\phi=\varphi/a$, and rescaled coordinates, $x^\mu\to\sqrt\lambda\varphi(0)\,x^\mu$, the equation of motion takes very simple form

$$\Box \phi + \phi^3 = 0$$

Initial conditions: all fields are in vacuum + oscillating zero mode

- Think about it as of relativistic generalization of Gross-Pitaevskii equation written for the real field.
- More complicated models will follow.

The model

Consider simplest $\lambda \varphi^4$ model.

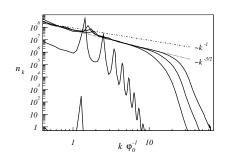
In conformal frame, $\ \phi=\varphi/a$, and rescaled coordinates, $x^\mu\to\sqrt\lambda\varphi(0)\,x^\mu$, the equation of motion takes very simple form

$$\Box \phi + \phi^3 = 0$$

Initial conditions: all fields are in vacuum + oscillating zero mode

- Think about it as of relativistic generalization of Gross–Pitaevskii equation written for the real field.
- More complicated models will follow.

Turbulent spectra

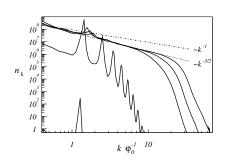


Re-scale the field and coordinates by the current amplitude of the zero mode

$$\Box \phi + \phi^3 = 0$$

Here $x^{\mu} \rightarrow x^{\mu} \, \phi_0$ and therefore $k \rightarrow k \, / \phi_0$

Turbulent spectra



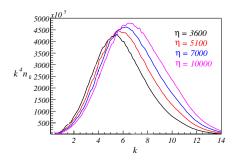
Re-scale the field and coordinates by the current amplitude of the zero mode

$$\Box \phi + \phi^3 = 0$$

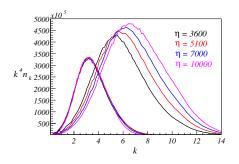
Here $x^{\mu}
ightarrow x^{\mu} \, \phi_0$ and therefore $k
ightarrow k \, / \phi_0$

Let $n \sim k^{-s}$. Theory of a stationary wave turbulence <u>predicts</u>

- $s = \frac{5}{3}$ for 4-particle interaction
- $s = \frac{3}{2}$ for 3-particle interaction



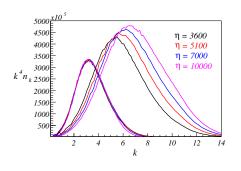
Particle numbers on the lattice in the regime of free turbulence



Particle numbers on the lattice in the regime of free turbulence evolve self-similarly

$$n(k,\eta) = \tau^{-q} \, n_0(k\tau^{-p})$$

with
$$p = \frac{1}{5}$$



Particle numbers on the lattice in the regime of free turbulence evolve self-similarly

$$n(k,\eta)= au^{-q}\,n_0(k au^{-p})$$
 with $p=rac{1}{5}$

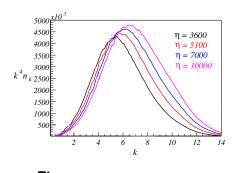
Theory:

Free turbulence

- $p = \frac{1}{7}$ for 4-particle interactions
- $p = \frac{1}{5}$ for 3-particle interactions

Driven turbulence

- $p = \frac{3}{7}$ for 4-particle interactions
- $p = \frac{2}{5}$ for 3-particle interactions



Particle numbers on the lattice in the regime of free turbulence evolve self-similarly

$$n(k,\eta) = \tau^{-q} \, n_0(k\tau^{-p})$$

with $p = \frac{1}{5}$

Theory:

Free turbulence

- $p = \frac{1}{7}$ for 4-particle interactions
- $p = \frac{1}{5}$ for 3-particle interactions

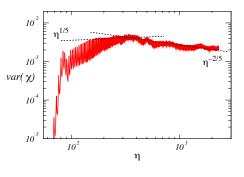
Thermalization:

Position of the peak moves as

$$k(\tau) = k_0 \, \tau^p$$

Thermalization will occur when $k_{
m max}^4 \sim T^4 \sim$ (initial energy).

Field variance



$$var(\chi,\eta) = au^v \, var(\chi,0)$$

Time dependence of the variance of χ field in the model h=10g

Theory:

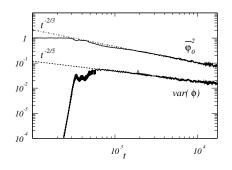
Driven turbulence

- $v = +\frac{1}{7}$ for 4-particle interactions
- $v = +\frac{1}{5}$ for 3-particle interactions

Free turbulence

- $v = -\frac{2}{7}$ for 4-particle interactions
- $v = -\frac{2}{5}$ for 3-particle interactions

Amplitude of the zero mode.



$$\phi_0^2(\eta) = \tau^{-z}$$

Theory:

Free turbulence

- $z = \frac{2}{5}$ for 4-particle interactions
- $z = \frac{2}{3}$ for 3-particle interactions

Summary

All scaling exponents agree with predictions for 3-particle interactions, which for k-independent matrix elements are

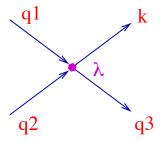
$$p = 1/(2m - 1)$$

 $s = d - m/(m - 1)$
 $v = 2/(2m - 1)$
 $z = 2/(d(m - 1) - m)$

with d=3 and m=3

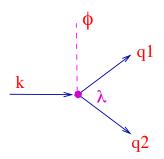
Bose-condensate dominates

How 3-particle interactions can appear in $\lambda \phi^4$ -theory?



Bose-condensate dominates

How 3-particle interactions can appear in $\lambda \phi^4$ -theory?



3-particle collision integral can be obtained from the 4-particle one with the substitution

$$\frac{n_p}{\omega_p} \rightarrow \frac{n_p}{\omega_p} + (2\pi)^3 \delta^{(3)}(\vec{p}) \bar{\phi}_0^2$$

Bose-condensation on a lattice

- The condensate quickly recovers to the original value after being set to zero "by hands".
- This prohibited direct check of scaling laws for m=4.
- For a dedicated lattice studies of Bose-condensation see

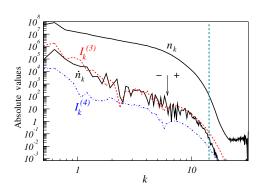
Damle, Najumdar, and Sachdev (1996)

Khlebnikov & I.T. (1999)

Berges & Sexty (2012)

Nowak & Gasenzer (2012)

Test of kinetic description



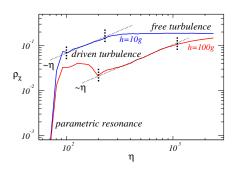
Collision integrals and $\dot{n}(k)$ at $\eta=5000$.

 $I_k^{(3)}$ agrees with $\dot{n}(k)$ to the left of the vertical dashed line

Red line: 3-particle collision integral, $I_k^{(3)}$ Blue line: 4-particle collision integral, $I_k^{(4)}$

Three major epochs of reheating

$$V(\phi, \chi) = \frac{1}{4}\phi^4 + \frac{g}{2}\phi^2\chi^2 + \frac{h}{4}\chi^4$$

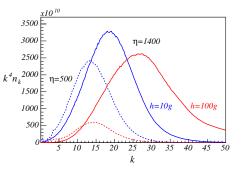


- Parametric resonance
- Driven turbulence
- Free turbulence

At large $\,h\,$ and/or $\,g\,$ the parametric resonance stops early.

Three major epochs of reheating

$$V(\phi, \chi) = \frac{1}{4}\phi^4 + \frac{g}{2}\phi^2\chi^2 + \frac{h}{4}\chi^4$$



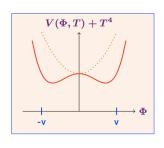
- Parametric resonance
- Driven turbulence
- Free turbulence

But distributions evolve faster at late times.

Non-thermal Phase Transitions

The effective mass of the Higgs field

$$m_\Phi^2 = -\mu^2 + g^2 \langle X^2 \rangle$$



- ullet Symmetry is restored when $\langle X^2
 angle > rac{\mu^2}{g^2}$
- ullet In thermal equilibrium $\langle X^2
 angle=rac{T^2}{12}$
- In turbulent state before thermalization $\langle X^2 \rangle$ is much larger.

This may result in GUT phase transitions even if reheating temperature is low.

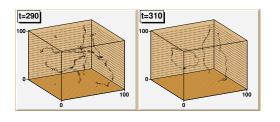
Non-thermal Phase Transitions



First order phase transition

$$V(\phi,X) = \lambda (\phi^2 - v^2)^2 + g^2 \phi^2 X^2$$

$$g^2/\lambda = 200$$



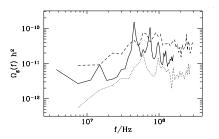
String formation

$$V(\phi) = \lambda (\phi_1^2 + \phi_2^2 - v^2)^2$$
 $v \sim 10^{16} \ \mathrm{GeV}$

Gravitational waves

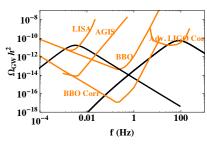
GW spectrum generated by:

Preheating



Khlebnikov & I.T. (1997)

Turbulence from phase transitions with $T_c=10^2~{
m GeV}$ and $T_c=10^7~{
m GeV}$



Caprini, Durrer, Servant (2009)

Conclusions

- We identify three different stages of the Universe reheating
 - "Parametric resonance." Fast exponential growth of energy in fluctuations, but only a small fraction of energy is transferred during this stage.
 - Driven turbulence. Linear growth. Major mechanism of energy transfer.
 - Free turbulence. Long stage of thermalization.
- Turbulent evolution is self-similar.
- Bose-condensate of zero mode governs evolution.
- Explicit expressions for particle occupation numbers.
- Estimates for reheating time and temperature.