Newsroom
Stay informed with our latest news and announcements on this page. For more in-depth content, we also encourage visitors to explore our bimonthly STRUCTURES Newsletter magazine, which features a variety of articles, interviews with members, and background information on our latest research and activities.
We cordially invite you to the public lecture on “Töne sehen und Muster hören – Mathematik in Musik und Kunst” by Prof. Jürgen Richter-Gebert (TU München) on Monday, May 30 2022 at 5 pm, Mathematikon lecture hall.
Abstract: Math makes it possible. This lecture is a journey through central topics of mathematics and art such as symmetry, proportion, and rhythm. Here are some of the questions addressed in the lecture:You will be able to witness a small set of simple rules turning into fascinating structures. This metamorphosis is performed by a piece of interactive software. The results may vary from intricate images to intriguing drum beats.
- What do tiles, common salt, and a canon have in common?
- How can you create one picture by moving shapes?
- How do you create a 3-D-model out of such a picture? Can you hear it?
Link: Announcement by the Research Station Geometry & Dynamics.
STRUCTURES member Ulrich Schwarz examines how physical properties of malaria parasites can influence their individual and collective dynamics, as part of an interdisciplinary research team.
The disease of malaria is triggered by single-celled parasites that accumulate in large groups in the salivary glands of mosquitoes before transmission to human beings. In an interdisciplinary study, the research teams led by Prof. Dr Friedrich Frischknecht (malaria research), Prof. Dr Karl Rohr (biomedical image analysis) and Prof. Dr. Ulrich Schwarz (physics of complex biosystems) have set the pathogens in motion and studied their collective dynamics. The researchers discovered that malaria parasites can migrate in large vortices when extracted by means of appropriate experimental preparation. To understand these phenomena the acquired image data were analysed quantitatively using cutting-edge methods of image processing, allowing to precisely identify the parameters that explain the experimental observations. The teams observed emerging properties of collective migration, which arise because the movement of the individual pathogens is converted into elastic energy that is stored in the vortex. “Our new model system offers the opportunity to better understand the physics of collectives with elastic properties and perhaps render them usable for technical applications in the future,” explains Ulrich Schwarz.
Weblinks:
University's press release (English, May 13).
Original publication by Patra et al. (2022) in Nature Physics
From 16th to 20th of May the Workshop “Random Geometry in Heidelberg” is going to take place within the cluster of excellence STRUCTURES at Heidelberg University. The goal of the workshop is to foster interactions between researchers in random geometry, quantum gravity and quantum field theory. To this end it combines a diverse schedule of scientific presentations with ample discussion time. Topics include but are not limited to: tensor field theory, group field theory, the topological recursion and non commutative field theory. Special emphasis will be placed on applications of such models to quantum gravity, conformal field theory, condensed matter or artificial intelligence.
The workshop will take place in the Neuenheimer Feld campus in Heidelberg and is organised by Razvan Gurau, Sabine Harribey, Carlos Perez Sanchez and Adrian Tanasa. Links and further information are available at the workshop’s webpage.
STRUCTURES physicists Philipp Preiß and Selim Jochim have directly observed Cooper pairs in an ultracold Fermi gas.
The emergence of fermionic superfluidity and superconductivity is closely linked to the formation of Cooper pairs. These are strong correlations between pairs of electrons (or other fermions) with opposite spin and momentum localised at the Fermi surface in momentum space. Understanding the mechanism behind pair formation has so far been a challenge. In their new study published in Nature, the research team around Philipp Preiß and Selim Jochim have directly observed Cooper pairs in a mesoscopic two-dimensional Fermi gas. Using an advanced fluorescence imaging technique, they were able to extract spin- and single-atom-resolved momentum distributions with particle-detection fidelities comparable to those of quantum gas microscopes. With precise control over the interactions, particle number and potential landscape, they were able to establish observables that allow to identify different pairing mechanisms and to answer longstanding questions concerning not only such mesoscopic systems but also their connection to the macroscopic world.
We are delighted to announce that Prof. Steven Chu, Nobel Laureate in Physics 1997 and former Secretary of Energy under Barack Obama, will give a special colloquium on Tuesday, May 10, 1:15 pm, on: What new biology and biophysics can be learned from nanometer-millisecond tracking of the dynein molecular motor (see the announcement poster). The colloquium will take place in Hörsaal 1 of the Kirchhoff-Institute for Physics (KIP, INF 227). The colloquium will be followed by a Q&A session on Prof. Chu’s current research and former work. Researchers and students from all disciplines are welcome!
“A cell is the smallest unit of life, in a certain sense the elementary particle of biology” (Ulrich Schwarz). Every living being is made up of cells. The human body for instance consists of over 1013 different cells, which are divided into more than 200 different cell types. In order to understand the complex processes in cells, researchers approach them not only from the biological but also from the physical side. In the new episode of Welt der Physik's podcast, Ulrich Schwarz (ITP, STRUCTURES Heidelberg) explains how much physics is in cells. The podcast is in German.
Link: Welt der Physik: Podcast episode 333: Physik der Zelle
We are happy to announce that the workshop “From Structures to Functions” jointly organised by the Flagship Initiative Engineering Molecular Systems (FI EMS) and the STRUCTURES Cluster of Excellence is going to take place entirely in presence. The registration is now closed. The workshop will start at 09:00 am at the International Academic Forum Heidelberg (IWH) in Hauptstr. 242 (old town Heidelberg). Participants are asked to use the lower entry at the front of the building.
Please find the schedule with speakers & topics here.