QUANTENMECHANIK WS 2004/05

- 1. Quantenmechanik des Zweizustands-Systems
 - Wahrscheinlichkeitsamplitude, Operatoren und Erwartungswerte, Schwankungsquadrate, Schrödinger-Gleichung, Spin im Magnetfeld
 - a) Statistische Beschreibung der Welt
 - b) Zwei-Zustands-System
 - c) Wahrscheinlichkeits-Amplitude
 - d) Normierung der Wellenfunktion
 - e) Skalar-Produkt zweier Zustandsvektoren
 - f) Operatoren und Erwartungswerte
 - g) Quantenmechanik
 - h) Spin
 - i) Bewegung eines Spins im Magnetfeld
 - j) Spin-Präzession
 - k) Erhaltung der Normierung
 - 1) Schwankungsquadrate
 - m) Eigenvektoren und Eigenwerte
 - n) Messung in der Quantenmechanik
 - o) Spin im Magnetfeld: Unschärfe
 - p) Oszillationen zwischen zwei Positionen
 - q) Axiome der Quantenmechanik

2. *N-Komponenten-Systeme*

- Zustandsvektor, Operatoren als Matrizen, Grenzübergang N → ∞, Quantenmechanik für Teilchen in Potenzial
- a) N-komponentige Zustandsvektoren
- b) Realteil und Imaginärteil des Erwartungswerts
- c) Unitäre Zeitentwicklung
- d) Allgemeines Zwei-Zustands-System
- e) Grenzübergang N -> ∞ , Wellenfunktion
- f) Interpretation der Wellenfunktion
- g) Quantenmechanik für Teilchen in einem Potenzial, Schrödinger-Gleichung
- h) Differentialoperatoren in N-Zustands-Systemen
- i) Hermitizität des Impuls-Operators

3. Teilchen-Welle-Dualismus

- a) Beschreibungsgrößen der klassischen Physik
- b) Teilchen und Wellen
- c) Elektromagnetische Strahlung
- d) Beziehung zwischen Teilchen- und Wellen-Größen, Compton-Streuung
- e) Welleneigenschaften der Teilchen

- 4. Motivation der Schrödingergleichung
 - "Wellenfunktion" für "Photon", Impulsoperator, relativistische und nicht-relativistische Feldgleichung
 - A) "Wellenfunktion" für "Photon"
 - a) Ebene monochromatische Welle in x-Richtung, zirkular polarisiert
 - b) Wahrscheinlichkeitsinterpretation für Spezialfall
 - c) Komplexe Schreibweise
 - d) Impuls- und Energie-Operatoren
 - B) Schrödinger-Gleichung
 - e) Relativistisches masseloses Teilchen mit Spin 0
 - f) Nicht-relativistischer Grenzfall
- 5. Einfache eindimensionale Probleme
 - Kastenpotenzial,

Harmonischer Oszillator

- a) Stationäre Zustände
- b) Potenzialtopf
- c) Harmonischer Oszillator
- d) Algebraische Methode, Auf- und Absteigeoperatoren
- e) Absteigen im Spektrum
- f) Energie des Grundzustands
- g) Grundzustand
- h) Spektrum, angeregte Zustände
- i) Besetzungszahl-Darstellung
- j) Molekül-Schwingungen
- k) Funktionenraum
- 6. Bewegung im Zentralpotenzial, Drehimpuls
 - Wasserstoffatom, Zeeman-Effekt
 - a) Schrödinger-Gleichung für isotrope Systeme, Kugelkoordinaten
 - b) Drehimpulsoperator
 - c) Erhaltene Größen
 - d) Drehimpuls in Kugelkoordinaten
 - e) Spektrum des Drehimpulsoperators
 - f) Bahndrehimpuls in Kugelkoordinaten, Kugelfunktionen
 - g) Bindungszustände im Zentral-Potenzial
 - h) Wasserstoff-Atom
 - i) Diskretes Spektrum
 - j) Spin und Gesamtdrehimpuls
 - k) Schalenmodell
 - 1) Wellenfunktionen der stationären Zustände
 - m) Vollständiges Funktionensystem
 - n) Bewegung im elektromagnetischen Feld
 - o) Magnetisches Moment des Elektrons, Zeeman-Effekt
 - p) Dreidimensionaler harmonischer Oszillator

- 7. Mathematischer Formalismus der Quantenmechanik
 - Hilbertraum, Operatoren, Darstellungstheorie
 - a) Hilbertraum
 - b) Basis-Wechsel
 - c) Lineare Operatoren
 - d) Selbstadjungierte Operatoren
 - e) Spektrum von Operatoren
 - f) Orthonormal-Basis
 - g) Darstellung von Operatoren
 - h) Kommutator
 - i) Heisenbergsche Unschärferelation
 - j) Darstellungstheorie
 - k) Orts- und Impulsdarstellung
- 8. Stationäre Störungsrechnung und Näherungsverfahren für gebunde Zustände
 - Feinstruktur
 - a) Spin-Bahn-Kopplung
 - b) Nichtentartete Störungsrechnung
 - c) Entartete Störungsrechnung
 - d) Feinstruktur
 - e) Addition von Drehimpulsen
 - f) Variationsverfahren
- 9. Zeitabhängige Störungsrechnung, Übergangswahrscheinlichkeit
 - Wasserstoffatom im elektromagnetischen Feld
 - a) "Bewegung" und Zeitabhängigkeit
 - b) Zeitentwicklungsoperator
 - c) Schrödinger und Heisenberg-Bild
 - d) Korrespondenz mit klassischer Mechanik
 - e) Übergangswahrscheinlichkeit
 - f) Zeitabhängige Störungstheorie
 - g) Fermi's Goldene Regel
 - h) Wasserstoff-Atom im zeitabhängigen elektromagnetischen Feld
- 10. Streutheorie
 - a) Streuquerschnitt
 - b) Streuamplitude
 - c) Green-Funktion
 - d) Störungstheorie

- 11. Vielteilchen-Quantenmechanik
 - identische Teilchen, Bose- und Fermi-Statistik, Quantisierung des elektromagnetischen Feldes
 - a) Wellenfunktion für zwei identische Bosonen
 - b) Besetzungszahl-Darstellung
 - c) Fermionen
 - d) Ununterscheidbarkeit in der Quantenmechanik
 - e) Streuung identischer und verschiedener Teilchen
 - f) Bosonen und Fermionen, Spin + Statistik
 - g) Quantentheorie des elektromagnetischen Felds
 - i) Ein-Teilchen-Zustände
 - ii) Besetzungszahldarstellung
 - iii) Fockraum
 - iv) Darstellung durch harmonische Oszillatoren
 - v) Ein-Photon-Zustand
 - vi) Operatoren für elektromagnetisches Feld
 - h) Zustände mit N-Bosonen, Emission, Absorption, Laser
- 12. Interferenz und Verschränkung
 - a) Doppelspalt-Experiment
 - b) Verschränkung
 - c) Einstein-Rosen-Podolski Paradoxon
- 13. Wahrscheinlichkeitsaussagen in der Quantenmechanik
 - Dichtematrix, reiner Zustand, Messprozess, "Paradoxa" der Quantenmechanik
 - a) Gemischte Zustände
 - b) Dichtematrix
 - c) Darstellung der Dichtematrix
 - d) Polarisierter und unpolarisierter Strahl
 - e) Von Neumann Gleichung
 - f) Wahrscheinlichkeit in der klassischen Physik und Quantenmechanik
 - g) Messprozess
 - h) Dekohärenz
 - i) Dichtematrix in Untersystemen
 - i) Bedingte Wahrscheinlichkeit, Reduktion der Wellenfunktion
- 14. Symmetrien in der Quantenmechanik
 - Parität, Ausblick auf die Quantenfeldtheorie
 - a) Spiegelsymmetrie, Parität
 - b) Symmetrietransformationen und Erhaltungssätze
 - c) Ausblick auf Quantenfeldtheorie