1. Präsenzübung zur Vorlesung Quantenmechanik

Die Präsenzübung wird in den Übungen am 29.Oktober 2004 unter Anleitung des/r Tutors/in gemeinsam bearbeitet.

Für die aktive Mitarbeit gibt es 2 Punkte!

Aufgabe P1: Eigenwertproblem

Lösen Sie das Eigenwertproblem der selbstadjungierten Matrix

$$A = \frac{1}{\sqrt{2}} \left(\begin{array}{ccc} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{array} \right)$$

Verifizieren Sie, dass die Eigenvektoren orthogonal sind und normieren Sie diese auf eins!

Aufgabe P2: Lineare Operatoren

Zeigen Sie: Besitzt ein linearer Operator A die Eigenschaft $AA^+ = A^+A$ und ist $|a\rangle$ mit $\langle a|a\rangle = 1$ Eigenvektor von A zum Eigenwert a, so ist $|a\rangle$ auch Eigenvektor von A^+ und der zugehörige Eigenwert von A^+ ist a^* .

Aufgabe P3: Basistransformation

Durch $\{|a_1\rangle, |a_2\rangle\}$ sei in einem zweidimensionalen komplexen Hilbertraum eine orthonormierte Basis gegeben (Basis der $\{a\}$ -Darstellung). Zeigen Sie, dass die Vektoren

$$|b_1
angle = rac{1}{\sqrt{2}}\left(|a_1
angle + i|a_2
angle
ight) \qquad |b_2
angle = rac{1}{\sqrt{2}}\left(|a_1
angle - i|a_2
angle
ight)$$

auch eine orthonormierte Basis bilden (Basis der $\{b\}$ -Darstellung).