

## 2. PRESENCE EXERCISE FOR THE LECTURE STATISTICAL PHYSICS

for Thursday 28.10.2010 and Friday, 29.10.2010  
 For active participation you get 2 points !

**Exercise P2.1: Correlation function**

Consider a quantum-mechanical spin  $\vec{S}$  and the three observables  $\hat{A} = \hat{S}_z + \frac{\hbar}{2}$  (= measuring the z-component of the spin),  $\hat{B} = \hat{S}_x + \frac{\hbar}{2}$  (=measuring the x-component of the spin) and  $\hat{C} = \hat{S}_z + \frac{\hbar}{2}$  (= also measuring the z-component of the spin). The possible results for the measurement of the observables  $\hat{A}$ ,  $\hat{B}$  and  $\hat{C}$ (in units of  $\frac{\hbar}{2}$ ) are

$$\lambda_A \in \{1, 0\}, \quad \lambda_B \in \{1, 0\}, \quad \lambda_C \in \{1, 0\}.$$

Assume that we first measure  $\hat{A}$  and let  $P_A = P_A(1)$  be the probability that one gets  $\lambda_A = 1$ . We define the probabilities

- (i)  $P_{BA}(1, 1) :=$  probability to measure  $\lambda_B = 1$  after one already measured  $\lambda_A = 1$
- (ii)  $P_{CB}(1, 1) :=$  probability to measure  $\lambda_C = 1$  after one already measured  $\lambda_B = 1$
- (iii)  $P_{BC}(1, 1) :=$  probability to measure  $\lambda_B = 1$  after one already measured  $\lambda_C = 1$
- (iv)  $P_{CA}(1, 1) :=$  probability to measure  $\lambda_C = 1$  after one already measured  $\lambda_A = 1$

Give the probabilities  $P_{BA}(1, 1), P_{CB}(1, 1), P_{BC}(1, 1), P_{CA}(1, 1)$  and calculate the corresponding correlation functions  $\langle \hat{C} \circ \hat{B} \circ \hat{A} \rangle$  and  $\langle \hat{B} \circ \hat{C} \circ \hat{A} \rangle$ .

Compare the results.

**If there is still time left:**

**Exercise P2.2: Poisson distribution**

The probability  $P(n; p, N)$  that an event characterized by a probability  $p$  occurs  $n$  times in  $N$  trials is given by the binomial distribution (see lecture)

$$P(n; p, N) = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n} \quad (1)$$

Consider a situation where the probability  $p$  is very small ( $p \ll 1$ ) and where one is interested in the case  $n \ll N$ . (Note that if  $N$  is large,  $P(n; p, N)$  becomes very small if  $n \rightarrow N$  because of the smallness of the factor  $p^n$  when  $p \ll 1$ . Hence  $P(n; p, N)$  is indeed only appreciable when  $n \ll N$ .) Several approximations can then be made to reduce (1) to simpler form.

- a) Using the result  $\ln(1 - p) \approx -p$ , show that  $(1 - p)^{N-n} \approx e^{-Np}$ .
- b) Show that  $N!/(N - n)! \approx N^n$ .
- c) Hence show that (1) reduces to

$$P(n; p, N) = \frac{\lambda^n}{n!} e^{-\lambda} =: P(n; \lambda) \quad (2)$$

where  $\lambda := Np$  is the mean number of events (mean of the binomial distribution, see lecture). The distribution (2) is called the "Poisson distribution".

- d) Show that die Poisson distribution is properly normalized in the sense that  $\sum_{n=0}^N P(n; \lambda) = 1$ .
- e) Calculate the mean value  $\langle n \rangle$  and the dispersion  $\langle n \rangle^2 = \langle (n - \langle n \rangle)^2 \rangle = \langle n^2 \rangle - \langle n \rangle^2$  of the Poisson distribution (2).