

10. EXERCISE SHEET FOR THE LECTURE STATISTICAL PHYSICS

Hand in your solutions on Thursday, 13.01.2011 or Friday, 14.01.2011 in the exercise group.

Exercise 10.1 *Diluted gas at high temperature - velocity distribution (9 points)*

In the lecture, you got to know the velocity distribution

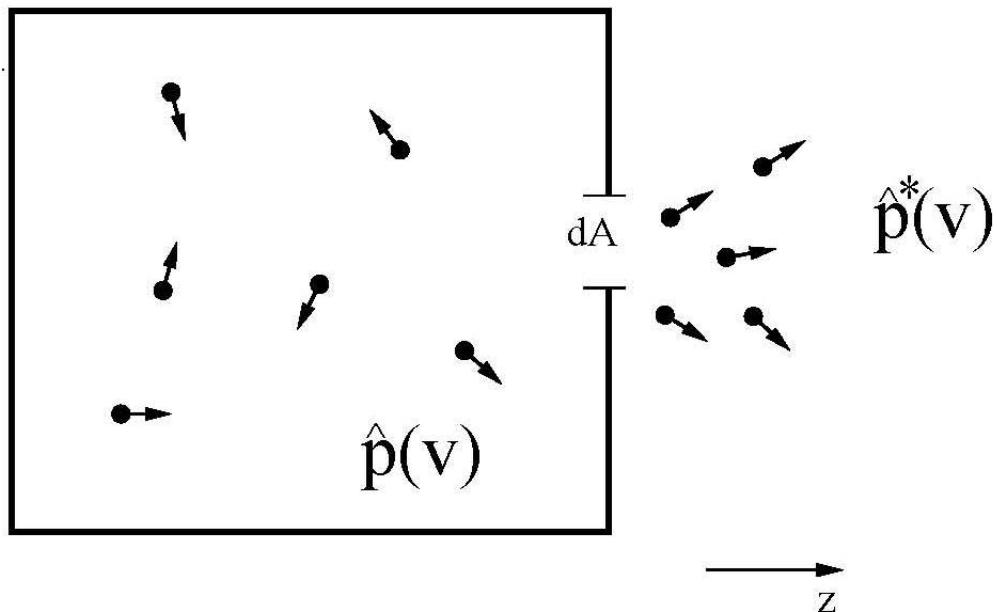
$$\hat{p}(\vec{v}) d^3v = \left(\frac{M}{2\pi kT} \right)^{3/2} \exp \left\{ -\frac{M\vec{v}^2}{2kT} \right\} d^3v$$

of the atoms in an ideal gas.

- a) Use the velocity distribution to determine the most likely, the mean and the mean-square velocity of the particles in an ideal gas. (3 points)
- b) Consider now a container with an ideal gas at temperature T . The container has a hole at one side (see illustration).
 - 1) Calculate the velocity distribution $\hat{p}^*(\vec{v})$ of the particles, which leave the hole. Assume that the equilibrium in the interior of the container is not disturbed by the escaping particles. (2 points)

Note: The velocity distribution $\hat{p}^*(\vec{v})$ of the escaping particles is proportional to $v_z \hat{p}^*(\vec{v})$ (with v_z being the velocity component of the particles in z - direction), i.e. $\hat{p}^*(\vec{v}) = c v_z \hat{p}(\vec{v})$. The constant c can be determined from the normalization.

 - 2) Calculate the mean velocity of the escaping particles in z - direction (see illustration). (1 point)
 - 3) Calculate the mean kinetic energy of the escaping particles. (1 point)
 - 4) Calculate the rate $R = \frac{d^2N}{dtdA}$ of the particles, which leave the container per unit of time and unit of hole area. (2 points)



Exercise 10.2: (Ideal Bose gas, Bose-Einstein condensation) (6 points)

Consider an ideal Bose gas with total number of particles N . The one-particle energy levels are normalized such that $E_0 = 0$, $E_0 \leq E_1 \leq E_2 \leq \dots$

a) Argue that based on the mean occupation number

$$\bar{n}_\nu = \frac{1}{e^{\beta(E_\nu - \mu)} - 1}$$

of the ν th one-particle state, it must hold $\mu \leq 0$ for the chemical potential μ . (2 points)

b) Assume that $\mu < 0$. What do you get then in the limit $T \rightarrow 0$ for \bar{n}_ν (ν arbitrary) ? Which problem arises in this case for N ? (2 points)

c) Assume now that for $T \rightarrow 0$ it is always $0 < -\beta\mu \ll 1$. What do you get in this case for the mean occupation number \bar{n}_0 of the energetically lowest one-particle level and how does this solve the problem which occurred in exercise 10.2 b) ? (2 points)

Exercise 10.3: (Ideal Bose gas) (10 points)

The grand canonical potential $J(T, V, \mu)$ of an ideal Bose gas is given by

$$\begin{aligned} \beta J(T, V, \mu) &= -\ln(Z_{gc}^{(B)}) = \sum_\nu \ln \left(1 - e^{-\beta(E_\nu - \mu)} \right) \\ &= g_I \frac{V}{(2\pi)^3} 4\pi \int_0^\infty dk k^2 \ln \left(1 - ze^{-\beta\epsilon(\vec{k})} \right) + g_I \ln(1 - z) \end{aligned}$$

with $z = e^{\beta\mu}$.

The last term $g_I \ln(1 - z)$ is the contribution of the ground state for which we assume $\epsilon(\vec{0}) = 0$.

a) Why is it necessary to split off the ground state contribution when the sum \sum_ν is replaced by the integral? (2 points)

b) Consider non-relativistic bosons with $\epsilon(\vec{k}) = \frac{\hbar^2 k^2}{2m}$ and show, that

$$\beta J(T, V, \mu) = -\frac{g_I}{\lambda^3} V g_{5/2}(z) + g_I \ln(1 - z)$$

with

$$g_\alpha(z) = \frac{1}{\Gamma(\alpha)} \int_0^\infty \frac{x^{\alpha-1}}{z^{-1} e^x - 1} dx \quad (\alpha \in \mathbb{R}, 0 \leq z \leq 1),$$

the thermal De Broglie wavelength $\lambda = \sqrt{\frac{2\pi\beta\hbar^2}{m}}$ and the Gamma function $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$.

c) Show that (2 points)

$$g_\alpha(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^\alpha}$$

d) Show that the mean particle density n is given by (2 points)

$$n = \frac{\langle \hat{N} \rangle}{V} = \frac{g_I}{\lambda^3} g_{3/2}(z) + \frac{g_I}{V} \frac{z}{1 - z}$$

e) Show that the mean energy of the system U is given by (4 points)

$$U = \frac{3}{2} \frac{V}{\beta} \frac{g_I}{\lambda^3} g_{5/2}(z)$$