Lagrangian Bias in the Local Bias Model

Noemi Frusciante

SISSA/ISAS - International School for Advanced Studies, Trieste, Italy

Based on
Noemi Frusciante & Ravi K. Sheth, JCAP 1211(2012)016

Sixth TRR33 Winter School
Passo del Tonale (Italy),
9-14 December 2012
Motivations

The relationship between the distribution of mass and that of galaxies depends on the complex, nonlinear process of galaxy formation. Bias is an obstacle to the comparison between perturbation theories and observations. (Springel et al., 2005)
Motivations

- Light does not trace the mass → BIAS
- The relationship between the distribution of mass and that of galaxies depends on the complex, nonlinear process of galaxy formation
- Bias is an obstacle to the comparison between perturbation theories and observations

Springel et al. (2005)
The Bias Factor I

Motivations

The Lagrangian Bias in the Local Bias Model

Normalizing density rather than overdensity

Renormalized Bias

Conclusions
Define the dimensionless density perturbation field $\delta(\bar{x}) = \frac{\rho(\bar{x}) - \bar{\rho}}{\bar{\rho}}$
Define the *dimensionless density perturbation field* $\delta(\bar{x}) = \frac{\rho(\bar{x}) - \bar{\rho}}{\bar{\rho}}$

Bias types:

1. **Linear and deterministic (accurate on large scale)**

 $\delta_b = b \delta_m$

2. **Non-linear, deterministic**

 $\delta_b = b(\delta_m) \delta_m$

3. **Stochastic**

 $\delta_b \neq b \langle \delta_b | \delta_m \rangle$

REAL BIAS is non-linear, stochastic and quite deterministic see Dekel & Lahav (1999), Sheth & Lemson 1999, Tegmark & Bromley (1999)
Define the dimensionless density perturbation field \(\delta(\bar{x}) = \frac{\rho(\bar{x}) - \bar{\rho}}{\bar{\rho}} \).

Bias types:

- *Linear and deterministic (accurate on large scale)* \(\delta_b = b\delta_m \)
Define the dimensionless density perturbation field $\delta(\bar{x}) = \frac{\rho(\bar{x}) - \bar{\rho}}{\bar{\rho}}$

Bias types:

- **Linear and deterministic (accurate on large scale)**
 \[\delta_b = b\delta_m \]

- **Non-linear, deterministic**
 \[\delta_b = b(\delta_m)\delta_m \]
Define the dimensionless density perturbation field $\delta(\bar{x}) = \frac{\rho(\bar{x}) - \bar{\rho}}{\bar{\rho}}$

Bias types:
- **Linear and deterministic (accurate on large scale)** $\delta_b = b\delta_m$
- **Non-linear, deterministic** $\delta_b = b(\delta_m)\delta_m$
- **Stochastic** $\delta_b \neq b\langle\delta_b | \delta_m\rangle$
Define the dimensionless density perturbation field $\delta(\bar{x}) = \frac{\rho(\bar{x}) - \bar{\rho}}{\bar{\rho}}$

Bias types:

- **Linear and deterministic (accurate on large scale)** \(\delta_b = b\delta_m \)
- **Non-linear, deterministic** \(\delta_b = b(\delta_m)\delta_m \)
- **Stochastic** \(\delta_b \neq b\langle \delta_b \mid \delta_m \rangle \)

REAL BIAS is non-linear, stochastic and quite deterministic
Introduction
Motivations
The Lagrangian Bias in The Local Bias Model
The Local Bias Model
Normalizing density rather than overdensity
Renormalized Bias
Conclusions
Models:

- **Eulerian Bias**: relation between the final mass density field and the final number density field
- **Lagrangian Bias (halo model, peaks model)**: relation between the initial mass density field and the initial number density field

Matsubara (2011)
The Local Bias Model

Lagrangian Bias in the Local Bias Model

Noemi Frusciante

Introduction

Motivations

The Lagrangian Bias in the Local Bias Model

Normalizing density rather than overdensity

Renormalized Bias

Conclusions

The Local Bias Model

Introduced by Fry & Gaztanaga (1993)

Assumptions: non linear, local and deterministic

\[\delta_b = f(\delta_m) = \sum_{i > 0} b_i i! (\delta_i - \langle \delta_i \rangle), \]

Note that this model ensures \(\langle \delta_b \rangle = 0 \) by subtracting-off the terms.

It is used to describe the bias with respect to the Eulerian field BUT it is often assumed to describe the bias with respect to the initial Lagrangian field: \(\delta_L \).
The Local Bias Model

- *Introduced by Fry & Gaztählenaga (1993)*

Introduction

Motivations

The Lagrangian Bias in The Local Bias Model

Normalizing density rather than overdensity

Renormalized Bias

Conclusions
The Local Bias Model

- Introduced by Fry & Gaztañaga (1993)
- Assumptions: non linear, local and deterministic $\delta_b = f[\delta_m]$
The Local Bias Model

- Introduced by Fry & Gaztañaga (1993)
- Assumptions: non linear, local and deterministic $\delta_b = f[\delta_m]$

The Model

On large enough smoothing scales, where the fluctuations are small, this relation can be expanded in a Taylor series

$$\delta_b = f(\delta_m) = \sum_{i>0} \frac{b_i}{i!} (\delta_m^i - \langle \delta_m^i \rangle),$$

Note that this model ensures $\langle \delta_b \rangle = 0$ by subtracting-off the $\langle \delta_m^i \rangle$ terms.
The Local Bias Model

- Introduced by Fry & Gaztählenaga (1993)
- Assumptions: non linear, local and deterministic \(\delta_b = f[\delta_m] \)

The Model

On large enough smoothing scales, where the fluctuations are small, this relation can be expanded in a Taylor series

\[
\delta_b = f(\delta_m) = \sum_{i>0} \frac{b_i}{i!} (\delta^i_m - \langle \delta^i_m \rangle),
\]

Note that this model ensures \(\langle \delta_b \rangle = 0 \) by subtracting-off the \(\langle \delta^i_m \rangle \) terms.

- It is used to describe the bias with respect to the Eulerian field BUT it is often assumed to describe the bias with respect to the initial Lagrangian field: \(\delta_L \).
Problem

Introduction

Motivations

The Lagrangian Bias in the Local Bias Model

The Local Bias Model

Normalizing density rather than overdensity

Renormalized Bias

Conclusions

Lagrangian Bias

in the Local Bias Model

Noemi Frusciante

Problem

PROBLEM: The cross correlation between the biased tracers and the initial field involves higher order terms

\[\langle \delta_b \delta_L \rangle = \sum_{k>0} b_k k! \langle \delta_{k+1} \rangle \]

We expect (e.g. Peaks and Patches which form halos)

\[\langle \delta_b \delta_L \rangle = b \langle \delta_L^2 \rangle \]
PROBLEM: The cross correlation between the biased tracers and the initial field involves higher order terms

\[\langle \delta_b \delta_L \rangle = \sum_{k>0} \frac{b_k}{k!} \langle \delta_{L}^{k+1} \rangle \]
Problem

- **PROBLEM:** The cross correlation between the biased tracers and the initial field involves higher order terms

\[
\langle \delta_b\delta_L \rangle = \sum_{k>0} \frac{b_k}{k!} \langle \delta^{k+1}_L \rangle
\]

- We expect (e.g. Peaks and Patches which form halos)

\[
\langle \delta_b\delta_L \rangle = b \langle \delta^2_L \rangle
\]
Normalizing density rather than overdensity
The correctly normalized bias field is defined by

\[\delta_B \equiv \frac{1 + \delta_b - \langle 1 + \delta_b \rangle}{\langle 1 + \delta_b \rangle} = \frac{\sum_{k=1}^{\infty} (b_k/k!) (\delta^k_L - \langle \delta^k_L \rangle)}{\sum_{k=0}^{\infty} (b_k/k!) \langle \delta^k_L \rangle} \]
The correctly normalized bias field is defined by

\[\delta_B \equiv \frac{1 + \delta_b - \langle 1 + \delta_b \rangle}{\langle 1 + \delta_b \rangle} = \frac{\sum_{k=1}^{\infty} (b_k/k!) \langle \delta_L^k - \langle \delta_L^k \rangle \rangle}{\sum_{k=0}^{\infty} (b_k/k!) \langle \delta_L^k \rangle} \]

The cross correlation is

\[\langle \delta_L^r \delta_B | r \rangle = \xi_{LL'}(r) \frac{\sum_{k=1}^{\infty} (b_k/k!) \langle \delta_L^{k+1} \rangle / \langle \delta_L^2 \rangle}{\sum_{k=0}^{\infty} (b_k/k!) \langle \delta_L^k \rangle} \equiv \xi_{LL'}(r) B_L, \]

Note: this is an exact statement, valid for any \(r, L \) or \(L' \), and for any local deterministic bias function.
The correctly normalized bias field is defined by

\[
\delta_B \equiv \frac{1 + \delta_b - \langle 1 + \delta_b \rangle}{\langle 1 + \delta_b \rangle} = \frac{\sum_k \infty (b_k/k!)(\delta^k_L - \langle \delta^k_L \rangle)}{\sum_k \infty (b_k/k!)\langle \delta^k_L \rangle}
\]

- The cross correlation is

\[
\langle \delta_{L'}\delta_B | r \rangle = \xi_{LL'}(r) \frac{\sum_k \infty (b_k/k!)(\delta^{k+1}_L)/\langle \delta^2_L \rangle}{\sum_k \infty (b_k/k!)\langle \delta^k_L \rangle} \equiv \xi_{LL'}(r) B_L
\]

Note: this is an exact statement, valid for any \(r, L \) or \(L' \), and for any local deterministic bias function.

- The auto-correlation function of the biased tracers will reduce to a series of the form [Similar result by Szalay (1988)]

\[
\langle \delta_B'\delta_B | r \rangle = B^2_L \xi_{LL}(r) + \frac{C_L}{2} [\xi_{LL}(r)]^2 + \ldots
\]
Motivations

The Lagrangian Bias in The Local Bias Model

Normalizing density rather than overdensity

Renormalized Bias

Conclusions

McDonald (2006) suggests redefining the mean density, and hence all bias factors order by order.

\[
\delta_j B = 1 + \delta_b - \langle 1 + \delta_b \rangle_j \langle 1 + \delta_b \rangle_j \sum_{j,k=1} \left(\frac{b_k}{k!} \left(\delta_L^k - \langle \delta_L^k \rangle \right) \right) \sum_{j,k=0} \left(\frac{b_k}{k!} \langle \delta_L^k \rangle \right).
\]

The cross-correlation between the mass and biased fields is

\[
\langle \delta_L' \delta_j^B \rangle_r = \sum_{j,k=1} \left(\frac{b_k}{k!} \langle \delta_L^k \delta_L^k \rangle_r \right) \sum_{j,k=0} \left(\frac{b_k}{k!} \langle \delta_L^k \rangle \right).
\]

To 4th order in \(\delta_L \), this is

\[
\langle \delta_L' \delta_j^{B(4)} \rangle_r = \left[b_1 + \left(b_3^2 - b_1 b_2^2 \right) \langle \delta_L^2 \rangle \right] \xi_{LL'}(r) \equiv b_4 \times \xi_{LL'}(r).
\]
What do you do when this cannot be done analytically?
What do you do when this cannot be done analytically?

Mc Donald (2006) suggests redefining the mean density, and hence all bias factors order by order

$$\delta_{B}^{(j)} = \frac{1 + \delta_{b} - \langle 1 + \delta_{b} \rangle_{j}}{\langle 1 + \delta_{b} \rangle_{j}} = \frac{\sum_{k=1}^{j} (b_{k} / k!) (\delta_{L}^{k} - \langle \delta_{L}^{k} \rangle)}{\sum_{k=0}^{j} (b_{k} / k!) \langle \delta_{L}^{k} \rangle}.$$
Renormalized Bias I

What do you do when this cannot be done analytically?

Mc Donald (2006) suggests redefining the mean density, and hence all bias factors order by order

\[\delta^{(j)}_B = \frac{1 + \delta_b - \langle 1 + \delta_b \rangle_j}{\langle 1 + \delta_b \rangle_j} = \frac{\sum_{k=1}^j (b_k/k!)(\delta^k_L - \langle \delta^k_L \rangle)}{\sum_{k=0}^j (b_k/k!\langle \delta^k_L \rangle)} . \]

The cross-correlation between the mass and biased fields is

\[\langle \delta'_L, \delta^{(j)}_B | r \rangle = \frac{\sum_{k=1}^j (b_k/k!\langle \delta^k_L \delta_L | r \rangle)}{\sum_{k=0}^j (b_k/k!\langle \delta^k_L \rangle)} . \]
Renormalized Bias I

What do you do when this cannot be done analytically?

Mc Donald (2006) suggests redefining the mean density, and hence all bias factors order by order

\[
\delta^{(j)}_B = \frac{1 + \delta_b - \langle 1 + \delta_b \rangle_j}{\langle 1 + \delta_b \rangle_j} = \frac{\sum_{k=1}^{j} (b_k/k!)(\delta_k^L - \langle \delta_k^L \rangle)}{\sum_{k=0}^{j} (b_k/k!)(\delta_k^L)}.
\]

- **The cross-correlation between the mass and biased fields is**

\[
\langle \delta^j_L, \delta_B \rangle_r = \frac{\sum_{k=1}^{j} (b_k/k!)(\delta_k^L \delta_L | r)}{\sum_{k=0}^{j} (b_k/k!)(\delta_k^L)}.
\]

- **To 4th order in \(\delta_L \), this is**

\[
\langle \delta^4_L, \delta_B \rangle_r = \left[b_1 + \left(\frac{b_3}{2} - \frac{b_1 b_2}{2} \right) \langle \delta_L^2 \rangle \right] \xi_{LL^\prime}(r) \equiv b_{\times}(4) \xi_{LL^\prime}(r)
\]
Renormalized Bias II

Lagrangian Bias in the Local Bias Model

Noemi Frusciante

Introduction
Motivations
The Lagrangian Bias in The Local Bias Model
The Local Bias Model
Normalizing density rather than overdensity
Renormalized Bias

Conclusions

The Bias coefficient is defined as

$$b(4) \equiv b_1 + (b_3^2 - b_1b_2^2) \langle \delta^2 \rangle$$

Note: The Cross-correlation does not include higher order terms!

Examples:
Lognormal field:

$$1 + \delta_b = \exp(b \delta_L) \exp(-b_2^2 \langle \delta^2_L \rangle / 2)$$

$$b_3 = b_1b_2 \rightarrow b(4) \equiv b_1 = B_L$$

Peaks:

$$1 + \delta_p = \exp(b \delta_L - c \langle \delta^2_L \rangle) \sqrt{1 + c \langle \delta^2_L \rangle } \exp(-b_2^2 \langle \delta^2_L \rangle / 2)$$

$$b_3 \neq b_1b_2 \rightarrow b(4) = b(1 - c \langle \delta^2_L \rangle)$$

$$B_L = b_1 + c \langle \delta^2_L \rangle$$
The Bias coefficient is defined

\[b^{(4)}_\times \equiv b_1 + \left(\frac{b_3}{2} - \frac{b_1 b_2}{2} \right) \langle \delta_L^2 \rangle \]

Note: The Cross-correlation does not include higher order terms!
Renormalized Bias II

The Bias coefficient is defined

\[b^{(4)}_\times \equiv b_1 + \left(\frac{b_3}{2} - \frac{b_1 b_2}{2} \right) \langle \delta_L^2 \rangle \]

Note: The Cross-correlation does not include higher order terms!

Examples:
The Bias coefficient is defined

\[b^{(4)}_\times \equiv b_1 + \left(\frac{b_3}{2} - \frac{b_1 b_2}{2} \right) \langle \delta^2_L \rangle \]

Note: The Cross-correlation does not include higher order terms!

Examples:

- Lognormal field: \(1 + \delta_b = \exp(b\delta_L) \exp(-b^2\langle \delta^2_L \rangle/2) \)
 \[b_3 = b_1 b_2 \rightarrow b^{(4)}_\times \equiv b_1 = B_L \]
The Bias coefficient is defined

\[b^{(4)}_\times \equiv b_1 + \left(\frac{b_3}{2} - \frac{b_1 b_2}{2} \right) \langle \delta^2_L \rangle \]

Note: The Cross-correlation does not include higher order terms!

Examples:

- **Lognormal field**: \(1 + \delta_b = \exp(b\delta_L) \exp(-b^2\langle \delta^2_L \rangle/2) \)

 \[b_3 = b_1 b_2 \quad \rightarrow \quad b^{(4)}_\times \equiv b_1 = B_L \]

- **Peaks**: \(1 + \delta_p = \exp(b\delta_L - c\delta^2_L/2) \sqrt{1 + c\langle \delta^2_L \rangle} \exp \left(\frac{-b^2\langle \delta^2_L \rangle/2}{1 + c\langle \delta^2_L \rangle} \right) \)

 \[b_3 \neq b_1 b_2 \quad \rightarrow \quad b^{(4)}_\times = b(1 - c\langle \delta^2_L \rangle) \quad \rightarrow \quad B_L = \frac{b}{1 + c\langle \delta^2_L \rangle} \]
Assuming that the Lagrangian bias is local and deterministic with respect to the initial Gaussian field, we showed that with a CORRECT NORMALIZATION
Assuming that the Lagrangian bias is local and deterministic with respect to the initial Gaussian field, we showed that with a CORRECT NORMALIZATION

- The two point cross-correlation between the tracer and mass is always only linearly proportional to the auto-correlation signal of the DM.
Conclusions

Assuming that the Lagrangian bias is local and deterministic with respect to the initial Gaussian field, we showed that with a CORRECT NORMALIZATION

- The two point cross-correlation between the tracer and mass is always only linearly proportional to the auto-correlation signal of the DM.

- The auto correlation function of locally biased tracers can be written as a Taylor series in the auto-correlation function of the mass.
Conclusions

Assuming that the Lagrangian bias is local and deterministic with respect to the initial Gaussian field, we showed that with a CORRECT NORMALIZATION

- The two point cross-correlation between the tracer and mass is always only linearly proportional to the auto-correlation signal of the DM.

- The auto correlation function of locally biased tracers can be written as a Taylor series in the auto-correlation function of the mass.

- These relations allow for simple tests of whether or not halo bias is indeed local in Lagrangian space.
Assuming that the Lagrangian bias is local and deterministic with respect to the initial Gaussian field, we showed that with a **CORRECT NORMALIZATION**

- The two point cross-correlation between the tracer and mass is always only linearly proportional to the auto-correlation signal of the DM.

- The auto correlation function of locally biased tracers can be written as a Taylor series in the auto-correlation function of the mass.

- These relations allow for simple tests of whether or not halo bias is indeed local in Lagrangian space.

Note: The multiplicative normalization holds also for Eulerian mass field although providing an explicit expression is more complicated.